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Abstract: Macrophages are key inflammatory immune cells that display dynamic phenotypes and
functions in response to their local microenvironment. In different conditions, macrophage polariza-
tion can be induced by high-mobility group box 1 (HMGB1), a nuclear DNA-binding protein that
activates innate immunity via the Toll-like receptor (TLR) 4, the receptor for advanced glycation end
products (RAGE), and C-X-C chemokine receptor (CXCR) 4. This study investigated the phenotypes
of murine bone-marrow-derived macrophages (BMDMs) stimulated with different HMGB1 redox
isoforms using bulk RNA sequencing (RNA-Seq). Disulfide HMGB1 (dsHMGB1)-stimulated BMDMs
showed a similar but distinct transcriptomic profile to LPS/IFNγ- and LPS-stimulated BMDMs. Fully
reduced HMGB1 (frHMGB1) did not induce any significant transcriptomic change. Interestingly,
compared to LPS/IFNγ- and LPS-, dsHMGB1-stimulated BMDMs showed lipid metabolism and
foam cell differentiation gene set enrichment, and oil red O staining revealed that both dsHMGB1
and frHMGB1 alleviated oxidized low-density lipoprotein (oxLDL)-induced foam cells formation.
Overall, this work, for the first time, used transcriptomic analysis by RNA-Seq to investigate the
impact of HMGB1 stimulation on BMDM polarization. Our results demonstrated that dsHMGB1
and frHMGB1 induced distinct BMDM polarization phenotypes compared to LPS/IFNγ- and LPS-
induced phenotypes.

Keywords: HMGB1; RNA sequencing; macrophage polarization; gene ontology; foam cell formation

1. Introduction

Macrophages are myeloid immune cells widely distributed in tissues, playing an
important role in inflammation, cell death, and regeneration. Macrophages sense foreign
pathogens-derived cues and tissue-derived signals within their microenvironment and
respond by initiating innate immune activities and inflammation [1]. Depending on the
trigger, macrophages polarize their gene expression towards distinct patterns [1]. Two
major macrophage sub-populations with different functional phenotypes that have been
recognized are classically activated or inflammatory (M1) and alternatively activated or
anti-inflammatory (M2) macrophages [2]. However, macrophage polarization in vivo is
a spectrum rather than distinct M1 or M2 phenotypes. There is a growing interest in
characterizing the functional phenotypes mediated by immune-activating molecules, such
as cytokines and damage-associated molecular patterns (DAMPs), compared to pathogen-
associated molecular patterns (PAMPs).
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One such molecule is high-mobility group box 1 (HMGB1), a prototypical DAMP ex-
pressed in almost all nucleated cells. During cell homeostasis, HMGB1 is mainly maintained
in the nucleus as a DNA-binding protein regulating transcription and genome stability [3].
In inflammatory and injury conditions, HMGB1 is translocated to the cytoplasm and further
released to the extracellular space. HMGB1 release occurs from dying cells or activated
immune cells, including macrophages [4,5]. The extracellular inflammatory activity of
HMGB1 is regulated by the redox state of three cysteine residues at amino acid posi-
tions 23, 46 and 106. The three different HMGB1 redox isoforms are denoted: fully reduced
HMGB1 (C23HC45HC106H, frHMGB1), disulfide HMGB1 (C23-C45C106H, dsHMGB1, “-”
indicating a disulfide bond), and sulfonyl HMGB1 (C23SO3C45SO3C106SO3, oxHMGB1).
frHMGB1 is able to form a heterocomplex with C-X-C motif chemokine (CXCL) 12 and bind
to C-X-C chemokine receptor (CXCR) 4, inducing cell migration and tissue regeneration [6].
dsHMGB1 is the only HMGB1 isoform known to exhibit a pro-inflammatory role by induc-
ing cytokine release via Toll-like receptor (TLR) 4-MyD88-NFκB signalling pathway [7].
HMGB1 has additionally been reported to interact with a number of receptors, including
TLR2, TLR9, and the receptor for advanced glycation end products (RAGE) [8–10], which
are all expressed by myeloid cells. All redox isoforms of HMGB1 can bind to RAGE [11],
while for other HMGB1 receptors, the importance of redox forms has not been defined.

The pro-inflammatory activity of HMGB1 was first discovered in studies designed to
identify novel mediators of sepsis [12]. Today, increased HMGB1 levels have been found in
a number of auto-inflammatory and auto-immune diseases, including rheumatoid arthri-
tis [13], systemic juvenile idiopathic arthritis [14], and systemic lupus erythematosus [15].
Additionally, increased levels of HMGB1 have been detected in synovial fluid after acute
knee injury [16] and in serum after stroke [17]. The ameliorative effects of HMGB1 neutral-
ization have been demonstrated [18]. However, the roles of the different redox isoforms in
different conditions are still not well described due to the lack of a method allowing this
distinction. The majority of the studies demonstrating divergent biological activities of
HMGB1 redox isoforms are obtained by in vitro studies.

Tissue inflammation is often characterised by an increased number of activated
macrophages, and many anti-inflammatory therapies target various macrophage functions.
Therefore, it is of relevance to clarify which macrophage functions DAMPs and PAMPs
induce and whether there are differences in the induced patterns and outcomes [19–21].
We have previously shown that dsHMGB1 and frHMGB1 induced different polarization
patterns in murine bone marrow-derived macrophages (BMDMs) [22]. frHMGB1 mainly
induced BMDM migration without a distinct polarization signature; dsHMGB1, on the
other hand, induced similar but not identical pro-inflammatory mediator secretion patterns
as M1. Here, we opted to map the transcriptome profile by RNA sequencing (RNA-Seq)
to further define the polarization patterns induced by the prototypic DAMP HMGB1 in
its different redox isoforms in comparison to M1 stimulation by LPS and IFNγ or PAMP
stimulation by LPS alone. dsHMGB1 and LPS both ligate to the TLR4 complex but on dif-
ferent epitopes in MD2 [7]. Comparing dsHMGB1 and LPS in BMDM polarization would
reflect the TLR4-mediated danger signal activated during sterile conditions and during
infectious conditions, respectively, and clarify whether a DAMP and a PAMP utilizing the
same receptor complex induces an identical response.

In line with our previous findings, dsHMGB1 triggered an overlapping transcriptome
profile to LPS/IFNγ and LPS, while frHMGB1 overlapped with the PBS control, suggesting
that frHMGB1 might have limited effects on BMDM polarization. Interestingly, gene set
enrichment analysis (GSEA) indicated that dsHMGB1 was involved in lipid metabolism
and foam cell differentiation. Compared to the PBS control, both frHMGB1 and dsHMGB1
inhibited oxidized low-density lipoprotein (oxLDL)-induced foam cell formation, while
LPS/IFNγ and LPS showed positive effects, revealing a difference between DAMP and
PAMP in lipid metabolism of BMDMs.
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2. Materials and Methods
2.1. Animals

Wild-type female C57BL/6NTac mice (Taconic Biosciences A/S, Lille Skensved, Dan-
mark) were housed in specific pathogen-free facilities at Karolinska University Hospital
with free access to water and standard rodent chow. For isolating the bone marrow cells,
mice between 8 and 10 weeks of age were euthanized using CO2. All of the animal ex-
perimental procedures were approved by the Stockholm North Ethical Committee (dnr
18320-2017, N440-12).

2.2. Harvesting and Culturing of BMDMs

The bone marrow cells were obtained from femurs as previously described [23]. The
cells from mouse hind limbs were matured into macrophages in Dulbecco′s Modified
Eagle′s Medium—high glucose (DMEM, Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 10% fetal bovine serum (FBS; F7524, Sigma-Aldrich, St. Louis, MO, USA),
2 mM of L-glutamine (Sigma-Aldrich, St. Louis, MO, USA), 1 mM of sodium pyruvate
(Sigma-Aldrich, St. Louis, MO, USA), 22 µM of β-mercaptoethanol (Gibco, Paisley, UK),
10,000 I.U./mL of Penicillin–Streptomycin (PenStrep; Sigma-Aldrich, St. Louis, MO, USA),
and 10 ng/mL of macrophage colony-stimulating factor (M-CSF; R&D Systems, Minneapo-
lis, MN, USA) for 8–9 days at 37 ◦C with 5% CO2, with half of the medium changing at day
4 and full medium changing at day 6.

2.3. Recombinant HMGB1 Production

Recombinant HMGB1 with a calmodulin-binding protein tag was produced as previ-
ously described [24]. To obtain frHMGB1, all of the buffers were supplemented with 5 mM
of DTT (Biochemica, Baden-Dättwil, Switzerland). dsHMGB1 (a kind gift from Professor
Kevin Tracey’s laboratory, Feinstein Institute, Manhasset, NY, USA) was obtained using
buffers without DTT. Endotoxin levels were determined by Limulus assay and were lower
than 2.5 EU/mg. The absence of DNA was verified using SDS-PAGE gel electrophoresis
and GelRed staining. The purified HMGB1 was stored in PBS ± 0.5 mM DTT. To validate
the functionality of dsHMGB1, BMDMs were stimulated with dsHMGB1 at a concentra-
tion of 5 µg/mL for 24 h, and significant increases in IL6, IL10, and TNFα secretion from
BMDMs were quantified by using commercial ELISA [22].

2.4. Cell Culture Experiments

The BMDMs were detached from the flask using Trypsin-EDTA (Sigma, St. Louis, MO,
USA). The cells were seeded in 24-well culturing plates (Sarstedt, Nümbrecht, Germany) at
a density 5 × 105 cells/well in DMEM containing 1% FBS and 10,000 I.U./mL PenStrep
and rested overnight. For RNA-Seq, BMDMs from five mice were pooled before seeding;
for qPCR verification, BMDMs from each individual mouse were seeded separately.

To generate cells with an M1 phenotype, 100 ng/mL of LPS-EK Ultrapure (InvivoGen,
Toulouse, France) and 20 ng/mL of IFN-γ (R&D Systems, Minneapolis, MN, USA) were
added. frHMGB1 and dsHMGB1 were used at a concentration of 5 µg/mL. LPS-EK
Ultrapure (InvivoGen, Toulouse, France) was used at a concentration of 1 µg/mL. PBS was
included in all experiments as a control. The BMDMs were stimulated 24 h at 37 ◦C with
5% CO2 before RNA isolation.

2.5. RNA-Seq

The total RNA was isolated using an RNeasy Plus Micro Kit (Qiagen, Hilden, Ger-
many) according to the manufacturer’s instructions. RNA was subjected to quality control
with Agilent Tapestation according to the manufacturer’s instructions. To construct libraries
suitable for Illumina sequencing, the Illumina stranded mRNA prep ligation sample prepa-
ration protocol was used with 200 ng of total RNA. The protocol includes mRNA isolation,
cDNA synthesis, ligation of adapters, and the amplification of indexed libraries. The yield
and quality of the amplified libraries were analyzed using Qubit by ThermoFisher, and the
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quality was checked by using Agilent Tapestation (Supplementary Table S1). The indexed
cDNA libraries were normalized and combined, and the pools were sequenced on the
Illumina NextSeq 2000 for a P2 100 cycle sequencing run, generating paired-end reads. Base-
calling and demultiplexing were performed using CASAVA software with default settings,
generating FASTQ files for further downstream mapping and analysis. The reads were
mapped to the GRCm38 reference genome using STAR [25]. Data normalization and the
analysis of differential gene expression were conducted using the DESeq2 R-package [26]
using a negative binomial test in R studio 4.1.3. Since the RNA samples were from technical
replicates rather than biological replicates (i.e., the RNA samples were pooled from five
mice), p-values from the differential gene expression analysis had to be ignored. Instead,
the genes were considered differentially expressed when the Log2FoldChange was larger
than 2.0 or smaller than −2.0.

The normalized raw counts of the 3952 differentially expressed genes were grouped
into modules by using an inverse Pearson correlation as the distance for hierarchical agglom-
erative clustering with Ward’s method (“ward.D2”), with the defined height cut of the cluster
tree equalled to 3.8. Functional gene annotation was performed on each gene module indi-
vidually, using the Gene Ontology (GO_Biological_Process_2021) libraries with the enrichR
R-package [27] in R studio 4.1.3. Gene set enrichment analysis (GSEA) was performed using
public software (GSEA 4.1.0) from the Broad Institute [28], with the following settings: the
chip platform was “Mouse_Ensembl_Transcript_ID_Human_Orthologs_MSigDB.v7.5.chip”;
“collapse” to each probe set in the expression dataset into a single vector for the genes, which
is identified by its HGNC gene symbol; “gene_set” permutation type.

2.6. Verification of Differentially Expressed Genes Identified in RNA-Seq

The RNA from four individual mice was isolated separately using the RNeasy Plus
Micro Kit (Qiagen, Hilden, Germany) and reverse transcripted to cDNA using the iScript
cDNA synthesis kit (Bio-Rad, Hercules, CA, USA) according to the manufacturers’ instruc-
tions. qPCR was performed using the KiCqStart® SYBR® Green qPCR ReadyMix™ (Sigma,
St. Louis, MO, USA) and run on a CFX384 Thermal Cycler according to the manufac-
turer’s instructions. The primer pairs are specified in Supplementary Table S2. To calculate
the ddCt values, the Ct data were normalized against the Gapdh reference gene and PBS
controls. The data are presented as –ddCt (also called Log2FoldChange), i.e., negative
values correspond to downregulated gene expression, and positive values correspond to
upregulated gene expression in the graphs.

2.7. Oil Red O Staining

The BMDMs were stimulated according to Section 2.4 for 2 h before applying 100 µg/mL
of oxidized low-density lipoprotein (oxLDL) (Invitrogen, Eugene, OR, USA) for 24 h.
BMDMs were then washed with PBS and fixed with 4% paraformaldehyde (Solveco,
Sweden) for 15 min at room temperature. The cells were stained with 0.3% (w/v) Oil Red O
(Sigma-Aldrich, St. Louis, MO, USA) in isopropanol (Solveco, Sweden) for 30 min at room
temperature, followed by counterstaining with hematoxylin (Sigma-Aldrich, St. Louis,
MO, USA) for 30 s. The cells with positive staining were quantified and normalized to
hematoxylin counterstaining.

2.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 9.3.1 for Windows
(GraphPad Software, San Diego, CA, USA). For the qPCR results, a Shapiro–Wilk test
was performed to check the normality of the data. RM-one way ANOVA with Turkey’s
multiple comparisons test was performed on the data that were normally distributed; the
Friedman test with Dunn’s multiple comparisons test was performed on the data that were
not normally distributed. For the foam cell induction assay, statistical comparisons were
performed using two-way ANOVA with Šídák’s multiple comparisons. p-values below
0.05 were considered statistically significant.
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3. Results
3.1. dsHMGB1-, LPS- and LPS/IFNγ-Stimulation Resulted in Similar Pro-Inflammatory Gene
Expression Patterns, While frHMGB1 Overlapped with PBS Control

The general overview of the transcriptome profile is presented in Figure 1. Using
hierarchical clustering on the differentially expressed genes, we classified the genes into six
clusters (Figure 1A). Compared with the PBS control, frHMGB1-stimulation did not result
in any significant transcriptomic shift, while dsHMGB1-, LPS- and LPS/IFNγ-stimulation
induced similar pro-inflammatory gene expression patterns.
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Figure 1. The general overview of transcriptome patterns of BMDMs stimulated 24 h with frHMGB1,
dsHMGB1, LPS and LPS/IFNγ. (A) Clustered heatmap of normalized counts of 3952 differentially
expressed genes. (B) Functional annotation of genes in each cluster was condcuted based on Gene
Ontology (GO) enrichment. Only the top six enriched gene sets are presented, sorted by adjusted
p-value. The scatter line indicates the cut-off p-value 0.05. (C) Principal component analysis (PCA)
plot of the samples. (D) Percentage of variance explained by principal component (PC) 1 to 6. Only
PC1 explained more than 80%; the other PCs were less abundant than PC1; especially none of PC2 to
PC6 excessed 10%. (E,F) Ranking of the top 20 leading genes that contribute to the variance in PC1
and PC2. The colour of the bars of each gene corresponds to the colours of clusters specified in (A).

Clusters 1, 2, and 6 represent the genes expressed highest in the dsHMGB1, LPS, and
LPS/IFNγ groups, respectively; cluster 3 involves the genes generally higher expressed
in dsHMGB1, LPS, and LPS/IFNγ groups compared with the PBS and frHMGB1 groups
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(Figure 1B). The top GO biological processes of these four clusters commonly include
cytokine-mediated signalling pathways (Figure 1B). “Response to IFNγ” in cluster 2 and
“cellular response to lipopolysaccharide” in cluster 6 are in agreement with the experimental
stimuli (Figure 1B). The genes in cluster 4 generally express lower in the LPS and LPS/IFNγ

groups, and the top-enriched GO processes are related to the cell cycle. Interestingly, cluster
5 represents the genes mainly enriched in cardiac muscle development and functioning,
though the sequencing was performed with BMDMs.

The PCA plot reveals the three separate clusters: frHMGB1 group clusters close to the
PBS control group; dsHMGB1 and LPS groups are close to each other and separate from the
PBS control and frHMGB1; the LPS/IFNγ group is approximately equally separated from
the other two clusters (Figure 1C). PC1, accounting for more than 84%, is the main variance
explaining the separation, and PC2 to PC6 are all below 10% (Figure 1D). The genes that
are most accounted for in PC1 are located in clusters 2, 3, and 6 (Figure 1E), while the
genes that are most accounted for in PC2 are located in clusters 1, 2, and 6 (Figure 1F); this
corresponds to that of dsHMGB1, LPS, and LPS/IFNγ, as the pro-inflammatory groups,
are most separated from the control in the PCA plot (Figure 1C).

3.2. Identification of Gene Signatures in dsHMGB1- Compared to LPS/IFNγ-Treated BMDMs

We have previously demonstrated that dsHMGB1 induced BMDM polarization to-
wards a pro-inflammatory phenotype that differed from the classical M1, induced by
LPS/IFNγ, regarding migratory abilities and nitric oxide secretion [22]. To dissect the gene
signatures of LPS/IFNγ- and dsHMGB1-stimulated BMDMs, and to explore the potential
transcriptional explanations for our previous findings, the gene expression values were plot-
ted into a FoldChange (FC) vs. FC plot (Figure 2A). Using the 2 and −2 Log2FoldChange
lines as a reference, we identified 850 co-upregulated and 336 co-downregulated genes
between LPS/IFNγ- and dsHMGB1-treated BMDMs. Overall, 135 genes were distinctively
upregulated, and 83 genes were distinctively downregulated by dsHMGB1, and these two
gene sets were regarded as “dsHMGB1-distinct”. Furthermore, 777 genes were distinctively
upregulated, and 780 genes were distinctively downregulated by LPS/IFNγ, and these two
gene sets were regarded as “LPS/IFNγ-distinct”.

To outline the enriched biological processes of the six gene sets, we undertook GO en-
richment analysis on each gene set (Figure 2B). Co-upregulated gene set resulted in the most
significant enrichment, and the top-ranked biological processes were “cytokine-mediated
signaling pathway”, “cellular response to cytokine stimulus”, “inflammatory response”,
“positive regulation of cytokine production”, and “response to interferon-gamma”. The
co-downregulated gene sets and dsHMGB1-distinct gene sets did not show significant
enrichment. LPS/IFNγ-distinct upregulated gene set showed similar inflammation-related
enrichment as the co-upregulated gene set, while LPS/IFNγ-distinct downregulated gene
set only had two significantly enriched biological processes, named “mismatch repair” and
“mitotic sister chromatid segregation”, these results were in concordance with Figure 1A.
Our data demonstrate that the DAMP molecule HMGB1, in its disulfide isoform, induces
a gene expression pattern distinct from but similar to the classical M1 stimulated by
LPS/IFNγ.

To validate the RNA-Seq data, qPCR was performed on a selected set of genes: Il12b
and Cxcl9 (Figure 3A,B) among the co-upregulated genes; Cnr2 and Lrrc17 among the co-
downregulated genes (Figure 3C,D); Ikzf4, upregulated in LPS/IFNγ- but downregulated
in dsHMGB1-stimulated BMDMs (Figure 3E); Hamp (Figure 3F), Ccr7 (Figure 3G) and
Il33 (Figure 3H) were significantly upregulated in LPS/IFNγ- than dsHMGB1-stimulated
BMDMs. Similar gene expression patterns were demonstrated by both RNA-Seq and qPCR.
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Figure 2. Comparison of common and distinct genes of LPS/IFNγ- and dsHMGB1-stimulated
BMDMs. (A) Log2FoldChange (Log2FC) vs. Log2FC plot of dsHMGB1 vs. control on the x-axis
and LPS/IFNγ vs. control on the y-axis highlighting common upregulated genes in red (850 genes),
common downregulated genes in blue (336 genes), LPS/IFNγ up- and dsHMGB1 downregulated
genes in dark yellow (1 gene), dsHMGB1-distinct genes in orange (218 genes) and LPS/IFNγ-distinct
genes (1557 genes) in purple. Grey dotted lines represent a ±2 cut-off. (B) GO analysis on six gene
sets, only the top five enriched biological processes are presented, sorted by adjusted p-value. The
scatter line indicates the cut-off p-value 0.05.
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Figure 3. qPCR validation of the featured genes identified by RNA-Seq. Expression of Il12b (A),
Cxcl9 (B), Cnr2 (C), Lrrc17 (D), Ikzf4 (E), Hamp (F), Ccr17 (G), Il33 (H), Rasgrf1 (I), Madcam1 (J) were
determined using qPCR in BMDMs stimulated for 24 h by frHMGB1, dsHMGB1, LPS and LPS/IFNγ

(M1), n = 4 mice, 2 replicates/mouse/condition. Gene expression is represented as Log2FoldChange
(Log2FC) relative to the mean of the PBS group, and the scale bars represent the standard deviations
(SD). Red dots represent the RNA-Seq results. Statistical comparisons were performed using RM-one
way ANOVA with Turkey’s multiple comparisons test on data that are normally distributed or
using Friedman test with Dunn’s multiple comparisons on data that are not normally distributed.
# = significant comparing with PBS control; * = significant comparing between two treatment groups.
*/#, p < 0.05; **/##, p < 0.01; ***/###, p < 0.001; ****/####, p < 0.0001.

3.3. Identification of Gene Signatures in dsHMGB1- Compared to LPS-Treated BMDMs

The presence of PAMPs or DAMPs during infection and tissue injury promotes
macrophage activation and induces inflammation. Both dsHMGB1 and LPS are ligands for
TLR4; however, dsHMGB1 is an endogenous molecule, whereas LPS is a bacterial compo-
nent. We performed additional experiments to understand if TLR4 ligands could signal
differently and whether it is of bacterial origin and initiates an inflammatory response
suitable for combatting infection or as an alarmin indicating tissue trauma.

Using the 2 and −2 Log2FoldChange lines as a reference, we identified 920 co-
upregulated and 360 co-downregulated genes between LPS- and dsHMGB1-stimulated
BMDMs (Figure 4A). There were 53 genes that were distinctively upregulated, and 59 genes
were distinctively downregulated by dsHMGB1, and these two gene sets were regarded
as “dsHMGB1-distinct”. There were 494 genes that were distinctively upregulated, and
694 genes were distinctively downregulated by LPS, and these two gene sets were regarded
as “LPS-distinct” (Figure 4A). GO analysis of dsHMGB1-distinct areas revealed that the
dsHMGB1-upregulated genes were significantly enriched in the “glutathione transport”
process, while dsHMGB1-downregulated genes were significantly enriched in biological
processes related to fatty acid oxidation (Figure 4B). Similar to LPS/IFNγ-distinct genes,
LPS-distinct upregulated gene set showed inflammation-related enrichment (Figure 4B),
indicating PAMPs induced stronger pro-inflammatory effects than endogenous molecules.
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Figure 4. Comparison of common and distinct genes of LPS- and dsHMGB1-stimulated BMDMs.
(A) Log2FoldChange (Log2FC) vs. Log2FC plot of dsHMGB1 vs. control on the x-axis and LPS
vs. control on the y-axis highlighting common upregulated genes in red (932 genes), common
downregulated genes in blue (360 genes), LPS up- and dsHMGB1 downregulated genes in dark
yellow (1 gene), dsHMGB1-distinct genes in orange (112 genes) and M1-distinct genes (1188 genes)
in pink. Grey dotted lines represent a ±2 cut-off. (B) GO analysis on six gene sets; only the top five
enriched biological processes are presented, sorted by p-value. The scatter line indicates the cut-off
p-value 0.05.

The genes with altered expression levels specific for dsHMGB1 stimulation are listed
in Supplementary Figure S1. In comparison with both LPS- and LPS/IFNγ-stimulation,
there were 34 genes distinctively upregulated and 27 genes distinctively downregulated by
dsHMGB1 stimulation. To confirm the gene expression differences discovered by RNA-Seq
(Figures 2 and 4), the selected genes were verified by qPCR. Compared with the RNA-Seq
results, Rasgrf1 and Madcam1 were similarly expressed in dsHMGB1-stimulated BMDMs
by qPCR verification (Figure 3I,J). However, these two genes were also upregulated with
Log2FC larger than 2.0 in the LPS group, which was contradictory to the RNA-Seq data.

To sum up, our results indicated that dsHMGB1 and LPS, both known as TLR4 ligands
but of different origin, induced distinct but similar gene expression patterns in BMDMs. The
difference recorded were less pronounced than those recorded when comparing dsHMGB1-
and LPS/IFNγ-stimulated BMDMs.

3.4. frHMGB1 and dsHMGB1 Attenuated BMDM-Derived Foam Cell Formation

To further identify the biological process enriched by dsHMGB1 compared to LPS
and LPS/IFNγ, GSEA was performed comparing dsHMGB1 with LPS and dsHMGB1
with LPS/IFNγ groups. There were 127 and 51 gene sets enriched in the dsHMGB1
group compared to the LPS and LPS/IFNγ groups, respectively, and nine gene sets were
commonly enriched in both comparisons (Figure 5A). The gene sets related to TLR4,
TLR7, and TLR9 signalling and related to protein methylation, which is important in
epigenetic modifications, were enriched in the dsHMGB1 group. Interestingly, two of the
nine commonly enriched gene sets were related to foam cell differentiation. The enrichment
plot showed that dsHMGB1 resulted in foam cell differentiation gene set enrichment
compared to the LPS/IFNγ (Figure 5B) and LPS (Figure 5C) groups.
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Figure 5. Foam cell differentiation-related gene sets were enriched by dsHMGB1 than LPS and
LPS/IFNγ. (A) GSEA analysis revealed that 127 gene sets were enriched by dsHMGB1 than LPS,
51 gene sets were enriched by dsHMGB1 than LPS/IFNγ (NES cut-off = 1.6). Nine sets were
commonly enriched, among which two were related to foam cell differentiation. (B) Foam cell differ-
entiation was enriched by dsHMGB1 (left, red) comparing with LPS/IFNγ (right, blue). (C) Foam
cell differentiation was enriched by dsHMGB1 (left, red) comparing with LPS (right, blue). (D,E) The
genes included in positive (D) and negative (E) regulation of macrophage-derived foam cell differ-
entiation (GO:0010744 and GO:0010745) were listed and heatmap which was created based on the
normalized gene counts in each sample. Colour intensity was scaled within each row so that the
highest value corresponds to red and the lowest to blue. Abbreviation: ES, enrichment score; NES,
normalized enrichment score; FDR, False Discovery Rate.
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Foam cell, which forms through dysregulated lipid metabolism, is a subtype of
macrophage. As we aimed to characterize the special macrophage phenotype induced
by HMGB1 stimulation, we proceeded to further investigate whether HMGB1 induced
foam cell differentiation. The genes related to foam cell differentiation were separated into
positive regulation (GO:0010744, listed in Figure 5D) and negative regulation (GO:0010745,
listed in Figure 5E) groups. However, we were not able to define dsHMGB1 as a positive or
negative regulator of foam cell formation: dsHMGB1 resulted in partial gene upregulation
and partial gene downregulation compared with the PBS control. The expression of the
selected genes (Lpl and Pf4 from the positive list and Nr1h3 and Abca1 from the negative list)
were quantified by qPCR (Supplementary Figure S2). However, the qPCR results were not
in line with the RNA-Seq data: only Nr1h3 was upregulated by dsHMGB1 than frHMGB1
with a relatively small fold change, while the other three genes were downregulated by
dsHMGB1 (Supplementary Figure S2).

To further explore the GSEA suggested involvement of dsHMGB1 in foam cell dif-
ferentiation, we stimulated BMDMs with oxLDL, a commonly used molecule to induce
in vitro foam cell formation. Stimulated-BMDMs were stained with oil red O to detect
neutral lipids and lipid droplets. After 24-h incubation, there was almost no oil red positive
staining in frHMGB1- or dsHMGB1-stimulated BMDMs, regardless of oxLDL stimulation;
in contrast, lipid droplet accumulation was observed in PBS, LPS, and LPS/IFNγ groups
after oxLDL stimulation (Figure 6A). Quantification of positive staining demonstrated an
equal oxLDL uptake in M1- and LPS-stimulated BMDMs and a lower uptake in control
BMDMs (Figure 6B).
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IFNγ) for 2 h, BMDMs were treated with oxLDL (100 µg/mL) for 24 h. (A) Oil red O staining in
stimulated BMDMs. Scale bar = 10 µm. (B) The percentage of cells with lipid droplets stained using oil
red O in BMDMs with and without oxLDL induction, normalized with haematoxylin counterstaining.
Average was calculated from the three pictures taken from each cell culture well, n = 4 mice, mean
of 4+SEM. Statistical comparisons were performed using two-way ANOVA with Šídák’s multiple
comparisons, *, p < 0.05; **, p < 0.01.

We continued to investigate whether increasing HMGB1 concentration influenced
lipid metabolism. Up to 50 µg/mL, both frHMGB1 and dsHMGB1 stimulation resulted
in an elongated cell shape (Supplementary Figure S3B); dsHMGB1 showed cytotoxic-
ity at 100 µg/mL, while frHMGB1 was not cytotoxic in any of the tested concentra-
tions (Supplementary Figure S3A). By increasing the concentration, both dsHMGB1 and
frHMGB1 led to some lipid droplet accumulation after oxLDL stimulation, but not more
than the PBS control (Supplementary Figure S3B,C). In summary, we could not confirm
that the suggested feature of dsHMGB1 induces BMDM-derived foam cell formation, and
neither did the frHMGB1 investigated in parallel.

4. Discussion

Macrophages play important roles in both tissue homeostasis and during inflamma-
tory conditions. Macrophages are plastic, and their functional subtypes develop in response
to triggering cues in the local environment. A deepened understanding of the transcrip-
tional profiles and the molecular pathways associated with the different macrophage
subtypes is essential for the further characterisation of the complex biology of macrophages.
Macrophage polarization, the differentiation into functional phenotypes, is affected by both
exogenous triggers, i.e., PAMPs, and endogenous triggers, i.e., DAMPs. In this study, we
report the impact on macrophage polarization of the prototypic DAMP molecule HMGB1.
This is, to our knowledge, the first study reporting gene expression profiles induced by
different redox isoforms of HMGB1 on BMDMs.

We used simultaneous stimulations with both LPS and IFNγ to induce M1 cells,
which is the standard protocol [29]. Using RNA-Seq, we corroborated our previously
reported findings that dsHMGB1 resulted in a distinct but similar gene expression profile
to LPS/IFNγ-stimulated BMDMs. Overall, 218 genes were either up- or downregulated
by dsHMGB1 but unchanged by LPS/IFNγ stimulation. However, no significant GO
enrichment could be defined based on these genes. Overall, 1186 genes were either up- or
downregulated by both dsHMGB1 and LPS/IFNγ stimulation, and these genes showed
enrichment in inflammatory processes, as well as cytokine response and regulation. These
data provide a molecular explanation for the earlier assumption that dsHMGB1 induces an
M1-like phenotype.

We then compared the gene expression patterns after stimulation with dsHMGB1
and LPS alone. The comparison revealed highly similar transcriptomic changes with only
112 genes specifically up- or downregulated by dsHMGB1. Again, no specific significant
GO enrichment could be defined. This was expected as dsHMGB1 and LPS both ligate
to TLR4 complex, and both have been previously demonstrated to activate the NFκB
signalling pathway [7,30]. In this study, we demonstrated that TLR4 activation by the
investigated PAMP and DAMP resulted in highly similar transcriptomic changes.

To validate the RNA-Seq findings, we chose to quantify gene expression by qPCR for
a selected set of genes. Overall, there was a good correspondence between RNA-Seq and
qPCR results. Rasgrf1 and Madcam1 were higher expressed in the dsHMGB1-stimulated
than LPS/IFNγ-stimulated BMDMs. Rasgrf1 encodes the protein named Ras guanine
nucleotide releasing factor 1 (RasGRF1), which was detected in synovial macrophages in
situ [31]. RasGRF1 was significantly enhanced in rheumatoid arthritis synovial tissue, and
it contributed to Matrix metalloproteinase-3 (MMP-3) production [31]. Mucosal Addressin
Cell Adhesion Molecule 1 (MAdCAM1) has been demonstrated to regulate lymphocyte
migration [32] and immune cell infiltration [33]. Our data thus suggest mechanisms by
which dsHMGB1 can contribute to joint destruction and cell migration. Hamp, encoding
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the protein Hepcidin, was higher expressed in both LPS- and LPS/IFNγ-stimulated than
dsHMGB1-stimulated BMDMs. Hepcidin is a regulator of iron metabolism. Increased
hepcidin expression results in the retention of iron in macrophages, leading to oxidative
stress [34,35]. This may explain our previous finding that nitric oxide (NO) was only
measurable from LPS/IFNγ-stimulated but not dsHMGB1-stimulated BMDMs [22]. Again,
these results clearly indicated the dsHMGB1 induced a phenotype different from the
classical M1.

We used GSEA to further study potential enrichments in biological processes. In
GSEA, the enrichment of a defined set of genes, previously associated with a certain
pathway or process, is analyzed for enrichment. Overall, 127 gene sets were enriched by
dsHMGB1 as compared to LPS, and 51 gene sets were enriched by dsHMGB1 as compared
to LPS/IFNγ. Of these, nine gene sets were shared and contained three TLR regulatory
processes, for TLR4 7 and 9; three protein methylation processes, one anti-fungal process
and two foam cell-associated processes. The TLR4 process supports our data on dsHMGB1
inducing a distinct macrophage phenotype. TLR7 and TLR9 are in line with the previously
described role of HMGB1 in endosomal uptake of LPS via RAGE for further translocation
to cytosolic LPS receptors [36]. HMGB1 could play a similar role in the uptake of TLR7 and
TLR9 ligands for deposit in endosomes expressing TLR7 and TLR9. Protein methylation
are processes important for epigenetic regulation of the chromatin [37]. How HMGB1
participates in such processes deserves further studies, as does the potential role of HMGB1
in anti-fungal immunity.

Foam cells in atherosclerotic lesions mainly originate from either circulated monocyte-
derived macrophages or smooth muscle cells [38–40]. Foam cells are formed through
dysregulated lipid metabolism resulting in intracellular storage of lipid droplets [41].
HMGB1 has been reported to promote cholesterol accumulation in vascular smooth muscle
cells [42] and to accelerate oxLDL-induced foam cell formation and apoptosis in RAW264.7
cells [43]. Thus, to test whether dsHMGB1 polarized BMDMs to foam cells, we stimulated
BMDMs with fr- and dsHMGB1 and subsequently fed the cells oxLDL. In contrast to the
studies above, our data revealed that both dsHMGB1- and frHMGB1-stimulation restrained
foam cell formation.

OxLDL is taken by the cells via the scavenger receptors. We found that scavenger
receptors (Scarb1, Scarb2, Cd36, Colec12, Scara3, Cd68, and Olr1) binding oxLDL were
differentially expressed among the five groups (Supplementary Figure S4). LPS/IFNγ-
stimulated BMDMs showed higher expression of Olr1, which encodes the oxLDL receptor
lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). LOX-1 is upregulated
after exposure to pro-inflammatory and pro-atherogenic stimuli and can be detected in
atherosclerotic lesions [44]. Lee et al. [45] demonstrated that HMGB1 enhanced oxLDL
uptake through induction of LOX-1 in human coronary artery endothelial cells, while our
RNA-Seq results or in vitro foam cell induction experiments were not in line with this
finding. One potential explanation could be that HMGB1 acts as an antagonist of oxLDL
receptors, and the pre-treatment of HMGB1, therefore, inhibited oxLDL uptake. However,
there has been no study investigating the binding between HMGB1 and the scavenger
receptors of oxLDL in BMDMs. Future confirmation studies are highly warranted.

HMGB1-stimulated BMDMs showed a stretched and elongated shape, which we have
previously observed in a scratch assay, where both fr- and dsHMGB1 induced BMDM
migration [22]. The function data can be explained by RNA-Seq data indicating that
LPS/IFNγ-stimulated BMDMs seemed to show an impairment of the cell cycle. Earlier
studies suggested that M1 mounted a rapid and effective immune response against highly
proliferative intracellular pathogens, producing NO, reactive oxygen species (ROS), and pro-
inflammatory cytokines. This process is rapid and energy-intensive, causing macrophages
to exit from the cell cycle during M1 differentiation, indicating potential coordination
between metabolic regulation and macrophage physiology [46,47].

Our study has some limitations. Firstly, the RNA-Seq was only performed on technical
replicates, and a few of the RNA-Seq results were not reproducible by qPCR verification.
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This could be due to either the biological variation or the different quantification principles
between RNA-Seq and qPCR, for example, sequencing depth and the specific transcripts
measured. Additionally, oxHMGB1 was not included in this study. Although there has
been no inflammation-generation function reported, oxHMGB1 was found to be an anti-
inflammatory molecule resulting in immunocompetent cell recruitment to inhibit cytotoxic
cells [48]. Furthermore, we studied gene expression occurring after 24 h; the expression
changes occurring in earlier or later time points were not investigated. For instance, we
previously identified the Il6 expression peak after dsHMGB1 stimulation for 7 h [22].

Taken together, our data indicated that though dsHMGB1 resulted in M1-like pro-
inflammatory cytokine release and a pro-inflammatory gene expression phenotype, the
elongated cell shape and reduced foam cell development feature were closer to the M2-like
anti-inflammatory phenotype.

5. Conclusions

We report for the first time the effect of different HMGB1 redox forms on macrophage
polarization by using RNA-Seq. Our results revealed that frHMGB1 did not induce any
significant transcriptomic changes compared to PBS control. dsHMGB1 induced a pro-
inflammatory phenotype, which confirmed current knowledge and gave a more in-depth
understanding of the downstream effects. Interestingly, dsHMGB1 induced similar tran-
scriptomic changes as LPS but differed more from the classical M1. As opposed to M1,
dsHMGB1-stimulated macrophages retained their migratory capacity. It is interesting to
speculate that dsHMGB1, as a DAMP, induces a macrophage phenotype on the M1 end
of the polarization spectrum though more fine-tuned to sterile inflammatory conditions,
to deal with cell death, tissue injury and subsequent regeneration rather than defence
against pathogens, evident by its suggested role in TLR7 and TLR9 regulation and retained
migratory capacity. Finally, our study also suggested that both frHMGB1 and dsHMGB1
attenuated foam cell formation from BMDMs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom12060779/s1, Supplementary Table S1. RNA-Seq quality control,
Supplementary Table S2. qPCR primer pairs sequence, Supplementary Figure S1. dsHMGB1-
stimulation distinctively upregulated and downregulated genes comparing with LPS- and LPS/IFNγ-
stimulation, Supplementary Figure S2. qPCR validation of the foam cell formation featured genes
identified by RNA-Seq, Supplementary Figure S3. Effects of HMGB1 on foam cell formation from
BMDMs, Supplementary Figure S4. Gene expression of scavenger receptors to oxLDL.
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