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Abstract
Given a graph G = (V ,E) and a set C of unordered pairs of edges regarded as being 
in conflict, a stable spanning tree in G is a set of edges T inducing a spanning tree 
in G, such that for each 

{

ei, ej
}

∈ C , at most one of the edges ei and ej is in T. The 
existing work on Lagrangean algorithms to the NP-hard problem of finding mini-
mum weight stable spanning trees is limited to relaxations with the integrality prop-
erty. We exploit a new relaxation of this problem: fixed cardinality stable sets in 
the underlying conflict graph H = (E,C) . We find interesting properties of the cor-
responding polytope, and determine stronger dual bounds in a Lagrangean decom-
position framework, optimizing over the spanning tree polytope of G and the fixed 
cardinality stable set polytope of H in the subproblems. This is equivalent to dual-
izing exponentially many subtour elimination constraints, while limiting the num-
ber of multipliers in the dual problem to |E|. It is also a proof of concept for com-
bining Lagrangean relaxation with the power of integer programming solvers over 
strongly NP-hard subproblems. We present encouraging computational results using 
a dual method that comprises the Volume Algorithm, initialized with multipliers 
determined by Lagrangean dual-ascent. In particular, the bound is within 5.5% of 
the optimum in 146 out of 200 benchmark instances; it actually matches the opti-
mum in 75 cases. All of the implementation is made available in a free, open-source 
repository.

Keywords  Lagrangean decomposition · Dual ascent · Conflict-free spanning trees · 
Stable sets · Polyhedra · Open-source software
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1  Introduction

Given an undirected graph G = (V ,E) , with edge weights w ∶ E → ℚ , and a family 
C of unordered pairs of edges that are regarded as being in conflict, a stable (or con-
flict-free) spanning tree in G is a set of edges T inducing a spanning tree in G, such 
that for each 

{

ei, ej
}

∈ C , at most one of the edges ei and ej is in T. The minimum 
spanning tree under conflict constraints (MSTCC) problem is to determine a stable 
spanning tree of least weight, or decide that none exists. It was introduced by [12, 
13], who also prove its NP-hardness.

Different combinatorial and algorithmic results about stable spanning trees 
explore the associated conflict graph H = (E,C) , which has a vertex corresponding 
to each edge in the original graph G, and where we represent each conflict constraint 
by an edge connecting the corresponding vertices in H. Note that each stable span-
ning tree in G is a subset of E which corresponds both to a spanning tree in G and to 
a stable set (or independent set, or co-clique: a subset of pairwise non-adjacent ver-
tices) in H. Therefore, one can equivalently search for stable sets in H of cardinality 
exactly |V| − 1 which do not induce cycles in the original graph G.

We have recently initiated the combinatorial study of stable sets of cardinality 
exactly k in a graph [28], where k is a positive integer given as part of the input. 
There are appealing research directions around algorithms, combinatorics and opti-
mization for problems defined over fixed cardinality stable sets. Also from an appli-
cations perspective, conflict constraints arise naturally in operations research and 
management science. Stable spanning trees, in particular, model real-world settings 
such as communication networks with different link technologies (which might be 
mutually exclusive in some cases), and utilities distribution networks. In fact, the 
latter is a standard application of the quadratic minimum spanning tree problem [1], 
which generalizes the MSTCC one.

Exact algorithms to find stable spanning trees have been investigated for a decade 
now, building on branch-and-cut [10, 30], or Lagrangean relaxation [11, 33] strat-
egies. Consider the natural integer programming (IP) formulation for the MSTCC 
problem:

(1)min
∑

e∈E

wexe

(2)s.t.
∑

e∈E(S)

xe ≤ |S| − 1, for each S ⊊ V , S ≠ �,

(3)
∑

e∈E

xe = |V| − 1,

(4)xei + xej ≤ 1, for each
{

ei, ej
}

∈ C,

(5)xe ∈ {0, 1}, for each e ∈ E.



1319

1 3

Polyhedral results and stronger Lagrangean bounds for stable…

While a considerable effort in the development of branch-and-cut algorithms led to 
more sophisticated formulations and contributed to a better understanding of our 
capacity to solve MSTCC instances by judicious use of valid inequalities, the exist-
ing Lagrangean algorithms are limited to the most elementary approach. Namely, a 
relaxation scheme dualizing conflict constraints (4), which thus has the integrality 
property, as proved in the seminal work of Edmonds [16]. We review other aspects 
of the corresponding references in Sect. 3.1.

The present paper takes the standpoint that the development of a full-fledged 
Lagrangean strategy to find stable spanning trees is an unsolved problem. While 
we recognize different merits of previous work, we found it productive to investi-
gate stronger Lagrangean bounds in this context: exploring more creative relaxation 
schemes, designing improved dual methods, all the while harnessing the polyhedral 
point of view and progress in IP computation.

The main idea of this paper is to offer an alternative starting point for this prob-
lem, building on fixed cardinality stable sets as an alluring handle to work on stable 
spanning trees. After presenting some elementary properties of the corresponding 
polytope in Sect.  2, we use cardinality constrained stable sets again in Sect.  3 to 
design a stronger relaxation scheme, based on Lagrangean decomposition (LD). We 
explain how classical results from the literature guarantee the superiority of such a 
reformulation: both with respect to the quality of dual bounds, when compared to 
the straightforward relaxation, and with regard to the number of multipliers, when 
compared to an alternative framework to determine the same bounds (relax-and-cut 
dualizing violated subtour elimination constraints (2) dynamically).

We see the opportunity for renewed interest in LD in light of the progress in 
mixed-integer linear programming (MILP) computation. Given the impressive 
speedup of MILP solvers over the past two decades, Dimitris Bertsimas and Jack 
Dunn are among a group of distinguished researchers who make a case for (exact) 
optimization over integers as the natural, correct model for several tasks within 
machine learning and towards interpretable artificial intelligence. This is the theme 
of their recent book [4]; see also [5, 6]. We draw inspiration from this philosophy 
(challenging assumptions previously deemed computationally intractable) to pro-
pose less hesitation towards designing Lagrangean algorithms that exploit subprob-
lems for which, albeit strongly NP-hard, specialized solvers attain good perfor-
mance. Indeed, we present a proof of concept in the particular case of the MSTCC 
problem. We leverage a state-of-the-art branch-and-cut algorithm for fixed cardinal-
ity stable sets to an effective method to compute strong dual bounds for optimal sta-
ble spanning trees by means of LD.

In summary, our contributions are the following. 

1.	 On the polyhedral combinatorics side, we present intersection properties and a 
bound on the dimension of the fixed cardinality stable set polytope, a relaxation 
of the stable spanning tree one.

2.	 We propose a sound analysis of different Lagrangean bounds published in the 
literature of the MSTCC problem, design a stronger reformulation based on LD, 
and justify its advantages both in theory and in a numerical evaluation. We make 
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a case for designing new algorithms combining LD and MILP solvers exploring 
strongly NP-hard subproblems

3.	 We present a free, open-source software package implementing the complete 
algorithm. It welcomes extensions and eventual collaborations, besides offer-
ing a series of useful, general-purpose algorithmic components, e.g. separation 
procedures, an LD based dual-ascent framework, an application of the Volume 
Algorithm framework implemented in COIN-OR.

2 � Polyhedral results

As a first step towards knowledge about the polytope of stable spanning trees in a 
graph, we study elementary properties of the larger polytope ℭ(H, k) of fixed cardi-
nality stable sets in the conflict graph H = (E,C) . The polyhedral results in this sec-
tion serve their own purpose, and are not necessary for the reformulation and results 
presented in the remaining of the paper.

We begin with the necessary notation and terminology. For conciseness, we 
abbreviate “stable set of cardinality k” as kstab in this work. Let [n]

def
={1,… , n} , and 

let conv S denote the convex hull of a set S. Recall that the incidence (or charac-
teristic) vector of a set S ⊂ E =

{

e1,… , em
}

 is defined as �S ∈ {0, 1}|E| such that 
�S
i
= 1 if and only if ei ∈ S . The family of all incidence vectors of kstabs in H is 

denoted Fkstab(H, k) . Hence ℭ(H, k)
def
=conv Fkstab(H, k).

Also let F↑

kstab
(H, k) ⊂ {0, 1}|E| denote the family of incidence vectors of stable 

sets of cardinality greater than or equal to k in H, and let ℭ↑(H, k)
def
=conv F

↑

kstab
(H, k) 

denote their convex hull. Define F↓

kstab
(H, k) and ℭ↓(H, k) analogously for stable sets 

of cardinality at most k. We omit the parameters H and k in such notation where it 
does not cause any confusion. Likewise, we occasionally omit the indices in sum-
mations over all coordinates of a point to make a passage more readable, e.g. 

∑

x 
when it clearly means 

∑

i∈[n] xi . Finally, let ext P denote the set of extreme points of 
a given polyhedron P.

In the following, we present intersection properties connecting ℭ , ℭ↑ , and ℭ↓.

Theorem 1  Let H be an arbitrary graph on n vertices, and k be a positive integer. 

	 i.	 ℭ(H, k) = ℭ↑(H, k) ∩ ℭ↓(H, k).
	 ii.	 ℭ(H, k) = ℭ↑(H, k) ∩ F = ℭ↓(H, k) ∩ F , where F

def
=
�

x ∈ ℚn ∶
∑

u∈[n] xu = k
�

.

Proof  (i) ℭ ⊆ ℭ↑ ∩ ℭ↓ follows from the fact that the convex hull of the intersection 
of two sets is contained in the intersection of the respective convex hulls.

For the other inclusion, let x∗ ∈ ℭ↑ ∩ ℭ↓ be arbitrary. Without loss of generality, 
we write x∗ as a convex combination of p vertices of ℭ↑:

x
∗ =

∑

i∈[p]

𝜆iy
i, with 𝜆i ≥ 0 for each i,

∑

i∈[p]

𝜆i = 1, and
{

y
i
}

i∈[p]
⊆ extℭ↑.
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Note that yi ∈ ℭ↑
⟹

∑

u∈[n] y
i
u
≥ k for each i. Now, if 

∑

u∈[n] y
i
u
> k for some 

i ∈ [p] , we derive from �i ≥ 0 and 
∑

�i = 1 that 
∑

u∈[n] x
∗
u
> k , and x ∉ ℭ↓ . Hence 

∑

u∈[n] y
i
u
= k for each i ∈ [p] , and 

{

y
i
}

i∈[p]
⊆ ℭ . By convexity of ℭ , we conclude 

that x∗ ∈ ℭ.
(ii) It is immediate that ℭ ⊆ ℭ↑ ∩ F : if x∗ ∈ ℭ , we may write x∗ as the convex 

combination of incidence vectors of kstabs, which is also a convex combination of 
vertices of ℭ↑ within F.

For the other inclusion, observe that ℭ↑ ∩ F is the face of ℭ↑ induced by valid 
inequality 

∑

x ≥ k . Let x∗ denote a point in that face. Viewing the face as a poly-
tope, x∗ may be written as a convex combination of vertices of the face, which in 
turn are vertices of ℭ↑ satisfying 

∑

x = k . We thus write x∗ as a convex combination 
of incidence vectors of kstabs, and x∗ ∈ ℭ.

The proof is analogous for the second equality, observing that F is the face deter-
mined by inequality 

∑

x ≤ k , valid for ℭ↓ . 	�  ◻

Note that it is not necessary that a vertex of the intersection of two polytopes 
is a vertex of any of the polytopes. For a counterexample, consider two squares A, 
B in ℚ2 such that A ∩ B is another square; vertices of the intersection need not be 
vertices of A or B. The result in Theorem 3 below shows a rather favourable situ-
ation when it comes to our cardinality constrained stable set polytopes. In order to 
prove it, we use the following fact, which is an elementary exercise in polyhedral 
theory, e.g. Exercise 3-8 in the 2017 lecture notes Linear programming and poly-
hedral combinatorics, by Michel Goemans (https://​math.​mit.​edu/​~goema​ns/​18453​
S17/​polyh​edral.​pdf). We remind the reader of the equivalence of extreme points, 
vertices, and basic feasible solutions of a polyhedron.

Lemma 2  Let P = {� ∈ ℚn ∶ �� ≤ �,�� ≤ �} , and  = {� ∈ ℚn:
�� ≤ �,�� = �} . It follows that ext Q ⊆ ext P.

Proof  If �∗ ∈ ext Q , then �∗ is a basic feasible solution of Q . Let I denote the subset 
of indices of constraints in �� ≤ � that are active at �∗ , which is thus the unique 
solution of the subsystem

This subsystem also corresponds to a selection of inequalities in the definition of P 
to be satisfied with equality. The same n linearly independent constraint vectors in 
(6) determine that �∗ is a basic solution of P . Since �∗ ∈ P as well, it follows that 
�∗ ∈ ext P . 	�  ◻

Theorem 3  extℭ(H, k) = extℭ↑(H, k) ∩ extℭ↓(H, k) for arbitrary H and k.

Proof  Let x∗ denote a vertex of both ℭ↑ and ℭ↓ . Then x∗ is the incidence vector 
of a kstab in H, and x∗ ∈ extℭ . For the other inclusion, we use Lemma  2 twice: 
once with P denoting a description of ℭ↑ (whence Q is identified with ℭ , by item 

(6)
{

�i� = bi, for i ∈ I,

�� = �.

https://math.mit.edu/%7egoemans/18453S17/polyhedral.pdf
https://math.mit.edu/%7egoemans/18453S17/polyhedral.pdf
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(ii) in Theorem 1) to show that extℭ ⊆ extℭ↑ , and again with P = ℭ↓ to show that 
extℭ ⊆ extℭ↓ . 	�  ◻

Corollary 4  Let H be a graph on n vertices, and k be a positive integer. Also let 
P =

�

� ∈ ℚn ∶ �� ≤ �,
∑

u∈[n] xu ≥ k
�

 be a formulation for stable sets of cardinal-

ity at least k in that graph, that is, P ∩ {0, 1}n = F
↑

kstab
(H, k) . If P is actually integral 

( P = ℭ↑ ), then so is the formulation  ′ =
{

� ∈ ℚn:�� ≤ �,
∑

u∈[n] xu = k
}

= ℭ(H, k) . 

The analogous result holds for ℭ↓(H, k).

These results might be explored in future work that benefit from optimizing over 
kstabs with a reformulation based on stable sets of bounded cardinality. They may 
also be useful when dealing with classes of graphs for which an explicit characteri-
zation of the corresponding polytopes ℭ↑ or ℭ↓ is known.

Finally, we give a lower bound on the dimension of the polytope ℭ(H, k) as a 
function of the stability number �(H) , that is, the size of the largest stable set in H.

Theorem 5  Let k be a positive integer, and H be an arbitrary graph on n vertices 
such that �(H) ≥ k + 1 . Then �(H) − 1 ≤ dimℭ(H, k) ≤ n − 1.

Proof  The upper bound is trivial, given the presence of the cardinality constraint 
in the equality system of any linear inequality description of ℭ(H, k) . For the lower 
bound, we prove by induction on �(H) that we can find �(H) linearly independent 
(l.i.) incidence vectors of kstabs in H. The result then follows immediately.

Suppose first that �(H) = k + 1 , and let � ∈ ℭ be the incidence vector of a stable 
set of cardinality k + 1 in H. Let I ⊂ [n] , |I| = k + 1 , denote the coordinates corre-
sponding to vertices in that stable set, that is, �i = 1 for each i ∈ I . Denoting the i-th 
unit vector in ℝn by �i , we have that 

{

� − �i
}

i∈I
 are k + 1 l.i. points in ℭ(H, k).

Assume inductively that we can determine p l.i. incidence vectors of kstabs in a 
graph if its stability number is equal to p. Now, given H such that �(H) = p + 1 , and 
� the incidence vector of a maximum stable set in H, we may proceed as above to 
again determine p + 1 l.i. incidence vectors of pstabs (cardinality p stable sets) in H. 
Let �,� be two such vectors.

As the subgraph induced by � has no edges, we have �(H[�]) = p . The inductive 
hypothesis thus yields a collection 

{

𝜒1,… ,𝜒p
}

⊂ {0, 1}p of l.i. incidence vectors of 

kstabs in the induced subgraph. Let 
{

�
1
,… ,�

p
}

 be the lifting of this collection to 
space ℝn with zeros in the coordinates corresponding to missing vertices.

Since � and � are l.i., we claim that it is possible to discard p − k vertices from 
the stable set induced by � in such a way that the incidence vector �  of the resulting 
kstab is l.i. of 

{

�
1
,… ,�

p
}

 . Indeed, � and � induce different pstabs, so that there 
exists a vertex in the subgraph induced by � that is not in the subgraph induced by 
� . Let u ∈ [n] be such that �u = 1 , �u = 0 , and choose �  (kstab inducing) with 
�u = 1 . In turn, note that � j

u
= 0 for each j ∈ [p] , by construction: from �u = 0 it 
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follows that u is one of the coordinates padded with zero when mapping � j to � j . 
This means that � ∉ span

{

�
1
,… ,�

p
}

 , and hence we determine p + 1 l.i. inci-
dence vectors of kstabs in H, completing the proof. 	�  ◻

We remark that the down-monotone polytope ℭ↓(H, k) is full-dimensional for 
arbitrary H and k, as it contains the |V(H)| + 1 affinely independent points corre-
sponding to the unit vectors and zero. The problem of determining dimℭ may there-
fore be cast in terms of ℭ↑ in future research.

3 � Lagrangean relaxation and decomposition

In this section, we present the main contributions of the paper. We give special 
attention to justifying carefully the drawbacks of previous reformulations based on 
Lagrangean duality, and how a decomposition approach optimizing over the fixed 
cardinality stable set polytope leads to an effective algorithm to compute strong dual 
bounds for optimal stable trees.

In this section, effectiveness is taken from the analytical point of view: we argue 
that the decomposition is superior in theory both with respect to bound quality and 
tractability of the dual problem. In the next section, we discuss the practical evalu-
ation of our (free, open-source) software implementing the resulting algorithm, and 
argue that it indeed contributes as an effective tool to determine tight dual bounds on 
a representative subset of benchmark instances of the problem.

3.1 � Drawbacks of existing Lagrangean approaches for MSTCC​

The work of [33] contributes in many research directions about stable spanning 
trees, including particular cases which are polynomially solvable, feasibility tests, 
several heuristics, and two exact algorithms based on Lagrangean relaxation. The 
first formulation is straightforward, dualizing all conflict constraints (4); they denote 
the corresponding dual bound L∗ . The second approach relaxes a subset of inequali-
ties (4): using an approximation to the maximum edge clique partitioning problem 
[14], this scheme dualizes a subset of conflict constraints such that the remaining 
conflict graph is a collection of disjoint cliques; the resulting dual bound is denoted 
�∗ . The authors argue that the latter reformulation is stronger than the former, and 
present extensive computational results justifying their claims.

Unfortunately, the Lagrangean dual bounds L∗ and �∗ in [33] are in fact iden-
tical, as we show next. The first relaxation clearly has the integrality property, as 
the remaining constraints correspond to a description of the spanning tree polytope 
or, equivalently, to bases of the graphic matroid of G   [16]. The second relaxation 
scheme is designed so that the conflict constraints which remain in the subprob-
lem of relaxation �∗ induce a collection of disjoint cliques in H. The subproblem 
thus corresponds to the intersection of two matroids: the graphic matroid of G and 
the partition matroid of subsets of E that intersect the enumerated cliques in H at 
most once. It follows that the second relaxation also has the integrality property 



1324	 P. Samer, D. Haugland 

1 3

[24, Theorem III.3.5.9], and consequently, L∗ and �∗ both equal the optimal objec-
tive function value in the continuous relaxation of (1–5) [24, Corollary II.3.6.6]. In 
this perspective, the computational results in Tables 2–4 of [33] diverge from what 
Lagrangean duality theory prescribes.

Recently, [11] presented thorough computational experiments of a new 
Lagrangean algorithm for the MSTCC problem. They use the same relaxation 
scheme dualizing all conflict constraints, and focus on a combination of dual ascent 
and the subgradient method to compute the Lagrangean bound, namely, L∗ in [33], 
equal to the LP-relaxation of (1–5). In Table 1 of [11], the performance of the new 
algorithm is compared to the results published in [33]. That is, the issue we analyse 
above regarding the computational results of [33] is repeated as a baseline of the 
new numerical evaluation.

Another drawback of the new algorithm is that dual ascent steps are intertwined 
with subgradient optimization. While not incorrect, this choice undermines the 
advantages of a strategy to solve the dual problem in fewer iterations. A passage 
from a classical work of Guignard and Rosenwein [22] is conclusive:  “An ascent 
procedure may also serve to initialize multipliers in a subgradient procedure. This 
scheme is particularly useful at the root node of an enumeration tree. However, an 
ascent method cannot guarantee improved bounds over bounds obtained by solving 
the Lagrangean dual with a subgradient procedure.” 

Moreover, the ascent steps rely on a greedy heuristic, and not on maximal ascent 
directions, i.e. optimal step size in a direction of bound increase; see Definition 7. In 
the algorithm of [11], if a conflicting pair of edges exists in a Lagrangean solution, 
the multiplier adjustment is derived from the observation that the dual bound shall 
improve by at least the increased cost of replacing one of the edges by its cheap-
est successor (in a list of edges ordered by current costs). The authors remedy the 
resulting low adjustment values by alternating subgradient optimization iterations 
and the ascent procedure.

We stress again that references [11] and [33] have many virtues and present 
concrete contributions to the MSTCC literature. Our only remark is that the first 
Lagrangean strategy designed to improve upon the LP-relaxation bound is matter-
of-factly yet to be introduced. In the next sections, we offer an interesting approach 
to tackle this challenge.

3.2 � Lagrangean decomposition

Renaming the variables in (4) as � , and introducing linking constraints xe = ye for 
each e ∈ E , we have the same formulation. Now, dualizing the linking constraints 
with Lagrangean multipliers � ∈ ℚ|E| , we arrive at the Lagrangean decomposition 
(LD) formulation:

where Fsp.tree(G) is given by

(7)z(�)
def
= min

�∈Fsp.tree(G)
(� − �)⊺� + min

�∈Fkstab(H,|V|−1)
�⊺�
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and Fkstab(H, |V| − 1) is as in Sect. 2, given by

The Lagrangean dual problem is to determine the tightest such bound:

The first systematic study of LD as a general purpose reformulation technique was 
presented by [21]. They indicate earlier applications of variable splitting/layering, 
especially [27] and [31]. See also the outstanding presentation in [20, Section 7].

One of the main virtues of the decomposition principle over traditional 
Lagrangean relaxation schemes is that the bound from the LD dual is equal to the 
optimum of the primal objective function over the intersection of the convex hulls 
of both constraint sets [21, Corollary 3.4]. The decomposition bound is thus equal to 
the strongest of the two Lagrangean relaxation schemes corresponding to dualizing 
either of the constraint sets.

In our application to the MSTCC problem, we recognize the integrality of the 
spanning tree formulation described by (8–9) over � ∈ ℚ|E| , following a classi-
cal result of Edmonds [16]. Hence the decomposition bound matches that of the 
stronger scheme where constraints (11–12) enforcing fixed cardinality stable sets 
are kept in the subproblem (which is thus convexified), and all subtour elimination 
constraints (8) are dualized. This means that we can compute stronger Lagrangean 
bounds, while limiting the number of multipliers in the dual problem to |E|, instead 
of dealing with exponentially many multipliers e.g. in a relax-and-cut approach.

We defend the advantages of breaking the original problem into two parts, 
exploiting their rich combinatorial and polyhedral structures, so as to derive stronger 
dual bounds. The price of this strategy is to solve a strongly NP-hard subproblem, 
which naturally leads to the design of more sophisticated dual algorithms, requiring 
the fewest iterations possible.

(8)
∑

e∈E(S)

xe ≤ |S| − 1, for each S ⊊ V , S ≠ �,

(9)
∑

e∈E

xe = |V| − 1,

(10)xe ∈ {0, 1}, for each e ∈ E,

(11)
∑

e∈E

ye = |V| − 1,

(12)yei + yej ≤ 1, for each
{

ei, ej
}

∈ C,

(13)ye ∈ {0, 1}, for each e ∈ E.

(14)�
def
= max

�∈ℚ|E|
{z(�)}.
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3.3 � Dual algorithm

We combine two techniques to solve the problem of approximating � in the dual 
problem (14). The first is customized dual ascent, an ad-hoc, analytical method that 
integrates naturally with LD [21]. It guarantees monotone bound improvement, and 
could be employed as a stand-alone dual algorithm – though likely converging to a 
sub-optimal bound z(𝜆∗) < 𝜁 due to incomplete information of ascent directions. We 
circumvent this by continuing the search (from the dual ascent solution �∗ ) with an 
iterative, subgradient-based method: the Volume Algorithm (VA) of [3].

Proposed as an extension of subgradient optimization to attain better numerical 
results, VA was later characterized by [2] as an intermediate method between clas-
sical subgradient and more robust bundle methods, using combinations of past and 
present subgradient vectors available at each iteration. In contrast to most bundle-
type methods, which require the solution of a potentially expensive quadratic pro-
gram, the computation of a new dual point in VA uses a correction factor determined 
by a simple recurrence relation. The revision of [2] introduces a classification of 
green/yellow/red steps, like serious/null ones in bundle methods, and demonstrates 
the theoretical convergence of such revised VA. The combined simplicity and com-
paratively good computational experience reported in applications of VA make it an 
attractive alternative; see [8] for a systematic evaluation.

Remark 6  Like many other subgradient-like methods, the Volume Algorithm also 
determines primal sequences of (fractional) points approximating the dual optimal 
solution. We do not explore this aspect in the present work. See our suggestions for 
further research in the discussion following our numerical results in Sect. 4.3.

Since VA is precisely defined, and we use it as a black-box solver, the remain-
der of this section is devoted to its initialization by the dual ascent procedure. In 
what follows, let �i ∈ ℝm denote the standard unit vector in the i-th direction, and 

Psp.tree(G)
def
=conv Fsp.tree(G) denote the spanning tree polytope of graph G. Note that 

Psp.tree and ℭ are bounded (polytopes contained in the 0,1 hypercube), and do not 
contain extreme rays.

The Lagrangean dual function z ∶ ℚ|E| → ℚ is an implicit function of � . It is 
determined by the lower envelope of 
{

(� − �)⊺�r + �⊺�s ∶ �r ∈ ext Psp.tree(G), �
s ∈ extℭ(H, |V| − 1)

}

. Hence, it is 
piecewise linear concave, and differentiable almost everywhere, with breakpoints at 
all �′ where the optimal solution to z(��) is not unique.

Such breakpoints are the key ingredient in the dual ascent paradigm to solve a 
Lagrangean dual problem. In particular, the following kind of point deserves special 
attention to guide progress in this framework.
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Definition 7  A maximal ascent direction of the Lagrangean dual function 
z ∶ ℚm → ℚ at �r is a vector � ∈ ℚm satisfying two conditions: (i) � determines a 
direction of increase from z(�r) , i.e. z(𝜆r + �) > z(𝜆r) ; (ii) �r + � is a breakpoint of z, 
that is, if (�r, �r) is an optimal solution to z(�r) , then (�r, �r) also optimizes z(�r + �) , 
but it is not the unique solution.

A maximal ascent direction determines an optimal multiplier adjustment in a 
given direction of increase of the Lagrangean dual function. It need not correspond 
to a steepest ascent direction from z(�r) , in general.

The technique of optimizing the Lagrangean dual function by means of ascent 
directions uses the formulation structure to determine monotone bound improving 
sequences of multipliers. It was pioneered by [7] and [17] in the context of the facil-
ity location problem. An actual algorithm of this kind thus relies on analysing the 
specific problem and the information available from subproblem solutions. Although 
there is no pragmatic, problem-independent algorithm, we found it instructive to 
summarize and systematically review the following instructions in the derivation of 
our results.

Remark 8  [Guiding principle of LD based dual ascent] We may derive a maximal 
ascent direction by analysing the implications of updating a single multiplier �e , cor-
responding to a violation xe ≠ ye . The update must improve the Lagrangean dual 
bound and induce an alternative optimal solution.

To avoid overloading the notation in the next two results, we omit the transposi-
tion symbol in vector products like (� − �r)⊺�r.

Theorem  9  Let e ∈ E and let (�r, �r) be an optimal solution to subproblem z(�r) , 
such that xr

e
= 0 < 1 = yr

e
 . Define the non-negative quantities

If min
{

Δr
−e
, �r

+e

}

≠ 0 , then min
{

Δr
−e
, �r

+e

}

⋅ �e is a maximal ascent direction of z at 
�r.

Proof  See [29, Theorem 4.2]. 	�  ◻

We remark that determining a minimum spanning tree with edge e = {i, j} fixed 
a priori in  (16) can be accomplished efficiently by contracting that edge in G. If 
the contraction operator is defined so as to allow parallel edges between the new 
vertex ij and k ∈ N(i) ∩ N(j) , where N(u) ⊂ V  denotes the neighbourhood of vertex 
u, we must ensure that not more than one edge between two vertices is chosen (e.g. 
in Kruskal’s algorithm; this is not an issue in Prim’s method). Now, if the contrac-
tion operator forbids parallel edges, we make an unambiguous choice in the original 

(15)Δr
−e

def
= min

{

�r� ∶ � ∈ Fkstab(H, |V| − 1), ye = 0
}

− �r�r,

(16)�r
+e

def
= min

{

(� − �r)� ∶ � ∈ Fsp.tree(G), xe = 1
}

− (� − �r)�r.
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graph G by recognizing the proper edge ( {i, k} or {j, k} ) yielding the correct span-
ning tree.

The next result is analogous, now identifying maximal ascent directions from 
Lagrangean solutions where xr

e
= 1 but yr

e
= 0.

Theorem 10  Let e ∈ E and let (�r, �r) be an optimal solution to subproblem z(�r) , 
such that xr

e
= 1 > 0 = yr

e
 . Define the non-negative quantities

If min
{

Δr
+e
, �r

−e

}

≠ 0 , then min
{

Δr
+e
, �r

−e

}

⋅
(

−�e
)

 is a maximal ascent direction of 
z at �r.

Proof  See [29, Theorem 4.3]. 	�  ◻

4 � Experimental evaluation

The main goal of our computational endeavour is to assess the strength of the LD 
bound � = max�∈ℚ|E| {z(�)} in (14) over benchmark instances of the MSTCC prob-
lem. This is fundamental to verify the practicality of that reformulation, as well as to 
understand its limitations.

A second intention of the project is to offer a careful implementation of the com-
plete algorithm as a free, open-source software package. The code was crafted with 
attention to time and space efficiency, fairly tested for correctness, and is available 
in the LD-davol repository on GitHub (https://​github.​com/​phill​ippes​amer/​stable-​
trees-​ld-​davol). It welcomes collaboration towards extensions and facilitates the 
direct comparison with eventual algorithms designed for the MSTCC problem in 
the future, besides offering useful, general-purpose algorithmic components. In the 
remainder of this section, we refer to our implementation of the algorithm by its 
repository name, LD-davol.

4.1 � Implementation details

LD-davol is written in C++, with the support of two libraries integrating the COIN-
OR project [23], as we describe next. We also include the preprocessing algorithm 
introduced by [30], a collection of probing tests that removes variables and identifies 
implied conflicts in the original input instance.

Recall that the two building blocks of the dual algorithm presented in Sect. 3.3 
are a dual ascent initialization, followed by the Volume Algorithm. For the latter, we 
use the implementation in COIN-OR Vol (see https://​github.​com/​coin-​or/​Vol, and 

(17)Δr
+e

def
= min

{

�r� ∶ � ∈ Fkstab(H, |V| − 1), ye = 1
}

− �r�r,

(18)�r
−e

def
= min

{

(� − �r)� ∶ � ∈ Fsp.tree(G), xe = 0
}

− (� − �r)�r.

https://github.com/phillippesamer/stable-trees-ld-davol
https://github.com/phillippesamer/stable-trees-ld-davol
https://github.com/coin-or/Vol
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the overview document “An implementation of the Volume Algorithm” by F. Bara-
hona and L. Ladanyi in the same repository).

There are two Lagrangean subproblems to solve in each iteration of both the dual 
ascent and the volume procedures. We solve the minimum spanning tree subprob-
lem in the original graph G = (V ,E) using the efficient implementation of Kruskal’s 
algorithm in COIN-OR LEMON 1.3.1 [15], while we solve the fixed cardinality 
stable set subproblem in the conflict graph H = (E,C) with a branch-and-cut algo-
rithm, implemented using the Gurobi 9.5.1 solver.

We reinforce formulation (11–13) with two further classes of valid inequalities 
from the classic stable set polytope, exactly as first presented by [30] for the MSTCC 
problem. Namely, odd-cycle inequalities

are added dynamically using the separation algorithm of [19, Remark 1], while max-
imal clique inequalities

are enumerated a priori using the algorithm of [32], since this can be done effi-
ciently over the MSTCC benchmark instances. The interested reader is referred to 
[30], as well as the eminently readable tutorial by [26].

4.2 � Experimental setup and benchmark instances

Our computational evaluation was performed on a desktop machine with an Intel® 
Core™ i5-8400 processor, with 6 CPU cores at 2.80 GHz, and 16 GB of RAM, 
runnning GNU/Linux kernel 5.4.0 under the Ubuntu 18.04.1 distribution. All the 
code is compiled with g++ 7.5.0, and we consider a numerical precision of 10−10 . 
We limit the execution time to 3600 seconds, allowing the dual ascent procedure to 
run for at most 1800 seconds, and the volume algorithm to run for the remaining 
time.

After preliminary experiments with the different algorithm parameters, we con-
sidered that the following combination exhibits better performance. Dual ascent fol-
lows the first maximal ascent direction available in each iteration (instead of identi-
fying the steepest ascent). The volume algorithm implementation from COIN-OR 
is used with default parameters, except for screen log settings and warm-starting 
with the multipliers found by dual ascent. Gurobi 9.5.1 is used with default settings, 
except for screen log settings and switches to indicate the presence of the callback 
for user cuts. Odd-cycle inequalities are generated only at the root node of the enu-
meration tree, with the following strategy for balancing bound quality and cut pool 
size. When separating a relaxation solution, only the most violated cut and those 
close to being orthogonal to it are added; we accept hyperplanes having inner prod-
uct of 0.01 or less with the most violated one.

(19)
∑

u∈U

yu ≤
|U| − 1

2
, for each U ⊂ E inducing an odd-cycle in H,

(20)
∑

u∈Q

yu ≤ 1, for each Q ⊂ E inducing a maximal clique in H,
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There are two sets of benchmark instances for evaluating MSTCC algorithms. 
The original one was proposed by [33], and more recently [10] introduced a new 
collection. The total number of instances can be misleading, as only a small frac-
tion correspond to interesting (i.e. computationally challenging) problems. Moreo-
ver, it is not possible to discriminate the hard ones by the input size, especially in 
the latter collection. More specifically, the available problem instances fall into three 
categories. 

	 i.	 Type 1 instances in [33]: 23 instances, most of which are difficult; 12 still have 
an open optimality gap in the experiments discussed in the literature.

	 ii.	 Type 2 instances in [33]: 27 instances, all of which are trivial; the preprocessing 
algorithm of [30] solves (or reduces to a classic MST problem without conflicts) 
all of them in negligible time.

	 iii.	 Instances introduced by [10]: 180 instances, 107 of which (spanning each group 
of the collection, ordered by |E|) are easily solved within few seconds. The 
remaining 73 instances are interesting. The collection was only considered in 
that original work and continuing research from the same group [9, 11].

In summary, only instances in (i) and less than half of the large collection in (iii) 
serve the purpose of benchmarking MSTCC algorithms, in our opinion. Our discus-
sion contemplates both benchmarks in full, but we choose to include full numerical 
results for the instances in (i) in the next section, while longer tables corresponding 
to (iii) are present in Appendix (online supplement).

4.3 � Numerical results

We present the information on bound quality and computing time for three classes 
of dual bounds: the combinatorial bound corresponding to the kstab relaxation (also 
the first subproblem solved in LD-davol), the LP relaxation bound, and the LD 
bound, i.e. the approximation of � by LD-davol. For a fair, unbiased comparison, 
note that the linear program whose bound we refer by LP is also reinforced with 
odd-cycle and clique inequalities in (19–20).

Table  1 covers type 1 instances in the original benchmark of [33] (apart from 
three that could be identified efficiently as infeasible in previous works). In this set, a 
problem defined on a graph (V, E) and conflict set C has identifier z|V|-|E|-|C|. 
Tables  2, 3, 4 and  5 in Appendix (online supplement) contain the corresponding 
results over instances proposed by [10]. The second column in each table contains 
the instance optimal value, or the best dual bound reported in the literature (we mark 
instances with unknown optimal solution with an asterisk*).

Given the time limit that we allocate to the dual algorithms, we only report LD-
davol results for instances where the kstab bound is computed within 1800 seconds. 
If that is not the case, we report the available dual bound for the fractional kstab 
relaxation and the corresponding entry appears with a mark ( z† ). Moreover, we use 
boldface ( �† ) in case this bound is actually stronger than those previously appearing 
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in the literature. We remark that � , or any Lagrangean bound, is greater than or equal 
to the LP bound. Nevertheless, in the seven cases where the approximation attained 
by LD-davol is an inferior bound, a negative number appears in the %  above LP 
column. Finally, if the Lagrangean bound is better than the previously best known 
bound (applies only to instances with unknown optima), a negative value in bold 
appears in the % from OPT column.

We read from Table 1 that the Lagrangean bound can be up to 27.21% above the 
LP relaxation one. We consider it even more remarkable that LD-davol computes � 
exactly and this actually matches the optimum in 2 instances in this collection, and 
in 73 instances out of 180 in the remaining tables. Otherwise, the bound is within 
9% of the optimum. This figure actually corresponds to one of two outliers in this 
table, where LD-davol does not improve on the initial kstab bound; disregarding 
instance z100-500-3741, the bound is within 5.5% of the optimum across all 
experiments.

Concerning the instances introduced by [10], the bound is within 

	 (i)	 2.1% of the optimum in instances with 25 vertices ( 60 ≤ |E| ≤ 120 , 
18 ≤ |C| ≤ 500);

	 (ii)	 4.4% of the optimum in instances with 50 vertices ( 245 ≤ |E| ≤ 490 , 
299 ≤ |C| ≤ 8387);

	 (iii)	 2.6% of the optimum in instances with 75 vertices ( 555 ≤ |E| ≤ 1110 , 
1538 ≤ |C| ≤ 43085);

	 (iv)	 0.1% of the optimum in instances with 100 vertices ( 990 ≤ |E| ≤ 1980 , 
4896 ≤ |C| ≤ 137145).

The initial kstab bound is the only one computed in 8 out of 20 instances in Table 1 
(45 out of 180 instances in the remaining tables). Nevertheless, in 5 of these cases 
(respectively, in 39 of those 45) it is stronger than the previously known best bound. 
Note that, even though the machines and implementations cannot be compared 
directly, the 1800 second time limit set for this initial combinatorial relaxation is 
much lower than the standard (5000s) used in the literature of the MSTCC problem.

The main negative remark is as expected: the LD bound might be too expen-
sive to compute. Even though it can be efficiently determined in a large number of 
instances (e.g. at most sixty seconds for 96 cases across all tables), the execution of 
LD-davol is terminated due to the time limit in 4 instances appearing in Table 1 (29 
appearing in the other tables). An intuitive rule of thumb is that LD-davol yields 
stronger bounds in reasonable time as long as the combinatorial relaxation bound 
(the initial kstab problem) can be computed in reasonable time.

We avoid direct comparison of implementations/solvers altogether. As declared 
in the beginning of this section, our goal is to assess the strength and practicality 
of our ideas: exploring fixed cardinality stable sets and the reformulation by LD. 
It should be clear from our numerical results that the method yields high-quality 
dual bounds in the allotted computing time. It is probably not suited for embed-
ding in a branch-and-bound scheme without successful work on heuristic aspects, 
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namely: learning effective LD-davol parameters – especially setting a time limit in 
each node, implementing repair heuristics to search for primal solutions from the 
sequence of fractional points produced by the Volume Algorithm, as well as design-
ing local search methods to explore neighbourhoods of the kstab and spanning tree 
solutions found during the Lagrangean subproblems. (Note that [11] describes suc-
cessful results from such a Lagrangean heuristic derived from the integral relaxa-
tion scheme discussed in Sect. 3.1.) Alternatively, one could experiment with calling 
LD-davol selectively in a branch-and-cut framework to strengthen dual bounds, e.g. 
when an incumbent solution is found, or when the optimality gap is not decreasing 
effectively.

Additional ideas that we leave for future work include improving the kstab sub-
problem solver, fine-tuning the Volume Algorithm to perform faster, and experi-
menting with different dual methods e.g. the sophisticated framework for subgra-
dient optimization made available by [18], or, more ambitiously, the approximate 
solution using nonsmooth optimization techniques with inexact function/subgradi-
ent evaluation [25].

Table 1   Results attained over hard instances in the original benchmark

Instance KSTAB LP LD-davol

ID OPT Bound Time (s) Bound Time (s) Bound Time (s) % above LP % from OPT

z50-200-199 708 612 0.0 706 0.0 705 1.2 −0.14 0.4
z50-200-398 770 652 0.0 770 0.1 770 1.4 0 0
z50-200-597 917 726 0.0 876 0.1 900 12.7 2.74 1.9
z50-200-995 1324 1164 0.3 1037 0.0 1251 315.9 20.64 5.5
z100-300-448 4041 3440 0.0 4038 0.6 4037 5.0 −0.02 0.1
z100-300-897 5658 4785 0.0 5070 0.4 5371 1402.2 5.94 5.1
z100-300-1344 6635.4

∗ 6970 563.1 5479 0.2 6970 3602.9 27.21 −5.0
z100-500-1247 4275 3454 0.0 4275 0.7 4275 10.0 0.02 0
z100-500-2495 5997 5022 0.1 5363 0.4 5693 2225.9 6.15 5.1
z100-500-3741 6707.8

∗ 6101 2.5 5830 0.3 6101 3609.2 4.65 9.0
z100-500-6237 7729.3

∗
����† 1800.0 6789 0.3 – – – –

z100-500-12474 10560.2

∗
10506

† 1800.0 9008 1.3 – – – –

z200-600-1797 13171.2

∗ 12213 0.1 12580 5.5 12993 3603.7 3.28 1.4
z200-600-3594 17595.0

∗
�����† 1800.0 14763 2.5 – – – –

z200-800-3196 20941.5

∗ 18477 0.0 20002 5.0 20437 3609.3 2.17 2.4
z200-800-6392 26526.7

∗
�����† 1800.0 22923 3.3 – – – –

z200-800-9588 30634.2

∗
�����† 1800.0 27616 2.5 – – – –

z200-800-15980 36900.2

∗
34648

† 1800.0 32050 1.6 – – – -

z300-1000-4995 51398.4

∗
�����† 1800.0 45599 10.5 – – – –

z300-1000-9990 61878.9

∗
61732

† 1800.0 54593 16.4 – – – –
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5 � Concluding remarks

Stable spanning trees are not only interesting structures in combinatorial optimiza-
tion, but pose a computationally challenging problem. We explore a new relaxation 
(fixed cardinality stable sets) to present polyhedral results and to derive stronger 
Lagrangean bounds. The latter builds on a careful analysis of different relaxation 
schemes, both old and new. Our Lagrangean decomposition  (LD) bounds are also 
evaluated in practice, using a dual method comprising an original dual-ascent ini-
tialization followed by the Volume Algorithm. Finally, we also made great efforts to 
offer a high-quality, useful, open-source software in a free repository.

The LD bound actually matches the optimum in 75 out of 200 benchmark 
instances. We verify that, in at least 146 of these instances (where the kstab sub-
problem can be solved fast enough), the LD bound is within 5.5% of the optimum 
or the best known bound. In 44 of the remaining instances, the initial combinatorial 
bound from kstabs at least improves the previously known best bounds.

We reinforce the position put forth at the end of the introduction. In light of 
the progress in MILP computation, it seems worthwhile to further investigate the 
strategy of LD based on harder subproblems, possibly replacing the common sense 
boundary of weakly NP-hard choices by the weaker requirement that our choice be 
computationally tractable.
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