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Abstract

Viruses play diverse and important roles in ecosystems. In recent years, trade-offs between

host and virus traits have gained increasing attention in viral ecology and evolution. How-

ever, microbial organism traits, and viral population parameters in particular, are challenging

to monitor. Mathematical and individual-based models are useful tools for predicting virus-

host dynamics. We have developed an individual-based evolutionary model to study eco-

logical interactions and evolution between bacteria and viruses, with emphasis on the

impacts of trade-offs between competitive and defensive host traits on bacteria-phage popu-

lation dynamics and trait diversification. Host dynamics are validated with lab results for dif-

ferent initial virus to host ratios (VHR). We show that trade-off based, as opposed to random

bacteria-virus interactions, result in biologically plausible evolutionary outcomes, thus

highlighting the importance of trade-offs in shaping biodiversity. The effects of nutrient con-

centration and other environmental and organismal parameters on the virus-host dynamics

are also investigated. Despite its simplicity, our model serves as a powerful tool to study

bacteria-phage interactions and mechanisms for evolutionary diversification under various

environmental conditions.

Author summary

Genetic diversification in microbial communities is an important process with far-reach-

ing consequences both for ecosystem functioning and public health. Yet, the mechanisms

governing the selection of new microbial strains in ecosystems as well as developing infec-

tious diseases are still relatively poorly understood. The sheer diversity in both bacterial

and viral communities begs for a conceptual understanding of these regulatory mecha-

nisms. Here we study one such presumably important mechanism, namely the trade-off

between the host’s growth and thus competitive abilities and its abilities to defend against

the virus. To that end, we introduce an idealized individual-based model of bacterial and
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viral community to study the effects of trade-off based versus random interactions on

short- and long-term population dynamics. Short-term infection dynamics emerging

from our model are validated with experimental data. Our simulations show that long-

term co-existence of the virus and host critically depends on the nature of trade-off regu-

lating the virus-host interactions. Specifically, highest diversity in both host and viral com-

munities and co-existence over long time scales are favored in regimes of trade-off based

compatibility between viruses and their hosts.

Introduction

Viruses execute a wide range of functions in the biosphere, influencing biogeochemical cycles,

affecting efficiencies of transport of energy and matter through food-webs and driving pro-

cesses of evolutionary diversification [1–4]. These ecosystem-related functions may seem dis-

entangled from the effects that pathogenic viruses can have on human health and society as

demonstrated by the ongoing COVID-19 pandemic [5]. Yet, the underlying mechanisms driv-

ing the dynamics between viruses and their hosts are in principle the same.

Viral ecology has been growing as a field of research in the last decades, with sequencing

techniques revealing enormous biodiversity in viral genomes [6]. The field, however, remains

challenging, since advanced and at times intricate laboratory experiments are required to char-

acterize viral traits as well as interactions with their hosts. Besides, much of the environmental

viral metagenome remains unmapped or still undiscovered [7]. We conjecture that virology

will grow as a field if we manage to focus on principles that unify different disciplines, from

viral ecology to infectious disease research. To better understand the fundamental mechanisms

that drive viral dynamics, conceptual models should be used as tools to identify principles that

explain biodiversity and functioning in viral systems, be they ecological feedback mechanisms

or emerging evolutionary dynamics.

Trait-based approaches have proved useful in identifying unifying and universally applica-

ble mechanisms in ecology and were first established in terrestrial ecology [8, 9]. They have

also been successfully applied to marine ecology [10], and in particular to microbial ecology

[11–13]. A strength of trait-based approaches is that processes and interactions between organ-

isms and their environment are described on a functional level, independent of particular taxa

at hand. Besides, it brings trade-offs between organismal traits to the center of attention, which

arise from chemical and physical constraints that are universal (ie, system-independent). Such

trade-offs are crucial to understanding life [14–18]. In the marine microbial ecosystem, various

processes and structures have been linked through fundamental trade-offs [19]. Trait- and

trade-off based perspectives thus also promise to unify viral ecology [20].

In the present context, we use a simple evolutionary individual-based model to test the

hypotheses that trade-offs between competitive and defensive traits are key to understanding

virus-host population dynamics and evolutionary change. We define competitive traits as

organism-specific traits to acquire limiting resources (in our case, nutrient affinities of hosts)

and defensive traits as traits modifying the efficiency of a viral infection (here, the viral adsorp-

tion coefficient and the inverse of the host range of viruses). Following [21], we model each of

these traits as genes being embedded in a phenotypic trait function, and we incorporate trade-

offs between them by means of interaction functions that determine the likelihood of infection

based on gene similarity of the host and virus (“compatibility function”) and virus-intrinsic

infection efficiency (“virulence function”). The model is highly idealized, with emphasis on
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infection mechanisms that are important and applicable to both environmental as well as pan-

demic settings.

In the next section, we describe our individual-based model along with experimental meth-

ods used to characterize virus-host infection dynamics. This is followed by findings from our

model, including a validation of the model dynamics with experimental results. We conclude

the article by discussing the relevance and generality of our results for increased insights into

virus-host interactions and evolutionary dynamics.

Materials and methods

Individual-based model

Individual-based models (IBMs) are in-silico models that describe the behavior of autonomous

individuals (organisms). These models are widely used, not only in ecology [22] but also in

other disciplines dealing with complex systems made up of autonomous entities [23]. In this

section, we give an informal description of an evolutionary IBM to study the interaction pat-

terns between bacteria and virus. For a formal description of the algorithm used in the IBM,

we refer the reader to the pseudocode for the IBM in the Supporting Information section. An

implementation of the IBM in the Python programming language is available at a public

Github repository [24].

The state variables and parameters (environmental and organismal) of the IBM are listed in

Table 1, each with a symbol, description, typical value [21], and units.

For simplicity, a single elemental resource is used in the model budget. Specifically, phos-

phorous is used as the model currency [25]. For ease of interpretation of the results, the total

phosphorus concentration P is expressed in terms of the number of host individuals in the

simulated volume, ie, P* P/(Ph � V). Similarly, the nutrient affinity α of a host and the adsorp-

tion coefficient β of a virus are normalized in terms of the simulated volume, ie, α* α/V and

β* β/V.

At the start of the simulation, we consider a nutrient medium of volume V. The medium is

inoculated with a host population H ¼ fh1; h2; . . . ; hN0
h
g, in which each host hi has genotype

fg0
a
g and mass mi picked uniformly at random from the interval 1

2
; 1

� �
. The medium is also

inoculated with a virus population V ¼ fv1; v2; . . . ; vN0
v
g, in which each virus vi has genotype

fg0
n
; g0

b
g. Note that H and V are sets of individuals, which grow (or shrink) as dynamics unfold.

The initial amount of dissolved phosphorus P0
d is calculated in units of host individuals as

P0
d ¼ P � S

N0
h

i¼1mi.

At each time step t 2 [1, T] of the simulation, we update the current concentration Pd of dis-

solved phosphorus as Pd ¼ Pd þ oðP0
d � PdÞ, which takes into account the inflow and outflow

of phosphorus due to washout. We then carry out a round of host dynamics followed by a

round of virus-host interaction dynamics as described below. Each time step t is fixed to 1

hour. With time-steps lasting 1 hour, rates in units h−1 can be translated into probabilties per

time step.

During the host dynamics round, we consider each host hi 2H in sequence. The host can

be washed out of the medium with probability ω. If it remains in the medium, it can die with

probability δh, in which case its biomass mi is returned to the medium, ie, Pd is incremented to

Pd + mi. If the host does not die, it experiences a mass loss due to metabolism given by �hmi,

which is subtracted from mi and added to Pd. The host hi grows during the time step t, and the

resulting gain in mass is calculated as
agaPd

1þ
agaPd
mh

[26], which is subtracted from Pd and added to mi.

If mi exceeds unity, then the host divides into two daughter cells, each with half the mass (ie,

PLOS COMPUTATIONAL BIOLOGY Importance of trade-offs for virus-host population dynamics and co-existence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010228 June 8, 2022 3 / 16

https://doi.org/10.1371/journal.pcbi.1010228


mi/2) and the same genotype (ie, {gα}) as the host. With probability πh, the genotype of the

daughter cells mutates to fg 0
a
g, where g 0

a
is sampled from a Gaussian distribution with mean gα

and standard deviation σh; and with probability 1 − πh, the genotype of the daughter cells

remains the same as that of the parent cell. The daughter cells are added to the host population

H and the parent cell is removed from it.

During the virus-host interaction round, we consider each virus-host pair (vi, hj), where vi
2 V and hj 2H. The virus vi can be washed out of the medium with probability ω. If it remains

in the medium, it can decay with probability δv. If the virus does not decay, then whether or

not it infects the host hj depends on its compatibility with the host and its virulence. The for-

mer is given by the compatibility function C and the latter by the virulence function V. The

Table 1. State variables and parameters of the IBM.

Symbol Description Value Units

State variables

Nh host abundance variable individuals

Nv virus abundance variable individuals

Environmental parameters

T simulation duration 3.6 × 101 h

t time step duration 1 h

V chemostat volume 10−6 L

P total phosphorus concentration 7.1 × 101 μmol-P L−1

Pd dissolved phosphorus concentration variable μmol-P L−1

ω chemostat dilution rate 2 × 10−1 h−1

N0
h initial value for Nh 4.6 × 101 individuals

N0
v initial value for Nv 8.1 × 102 individuals

VHR virus to host ratio (the ratio N0
v=N0

h ) 1.76 × 10
1 -

Organismal parameters

Ph maximum phosphorus concentration in a host 8.3 × 10−8 μmol-P

α nutrient affinity of a host 1.6 × 10−7 L h−1

μh maximum growth rate of a host 7.38 × 10−1 h−1

gα nutrient affinity gene of a host variable 2 [0, 1] -

g0
a

initial value for gα 10−1 -

m mass of a host variable 2 1

2
; 1

� �
-

πh probability of mutation of host genotype 6 × 10−2 -

σh standard deviation of host genotype mutations 5 × 10−2 -

δh mortality rate of a host 1.4 × 10−2 h−1

�h metabolic loss rate of a host 1.4 × 10−2 h−1

β adsorption coefficient of a virus 6.2 × 10−11 L h−1

gν memory gene of a virus variable 2 [0, 1] -

g0
n

initial value of gν 10−1 -

gβ adsorption coefficient gene of a virus variable 2 [0, 1] -

g0
b

initial value of gβ 10−1 -

πv probability of mutation of virus genotype 6 × 10−3 -

σv standard deviation of virus genotype mutations 5 × 10−3 -

κ number of viruses produced per infection of a host 101 -

δv decay rate of a virus 1.4 × 10−2 h−1

Symbol, description, typical value [21], and units.

https://doi.org/10.1371/journal.pcbi.1010228.t001
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values of both functions (also called interaction functions) are from the unit interval [0, 1], and

are interpreted as probabilities. To test the effects of trade-off based vs random compatibility

between hosts and viruses, we consider two compatibility functions: trade-off based compati-

bility Ctðga; gn; gbÞ ¼ exp � jga � gb jgn

� �
and random compatibility Cr, which samples a number

uniformly at random from the unit interval. The function Ct (Fig 1) captures the trade-off

between the host’s nutrient affinity and the virus’ adsorption coefficient, such that the compat-

ibility is highest when the corresponding gene values gα and gβ are similar. The virus-host com-

patibility is also enhanced when the virus’ host range (expressed by its memory gene gv) is

high.

We also consider two virulence functions: trade-off based virulence Vtðgn; gbÞ ¼
bgb
gn

and ran-

dom virulence Vr, which samples a number uniformly at random from the unit interval. The

function Vt (Fig 2) captures the trade-off between the virus’ adsorption coefficient gβ and its

host range gv, whereby virulence of the infection is high for viruses with high adsorption (ie,

high gβ) and narrow host range (ie, small gv). The virus vi is compatible with host hj with prob-

ability C. If they are compatible, the virus can infect the host with probability V. All viruses are

assumed to by lytic, meaning that hosts die upon infection. If the host is infected, then it is

removed from the host population H, its biomass is immediately recirculated into the dis-

solved nutrient pool Pd, and the virus produces κ copies of itself, each of which has the same

genotype (ie, {gν, gβ}) as the parent. With probability πv, the genotype of the copies mutates to

fg 0
n
; g 0

b
g, where g 0

n
and g 0

b
are sampled from a Gaussian distribution with mean gν and gβ respec-

tively and standard deviation σv; and with probability 1 − πv, the genotype of the copies

Fig 1. Trade-off based compatibility function Ct . The left panel shows how Ct varies with |gα − gβ| for fixed values of gν; Ct is high when gα and gβ have similar values

and low otherwise. The right panel shows how Ct varies with gν for fixed values of |gα − gβ|; Ct is high for high values of gν and low otherwise.

https://doi.org/10.1371/journal.pcbi.1010228.g001
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remains the same as that of the parent. The virus vi cannot infect any more hosts. It is removed

from the virus population V and the copies of the virus are added to the population.

The behavior of the model is investigated for different parameter values and interaction

functions. Sensitivity analyses for virus to host ratios (VHR), limiting resource concentration,

and dilution rates are carried out to study the effects of environmental conditions on virus-

host dynamics. A range of host and virus mutation probabilities as well as standard deviation

for the mutations are considered to see how the arms-race dynamics are influenced by host-

and virus-specific cellular constraints. Finally, genotypic and random compatibility/virulence

functions are explored in order to analyze the sensitivity of arms-race dynamics to trade-off

based virus-host interactions. Additional investigations of the effects of various physiological

parameters on virus-host population dynamics are summarized in the supplementary material.

In all cases, the effects of different parameters and interaction functions are ascertained from

an ensemble average of 100 independent simulations.

Laboratory experiment

To characterize virus-host infection dynamics in a biological system, as well as to validate the

general dynamics emerging from our IBM, we performed an infection experiment with the

bacteria Escherichia coli E28 (DSM 103246) and a T-4 like virus (DSM 103876, hereby called

B28) at five different VHRs (0.01, 0.15, 0.73, 1.90, 3.30). The experiment was conducted in a

96-well flat-bottomed microplate using the 2300 EnSpire Multilabel Plate Reader (PerkinEl-

mer), allowing the entire experiment including multiple replicates to be run simultaneously

under one assay. The growth of the host was monitored through automated measurement of

Fig 2. Trade-off based virulence function Vt . The left panel shows how Vt varies with gβ for fixed values of gν; Vt is high for high values of gβ and low otherwise. The

right panel shows how Vt varies with gν for fixed values of gβ; Vt is high for low values of gν and low otherwise.

https://doi.org/10.1371/journal.pcbi.1010228.g002
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optical density at 600 nm (OD600) every 15 mins. All cultures were grown in the minimal

medium M9 containing 2 mM MgSO4�7H2O, 0.1 mM CaCl2�2H2O, 6 mM glucose [27]. All

dilutions were also done using M9 medium as diluent.

An outline of the steps involved is as follows: an overnight culture of E. coli was prepared,

adjusted to OD600 =*0.2 using a Cell Density Meter (Fisher Scientific), and further diluted

by factor 1:25. A sterile microplate was filled with the host culture, as well as M9 medium as

blank solution, final volume of 200 μL per well. The assay was then run at 37˚C, 150 rpm (lin-

ear mode, 3 mm diameter) inside the plate reader. The growth of the host culture was moni-

tored and once the host had entered the exponential growth phase, and its OD600 had

increased by 0.04 (*3.5 hr), the assay was paused to retrieve the plate. A sample of the host

culture was withdrawn and flash-frozen in 20% glycerol for host enumeration at B28 infection

timepoint. B28 lysate (*108 PFU mL−1) was then added to the host culture to final volumes of

200 μL and concentrations of 0.1, 1, 5, 12.5, and 20% v/v. A sample of the lysate was also flash-

frozen in 20% glycerol for phage enumeration. The assay was then resumed under the same

culture conditions for another *37 hr. Host and phage enumeration was later done using a

Calibur flow cytometer (Becton Dickinson) following a standard protocol [28], in order to cal-

culate the exact VHRs. The experimental data (experimental_data.csv) are available

as supporting information.

Results

In this section, we present host-virus infection dynamics from our growth experiments in the

lab (Fig 3), along with results from our IBM (Figs 4–6). The latter are based on an ensemble

average of 100 simulations. First we present the effects of environmental conditions on the out-

come of the virus-host interaction dynamics in the first 1.5 days after virus infection (Fig 4),

then we show the effects of evolution at the cellular level—specifically, mutation probability

and mutation variance—(Fig 5), and finally we show the effects of trade-offs in host-virus

interactions, considering a longer time-scale of 30 days (Fig 6). All parameter values except

those being tested were held constant as shown in Table 1. Parameter values being tested (Figs

4 and 5) are shown in the figure legends. In all figures, host and virus population dynamics are

reported in the first and second row, respectively. Note that in each figure, for ease of compari-

son, we use the same scale for the y-axes for hosts and viruses.

Growth experiments with different VHR over the course of 1.5 days reveal that the host

population crashes fastest for highest VHR, thereby also reaching a lower maximum popula-

tion size at the initial population peak. At the same time, the host population recovers fastest

for high VHR, resulting in a pronounced second population peak after one day of incubation

(yellow, pink and green curves vs black and blue curves in Fig 3). This has the practical conse-

quence that high VHR allows us to observe a full virus-host infection cycle with subsequent

recovery of the host within the timeframe of our experiment.

Our IBM captures these dynamics (Figs 4 and 5). Specifically, analogous to the laboratory

experiment, high VHR results in earliest crash but also fastest recovery and emergence of

potentially resistant hosts in the infected population within the first 36 hours of our in-silico

experiments. This manifests as a second peak in host populations reaching between 800 and

1,100 cells μL−1 roughly 20 hours into the infection cycle (Fig 4a).

Virus numbers increase as they are released from infected hosts and the host population

starts collapsing, roughly 10 to 20 hours into the infection cycle. They keep increasing after

recovery of the host population, reaching up to 70,000 cells μL−1. Highest VHR at the start of

infection cycle consistently results in higher virus population numbers throughout the simu-

lated time frame (Fig 4d).
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Nutrient concentration also influences population dynamics; our model indicates that high

availability of nutrients leads to a more pronounced boom and bust scenario in the host popu-

lation, with hosts reaching higher maximum population numbers in their first peak before

they crash (up to 16,000 cells μL−1) and growing back to high population numbers (around

1,000 cells μL−1) due to potentially resistant hosts emerging (Fig 4b). Higher limiting nutrient

availability is also reflected in highest virus population numbers, which exceeds 80,000 viruses

μL−1 after 36 hours (Fig 4e).

Washout also has a strong effect on population dynamics. A crash in the host population

with recovery half-way through the simulated time is most pronounced at low washout rates,

reaching numbers down to 300 cells μL−1 around 18 hours into the infection cycle. Highest

washout rates yield no reduction in host population after viral addition, resulting in steady

host population numbers of around 1,200 cells μL−1 from about 12 hours into the infection

cycle (Fig 4c). Virus population numbers are highest for low washout rates (Fig 4f). Interest-

ingly, a saturation of the medium with hosts and absence of viruses occurs when the washout

value exceeds 0.3 h−1 (Fig 4c and 4f).

Besides the effects of environmental parameters (Fig 4), our model shows clear dependence

of the virus-host dynamics on the organism-specific evolution of traits, namely mutation prob-

ability π and standard deviation σ of mutations (Fig 5). In particular, increasing the values for

Fig 3. Infection dynamics of B28 virus and E. coli. Infection experiments performed as plate reader assays for different virus to host ratios (VHR). Optical density at

600 nm (OD600) was monitored to serve as a proxy for the host abundance. The growth curve of E. coli without virus infection (control) is shown in red. Plotted

curves: mean values (n = 8 and ncontrol = 11) shown as solid lines and standard deviaitons shown as shading, with the vertical dashed line denoting the time (t = 3.5 hr)

for viral infection.

https://doi.org/10.1371/journal.pcbi.1010228.g003
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the host (πh and σh, respectively) leads to a reduced crash and earlier recovery of potentially

resistant hosts, with the host population growing back to high densities up to 900 cells μL−1

within the simulated time (Fig 5a and 5c).

For the lowest tested πh, hosts struggle to recover within the simulated time, whereas they

collapse entirely for the two lowest tested values σh (Fig 5a & 5c). Virus population numbers

reach high values of up to 80,000 viruses μL−1 in the simulated time for high πh and σh,

Fig 4. Model’s sensitivity to environmental parameters. Population dynamics for hosts (a-c) and viruses (d-f) for varying virus to host ratios (VHR), total

phosphorous content (P, μmol-P L−1) and washout rate (ω, h−1). Plotted curves: ensemble averages from 100 runs lasting T = 36 h, with standard deviations shown as

shading.

https://doi.org/10.1371/journal.pcbi.1010228.g004

Fig 5. Model’s sensitivity to evolution in organism traits. Sensitivity of host (a-d) and virus dynamics (e-h) to mutation probability in host traits (πh), virus traits (πv),
standard deviation in mutation for host traits (σh) and standard deviation in mutation for virus traits (σv). Plotted curves: ensemble averages from 100 runs lasting

T = 36 h, with standard deviations shown as shading.

https://doi.org/10.1371/journal.pcbi.1010228.g005
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increasing readily as the host population recovers from the first crash, whereas low πh and σh
result in stagnant or declining virus population numbers from about 12 hours into infection

cycle, never exceeding 40,000 viruses μL−1 (Fig 5e and 5g).

In contrast to host mutation probabilities, changing the mutation probability for the virus

πv over two orders of magnitude does not show any effect on the host-virus dynamics (Fig 5b

and 5f). Similarly, increasing the standard deviation for virus mutations σv does not show a

clear effect on virus population dynamics within the simulated time, but the host population

recovery after the first crash is dampened with higher σv, reducing the size of the second peak

in the host population reaching moderate numbers of 300 cells μL−1 roughly 28 hours into

infection cycle and also allowing for a second crash of the host population within the simulated

time of 36 hours (Fig 5d and 5h).

Fig 6. Model’s sensitivity to trade-off-based vs random infection processes. Host (a-d, i-l) and virus population dynamics (e-h, m-p) shown for closed systems

and open systems with washout rate 0.2 h−1 for genotypic compatibility and genotypic virulence (Ct , Vt , upper left), genotypic compatibility and random virulence

(Ct , Vr , upper right), random compatibility and genotyipc virulence (Cr , Vt , lower left) and random compatibility and random virulence (Cr , Vr , lower right).

Ensemble averages of 100 simulations (lines) with standard deviation (shaded areas) lasting for T = 720 h are shown. Sub-panels show virus dynamics on adjusted

y-axis scales.

https://doi.org/10.1371/journal.pcbi.1010228.g006
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Long-term simulations of 30 days (720 h) reveals marked differences of trade-off based vs

random interaction function for virus-host compatibility and virulence (Fig 6). Recall that a

trade-off based compatibility function (Ct) in our simulations implies that infection success is

mediated by a trade-off between the host’s nutrient affinity and the virus’ adsorpiton coeffi-

cient (Fig 1), whereas a trade-off based virulence function (Vt) implies that the infection suc-

cess is dictated by a trade-off between the virus host range and the virus adsorption coefficient

(Fig 2).

In all long-term simulations (Fig 6), the system tends towards an equilibrium after the first

fluctuations of host crash and typical re-growth thereof that is also visible in the short-term

simulations (Figs 4 and 5). The initial crash in host population is most pronounced in closed

systems, and hosts as well as viruses die out completely in closed systems under random com-

patibility modes (Fig 6i, 6m, 6k and 6o).

In simulations with compatibility trade-offs (Fig 6a–6h), hosts reach a high population size

at equilibrium after initial drops both in closed and open systems. As in case of random com-

patibility mode, the first crash of host population is most pronounced in closed systems (Fig 6a

and 6c). Viruses reach very high population size at first, independently of whether its virulence

is trade-off based or random, but they experience a steady decline over the course of the simu-

lation. Note that the spread in virus population size over the 100 simulation runs is large in

closed systems with trade-off based compatibility compared to all other scenarios. In contrast

to closed systems, open systems (washout 0.2 h−1) suppress the emergence of large viral popu-

lation all together, keeping them at low numbers after an initial spike when simulations are

driven by trade-off based virulence (Fig 6f). For open systems with random virulence, virus

population size drop right from the start of the simulation (Fig 6h).

In case of random compatibility (Fig 6i–6p), the host population typically collapses to

extinction with the consequence that also viruses eventually die out. The only exception is in

open systems where virulence is random. In this case, the viruses disappear early on in the sim-

ulation and the hosts persist with high population numbers (Fig 6l). With random compatibil-

ity and trade-off based virulence in an open system, host population decreases more slowly

and undergoes fluctuations while doing so (Fig 6j). Highest viral population numbers before

decline are reached in closed systems. As in open systems with trade-off based compatibility

but random virulence (Fig 6h), virus population numbers drop from the beginning of the sim-

ulation for open systems and random virulence (Fig 6p).

Discussion

We have developed a simple individual-based virus-host interaction model to i) study the

effects of environmental and organism-specific parameters on population dynamics and ii)

evaluate the importance of trade-offs between competitive and defensive host traits on popula-

tion dynamics and long-term evolutionary change. The model is highly idealized, focusing on

specific trait-based mechanisms. Whereas experimental support for trade-offs between compe-

tition and defense in diverse biological systems exists [14, 15, 18], other mechanisms such as

environmental disturbance and resource specialization also promote diversity. The model is

validated with laboratory data from a short-term infection experiment. Some quantitative dis-

crepancy appears between dynamics in the laboratory experiment and our simulations for low

VHR, possibly because all viruses in our model are infectious, whereas a fraction of viruses is

non-infections in the laboratory. This implies that higher VHR in the laboratory functionally

correpsond with lower VHR in our simulations. Regardless of this, the qualitative match

between laboratory data and simulation results for host dynamics provides confidence in basic

mechanisms underlying virus—host dynamics. Besides, the model produces plausible results
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in terms of compatibility trade-offs promoting long-term co-existence of hosts and viruses.

However, further validation of the model is needed, in particular for viral population dynam-

ics, which are not as straight forward to measure in laboratory experiments. In the following

we discuss details of our findings.

Our model suggests that high VHR results in earliest crash but also fastest recovery of the

host population, such that a full infection cycle is complete within the first 36 hours of our sim-

ulation experiments. This agrees qualitatively with infection cycles observed in our E. coli-B28

experimental model system (Fig 3) where highest VHR also led to fastest regrowth. Interest-

ingly, similar dynamics have been observed previously in marine algal host-virus systems,

namely Emiliania huxleyi and EhV-99B1, Pyramimonas orientalis and PoV-01B, and Phaeocys-
tis pouchetii and PpV-01 [29]. Considering selection pressure to be the highest under strong

viral control, it is reasonable to assume that re-growth of host populations after the first crash

is given by resistant mutants, which readily establish in high VHR conditions. Virus numbers

increase simultaneously with the first crash in host populations as they are set free from

infected hosts, and keep increasing after recovery of the host population. This suggests that

regrowth of the host population is either not exculsively caused by resistant types, but that it is

instead diversifying into resistant and susceptible hosts, or that viruses undergo evolutionary

change establishing strains that are able to re-infect the originally resistant hosts. The two alter-

natives not being mutually exclusive, genomic studies will be needed to decipher the cause.

Analogous to microbial blooms under favorable growth conditions, high availability of lim-

iting nutrient gives a boom-and-bust scenario in our simulations with host population reach-

ing very high peaks before crashing to values below those of more stable host population

numbers at lower nutrient concentrations (Fig 4b).

Washout rate is also an important parameter for virus-host population dynamics, especially

in shorter time-scales, where washout seems to prevent the accumulation of high viral num-

bers, keeping viral pressure relatively low in open systems (Fig 6, closed vs open system runs).

A possible explanation for low viral pressure in open systems could be a combination of wash-

out of viruses and favorable growth conditions for hosts with inflow of fresh medium.

Evolution of organism-specific traits also affects virus-host population dynamics. Our

results suggest that variation in host traits may have stronger effects on virus-host population

dynamics than variations in virus traits (ie, different host mutation probabilities and standard

deviations give more distinct results compared to different viral mutation probabilities and

standard deviations, Fig 5). Noticeably, the host population recovery after the first crash is

dampened the most with higher standard deviation in mutation for viruses (σv), reducing the

size of the second peak in the host population and also allowing for a second crash of the host

population within the simulated time (Fig 5d). In other words, high σv and thus higher flexibil-

ity in adjustments of infectious traits as adaptation to acquired host immunity seems to impose

a strong selection pressure on hosts, speeding up evolutionary time-scales. Additionally, high

σv should have facilitated the emergence of broader virus host-range, which in nature has been

shown to associate with longer interaction periods with hosts [30], potentially making these

viruses strong limiting factors for their hosts. Emerging diversity within host and virus specific

traits, such as host-range evolution in our model is a subject for a follow-up study. Preliminary

results of diversity based on Shannon entropy in distributions of nutrient affinity, virus

adsorption coefficient, and memory gene shown in the Supporting Information section indi-

cate increasing diversity over the course of the simulations.

Overall, population dynamics are remarkably different for trade-off based vs random inter-

action functions. Long-term coexistence of both hosts and viruses is facilitated when the com-

patibility function is trade-off based (Fig 6a–6h), in which case the viruses persist the longest

in closed systems (Fig 6e and 6g). Spatial sturcture has been discussed as mechanism
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facilitating long-term co-existence of bacteria and viruses [31], for example by rendering low

virulent viruses higher fitness [32]. These findings might explain why eventually, even with

compatibility trade-offs, virus populations die out in our well-mixed setting.

The dominance of variation in host traits over virus traits in regulating virus-host popula-

tion dynamics described in the previous paragraph aligns with the observation that trade-offs

involving host traits (ie, compatibility trade-off, which links host traits to virus traits, rather

than virulence trade-off that is purely based on viral traits) appeared to have the most pro-

nounced effects effects on the virus-host population dynamics. Indeed, further support for this

is provided by our long-term simulations with and without compatibility trade-offs (Fig 6, top

half vs bottom half), where trade-off based vs random compatiblity functions result in most

distinct long-term dynamics, contrasting trade-off based vs random virulence runs in which

difference are only pronounced in open systems (Fig 6, left half vs right half). Interestingly,

long-term co-existence also most easily emerge when compatibility trade-offs are expressed.

This is true even when viral pressure is high early on in the infection cycle in closed systems.

We thus postulate that compatibility trade-offs facilitate virus-host coexistence observed in

nature. Interestingly, observations of narrow host range viruses interacting with their hosts at

lower total host abundance compared to broad-host range viruses [30] suggest that low host-

range interactions are more efficient than those of high host-range viruses, which could be an

expression of such a compatibility trade-off playing out in nature. Ranking traits and trade-

offs involved in virus-host interaction according to their impacts on evolutionary outcomes is,

however, challenging and remains to be studied further.

Our analysis on co-existence of host and viruses supports the hypothesis that trade-offs

associated with competitive abilities of hosts and traits influencing the efficiency of viral infec-

tion are critical to shaping realistic long-term population dynamics and co-existence in virus-

host systems. Competition and defense trade-off being a fundamental phenomenon in nature

[33–35], we conjecture that findings from this study might be useful in understanding long-

term perseverence of parasites in epidemiological context. Besides, in terms of conditions for

high virus population numbers, results might also be useful in pharmaceutical applications, in

particular large scale phage production for phage therapy. As a next step, we intend to shed

light on host- and virus-population internal trait diversification as a consequence of this trade-

off, touching upon the phenomenon of microdiversity in natural microbial communities.

Supporting information

S1 Data. Experimental data. Data on bacteria—phage co-infection experiments rendered in

Fig 3 of the main text. The data file inlcudes timeseries of optical density measured at 600 nm,

showing number of replicates, mean and standard deviation with 15 minutes interval for dif-

ferent initial virus to host ratios used.

(CSV)

S1 Pseudocode. Model structures and algorithmic procedures. The pseudocode describes

details of initialization, interactions, budgets and evolutionary dynamics implemented in the

model, step by step.

(PDF)

S1 Fig. Model’s sensitivity to physiological parameters. Host (a-h) and virus dynamics for

various resource affinities for hosts (α), adsorption coefficients for viruses (β), maximum

growth rates for hosts (μh) and burst size for viruses (κ). Plotted curves: ensemble averages

from 100 runs for T = 36 h, with standard deviations shown as shading.

(TIFF)

PLOS COMPUTATIONAL BIOLOGY Importance of trade-offs for virus-host population dynamics and co-existence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010228 June 8, 2022 13 / 16

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010228.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010228.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010228.s003
https://doi.org/10.1371/journal.pcbi.1010228


S2 Fig. Evolutionary diversification of host and virus genotypes. Diversity time-series based

on Shannon entropy of ensemble averages from 100 runs in a trade-off based compatibiltiy

and virulence scenario shown for a) nutrient affinity of host (gα), b) adsorption coefficient of

virus (gβ), and c) memory gene of virus (gν). Small subpanels show abundance distribution for

the genotypes at three distinct time points over the course of T = 720 h.
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