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Abstract

Let G be a simple graph. A total dominator coloring of G, is a proper coloring of the
vertices of G in which each vertex of the graph is adjacent to every vertex of some color
class. The total dominator chromatic (TDC) number χt

d(G) of G, is the minimum number
of colors among all total dominator coloring of G. For any k ∈ N, the k-subdivision of
G is a simple graph G

1
k which is constructed by replacing each edge of G with a path of

length k. In this paper, we study the total dominator chromatic number of k-subdivision
of G.

Keywords: Total dominator chromatic number, k-subdivision.
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1 Introduction
In this paper, we are concerned with simple finite graphs. Let G = (V,E) be such a graph
and λ ∈ N. A mapping f : V (G) −→ {1, 2, ..., λ} is called a λ-proper coloring of G, if
f(u) ̸= f(v) whenever the vertices u and v are adjacent in G. A color class of this coloring,
is a set consisting of all those vertices assigned the same color. If f is a proper coloring
of G with the coloring classes V1, V2, ..., Vλ such that every vertex in Vi has color i, then
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sometimes write simply f = (V1, V2, ..., Vλ). The chromatic number χ(G) of G is the
minimum number of colors needed in a proper coloring of a graph. The concept of a graph
coloring and chromatic number is very well-studied in graph theory. The total dominator
coloring, abbreviated TD-coloring studied in [4, 5, 6, 7]. Let G be a graph with no isolated
vertex, the total dominator coloring is a proper coloring of G in which each vertex of the
graph is adjacent to every vertex of some (other) color class. The total dominator chromatic
number, abbreviated TDC-number, χt

d(G) of G is the minimum number of color classes in
a TD-coloring of G. A set D ⊂ V is a total dominating set if every vertex of V is adjacent
to some vertices of D. The total dominating number γt(G) is the minimum cardinality of
a total dominating set in G.

Computation of the TDC-number is NP-complete ([5]). The TDC-number of some
graphs, such as paths, cycles, wheels and the complement of paths and cycles has computed
in [5]. Also Henning in [2] established the lower and the upper bounds on the TDC-number
of a graph in terms of its total domination number γt(G). He has shown that, every graph
G with no isolated vertex satisfies γt(G) ≤ χt

d(G) ≤ γt(G) + χ(G). The properties of
TD-colorings in trees has studied in [2, 5]. Trees T with γt(T ) = χt

d(T ) has characterized
in [2]. We have examined the effects on χt

d(G) when G is modified by operations on vertex
and edge of G in [1].

The k-subdivision of G, denoted by G
1
k , is constructed by replacing each edge vivj

of G with a path of length k., say P{vi,vj}. These k-paths are called superedges, any

new vertex is an internal vertex, and is denoted by x
{vi,vj}
l if it belongs to the superedge

P{vi,vj}, i < j with distance l from the vertex vi, where l ∈ {1, 2, . . . , k − 1}. Note that
for k = 1, we have G1/1 = G1 = G, and if the graph G has v vertices and e edges, then
the graph G

1
k has v + (k − 1)e vertices and ke edges.

In this paper, we study the TDC-number of the k-subdivision of a graph.

2 Main results
We start by proposing upper and lower bounds for the TDC-number of the k-subdivision of
a graph. First we need the TDC-number of path graph. Note that the value of TDC-number
of paths and cycles which have computed in [5] are lower and upper bounds for χt

d(Pn),
χt
d(Cn) and are not the exact value. For example by formula in [5], χt

d(P60) = 40 which
is not true and the correct value is 32 which can obtain by the following theorem.

Theorem 2.1. If Pn is the path graph of order n ≥ 8, then

χt
d(Pn) =


2k + 2 if n = 4k,
2k + 3 if n = 4k + 1,
2k + 4 if n = 4k + 2, n = 4k + 3.

Also χt
d(P3) = 2, χt

d(P4) = 3, χt
d(P5) = χt

d(P6) = 4 and χt
d(P7) = 5.

Proof. It is easy to show that χt
d(P3) = 2, χt

d(P4) = χt
d(P5) = 3, χt

d(P6) = 4 and
χt
d(P7) = 5. Now let n ≥ 8. First we show that for each four consecutive vertices we have

to use at least two new colors. Consider Figure 1. We have two cases. If we give an old
color to vi+1, then we need to give a new color to vi+2 and vi+3 to have a TD-coloring.
Also if we give a new color to vi+1, then we have to give a new color to vi+2 or vi to have
a TD-coloring. So we need at least two new colors in every four consecutive vertices.
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vi vi+1 vi+2 vi+3

Figure 1: Four consecutive vertices of the Path graph Pn.

Suppose that n = 4k, for some k ∈ N. We give a TD-coloring for the path P4k which
use only two new colors in every four consecutive vertices. Define a function f0 on the
vertices of P4k, i.e., V (P4k) such that for any vertex vi,

f0(vi) =

{
1 if i = 1 + 4k,
2 if i = 4k,

and for any vi , i ̸= 4k and i ̸= 4k + 1, f0(vi) is a new number. Then f0 is a TD-coloring
of P4k with the minimum number 2k + 2.

If n = 4k + 1, for some k ∈ N, then first color the 4k − 4 vertices using f0. Now
for the rest of vertices define f1(v4k−3) = 1, f1(v4k−2) = 2k + 1, f1(v4k−1) = 2k + 2,
f1(v4k) = 2k+ 3 and f1(v4k+1) = 2. Since for every five consecutive vertices we have to
use at least three new colors, so f1 is a TD-coloring of P4k+1 with the minimum number
2k + 3.

If n = 4k + 2, for some k ∈ N, then first color the 4k − 4 vertices using f0. Now
for the rest of vertices define f2(v4k−3) = 1, f2(v4k−2) = 2k + 1, f2(v4k−1) = 2k + 2,
f2(v4k) = 2k+3, f2(v4k+1) = 2k+4 and f2(v4k+2) = 2. Since for every six consecutive
vertices we have to use at least four new colors, so f2 is a TD-coloring of P4k+2 with the
minimum number 2k + 4.

If n = 4k + 3, for some k ∈ N, then first color the 4k − 4 vertices using f0. Now
for the rest of vertices define f3(v4k−3) = 1, f3(v4k−2) = 2k + 1, f3(v4k−1) = 2k + 2,
f3(v4k) = 2, f3(v4k+1) = 2k + 3, f3(v4k+2) = 2k + 4 and f3(v4k+2) = 2. Then f3 is a
TD-coloring of P4k+2 with the minimum number 2k+4. Therefore we have the result.

Theorem 2.2. If G is a connected graph with m edges and k ≥ 2, then

χt
d(Pk+1) ≤ χt

d(G
1
k ) ≤ (m− 1)χt

d(Pk) + χt
d(Pk+1).

Proof. For the right inequality, let e = uu1 be an arbitrary edge of G. This edge is replaced
with the superedge P {u,u1} in G

1
k , with vertices {u, x{u,u1}

1 , . . . , x
{u,u1}
k−1 , u1}. We color

this superedge with χt
d(Pk+1) colors as a total dominator coloring of Pk+1 (Theorem 2.1).

If NG(u) = {u1, . . . , us} then we color the vertices of paths P {u,ui} such that

1. The color of u in P {u,ui}, for any 2 ≤ i ≤ s, is the same as color u in total dominator
coloring of P {u,u1}.

2. The superedges P {u,ui}, for any 1 ≤ i ≤ s, have been colored as a total dominator
coloring of Pk+1 such that for any i, i′ ∈ {1, . . . , s}, (note that c(y) is the color of
vertex y in our coloring)k−1⋃

j=1

c(x
{u,ui}
j ) ∪ c(ui)

⋂k−1⋃
j=1

c(x
{u,ui′}
j ) ∪ c(ui′)

 = ∅, where i ̸= i′.
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Thus we need at most (s − 1)χt
d(Pk) + χt

d(Pk+1) colors for such coloring of vertices
of superedges P {u,ui}, 1 ≤ i ≤ s. Note that we need at most χt

d(Pk) new colors for
a TD-coloring of P {u,ui}, since the vertex u has been colored in all superedges P {u,ui},
1 ≤ i ≤ s. We do not use the colors used for superedges P {u,ui}, 1 ≤ i ≤ s, any more.
In the next step, we consider that superedges in G

1
k which are replaced instead of incident

edges to ui’s in G, and have not been colored in the prior step. Now we color the vertices
of these superedges as a TD-coloring of Pk, such that the vertices u2, . . . , us have been
colored in prior step, and the pairwise intersection of the set of colors used for coloring of
vertices of these superedges is the empty set. We continue this process to color all vertices
of G

1
k . This coloring is a TD-coloring of G

1
k , because every superedge have been colored

with distinct color set, except the end vertices of the superedges, possibly. Finally, since
we used at most (m− 1)χt

d(Pk) + χt
d(Pk+1) colors, the right inequality follows.

For the left inequality, if G is a path then the result is true. So we suppose that G is
a connected graph which is not a path. Let P {v,w} be an arbitrary superedge of G

1
k with

vertex set {v, x{v,w}
1 , . . . , x

{v,w}
k−1 , w}. Since G is not a path, so at least one of v and w is

adjacent to some vertices of G
1
k except x{v,w}

1 and x
{v,w}
k−1 , respectively. Let c be a total

dominator coloring of G
1
k . The two following cases can be occured: either the restriction

of c to vertices of P {v,w} is a total dominator coloring and so we have the result, or not.
If the restriction of c to vertices of P {v,w} is not a total dominator coloring then since
c is a total dominator coloring of G

1
k we conclude that at least one of vertices v and w,

as the vertices of the induced subgraph P {v,w}, are not adjacent to every vertex of some
color class. Without loss of generality we assume that the vertex v, as the vertex of the
induced subgraph P {v,w}, is not adjacent to every vertex of some color class. But c is a
total dominator coloring of G

1
k so the vertex v is adjacent to every vertex of some color

class, as the vertex of G
1
k . Hence there is a new color for an adjacent vertex of v, except

the vertex x
{v,w}
1 . Thus if we use this new color for the vertex x

{v,w}
1 and consider the

restriction of c for the remaining vertices of superedge P {v,w}, then P {v,w} has a total
dominator coloring. Therefore the total coloring c has at least χt

d(Pk+1) colors.

By the following Proposition we show that the upper bound of χt
d(G

1
k ) in Theorem 2.2

is sharp for G = K1,n and k = 3.

Proposition 2.3. For every n ≥ 3, χt
d(K

1
3
1,n) = 2n+ 1.

Proof. Let p1, . . . , pn be the pendant vertices of K
1
3
1,n. The adjacent vertex to pi is denoted

by qi, and the adjacent vertex to qi of degree 2 is denoted by wi for any 1 ≤ i ≤ n. The
center of K

1
4
1,n is denoted by v. Since the vertex qi is the only vertex adjacent to pi, so the

color of qi should not be used for any other vertices of graph, where 1 ≤ i ≤ n. Thus we
color the vertices q1, . . . , qn with colors 1, . . . , n, respectively, and do not use these colors
any more. For every 1 ≤ i ≤ n, the vertex qi is adjacent to pi and wi, thus we need a new
color for at least one of pi and wi. Here we consider the three following cases:

Case 1: The vertices p1, . . . , pn have been colored with colors n + 1, n + 2, . . . , 2n, re-
spectively, and these colors do not use any more. In this case we must color the
vertices w1, . . . , wn with a new color, say color 2n + 1. Since we need a proper
coloring, we color the vertex v with color 2n+ 2. So it can be seen that we have a
TD-coloring of K

1
3
1,n with 2n+ 2 colors.
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Case 2: The vertices w1, . . . , wn have been colored with colors n + 1, n + 2, . . . , 2n, re-
spectively, and these colors do not use any more. Since we need a proper coloring,
we must color the vertex v with a new color. If we color all vertices v, p1, . . . , pn
with color 2n+ 1 then we have a TD-coloring of K

1
3
1,n with 2n+ 1 colors.

Case 3: The vertices wi, pi have been colored with color n + i, for any i 1 ≤ i ≤ n and
these colors do not use any more. Thus we need a new color for the vertex v, say
color 2n+ 1. Now we have a TD-coloring of K

1
3
1,n with 2n+ 1 colors.

Therefore χt
d(K

1
3
1,n) = 2n+ 1, by Cases 1, 2 and 3.

Here we improve the lower bound of Theorem 2.2 for k ≥ 9.

Theorem 2.4. If G is a connected graph with m edges and k ≥ 9, then

m(χt
d(Pk−1)− 2) + 2 ≤ χt

d(G
1
k ).

Proof. Let e = vw be an edge of G. We consider the superedge P {v,w} with vertex set
{v, x{v,w}

1 , . . . , x
{v,w}
k−1 , w}. It is clear that P {v,w} \ {v, w} is the path graph Pk−1. Since

we use repetitious colors for the vertices x{v,w}
1 and x

{v,w}
k−1 in the TD-coloring of paths, so

we need at least χt
d(Pk−1)−2 colors for each superedges, and hence the result follows.

Theorem 2.5. If G is a connected graph with m edges and k ≥ 9, then

χt
d(G

1
k ) ≥


mk
2 + 2 k ≡ 0 (mod 4)

m(k−1
2 ) + 2 k ≡ 1 (mod 4)

m(k−2
2 + 1) + 2 k ≡ 2 (mod 4)

m(k−3
2 + 2) + 2 k ≡ 3 (mod 4).

Proof. It follows by Theorems 2.1 and 2.4.

Theorem 2.6. If G is a connected graph with m edges and k ≥ 7, then

χt
d(G

1
k ) ≤ m(χt

d(Pk+1)− 2) + 2.

Proof. As we have seen in TD-coloring of paths, we can use the same color for the pendant
vertices. So we give the color 1 or 2 to all the vertices belong to G and we color other
vertices of any superedges with χt

d(Pk+1) − 2 colors. This is a TD-coloring for G
1
k and

hence the result follows.

Theorem 2.7. If G is a connected graph with m edges and k ≥ 9, then

χt
d(G

1
k ) ≤


m(k2 + 1) + 2 k ≡ 0 (mod 4)

m(k−1
2 + 2) + 2 k ≡ 1 (mod 4)

m(k−2
2 + 2) + 2 k ≡ 2 (mod 4)

m(k−3
2 + 2) + 2 k ≡ 3 (mod 4).

Proof. It follows by Theorems 2.1 and 2.6.
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Iradmusa [3], showed that if G is a connected graph and k is a positive integer greater
than one, then at most three colors are enough to achieve a proper coloring of G

1
k .

Theorem 2.8. If G is a connected graph and k be a positive integer number greater than
one, then γt(G

1
k ) ≤ χt

d(G
1
k ) ≤ γt(G

1
k ) + 2.

Proof. If G is a connected graph and k is a positive integer greater than one, then at most
three colors are enough to achieve a proper coloring of G

1
k . In continue we want to show

that there is no graph with χt
d(G

1
k ) = γt(G

1
k ) + 3. Let γt(G

1
k ) = s and Γ = {y1, . . . , ys}

be the total dominating set of G
1
k . We color the vertices y1, . . . , ys with colors 1, . . . , s,

respectively, and do not use these colors any more. Let x be an arbitrary uncolored vertices
of G

1
k which is adjacent to one of y1, . . . , ys. Since k ≥ 2, so the set of all uncolored

adjacent vertices to x, denote by Nun−col(x), make an independent set of vertices, since
otherwise we find a triangle, i.e., K3, in G

1
k , which is a contradiction (note that if G is a

graph with girth g, then G
1
k is graph with girth gk). If Nun−col(x) = ∅, then we color x

with color s + 1. If Nun−col(x) ̸= ∅, then we suppose that Nun−col(x) = {x1, . . . , xt}
for some t ≥ 1. Since k ≥ 2 and {x1, . . . , xt} ∩ {y1, . . . , ys} = ∅, so each of vertices xi

has no uncolored adjacent vertex in G
1
k , except x, because otherwise {y1, . . . , ys} is not a

total dominating set. In this case we color the vertex x with color s + 1, and all vertices
x1, . . . , xt with color s+2. It can be seen that we have a TD-coloring of G

1
k . By the above

argument, we conclude that χt
d(G

1
k ) ≤ γt(G

1
k ) + 2, for any k ≥ 2.

The following proposition gives the exact value TDC-number of 4-subdivision of stars
graph.

Proposition 2.9. For every n ≥ 3, χt
d(K

1
4
1,n) = 2n+ 2.

Proof. Let p1, . . . , pn be the pendant vertices of K
1
4
1,n. The adjacent vertex to pi is denoted

by qi, and the adjacent vertex to qi of degree 2 is denoted by wi for any 1 ≤ i ≤ n. If
the center of K

1
4
1,n is denoted by v then the adjacent vertices of v are denoted by z1, . . . , zn

where zi and wi are adjacent for any 1 ≤ i ≤ n. Since pi is a vertex of degree one, for
any 1 ≤ i ≤ n, and pi must be adjacent to all vertices of a color class, so we must color
the vertices q1, . . . , qn with different colors, say 1, . . . , n, respectively, and we should not
use these colors any more. Now we consider the vertices q1, . . . , qn. These vertices have
exactly two adjacent vertices, wi’s and pi’s. To have a TD-coloring, at least one of these
two vertices, wi and pi, must be colored with a new color, for every 1 ≤ i ≤ n, such that
these new colors do not use any more. Hence the three following cases can be occured:

Case 1: The vertices w1, . . . , wn have been colored with colors n + 1, n + 2, . . . , 2n, re-
spectively, and these colors do not use any more. It is clear that we need at least
two colors for coloring of vertices v, z1, . . . , zn, since the vertex v is adjacent to
vertices z1, . . . , zn. If we label all vertices z1, . . . , zn with color 2n + 1, and the
vertices v, p1, . . . , pn with color 2n + 2, then it can be seen that we have a TD-
coloring of K

1
4
1,n with 2n+ 2 colors.

Case 2: The vertices p1, . . . , pn have been colored with colors n + 1, n + 2, . . . , 2n, re-
spectively, and these colors do not use any more. In this case we consider the
vertices z1, . . . , zn. Each of zi, 1 ≤ i ≤ n, has two adjacent vertices, v and wi.
Since zi must be adjacent to all vertices of some color class, so at least one of wi
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and v must be colored with a new color such that this color do not use any more.
Since v is the common neighbors of all vertices z1, . . . , zn, and we want to use the
minimum number of colors, so we color the vertex v with color 2n+1, and do not
use this color any more. Since our coloring must be proper, we need at least two
new colors for coloring of the remaining uncolored vertices: one color, say 2n+2,
for vertices z1, . . . , zn, and another color for coloring of all vertices w1, . . . , wn,
say color 2n+ 3. Now we have a TD-coloring of K

1
4
1,n with 2n+ 3 colors.

Case 3: The vertices wi, pi have been colored with color n + i, for any i (1 ≤ i ≤ n) and
these colors do not use any more. Since our coloring is proper so we need at least
two new colors for coloring of vertices v and z1, . . . , zn. If we color the vertex v
with color 2n+1, and all vertices z1, . . . , zn with color 2n+2, then it can be seen
that we have a TD-coloring of K

1
4
1,n with 2n+ 2 colors.

Therefore χt
d(K

1
4
1,n) = 2n+ 2, by Cases 1, 2 and 3.

Theorem 2.10. For any k ≥ 3, χt
d(G

1
k ) ≤ χt

d(G
1

k+1 ).

Proof. First we give a TD-coloring to the vertices of G
1

k+1 . Let P {v,w} be an arbitrary
superedge of G

1
k+1 with vertex set {v, x{v,w}

1 , . . . , x
{v,w}
k , w}. We have the following

cases:

Case 1: There exists a vertex u ∈ {x{v,w}
1 , . . . , x

{v,w}
k } such that other vertices of graph

are not adjacent to all vertices with color class of vertex u. Consider the graph in
Figure 2. Suppose that the vertex u has the color i and the vertex n has color α.
The vertex m is adjacent to all vertices with color class j and j ̸= i and the vertex
n is adjacent to all vertices with color class k and k ̸= i. Since k ≥ 3, without loss
of generality, suppose that m ̸= v. We have two cases:

Case i: The color of the vertex m is not α. We omit the vertex u and put an edge
between n and m. So without adding a new color we have a TD-coloring
for this new graph.

Case ii: The color of the vertex m is α. Since the vertex u is adjacent to color class
α, so any other vertices does not have color α. In this case, by removing
the vertex m and putting an edge between u and t, we have a TD-coloring
for this new graph. Because the vertex t is adjacent to color class which
is not α, the color of t is not i (because of our assumptions), the vertex n
is adjacent to all vertices with color class k and the vertex u is adjacent to
all vertices with color class α.

Case 2: For every vertex u ∈ {x{v,w}
1 , . . . , x

{v,w}
k }, there exists a vertex such that is adja-

cent to all vertices with color of vertex u. Consider the graph in Figure 2. Suppose
that the vertex u has the color i and the vertex p has color j and the vertex p is
adjacent to all vertices with color i. we have two cases:

Case i: The color of vertex q is not i. We omit the vertex r and put an edge
between u and s. So without adding a new color we have a TD-coloring
for this new graph, since there is no other vertex with color i.
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Case ii: The color of the vertex q is i. In this case the vertex r is adjacent to color
class of vertex s and the color of vertex s does not use for other vertices.
Now we omit the vertex u and put an edge between r and p. If the color
of r is j, then we change it to i and obviously since the vertex s was
adjacent to a color class except j, so we have a TD-coloring. If the color
of the vertex r is not j, then we do not change its color and so we have a
TD-coloring again.

Now we give the same TD-coloring for all superedges. So we have the result.

mun t purs q

Figure 2: A part of a superedge in the proof of Theorem 2.10, respectively.

Here we prove that Theorem 2.10 is true for k = 2, too.

Theorem 2.11. For any graph G, χt
d(G

1
2 ) ≤ χt

d(G
1
3 ).

Proof. First we give a TD-coloring to the vertices of G
1
3 . Let P {s,w} be an arbitrary

superedge of G
1
3 with vertex set {s, x{s,w}

1 = v, x
{s,w}
2 = u,w} (see Figure 3) and suppose

that the vertex v has the color α. We have the following cases:

Case 1: The vertices u and s are adjacent with a vertex with a color class which is not α.
we have two cases:

Case i: The color of vertices u and s are different. In this case, by removing
vertex v and put an edge between u and s, we have a TD-coloring for this
new graph. Because two vertices u and s are adjacent with a vertex with
color class which is not α.

Case ii: The color of vertices u and s are the same. Suppose that u and s have color
β. In this case β does not use for any other vertices. So w is adjacent with
a vertex with color class except β. Now we remove vertex u and put an
edge between v and w. So we have a TD-coloring for this new graph.

Case 2: The vertex u is adjacent to all vertices with color class α. we have two cases:

Case i: The color of the vertex w is not α. Suppose that the vertex u has color
γ. If the vertex v is adjacent with all vertices with color γ, and if the
color of s is γ, we remove the vertex u and put an edge between v and w.
But if the color of vertex s is not γ, then we remove the vertex u, put an
edge between v and w and give the color γ to the vertex w. So we have a
TD-coloring for this new graph. If the vertex v is adjacent to all vertices

wuvs

Figure 3: A superedge in G
1
3 .
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Figure 4: An example which shows that Theorem 2.12 is not true for k = 2.

whose have a color except γ (vertex s), then we remove the vertex u and
put an edge between v and w. So we have a TD-coloring for this new
graph.

Case ii: The color of the vertex w is α. We have two new cases. First, the vertex
v is adjacent to a vertex with color class γ. Any adjacent vertex with w
is not adjacent to vertex with color class α (except u). So we remove the
vertex u, put an edge between v and w and give the color γ to w. This is a
TD-coloring for this new graph. Second, v is not adjacent with color class
γ. So the color of the vertex s does not use any more. Also the vertex s is
not adjacent to vertex with color class α. So we remove vertex v and put
an edge between s and u. This is a TD-coloring for this new graph.

Case 3: The vertex s is adjacent to all vertices with color class α. We have two cases:

Case i: If v is the only vertex which has color α, then we remove the vertex u and
put an edge between v and w. This is a TD-coloring for this new graph.

Case ii: If there exist some vertices with color α, then the vertex u is adjacent with
color class except α. So we remove v and put an edge between s and u.
This is a TD-coloring for this new graph.

We apply this TD-coloring for all superedges. So we obtain a TD-coloring for G
1
2 . There-

fore we have χt
d(G

1
2 ) ≤ χt

d(G
1
3 ).

We end the paper with the following theorem:

Theorem 2.12. If G is a graph with m edges, then χt
d(G

1
k ) ≥ m, for k ≥ 4.

Proof. For k = 4, in any superedge P {v,w} such as {v, x{v,w}
1 , x

{v,w}
2 , x

{v,w}
3 , w} without

considering vertices v and w, there is a path graph of length two. The vertex x
{v,w}
2 need

to use a new color in at least one of its adjacent vertices, and we cannot use this color in
any other superedges. So we have the result.

Note that Theorem 2.12 is not true for k = 2. As an example, for the graph G of size
12 in Figure 4 ,we have χt

d(G
1
2 ) ≱ 12. Also consider the graph G of size 18 in Figure 5.

For this graph we have χt
d(G

1
3 ) ≱ 18 which show that Theorem 2.12 is not true for k = 3.
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Figure 5: An example which show that Theorem 2.12 is not true for k = 3.
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