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Abstract
The alpha complex efficiently computes persistent homology of a point cloud X
in Euclidean space when the dimension d is low. Given a subset A of X , relative
Čech persistent homology can be computed as the persistent homology of the relative
Čech complex Č(X , A). However, this is not computationally feasible for larger point
clouds X . The aim of this note is to present a method for efficient computation of rela-
tive Čech persistent homology in low dimensional Euclidean space. We introduce the
relative Delaunay–Čech complex DelČ(X , A) whose homology is the relative Čech
persistent homology. It is constructed from the Delaunay complex of an embedding
of X in (d + 1)-dimensional Euclidean space.

Keywords Topological data analysis · Relative homology · Delaunay–Čech
complex · Alpha complex

Mathematics Subject Classification 62R40 · 55N31 · 55U05

1 Introduction

Persistent homology is receiving growing attention in the machine learning commu-
nity. In that light, the scalability of persistent homology computations is of increasing
importance. To date, the alpha complex is the most widely used method to compute
persistent homology for large low-dimensional data sets.
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Relative persistent homology has been considered several times in recent years.
For example, Edelsbrunner and Harer [8] have presented an application of relative
persistent homology to estimate the dimension of an embedded manifold. Relative
persistent homology is also a way to introduce the concept of extended persistence
[6]. De Silva and others have shown that the relative persistent homology of the union
K∞ of a filtered simplicial complex {Kt }t≥0 with respect to the simplicial complexes
Kt and its corresponding relative persistent cohomology have the same barcode [13].
They also show that absolute persistent homology of Kt can be computed from this
relative persistent homology.More recently, Pokorny and others [10] have used relative
persistent homology to cluster two-dimensional trajectories. Some software, such as
PHAT [2], even allows for the direct computation of relative persistent homology. For
an example see the PHAT github repository.

Despite the fact that relative persistent homology has been considered in many
different situations, we are not aware of a relative version of the alpha- or Delaunay–
Čech complexes being used before the conference version of this paper [4]. Since then,
Reani and Bobrowski [11] described the relative alpha complex with similar methods.

Our contributions are as follows.

1. Wegive a newelementary proof that theDelaunay–Čech complex is level homotopy
equivalent to the Čech complex. This has previously been shown using discrete
Morse theory [1].

2. We extend this proof to the relative versions of the Delaunay–Čech complex and
the Čech complex.

3. We explain how the relative Delaunay–Čech complex can be constructed through
embedding in a higher dimension.

Given finite A ⊆ X ⊆ R
d , these contributions lead to the construction of a filtered

simplicial complex DelČ(X , A) with persistent homology isomorphic to the relative
persistent homology of Čech persistencemodules Č∗(X; k)/Č∗(A; k). The underlying
simplicial complex of DelČ(X , A) is the Delaunay complex of an embedding Z of
X in R

d+1 with the property that a projection pr : Rd+1 → R
d takes Z onto X . All

simplices in the Delaunay complex of Z projecting to a subset of A are given filtration
value zero. The filtration value of the remaining simplices in the Delaunay complex
of Z is defined to be the Čech filtration value of their projection to R

d . This is the
content of Theorem 3.2.

This manuscript is structured as follows. In Sect. 2, we introduce relative Čech
persistent homology, and in Sect. 3 we construct the relative Delaunay–Čech complex.
The rest of the paper serves to prove that the relative Delaunay–Čech complex is
level homotopy equivalent to the relative Čech complex. Section 4 introduces Dowker
nerves, the theoretical foundation used in the proof. In Sect. 5, we introduce the alpha-
and Delaunay–Čech complexes using the Dowker nerve terminology and show that
they are level homotopy equivalent to the Čech complex. Section 6 introduces the
relative alpha- and Delaunay–Čech dissimilarities, and proves that their nerves are
level homotopy equivalent to the relative Čech complex. Finally, in Sect. 7 we show
that the nerve of the relativeDelaunay–Čech dissimilarity is level homotopy equivalent
to the relative Delaunay–Čech complex.
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2 Relative Čech Persistent Homology

Let X be a finite subset of Euclidean spaceRd . Given t > 0, the Čech complex Čt (X)

of X is the abstract simplicial complex with vertex set X and with σ ⊆ X a simplex
of Čt (X) if and only if there exists a point p ∈ R

d with distance less than t to every
point in σ . Varying t we obtain the filtered Čech complex Č(X).

Given a subset A of X we obtain an inclusion Č(A) ⊆ Č(X) of filtered simplicial
complexes and an induced inclusion Č∗(A; k) ⊆ Č∗(X; k) of associated chain com-
plexes of persistence modules over the field k. The relative Čech persistent homology
of the pair (X , A) is defined as the homology of the factor chain complex of persistence
modules Č∗(X; k)/Č∗(A; k).

For X of small cardinality, the relative Čech persistent homology can be calculated
as the reduced persistent homology of the relative Čech complex Č(X , A), where
σ ⊆ X is a simplex of Čt (X , A) if either σ ⊆ A or σ ∈ Čt (X). Note that, since
Č∞(A) is contractible, this simplicial complex is of the same homotopy type as the
mapping cone Čt (A) ⊆ Čt (X). However, as the cardinality of X grows, this quickly
becomes computationally infeasible.

Note that our construction of the relative Čech complex is a simplicial complex. It
is possible to instead construct a relative Čech complex as a cell complex where A is
collapsed. This would lead to smaller constructions, in particular if the cardinality of
A is large. However, we chose to construct the relative Čech complex and the relative
Delaunay–Čech complex as simplicial complexes.

3 The Relative Delaunay–Čech Complex

Before delving into theory we present a filtered simplicial complex that is level homo-
topy equivalent to the relative Čech complex Č(X , A) of a pair of finite subsets
A ⊆ X of Euclidean space R

d . Two filtered simplicial complexes K = (Kt )t≥0
and L = (Lt )t≥0 are level homotopy equivalent if there exists a filtered simplicial
map f : K → L so that the geometric realization of ft : Kt → Lt is a homotopy
equivalence for each t .

Recall that the Delaunay complex Del(X) is the simplicial complex consisting of
subsets σ of X contained in an empty sphere. That is, there exists a center p ∈ R

d

and a radius r > 0, so that all elements of σ have distance r to p and no element of
X is closer to p.

For convenience, we let B = X − A so that X is the disjoint union of A and B.
Choose s > 0 bigger than the diameters of A and B. The set

Z = A × {s} ∪ B × {−s}

is an embedding of X in R
d+1. Let Del(Z) be the Delaunay complex of Z . Here,

the reason for our choice of s is to ensure that we have an inclusion Del(A) =
Del (A × {s}) ⊆ Del(Z).
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Definition 3.1 The relative Delaunay–Čech complex of the finite subsets A ⊆ X ofRd

is the filtered simplicial complex DelČ(X , A) with Del(Z) as underlying simplicial
complex and with filtration R : Del(Z) → R defined as follows: Given σ ∈ Del(Z),
let pr(σ ) be the projection of σ ⊆ R

d+1 to Rd away from the last coordinate. If pr(σ )

is contained in Awe let R(σ ) = 0. Otherwise we let R(σ ) be the radius of the smallest
enclosing ball of pr(σ ).

By construction, considered as a filtered simplicial complex, the relative Delaunay–
Čech complex is a subcomplex of the relative Čech complex.

Theorem 3.2 For each t ≥ 0, the inclusion DelČt (X , A) ⊆ Čt (X , A) is a homotopy
equivalence. In particular, the persistent homology of DelČ(X , A) is isomorphic to
the relative Čech persistent homology of the pair (X , A). If X ⊆ R

d is of cardinality n,
then DelČ(X , A) contains O(n	(d+1)/2
) simplices.

The statement about the size of the relative Delaunay–Čech complex is a direct con-
sequence of the result that the Delaunay triangulation of n points in d + 1 dimensions
contains O(n	(d+1)/2
) simplices [9, 12].

Now we have shown how to construct the relative Delaunay–Čech complex
DelČ(X , A). In the following sections we prove Theorem 3.2, i.e., that the relative
Delaunay–Čech complex DelČ(X , A) is level homotopy equivalent to the relative
Čech complex Č(X , A).

4 Dowker Nerves

The main theoretical ingredients of our proof are dissimilarities, Dowker nerves, and
partitions of unity. In this section, we introduce these concepts together with properties
we need in the proof of Theorem 3.2.

A dissimilarity is a continuous function of the form Λ : X × Y → [0,∞], for
topological spaces X and Y , where [0,∞] is given the order topology. A morphism
f : Λ → Λ′ of dissimilarities Λ : X × Y → [0,∞] and Λ′ : X ′ × Y ′ → [0,∞]
consists of a pair ( f1, f2) of continuous functions f1 : X → X ′ and f2 : Y → Y ′ so
that for all (x, y) ∈ X × Y the following inequality holds:

Λ′( f1(x), f2(y)) ≤ Λ(x, y).

This notion of morphism is less general than for example [3, Defn. 2.10], but it is
simpler and suffices for our purposes. The Dowker nerve NΛ of Λ is the filtered
simplicial complex described as follows: For t > 0, the simplicial complex NΛt

consists of the finite subsets σ of X for which there exists y ∈ Y so that Λ(x, y) < t
for every x ∈ σ . Let f : Λ → Λ′ be a morphism of dissimilarities as above and let
σ ∈ NΛt . Given y ∈ Y with Λ(x, y) < t for every x ∈ σ we see that

Λ′( f1(x), f2(y)) ≤ Λ(x, y) < t,
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so f1(σ ) ∈ NΛ′
t . Thus we have an induced simplicial map f : NΛ → NΛ′. Given

x ∈ X and t > 0, the Λ-ball of radius t centered at x is the subset of Y defined as

BΛ(x, t) = {y ∈ Y | Λ(x, y) < t}.

The t-thickening of Λ is the subset of Y defined as

Λt =
⋃

x∈X
BΛ(x, t).

Note that by construction the set of Λ-balls of radius t is an open cover of the t-
thickening of Λ.

The geometric realization |K | of a simplicial complex K on the vertex set V is the
subspace of the space [0, 1]V of functions α : V → [0, 1] described as follows:

1. The subset α−1((0, 1]) of V consisting of elements where α is strictly positive is a
simplex in K . In particular it is finite.

2. The sum of the values of α is one, that is
∑

v∈V α(v) = 1.

With respect to the product topology, the subspace topology on |K | is called the strong
topology on the geometric realization. It is convenient for construction of functions
into |K |. The weak topology on |K |, which we are not going to use here, is convenient
for construction of functions out of |K |. The homotopy type of |K | is the same for
these two topologies [7, p. 355, Cor. A.2.9]. Given a simplex σ ∈ K , the simplex |σ |
of |K | is the closure of

{α : V → [0, 1] | α(v) > 0 for all v ∈ σ } ∩ |K |.

The simplices of |K | are the sets of this form.
A partition of unity ϕ = {ϕt : Λt → |NΛt |} subordinate to the dissimilarity

Λ : X × Y → [0,∞] consists of continuous maps ϕt : Λt → |NΛt | for t ≥ 0, such
that given x ∈ X and t ≥ 0, the closure of the set

{y ∈ Y | ϕt (y)(x) > 0}

is contained in BΛ(x, t). Given t ≥ 0 and y ∈ Λt , the function ϕt (y) : X → [0, 1] is
a partition of unity because ϕt (y) ∈ |NΛt | implies that

∑
x∈X ϕt (y)(x) = 1. We say

thatΛ is numerable if a partition of unity subordinate toΛ exists. If Y is paracompact,
then every dissimilarity of the form Λ : X × Y → [0,∞] is numerable [7, p. 355,
paragraph after Defn. A.2.10].

Let ϕ be a partition of unity subordinate to Λ, let t ≥ 0, and let y ∈ Λt . If x ∈ X
with ϕt (y)(x) > 0, then Λ(x, y) < t . Therefore ϕt (y) is contained in a simplex |σ |
in |NΛt | with σ contained in {x ∈ X | Λ(x, y) < t}. Every finite subset of this
set is an element of NΛt . This implies that for s ≤ t there is a simplex of |NΛt |
containing both ϕs(y) and ϕt (y). It also implies that given another partition of unity
ψ subordinate toΛ there is a simplex of |NΛt | containing both ϕt (y) andψ t (y). This
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is exactly the definition of contiguous maps, so ϕt and ψ t are contiguous, and thus
homotopic maps [7, Rem. 2.22, p. 350]. Similarly, the diagram

Λs ϕs

−−−−→ |NΛs |
⏐⏐�

⏐⏐�

Λt ϕt

−−−−→ |NΛt |

commutes up to homotopy [7, paragraph on the nerve starting on p.355 and ending
on p.356].

Recall that a cover U of Y is good if all non-empty finite intersections of members
of U are contractible. We now state the Nerve Lemma in the context of dissimilarities.

Theorem 4.1 If Y is paracompact and Λ : X × Y → [0,∞] is a dissimilarity, then
there exists a partition of unity ϕ subordinate toΛ. Moreover, given t ≥ 0, if the cover
of Λt by Λ-balls of radius t is a good cover, then ϕt is a homotopy equivalence.

Proof By the above discussion, we only need to note that the last statement about good
covers is [14, Thm. 4.3]. ��

A functorial version of the Nerve Lemma can be stated as follows:

Proposition 4.2 LetΛ : X×Y → [0,∞] andΛ′ : X ′×Y ′ → [0,∞] be dissimilarities
and let f = f1× f2 : X×Y → X ′×Y ′ be amorphism f : Λ → Λ′ of dissimilarities. If
{ϕt : Λt → |NΛt |} is a partition of unity subordinate toΛ and {ψ t : (Λ′)t → |NΛ′

t |}
is a partition of unity subordinate to Λ′, then for every t ≥ 0 the diagram

Λt ϕt

−−−−→ |NΛt |
f2

⏐⏐�
⏐⏐�| f1|

(Λ′)t ψ t

−−−−→ |NΛ′
t |,

commutes up to homotopy, where | f1| is induced by the simplicial map NΛt → NΛ′
t

extending the map f1 : X → X ′ of vertices.

Proof We show that the two compositions are contiguous. Recall that | f1| takes a
point α : X → [0, 1] of |NΛt | to the point | f1|(α) of |NΛ′

t | with | f1|(α)(x ′) =∑
f1(x)=x ′ α(x). Recall further that ϕt (y) is contained in a simplex |σ | in |NΛt |,

where σ is contained in {x ∈ X | Λ(x, y) < t}. Then we have that for y ∈ Λt , the
elements | f1|(ϕt (y)) and ψ t ( f2(y)) of |NΛ′

t | are contained in simplices |σ ′| and |τ ′|
respectively. Both σ ′ and τ ′ are subsets of the set {x ′ ∈ X ′ | Λ′(x ′, f2(y)) < t}.
However, every finite subset of this set is a simplex in NΛ′

t . In particular, so is the
union σ ′ ∪ τ ′. ��
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5 The Alpha- and Delaunay–Čech Complexes

Herewe introduce the standard Čech,Delaunay,Delaunay–Čech, and alpha complexes
using the dissimilarity notation introduced above. We then show that the Delaunay–
Čech complex is homotopy equivalent with the Čech complex with an elementary
geometric approach.

Given a finite subset X of Rd we define the Voronoi cell of x ∈ X as

Vor(X , x) = {p ∈ R
d | d(x, p) ≤ d(y, p) for all y ∈ X}.

Let Rd
d be Euclidean space with the discrete topology. The discrete Delaunay dissim-

ilarity of X is defined as

delX : X × R
d
d → [0,∞], delX (x, p) =

{
0 if p ∈ Vor(X , x),

∞ if p /∈ Vor(X , x).

The Delaunay complex Del(X) is the simplicial complex with vertex set X and with
σ ⊆ X a simplex of Del(X) if and only if there exists a point in R

d belonging to
Vor(X , x) for every x ∈ σ . That is, Del(X) = N delXt for 0 < t < ∞.

Note that with respect to Euclidean topology, the discrete Delaunay dissimilarity is
not continuous, and hence delX : X ×R

d → [0,∞] is not a dissimilarity. One way to
deal with this is to use the Nerve Lemma for absolute neighbourhood retracts [5, Thm.
8.2.1]. Another way is to construct a continuous version of the Delaunay dissimilarity
and to use Theorem 4.1 and Proposition 4.2, where the Voronoi cells are replaced by
open sets as explained below.

Given a subset σ of X and p ∈ R
d , let

dVor(p, σ ) = max {d(p,Vor(X , x)) | x ∈ σ },

where for any A ⊆ R
d , we define d(p, A) = infa∈A{d(p, a)}. Note that if σ /∈

Del(X), the infimum εσ of the continuous function dVor(−, σ ) : Rd → R is strictly
positive. Choose ε > 0 so that 2ε < εσ for every subset σ of X that is not in Del(X).
Given x ∈ X we define the ε-thickened Voronoi cell Vor(X , x)ε by

Vor(X , x)ε = {p ∈ R
d | d(p,Vor(X , x)) < ε}.

By construction the nerve of the open cover (Vor(X , x)ε)x∈X ofRd is equal toDel(X).
Let h : [0,∞] → [0,∞] be a continuous order preserving map with h(0) = 0 and
h(ε) = ∞. In order to be specific we let

h(t) =
⎧
⎨

⎩
− ln

(
1 − t

ε

)
if t < ε,

∞ if t ≥ ε.

(5.1)

For x ∈ X , let Delx : Rd → [0,∞] be the function defined by Delx (p) =
h(d(p,Vor(X , x))) so that Delx (Vor(X , x)) = 0 and Delx (Rd \ Vor(X , x)ε) = ∞.
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We are now ready to introduce dissimilarities whose nerves give us the Delaunay
complex and the filtered Čech, alpha and Delaunay–Čech complexes. The Delaunay
dissimilarity of X is defined as

DelX : X × R
d → [0,∞], DelX (x, p) = Delx (p).

By the above discussion we know that N DelXt = N delXt = Del(X) whenever 0 <

t < ∞. The Čech dissimilarity of X is defined as

dX : X × R
d → [0,∞],

where dX (x, p) is the Euclidean distance between x ∈ X and p ∈ R
d . The alpha

dissimilarity of X is defined as

AX = max(DelX , dX ) : X × R
d → [0,∞].

The Delaunay–Čech dissimilarity is defined as

DelČX : X × (Rd × R
d) → [0,∞],

DelČX (x, (p, q)) = max (dX (x, p),DelX (x, q)).

Note the nerve of the dissimilarity

delČX : X × (Rd × R
d
d) → [0,∞],

delČX (x, (p, q)) = max (dX (x, p), delX (x, q)),

with respect to the space R
d × R

d
d , where one of the factors has the discrete

topology, is identical to the nerve of DelČX . Moreover, the Dowker nerves
of the Delaunay-, Čech-, alpha-, and Delaunay–Čech dissimilarities are the
Delaunay-, Čech-, alpha-, and Delaunay–Čech complexes respectively. For all these
dissimilarities, the corresponding balls are convex, so the geometric realizations are
homotopy equivalent to the corresponding thickenings. In order to see that the inclu-

sion morphism AX → dX induces homotopy equivalences |N AX
t | �−→ |NdX

t | it
suffices by Proposition 4.2 to note that the corresponding map (AX )t → (dX )t is
the identity map. This holds because BAX (x, t) = BdX (x, t) ∩ BDelX (x, t) and given
y ∈ BdX (x, t) we have that y ∈ Vor(X , x ′) for some x ′ ∈ X . Thus, dX (y, x ′) is
minimal, so dX (y, x ′) ≤ dX (y, x) < t and y ∈ BdX (x ′, t) ∩ BDelX (x ′, t).

In order to see that the inclusion morphism DelČX → dX induces homotopy

equivalences |N DelČX
t | �−→ |NdX

t | we use the following lemma:

Lemma 5.1 For every (p, q) ∈ (DelČX )t , the entire line segment between (p, p) and
(p, q) is contained in (DelČX )t .
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Proof In order not to clutter notation we omit superscript X on dissimilarities. Let
γ : [0, 1] → R

d be the function γ (s) = (1− s) p + sq. We claim that given (p, q) ∈
DelČt and s ∈ [0, 1] the point (p, γ (s)) = (p, (1 − s) p + sq) is in DelČt .

If (p, q) ∈ DelČt , there exists a point x ∈ X , such that p ∈ Bd(x, t) and q ∈
BDel(x, t), that is,d(q,Vor(X , x)) < h←(t), where h← is the generalized inverse of h.
Pickq ′ ∈ Vor(X , x) so thatd(q, q ′) < h←(t). For the idea of the proof, it is convenient
to first consider the case q ′ = q. In general, however, q may not be in Vor(X , x). Let
γ ′ : [0, 1] → R

d be the function γ ′(s) = (1 − s) p + sq ′. Given s ∈ [0, 1], suppose
that the point (p, γ ′(s)) = (p, (1 − s) p + sq ′) is in delČt . Then there exists x ′ ∈ X
such that d(x ′, p) < t and γ ′(s) ∈ Vor(X , x ′). In order to know that (p, γ (s)) is in
DelČt it suffices to observe that h(d(γ (s), V (X , x ′))) ≤ h(d(γ (s), γ ′(s))) < t since
γ ′(s) ∈ Vor(X , x ′).

It remains to be shown that given any s ∈ [0, 1], the resulting point (p, γ ′(s)) =
(p, (1 − s) p + sq ′) is in delČt . Suppose γ ′(s) ∈ Vor(X , y) for some s ∈ [0, 1) and
some y ∈ X . We claim that then p ∈ Bd(y, t). To see this, we may without loss of
generality assume that y �= x . Let H be the hyperplane in Rd between x and y, i.e.,

H = {z ∈ R
d | d(x, z) = d(y, z)}.

Let

H+ = {z ∈ R
d | d(x, z) ≥ d(y, z)} and H− = {z ∈ R

d | d(x, z) ≤ d(y, z)}.
Since γ ′(s) ∈ Vor(X , y) we have γ ′(s) ∈ H+. Since q ′ ∈ Vor(X , x) we have
q ′ ∈ H−. Since the line segment between p and q ′ either is contained in H or intersects
H atmost oncewemust have p ∈ H+. That is, d(y, p) ≤ d(x, p) < t , so p ∈ Bd(y, t)
as claimed. ��

By Lemma 5.1, the inclusion

(dX )t =
⋃

x∈X
BdX (x, t) →

⋃

x∈X
BDelČX (x, t) = (DelČX )t , p �→ (p, p),

is a deformation retract. In particular it is a homotopy equivalence and Proposition 4.2
implies that the inclusion morphism DelČX → dX induces homotopy equivalences

|N DelČX
t | �−→ |NdX

t |.

6 The Relative Delaunay–Čech Dissimilarity

In this section, we construct relative versions of the Čech and Delaunay–Čech dissim-
ilarities defined in Sect. 5. Here we consider two subsets X1 and X2 of d-dimensional
Euclidean space Rd .

The Voronoi diagram of a finite subset X of Rd is the set of pairs of the form
(x,Vor(X , x)) for x ∈ X , that is,

Vor(X) = {(x,Vor(X , x)) | x ∈ X}.

123



958 Discrete & Computational Geometry (2022) 68:949–963

This may seem overly formal since the projection on the first factor gives a bijection
Vor(X) → X . However, when we work with Voronoi cells with respect to different
subsets X1 and X2 of Rd it may happen that Vor(X1, x1) = Vor(X2, x2) even when
x1 �= x2. The Voronoi diagram of the pair of subsets X1 and X2 of Rd is the union

Vor(X1, X2) = Vor(X1) ∪ Vor(X2).

The discrete Delaunay dissimilarity of X1 and X2 is defined as

delX1,X2 : Vor(X1, X2) × R
d
d → [0,∞],

delX1,X2((x, V ), p) =
{
0 if p ∈ V ,

∞ if p /∈ V .

The simplicial complex N delX1,X2
t is independent of 0 < t < ∞. It is the Delaunay

complex Del(X1, X2) on X1 and X2. In order to describe the homotopy type of this
simplicial complex we thicken the Voronoi cells like we did in the previous section:
Given a subset σ of Vor(X1, X2) and p ∈ R

d , let

dVor(p, σ ) = max {d(p, V ) | (x, V ) ∈ σ }.

Note that if σ /∈ Del(X1, X2), the infimum εσ of the continuous function
dVor(−, σ ) : Rd → R is strictly positive. Choose ε > 0 so that 2ε < εσ for every
subset σ of Vor(X1, X2) that is not in Del(X1, X2). Given (x, V ) ∈ Vor(X1, X2) we
define the ε-thickening V ε of V by

V ε = {p ∈ R
d | d(p, V ) < ε}.

By construction, the nerve of the open cover {V ε}(x,V )∈Vor(X1,X2) is equal to
Del(X1, X2). The Delaunay dissimilarity DelX1,X2 of X1 and X2 is defined as

Vor(X1, X2) × R
d DelX1,X2−−−−−→ [0,∞], DelX1,X2((x, V ), p) = h(d(p, V )),

for h : [0,∞] → [0,∞] the order preserving map defined in Sect. 5.1. The inclusion
X1 → Vor(X1, X2) taking x ∈ X1 to (x,Vor(X1, x)) induces a morphism of dissim-
ilarities DelX1 → DelX1,X2 and an inclusion of nerves N DelX1

t ⊆ N DelX1,X2
t for

t > 0.
Next, we construct the dissimilarity AX1,X2 as

Vor(X1, X2) × R
d AX1,X2−−−−→ [0,∞],

((x, V ), p) �→ max (d(x, p),DelX1,X2((x, V ), p)).
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Also here we have an obvious inclusion N AX1
t → N AX1,X2

t , and the AX1,X2 -balls are
convex so the Nerve Lemma yields a homotopy equivalence

|N AX1,X2
t | �

⋃

(x,V )∈Vor(X1,X2)

BAX1,X2 ((x, V ), t)

=
⋃

x∈X1∪X2

BdX1∪X2 (x, t) = (X1 ∪ X2)
t

between |N AX1,X2
t | and the t-thickening

⋃
x∈X1∪X2

B(x, t) of X1 ∪ X2. Finally, we

construct the dissimilarity DelČX1,X2 :

Vor(X1, X2) × (Rd × R
d)

DelČX1,X2−−−−−−→ [0,∞],
((x, V ), (p, q)) �→ max

(
d(x, p),DelX1,X2((x, V ), q)

)
.

Here again we have an obvious inclusion N DelČX1
t → N DelČX1,X2

t , and the
DelČX1,X2 -balls are convex so the Nerve Lemma yields a homotopy equivalence

|N DelČX1,X2
t | � (DelČX1,X2)t .

The following variant of Lemma 5.1 implies that (DelČX1,X2)t is a deformation retract
of (X1 ∪ X2)

t .

Lemma 6.1 For every (p, q) ∈ (DelČX1,X2)t , the entire line segment between (p, p)
and (p, q) is contained in (DelČX1,X2)t .

Proof Given (p, q) ∈ (DelČX1,X2)t = (DelČX1)t ∪ (DelČX2)t , we have (p, q) ∈
(DelČXi )t for some i ∈ {1, 2}. Then also (p, p) lies in (DelČXi )t , and the claim
follows by Lemma 5.1. ��
As for the nonrelative version, Proposition 4.2 implies that the inclusion mor-

phism DelČX1,X2 → dX1∪X2 induces homotopy equivalences |N DelČX1,X2 | �−→
|NdX1∪X2 |.

7 Nerve of the Relative Delaunay–Čech Dissimilarity

In this section we introduce the relative Delaunay dissimilarity and show that its nerve
is level homotopy equivalent to the relative Delaunay–Čech complex. We fix some
notation used in this section: X1 ⊆ R

d and X2 ⊆ R
d are finite subsets. We let s be a

positive real number, we let Z = X1 × {s} ∪ X2 × {−s} and we let pr : Rd+1 → R
d

be the projection omitting the last coordinate.

Lemma 7.1 The projection pr : Rd+1 → R
d induces a surjection

Vor(Z)
g−→ Vor(X1, X2),

{
((x, s), V ) �→ (x,Vor(X1, x)),

((x,−s), V ) �→ (x,Vor(X2, x)),
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with pr(V ) ⊆ Vor(Xi , x) for x ∈ Xi . Given (x,Vor(Xi , x)) ∈ Vor(X1, X2) for
i ∈ {1, 2}, the fiber g−1((x,Vor(Xi , x))) consists of all elements of Vor(Z) of the
form ((x, a), V ) for a ∈ {±s}.
Proof We show that pr(V ) ⊆ Vor(X1, x1) for ((x1, s), V ) ∈ Vor(Z) such that
x1 ∈ X1. Given (p, r) ∈ V we have for all points of the form (x ′

1, s) for x
′
1 ∈ X1

that d ((p, r), (x1, s)) ≤ d ((p, r), (x ′
1, s)). This implies that d(p, x1) ≤ d(p, x ′

1),
and thus p ∈ Vor(X1, x1). We conclude that pr(V ) ⊆ Vor(X1, x1). An analogous
argument applies for elements of the form ((x2,−s), V ) in Vor(Z).

Clearly every element of the form ((x, a), V ) for a ∈ {±s} is in the fiber
g−1((x,Vor(Xi , x))). Conversely, if g(((y, a), V )) = (x,Vor(Xi , x)), then y = x
and a ∈ {±s}. Since there exists a Voronoi cell of Z containing (x, a), for every
(x, a) ∈ R

d+1, the fiber is non-empty, so g is surjective. If x ∈ X1 ∩ X2 and
Vor(X1, x) = Vor(X2, x), then the fiber g−1((x,Vor(Xi , x))) consists of two ele-
ments, so in this situation g is not injective. ��
Let s1 be the diameter of X1 and s > s1. Given a σ ∈ Del(X1), we can choose
a p ∈ R

d so that d(p, x) ≤ s for every (x, V ) ∈ σ . Then d ((p, s), (x2,−s)) ≥
d ((p, s), (x1, s)) for every x1 ∈ X1 and x2 ∈ X2. This implies that (p, s) is in the
intersection of the Voronoi cells ((x1, s),Vor(Z , (x1, s))) for (x1, V ) ∈ σ . It follows
that the function

j1 : Vor(X1) → Vor(Z), j1(x1, V ) = ((x1, s),Vor(Z , (x1, s))),

induces a simplicial map of nerves Del(X1) → Del(Z). Similarly, given s > s2
where s2 is the diameter of X2, there is a simplicial map Del(X2) → Del(Z). Let
s(X1, X2) = max(s1, s2).

Recall, from the previous two sections, that εσ is the infimum of the continuous
function dVor(−, σ ) : Rd → R. Choose ε > 0 satisfying the following two criteria:

– 2ε < εσ for every subset σ of Vor(X1, X2) that is not in Del(X1, X2).
– 2ε < εσ for every subset σ of Vor(Z) that is not in Del(Z).

Let h : [0,∞] → [0,∞] be the order preserving map defined in (5.1), and let DelZ

and DelX1,X2 be constructed using h. We define the relative Delaunay dissimilarity

D : Vor(Z) × (Rd × R
d+1) → [0,∞],

D((z, V ), (p, q)) = max (d(pr(z), p),DelZ ((z, V ), q)).

Note that the underlying simplicial complex
⋃

0<t<∞ NDt of the nerve of D is the
Delaunay complex Del(Z). The filtration value of σ ∈ Del(Z) in the nerve of D is
the filtration value of g(σ ) in the nerve of DelČX1,X2 . In order to see this, note that
N DelZ = N delZ and N DelX1,X2 = N delX1,X2 .

Proposition 7.2 Let X1 ⊆ R
d and X2 ⊆ R

d be finite. Choose s > s(X1, X2). Then

Vor(Z)
g−→ Vor(X1, X2) and id × pr : Rd × R

d+1 → R
d × R

d form a morphism

f = (g, id × pr) : D → DelČX1,X2
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of dissimilarities inducing a homotopy equivalence

ft : NDt → N DelČX1,X2
t

for every t > 0.

Proof For i = 1, 2 the inclusion pr(V ) ⊆ Vor(Xi , x) for ((x, (−1)i−1s), V ) ∈
Vor(Z) implies that

DelX1,X2(g(z, V ), pr(q)) ≤ DelZ ((z, V ), q)

for all (z, V ) ∈ Vor(Z) and q ∈ R
d+1. So f = (g, id × pr) : D → DelČX1,X2 is a

morphism.
In order to show that g induces a homotopy equivalence | ft | of geometric realiza-

tions, by the Nerve Lemma, it suffices to show that given a simplex σ of N DelČX1,X2
t ,

the inverse image g−1(σ ) is a simplex of NDt . Let p be a point in the intersection of
the Voronoi cells in σ . Write g−1(σ ) = τ1 ∪ τ2, where τ1 consists of Voronoi cells
with centers at height s and τ2 consists of Voronoi cells with centers at height −s.

Suppose that τ2 is empty. Then actually σ ∈ DelČX1
t , and since s > s1 we know

that j1(σ ) ∈ Del(Z) by the above discussion. Since g ◦ j1 is the inclusion of Vor(X1)

in Vor(X1, X2) = Vor(X1) ∪ Vor(X2) we know that j1(σ ) ⊆ g−1(σ ) = τ1 and that
j1(σ ) ∈ NDt . On the other hand, since τ2 is empty, by Lemma 7.1 we know that
g−1(σ ) is contained in j1(σ ), so they must be equal. We conclude that g−1(σ ) is a
simplex of NDt . A similar argument applies when τ1 is empty.

In the remaining case where both τ1 and τ2 are nonempty, recall that p ∈⋂
(x,V )∈σ V . Let σ1 = {(x1, s) | (x1,Vor(X1, x1)) ∈ σ } and σ2 = {(x2,−s) |

(x2,Vor(X2, x2)) ∈ σ }. For every α ∈ R the point (p, α) has the same distance u(α)

to all points in σ1, and it has the same distance v(α) to all points in σ2. The continuous
function

k : R → R, k(α) = u(α) − v(α),

has k(−s) > 0 and k(s) < 0. By the intermediate value theorem there exists α0 ∈
[−s, s] with k(α0) = 0. Then (p, α0) has the same distance to all elements of σ1 and
also has the same distance to all elements of σ2. Moreover, given a point (x1, s) ∈ Z ,
its distance to (p, α0) is at least u(α0) = v(α0). Similarly, given a point (x2, s) ∈ Z ,
its distance to (p, α0) is at least u(α0) = v(α0). We conclude that (p, α0) is in the
intersectionof theVoronoi cells in g−1(σ ) = τ1∪τ2. ThusDelČZ ((z, V ), (p, α0)) = 0
and d(pr(z), p) < t for all (z, V ) ∈ g−1(σ ). In particular, g−1(σ ) ∈ NDt . ��
We are now ready to compute persistent homology of X1 ∪ X2 relative to X1. The
relativeDelaunay–Čech complexDelČ(X1∪X2, X1) is the filtered simplicial complex
with DelČ(X1 ∪ X2, X1)t = j1(Del(X1)) ∪ NDt . Note that this is consistent with
Definition 3.1. Also note that DelČ(X1 ∪ X2, X1) implicitly depends on s through
the definition of Z . In order not to clutter notation we omit this dependency in the
notation.
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Theorem 7.3 Let X1 ⊆ R
d and X2 ⊆ R

d be finite. Choose s > s(X1, X2). Then the
geometric realization of the filtered simplicial complex DelČ(X1 ∪ X2, X1) is level
homotopy equivalent to the filtered space ((X1 ∪ X2)

t/Xt
1)t>0. In particular, there is

an isomorphism

(H∗(DelČ(X1 ∪ X2, X1)t ))t>0 ∼= (H∗((X1 ∪ X2)
t , Xt

1))t>0

of persistence modules.

Proof Since j1(Del(X1)) is contractible, the geometric realization of the relative
Delaunay–Čech complex DelČ(X1 ∪ X2, X1)t = j1(Del(X1)) ∪ NDt is homo-
topy equivalent to the quotient space |DelČ(X1 ∪ X2, X1)t |/| j1(Del(X1))|. This
quotient space is homeomorphic to |NDt |/|NDt ∩ j1(Del(X1))|. The homotopy
equivalence ft : NDt → N DelČX1,X2

t from Proposition 7.2 induces an isomor-
phism NDt ∩ j1(Del(X1)) → N DelČX1

t . So we obtain a homotopy equivalence
|NDt |/|NDt ∩ j1(Del(X1))| → |N DelČX1,X2

t |/|N DelČX1
t |. By Lemma 6.1, the

space |N DelČX1,X2
t | is homotopy equivalent to the Euclidean t-thickening (X1∪X2)

t

of X1 ∪ X2 and by Lemma 5.1, |N DelČX1
t | is homotopy equivalent to the Euclidean

t-thickening Xt
1 of X1. ��

In order to prove Theorem3.2, it remains to be shown that for each t ≥ 0, the geometric
realization of the inclusion DelČt (X , A) ⊆ Čt (X , A) is a homotopy equivalence.
Consider the diagram

|NdA
t | ←−−−− (d A)t ←−−−− (DelČA)t −−−−→ |N DelČA

t |
⏐⏐�

⏐⏐�
⏐⏐�

⏐⏐�

|NdX
t | ←−−−− (dX )t ←−−−− (DelČX ,A)t −−−−→ |N DelČX ,A

t |,

where the right hand square is the diagram of Proposition 4.2 for the morphism
DelČA → DelČX ,A induced by the inclusionVor(A) ⊆ Vor(X , A), themiddle square
is induced by the inclusion of Delaunay–Čech complexes in Čech complexes, and the
left hand square is the square of Proposition 4.2 for the morphism d A → dX . By Lem-
mas 5.1 and 6.1 the horizontal maps in the middle square are homotopy equivalences,
and by Theorem 4.1 the horizontal maps in the left- and right squares are homo-
topy equivalences, in the sense that they induce homotopy equivalences of geometric
realizations. Proposition 4.2 also implies that the diagrams

(DelČA)t −−−−→ |N DelČA
t |

⏐⏐�
⏐⏐�

(d A)t −−−−→ |NdA
t |

and

(DelČX ,A)t −−−−→ |N DelČX ,A
t |

⏐⏐�
⏐⏐�

(dX )t −−−−→ |NdX
t |

commute up to homotopy. We conclude that all the maps in these diagrams induce
homotopy equivalences of geometric realizations and that there is a homotopy
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equivalence |N DelČX ,A
t |/|N DelČA

t | → |NdX
t |/|NdA

t | induced by inclusions of
Delaunay–Čech complexes in Čech complexes, and that this map induces an iso-
morphism of persistence modules. The map DelČ(X , A)t → N DelČX ,A

t /N DelČA
t

collapsing j1(Del(A)) ∩ DelČ(X , A)t to a point induces a homotopy equivalence of
geometric realizations. Similarly, the map Č(X , A) → NdX

t /NdA
t collapsing NdA∞

to a point induces a homotopy equivalence. We conclude the proof of Theorem 3.2
by noting that this implies that the inclusion DelČt (X , A) ⊆ Čt (X , A) is a homotopy
equivalence.
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