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Abstract: Cholera kills between 21,000 and 143,000 people globally each year. It is often fatal,
killing up to 50% of the severely symptomatic patients; but death by cholera is preventable with
timely treatment, so that the fatality rate can drop to less than 1%. Due to cholera’s multi-pathway
transmission, a multifaceted and multi-sectoral approach to combat this disease is needed. Such
complexity gives rise to uncertainty about where it is best to intervene, as stakeholders have to balance
prevention and treatment under highly constrained resources. Using Al-Hudaydah, Yemen as a case
study, this paper demonstrates how a system dynamics model can be built using a classic infection
structure with empirically grounded operational structures: health treatment, water, sanitation, and
hygiene (WASH), vaccination, and a data surveillance system. The model explores the implications
of the joint interventions with different start times. The model analysis revealed that the historical
interventions likely prevented 55% more deaths in 2017 as compared to a counterfactual business-
as-usual scenario with no interventions in the past. At the same time, some 40% of deaths could
potentially have been prevented if interventions (with the same resources as historical data) had
been initiated earlier in April 2017. Further research will explore each intervention impact for more
detailed policy analysis and simulations into the future.

Keywords: cholera response; system dynamics; computational modeling; cholera epidemics; policy
testing; humanitarian response

1. Introduction

Cholera is an acute diarrheal infection caused by consuming food or water contami-
nated with the bacterium Vibrio cholerae [1,2]. Vibrio cholerae causes profuse watery diarrhea
and vomiting that can quickly progress to dehydration and hypovolemic shock, killing up
to 50% of patients who do not receive adequate rehydration [1].Even healthy people can
die within hours if they develop severe cholera symptoms. Conversely, if symptomatic
individuals receive healthcare treatment in time, the case fatality rate can be less than 1%.

Cholera treatment, control, and prevention are the responsibility of national govern-
ment health ministries and non-governmental organizations (NGOs) [3–5]. Once cases
are identified, interventions to control and prevent cholera include surveillance and case
management (treatment), water, sanitation, and hygiene (WASH) interventions, provision
of oral cholera vaccinations, and strengthening education programs [1,6,7].

While universal access to clean water and sanitation is the long-term solution to
cholera, this is typically linked with the country’s economic and political development; and
is therefore vulnerable to environmental and humanitarian crises [5]. WHO [7] reported
2.5 million suspected cholera cases and nearly 4000 deaths in Yemen as of November
2020. Figure 1 illustrates the cholera epidemic prevalence from 2017 to 2018 and first oral
cholera vaccination campaign in Al-Hudaydah, Yemen. The literature identifies two groups
of problems that allowed an epidemic of this magnitude to occur: Yemen’s precarious
conditions and the humanitarian response.
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Yemen has been devastated by a complex civil war [5,8]. It was classified as a level
3 emergency by the United Nations (UN) in 2015, triggering the highest level of resource
mobilization across the humanitarian system [5]. By 2016, only 46% of all healthcare
facilities remained operational. In addition to severely damaged water and sewage infras-
tructure, the dire situation has been exacerbated by a lack of energy—mainly electricity
and fuel, spare parts, operating and maintenance funds, and three years of unpaid civil
servants [3,5,8,9].

Furthermore, most civilians’ movements are confined by the ongoing conflicts; and
food insecurity has put more than half of the population at risk of famine. Yemen has
the highest number of people in need of humanitarian assistance of any country. On
28 September 2016, a large-scale cholera epidemic began and the number of people in need
of humanitarian assistance and protection reached as high as 20 million in 2017 [10].
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Lessons learned from Yemen’s cholera response are well documented, reporting that
Yemen lacked an adequate cholera preparedness and response plan, despite previous
outbreaks, regional endemicity, and active conflict [3,5,9,13,14]. The key questions revolve
around: How can the recommendation be implemented? How does one actualize what
ought to be done into how and when it can be done? Previous studies concluded that the
delayed response was due to two factors.

First, multi-sector coordination structures were confused, with the roles of the clusters,
cholera task force, and incident management system either overlapping or incompletely
developed. Lack of coordination across these areas hampered management, technical
output, and agency trust [3–5,8,14].

Second, a lack of a functioning surveillance system, hence, a lack of data. Despite that,
policy decisions must be made, frequently under high uncertainty and pressure conditions,
especially when the fatality rate is high. Where a lack of data makes precise predictions
impossible, simulation models may still provide valuable insights to aid decision-making
under unknown circumstances. Such scientifically informed exploration can add clarity to
decisions, allowing for more effective policy choices.

From the simulation model literature review, Barciela et al. [15] developed a Cholera
Risk Model (CRM) for cholera control in Yemen, specifically on WASH interventions. It is a
predictive tool that integrates data on rainfall, temperature, and water security to determine
the risk of cholera trigger and transmission. Harpring et al. [4] use a causal loop diagram
to visualize the compounding factors influencing the cholera outbreak in Yemen. Along
with the susceptible, infected, and recovered (SIR) dynamics, they discovered a strong
connection between humanitarian response and the existing infrastructure development
to the cholera epidemic. Pruyt [16] developed a cholera epidemic System Dynamics (SD)
model for Zimbabwe that tested two policies: sanitary infrastructure and health services.
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The model uses percentage change on these two policy parameters instead of detailed
operational policy structures.

On the other hand, ordinary differential equation (ODE) cholera models were re-
viewed and half of them contain only SIR model structure [17]. The other half of cholera
transmission models included a maximum of three interventions focusing mainly on vacci-
nation, antibiotics, and water provision. None of the reviewed models include structures of
both asymptomatic and symptomatic individuals as well as sanitation intervention (sewage
system) and health services.

With the dynamic complexity of cholera control and death reduction, a multifaceted
approach is crucial. To address the identified research gaps above, this paper aims to
demonstrate how operational policy structures are built upon a system dynamics classic
infection model to explore the impact of the interventions. In other words, the present
model bridges the endogenous feedback mechanisms that drive both symptomatic and
asymptomatic cholera infectious dynamics, with the empirically grounded operational
structures: oral rehydration corner, diarrhea treatment center, water, sanitation and hygiene
(WASH), vaccination, and data surveillance system.

2. Materials and Methods

System Dynamics (SD) uses computer simulation for policy analysis and design. Its
origins are in servomechanisms engineering and management, and the approach uses
a perspective based on information feedback and circular causality to understand the
dynamics of complex social systems. Mathematically, SD models can be described as a
system of coupled, nonlinear, first-order differential equations [18] that are solved using
numerical methods. SD is a useful modeling approach for piloting complex systems
modeling in the humanitarian sector, because it enables humanitarian response simulation
even in contexts with limited data [19].

The data collected during the model’s development and validation can be classified
into three categories:

Structural data: variables and interrelationships in the model were extracted from
literature review, see Supplementary Materials for further information.

Epidemiological data: information on the characteristics of Vibrio cholerae infections
(e.g., duration of infection, severity proportions), as well as their prevalence in Al-Hudaydah
governorate (e.g., number of suspected and confirmed cases, deaths).

Cholera response (interventions) data: information and data on the implemented
interventions between 2017 to 2018 was collected from WASH sector [11] and health
sector [12,20] (see Supplementary Materials for further detail).

Data quality issues have been regarded as a significant obstacle to an effective hu-
manitarian response to the cholera epidemic. Inadequate access to health facilities may
have resulted in underestimating the cholera burden, most notably mortality [5]. For
example, infected individuals who choose traditional medicine or private clinics over these
specialized treatment centers are not captured by the surveillance system. Even mortality
statistics are subject to reporting errors when deaths occur beyond the treatment facilities.
On the other hand, Camacho et al. [21] stated that overreporting of other acute watery
diarrhea (AWD) cases was likely to contribute to underestimates of the epidemic’s case
fatality rate.

2.1. Cholera Susceptible-Infected-Recovered/Susceptible

Building on the Yemen cholera response—causal loop diagram of Harpring et al. [4],
and Pruyt’s model [22] that simulates the 2008 cholera outbreak in Zimbabwe, the cholera
response model is an extended SIR model that integrates the epidemic response’s opera-
tional dynamics.

Al-Hudaydah governorate had a population of 3,238,199 in 2017 [11]. In an SIR model,
the population is divided into several compartments called stocks, depending on their
status of being susceptible to the infection (S), being infected and infectious (I), and having
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recovered from the infection (R) [22]. In the case of cholera, the recovered population
becomes susceptible again after a delay, which makes the model an SIS model. Figure 2
is a high-level and simplified view of the main stocks and flows in the model. Table 1
summarizes the feedback loops in Figure 2.
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Table 1. Summary of feedback loops.

Infectious State Treatment Loop Shown

Asymptomatic
(75%) No

Asymptomatic infected loop R1

Asymptomatic recovered loop B1

Mild symptoms
(15%)

No Untreated mildly infected loop R2

No Untreated mildly recovered loop B2

Yes Treated mildly infected loop R3

Yes Treated mildly recovered loop B3

Severe symptoms
(10%)

No Untreated severely infected loop R4

No Untreated severely recovered loop B4

Yes Treated severely recovered loop B5



Systems 2023, 11, 3 5 of 20

2.1.1. Indirect Infection

This model only incorporates indirect infection through contaminated water by in-
fected individuals. When susceptible individuals become infected with cholera, they shift
to the recently infected population after one day. The rate of cholera infection is a product
of the indirect degree of infection and the size of the susceptible population (S). In turn,
the indirect degree of infection depends on the connectedness of aquifers and smoothed
fraction of contaminated water.

Although sporadic cholera cases may occur as a result from ingestion of insufficiently
cooked seafood contaminated with Vibrio cholerae, humans are the primary reservoir for the
pathogen during periods of active transmission (epidemic) via fecal contamination of drink-
ing water or food [1,6,23,24]. A meta-analysis of the role of water, sanitation, and hygiene
exposures in 51 case–control cholera studies found that cases were significantly more likely
than controls to report the use of untreated drinking water, open defecation, unimproved
sanitation, and poor hand hygiene [25]. Hence, the smoothed fraction of contaminated
water is water contaminated by bacteria shedding from the infected individuals [23].

The smoothed fraction of contaminated water uses the water contamination from
total bacteria shedding from the fraction of infected with a delay of two and a half days.
Vibrio cholerae survival in the aquatic environment is highly dependent on the chemical,
biological, and physical conditions of the aquatic environment: Vibrio cholerae survives in
surface water for periods ranging from one hour to thirteen days [26].

Three days is used for the time period to affect water in aquifers in this model. A third-
order delay is used to account for the fact that there are different stages in the process [23]
between bacteria shedding by the infected individuals to contaminating the water.

Connectedness of aquifers is the “contact rate” between the susceptible population
with contaminated water. More than 19 million Yemenis are believed to be without access
to safe drinking water and sanitation [8,21,27]. According to WHO-UNICEF statistics,
only 55% of the population had access to drinking water from improved water sources
in 2014 [9]. Grad et al. [28] explained that the “contact rate” is largely unknown in most
contexts, and there are no simple methods for converting experimental study results into a
“contact rate” between susceptible individuals and bacteria in water. Since various factors
determine the rate at which susceptible individuals become infected, the connectedness of
aquifers is calibrated to the historical data. 0.02 is used in this model.

2.1.2. Asymptomatic Reinforcing Feedback Loop (R)

Individuals in the recently infected population leave the stock after an average in-
cubation time of one day and flow in two directions: as asymptomatic infected to the
asymptomatic population if they show no symptoms, or as mildly infected to the mildly
infected population if they show mild symptoms. Pruyt’s model [23] makes no distinc-
tion between asymptomatic and symptomatic infections. Other works highlighted that
these are essential elements and incorporated an asymptomatic feedback loop into their
model [1,26,29–31].

First, most infected individuals (75% of infections) remain clinically unapparent, while
the remaining 25% develop mild to severe symptoms (depending on the strain involved) [1].
Only symptomatic infections from treatment centers are captured in surveillance data [1,17].
When calibrating modeling outputs to historical data, Fung [17] concluded that underre-
porting of cases, including asymptomatic cases, should be considered. Chao et al. [29]
found their model sensitive to the fraction of infected people who became symptomatic:
The higher the symptomatic proportion, the higher the incidence of reported cases.

Second, the bacterial shedding rate is lower in asymptomatic individuals than in
symptomatic individuals (60–90 percent of infected individuals are asymptomatic). Stud-
ies [1,26,30] have reported that some individuals can be infected with Vibrio cholerae and yet
show no symptoms but then tend to shed the organism into the environment, even for only
a few days. In a non-cholera epidemic area, Vibrio cholerae can be isolated from wastewater
effluents [26].
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Third, research emphasizes the distinction between immunity from asymptomatic
infection and protection from disease (symptomatic) following recovery [30,31].

2.1.3. Bacteria Shedding

The model includes bacteria shedding as part of the indirect infection pathway. Ac-
cording to Kaper, Morris, and Levine [30], doses of 10ˆ11 Colony Forming Units (CFU)
of Vibrio cholerae were needed to trigger diarrhea in healthy North American volunteers.
For example, ingestion of 10ˆ6 Vibrio cholerae with fish and rice resulted in a high attack
rate (100%). On the other hand, a symptomatic mildly infected individual can shed Vib-
rio cholerae in the stool in low but potentially infectious concentrations, up to 10ˆ8 Vibrio
cholerae organisms per g of stool [32]. An individual with acute cholera, severely diseased,
excretes 10ˆ7 to 10ˆ8 Vibrio cholerae organisms per gram of stool. For patients who have 5
to 10 L of diarrheal stool, the total output of Vibrio cholerae can be in the range of 10ˆ11 to
10ˆ13 CFU [30].

This model uses 10ˆ6 Vibrio cholerae as the amount to infect an individual.
The value of:

1. bacteria shedding from symptomatic is 10ˆ4, hence, normalized to 104/106 = 0.01
2. bacteria shedding from a mildly infected individual is 108, hence, normalized to

108/106 = 100
3. bacteria shedding from a severely infected individual is 10ˆ12, hence, normalized to

1012/106 = 1,000,000

2.1.4. Symptomatic Reinforcing Feedback Loops (R)

The mildly infected population consists of mild cases of Vibrio cholerae infection that
may be clinically indistinguishable from other causes of diarrheal illness [33]. Hence, not
all seek healthcare services [1]. Depending on access to healthcare services, this model
disaggregates mildly infected individuals into two different stocks: treated and untreated
mildly infected individuals. Mildly infected individuals leave the stock after the time
period to progress to the next stage (one day) and flow to three directions: treated mildly
infected population, untreated mildly infected population, or intone of the severe disease
population stocks.

The severely infected population consists of severe cases of Vibrio cholerae infection that
are characterized by a sudden onset of acute voluminous watery diarrhea, described as ‘rice
water stools’ and vomiting leading to rapid dehydration (fluid losses of up to one liter per
hour), and death if left untreated [1,30]. Among individuals developing symptoms, 60 to
80% of episodes are of mild or moderate severity [1,23]. In other words, only 5 to 10% of the
recently infected population in the base model becomes very ill. Mildly infected individuals
move to the severely infected population after an average time to progress to the next
stage. Severely infected individuals then move into two different stocks based on access to
healthcare services: treated and untreated. The treated severely infected population stock
does not contribute to the infectious reinforcing feedback loop as the excreted wastewater
is disinfected at the healthcare sewage treatment facilities [1].

2.1.5. Recovered Balancing Feedback Loops (B)

All individuals belonging to the asymptomatic population, treated and untreated
mildly infected population, recover after an average illness duration (asymptomatic for
five days and symptomatic for nine days) [32,33]. On the other hand, individuals in the
treated and untreated severely infected population either die (cholera deaths) or recover
and become immune (recovered from severe infection) after the same average duration of
the illness of nine days.

The proportion of the treated severely infected population that die or recover is
determined by the capacity of healthcare services, as overloading in the health services
results in lower care quality. Hence, an increase in fatality fraction. In 2017, the case fatality
rate in Al-Hudaydah governorate was 0.0019 [11]. For severely infected individuals who
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are not accessing healthcare services, the untreated fatality fraction uses 0.004, assuming
that the fatality fraction is double the case fatality rate with treated death fraction of 0.0021.

2.1.6. Immunity Waning

Studies have shown a difference between protection from asymptomatic infection and
protection from disease (symptomatic) after recovery [30,31]. Pruyt’s model [22] aggregates
both mildly and severely infected population into one stock of recovered temporarily
immune population where they flow back to the susceptible population after an average
immunity period of six years. Studies reported that clinical cholera (symptomatic) conferred
protection against subsequent cholera for at least three years [30] while a study by Leung
and Matrajt [31] identified that the asymptomatic protection period lasts between 3 to
12 months. The model uses six months for the average asymptomatic infection acquired
immunity period and three years for the average symptomatic infection acquired immunity
period [30,31].

2.2. Cholera Response-Intervention Structure

In the event of a cholera epidemic, the focus must be on limiting mortality and
stopping the disease from spreading. It should be comprehensive and multi-sectoral, en-
compassing epidemiology (surveillance), case management, water, sanitation, hygiene,
logistics, community engagement, and risk communication [34]. Figure 3 illustrates
the stock and flow diagrams of each intervention. Further description is listed in the
Supplementary Materials.
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2.2.1. Water, Sanitation and Hygiene Interventions (WASH)

Water, sanitation, and hygiene (WASH) interventions are commonly used to prevent
and control cholera by reducing exposure to risk factors for disease transmission [25]. In
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Yemen, water trucking, latrine construction, chlorine tablet distribution, filter distribution,
and hygiene kit distribution are the primary focuses of WASH [5].

Clean Water Provision

Water interventions improve the quantity of water (water trucking), the quality of
water (chlorinating water), or the management of water (safe storage). Figure 4 shows that
susceptible individuals who receive clean water shift to population with clean water stock
after one day.
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Sewage Treatment Plant

Figure 5 illustrates that the sewage treatment helps remove contaminants from sewage
to produce effluent suitable for discharge to the surrounding environment or reuse and
therefore prevent contamination of water sources [1,26,35].
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Latrine Construction

This model latrine construction intervention is based on the need for latrine capacity:
the 1% of the population openly defecating (Figure 6). While the Médecins Sans Frontières’
cholera response manual [1] recommends prioritizing public latrine placement in areas
with a high risk of transmission (markets, train stations, and bus stations).
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2.2.2. Healthcare Interventions
Diarrhea Treatment Centre (DTC)

A DTC is a specialized inpatient healthcare facility dedicated to managing severe
cholera cases. A DTC is located outside the main hospital to prevent disease spread
and is completely self-sufficient in general services (toilets, showers, kitchen, laundry,
morgue, and waste area), stocks, and resources (medical and logistics, water, and electricity).
Severity affects the intensity of shedding, and so the average contribution of an infectious
person to transmission may change systematically with time as the distribution of infectious
doses changes [30,32]. The “severely infected not in DTC” excludes treated severely
infected population because at DTC, the sewage system is in place with disinfection. Hence,
Figure 7 shows that all patients at DTC do not attribute their bacteria shedding back into
the environment.
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Oral Rehydration Corner (ORC)

ORCs are small, decentralized outpatient care facilities that operate only during
daylight hours (8 to 12 h per day). They are primarily used to administer oral rehydration
therapy. Figure 8 illustrates that early oral therapy can help prevent the onset or aggravation
of severe dehydration, which requires hospitalization [1,24,36].
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Vaccination

Figure 9 shows that vaccination decreases the number of fully susceptible individuals,
decreases infectiousness (the rate of water contamination), and decreases the likelihood of
becoming symptomatic when infected [21,28]. Oral cholera vaccine (OCV) has been shown
to be safe, logistically feasible, and acceptable by recipients. OCV is also inexpensive in a
variety of settings, with total costs including procurement and delivery per fully vaccinated
individual being less than USD 10 [3,37,38].
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2.2.3. Surveillance System

According to Camacho et al. [21], Yemen’s health authorities established a national
cholera surveillance system to collect data on suspected cholera cases presenting to health
facilities (no mass screening, the data depends on the availability of ORCs, DTCs, and
health seeking ratio). Only symptomatic infections are likely to seek treatment and be
reported. Figure 10 shows that simulated suspected and confirmed cases that replicate
the historical data are a product of individuals seeking rehydration care and emergency
treatment with suspected cholera infection.



Systems 2023, 11, 3 11 of 20

Systems 2023, 11, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 9. Vaccination intervention stock and flow diagram. 

2.2.3. Surveillance System 
According to Camacho et al. [21], Yemen’s health authorities established a national 

cholera surveillance system to collect data on suspected cholera cases presenting to health 
facilities (no mass screening, the data depends on the availability of ORCs, DTCs, and 
health seeking ratio). Only symptomatic infections are likely to seek treatment and be re-
ported. Figure 10 shows that simulated suspected and confirmed cases that replicate the 
historical data are a product of individuals seeking rehydration care and emergency treat-
ment with suspected cholera infection. 

 
Figure 10. Surveillance system intervention stock and flow diagram. 

2.3. Other Model Settings 
The model conceptual framework and structure has now been discussed and a de-

tailed description of key assumptions, model equations, and numeric inputs are provided 
in the Supplementary Materials. The simulation of the model was conducted using Stella 
Architect version 3.0. This model has a relatively short time horizon, as its purpose is to 
explore the implications of cholera response interventions during the 2017 and 2018 epi-
demics. As such, the model commences on 1 January 2017 and continues for 730 days, 
ending on 31 December 2018. A retrospective analysis and policy testing were conducted 
rather than the more conventional future timeline projection for epidemic preparedness. 
A DT of 1/4 with Euler’s integration method is used to run this model. 

Table 2 below outlines key parameters used in the model. For more information and 
a complete list of parameters, refer to the Supplementary Materials. 

  

Figure 10. Surveillance system intervention stock and flow diagram.

2.3. Other Model Settings

The model conceptual framework and structure has now been discussed and a detailed
description of key assumptions, model equations, and numeric inputs are provided in
the Supplementary Materials. The simulation of the model was conducted using Stella
Architect version 3.0. This model has a relatively short time horizon, as its purpose is
to explore the implications of cholera response interventions during the 2017 and 2018
epidemics. As such, the model commences on 1 January 2017 and continues for 730 days,
ending on 31 December 2018. A retrospective analysis and policy testing were conducted
rather than the more conventional future timeline projection for epidemic preparedness. A
DT of 1/4 with Euler’s integration method is used to run this model.

Table 2 below outlines key parameters used in the model. For more information and a
complete list of parameters, refer to the Supplementary Materials.

Table 2. Literature sources for key parameters in the model.

No Parameters Sensitivity Test
(Numerical) Values Unit Sources

1 connectedness of aquifers 0.02 1/day Calibrated; [14,38]
2 time to affect water in aquifers 3.5 day Calibrated; [14]
3 ratio of asymptomatic 0.75 dmnl [1,30]
4 average incubation time 1 day [1,30,32]
5 average duration of illness asymptomatic 5 day [1,29,30]
6 susceptible population 3,238,199 person [18]
7 recently infected population 500 person [18]
8 normal ratio of severe disease 0.3 dmnl [1,30]
9 average duration of illness symptomatic 9 day [32,39]

10 average asymptomatic infection acquired
immunity period 180 day [31]

11 average symptomatic infection acquired
immunity period 1095 day [30,31]

12 fraction mildly infected seeking care 0.3 dmnl Estimation from
Camacho et al. [21]

13 fraction severely infected seeking care 0.4 dmnl [1,21]
14 treated fatality fraction 0.0021 dmnl [18]
15 bacteria shedding from asymptomatic 0.67 dmnl [30] (normalized value)
16 bacteria shedding from mildly infected 1.33 dmnl [32] (normalized value)
17 bacteria shedding from severely infected 2 dmnl [30] (normalized value)

Indicators: Sensitive Highly sensitive.

2.4. Model Validation

A system dynamics model is generally validated in two ways. A structural validation
of the model seeks to determine whether it accurately corresponds to the real world.
Behavioral validation focuses on model behavior during simulation and evaluates the level
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of confidence that can be placed in the results [22,40,41]. Adhering to the guidelines, formal
model analysis and validation procedures were conducted to support model development
and testing throughout the research process. The procedures involved iterative cycles of
data collection, model building, simulation, analysis, validation, and documentation. They
are described in detail in the Supplementary Materials.

2.4.1. Comparison to Historical Data

Three uncertain parameter values: connectedness to aquifer, initial value of recently
infected population, and time (of bacteria shed by infected individuals) to affect water
in aquifer, were estimated through full-model calibration. Figure 11 compares simulated
behavior with historical data (from 2017 to 2018) for fitted variables, using estimated
parameter values from the full-model calibration. First, the model incorporates the dynamic
of an asymptomatic feedback loop, as the collected data are the suspected and confirmed
cases in Al-Hudaydah. In other words, infected individuals who are sick enough to seek
healthcare services (symptomatic). Second, the model takes account of the data source;
suspected and confirmed cases were collected from the DTC. Hence, the capacity structure
of the DTC is built as part of the intervention structures.
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Figure 11. Comparison between model behaviors and historical data in total suspected and confirmed
cases graph (left) and in the infection rate of suspected and confirmed cases graph (right).

On the other hand, the infection rate of suspected and confirmed cases graph (right)
illustrates the marginal difference in infection rates between suspected and confirmed cases
(right). The plausible explanation is that DTCs and ORCs lacked capacity at the start of the
epidemic due to a delay in capacity development (constructing new DTCs and ORCs).

Camacho et al. [21] explained that scarcity of adequate treatment is more common
during the initial phase of unexpected outbreaks and in crisis settings. The absence of
DTCs and ORCs indicates a data collection gap (according to Yemen’s surveillance system).
When infected individuals have access to a DTC and ORC, there is an over-reporting
problem because other patients with acute watery diarrhea (AWD) seek care at the ORC
and DTC [3,5]. It is reasonable for the simulated infection rate to be slightly higher than
the data at the start and slightly lower than the data following the establishment of DTCs
and ORCs.

No explanation regarding the two peaks in the data is available from the literature.
One plausible reason is that the healthcare system was over-stretched by the drastic increase
in infected patients; healthcare and the data surveillance system could not perform as usual
under such an overloaded condition. Once the system capacity increased (after a delay),
the data collection function also increased, resulting in a second peak. Another reason
could be that the rainfall intensified the infection rate [15].

2.4.2. Sensitivity Test

A multivariate Monte-Carlo sensitivity analysis was conducted on all exogenous pa-
rameters and initial values using a Sobol Sequence. A base case run was given initially, and
each sensitivity run utilized these values and changed one of the values in uniform distribu-
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tion within a preset range (see Supplementary Materials). The following Figures 12 and 13
present the sensitive parameters that indicate the potential leverage points for policy tests.
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Figure 13. The (left) over-time graph shows the results from the ‘bacteria shedding from asymp-
tomatic cases’ parameter test while the (right) over-time graph shows the result of the desired sewage
plant treatment parameter test.

Figure 12 shows the result from the parameter “vaccination start time” (left behavior-
over-time graph). The model is numerically sensitive to changes in the tested value
from day 90 to 365, with the same amount of vaccine provision in Al-Hudaydah
(260,000 vaccines—intervention historical data), as expected. An earlier vaccine cam-
paign shows a significant reduction in the infected population. With the model setting the
vaccination start time as day 120 (April 2017), the sensitivity test continued with another
parameter of “desired vaccine number”. The model shows a high numerical sensitivity to
the tested range of vaccines number, between 200,000 to 1,000,000.

The left over-time graph in Figure 13 shows that the model is strongly (numerically)
sensitive to changes in the value of “bacteria shedding from asymptomatic cases” as ex-
pected. Although the tested values are the lowest among the three infectious levels of
bacteria shedding (asymptomatic, mildly, and severely symptomatic individuals), asymp-
tomatic individuals have the highest ratio (75%) among the total infected population.
Hence, contributing to the high sensitivity of this parameter value.

The right over-time graph in Figure 13 shows that the model is strongly (numerically)
sensitive to changes in the values of “desired sewage plant treatment”, as expected. The
tested range included start time and the capacity of the sewage plant treatment intervention.
The infection reinforcing feedback loop is affected by the water source contamination by
the infected individuals. If the current sewage plant treatment is well supported, there is
less water contamination by the Vibrio cholera bacteria.
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3. Scenario Analysis and Discussion
BAU-BASE-Early Response

The model was run under the following three different conditions to understand the
interventions’ impact on the cholera epidemic dynamics. Figure 14 presents the results
from each scenario simulation.
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Figure 14. Behavior over time graphs that present the results for recently infected populations (top),
rec-orded suspected and confirmed cases (middle), and treated and untreated death rate (bottom) of
BAU-BASE-Early response simulations.

BASE. BASE is the simulation scenario that replicates the historical data. This scenario
included interventions implemented in 2017. A detailed intervention timeline simulated in
“BASE” with the capacity of treatment centers over time and vaccine distribution can be
found in Supplementary Materials (variables with “data” in their name).

Business as Usual (BAU). BAU is the scenario where all interventions
are deconstructed from BASE to explore a counterfactual worst-case scenario for the
cholera epidemic.

Early Response. An early response explores the impact of all interventions if the
starting day were in April 2017, using the same capacity from the BASE. In addition,
similar interventions were added in as responses to the second wave from June 2018.
Using capacity of interventions similar to historical data aims to avoid overly unrealistic
policy recommendations, particularly in a conflict-affected context where intervention
implementation faces immense challenges. Further policy analysis of each intervention
will be explored in future research.
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Cholera epidemic control is highly complex in a conflict-affected context such as
Yemen. While the epidemic lessons learned were widely discussed in the literature (mostly
qualitatively), it is still not fully understood what the best strategies for cholera response
are. Existing cholera related simulation models mainly study vaccination, antibiotics, and
water provision. None of the reviewed models include structures of both asymptomatic
and symptomatic individuals as well as sanitation intervention (sewage system) and health
services. In this paper, the cholera response model explores the dynamic interplay between
the classic infection SIR/SIS structure and the empirically grounded operational structures:
oral rehydration corners, diarrhea treatment centers, water, sanitation and hygiene (WASH),
vaccination, and the data surveillance system. The following insights emerge from the
sensitivity and the three scenario policy tests.

First, deconstructing the interventions from BASE to BAU has shown significant
impacts from the humanitarian cholera response in 2017. The results from Table 3 show
that there would have been 55% more deaths if nothing had been done in Al-Hudaydah. In
the BAU scenario, the cholera infection reinforcing feedback loops (R1, 2, 3, and 4) continue
to dominate the SIR/SIS dynamics without attenuation from exogenous interventions; more
infected individuals lead to more susceptible persons being infected, and the epidemic
curve increases exponentially. In addition to the decline in the susceptible population (over
time), more infected individuals recover or die; the balancing feedback loops (B1, 2, 3, 4,
and 5) gain strength. The epidemic curve peaks and eventually falls.

Table 3. Results of BASE, BAU, and Early Response simulations.

Scenario Total Infected Population Total Death

BASE 2,055,712 1,468

BAU 2,888,484 2,268

+41% +55%

Early Response 1,681,105 891

−18% −39%

This endogenous SIR/SIS dynamic of reinforcing and balancing feedback loops shed
lights on some of the questions asked in the reviewed literature. For instance, an epidemiol-
ogist who was interviewed in a study by Spiegel et al. [5] asked why the second wave was
so massive. After the mild first wave, the susceptible population is still very large. Such a
condition enables the infection reinforcing feedback loops to dominate in the second wave
if there is no exogenous intervention to counter the strength of the reinforcing feedback
loops (or to strengthen the balancing feedback loops).

Second, the simulation results also reveal that a potential 40% of deaths could have
been prevented if interventions, especially vaccination, had been initiated earlier. Stud-
ies have reported that concern was raised by the Yemeni government and some humani-
tarian actors that mass immunization would be logistically difficult with ongoing security
problems [3,9,13]. Another reason is that vaccination would have a minimal effect given
the magnitude of the outbreak: it may be too late for vaccination, and the benefits would
not outweigh the risks of initiating a campaign.

Yemen’s government, the United Nations, and the WHO stated that the decision was
made on a technical basis to ensure that efforts would be concentrated on WASH inter-
vention targeting approximately 16 million people [13]. Vaccines were finally distributed
to 540,000 people by the WHO and UNICEF in August 2018, nearly 16 months after the
outbreak began. Al-Hudaydah vaccinated 260,000 people with two-dose oral cholera
vaccines (OCVs).

Indeed, the conflict situation posed significant logistical challenges for mass vacci-
nation. Burki [8], on the other hand, reported that coverage of the pentavalent vaccine is
estimated to be around 88% in 2015—the same as in 2014. The past pentavalent vaccine
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campaign indicates that a mass vaccination campaign is feasible if well-planned and sup-
ported. Moreover, Médecins Sans Frontières’ [1] cholera response manual stated that OCVs
are administered orally (not via injection) and rarely cause serious adverse effects, and
mass cholera vaccination campaigns do not require a large number of medical personnel.
Hence, an earlier vaccination campaign would not have been impossible in Yemen.

Third, the sensitivity test findings show that the model is not sensitive to the water
provision intervention. This is an unexpected result as one might anticipate a greater
impact from water provision on cholera epidemic control, given that WASH intervention is
considered to be one of the most critical components of such an emergency response [1].

In Al-Hudaydah, clean water provision activities comprise chlorination of wells,
communal water tanks, distribution of chlorine tablets, and the daily chlorination of water
trucks at water filling stations. In this cholera response model, susceptible individuals who
receive clean water shift to the population with clean water stock after one day. Compared
to the model of Tuite et al. [42] with 100% reduction of “contact” rate if covered by clean
water provision, this model assumes only 70% of individuals who receive clean water shift
into the population with clean water stock. Having clean water does not ensure a 100%
reduction in susceptibility [25]. It is unrealistic to assume that those who receive clean
water are 100% protected from cholera infection, as cholera is transmitted via multiple
pathways (as illustrated in Figure 15). With other words, removing a single source of
infection through water provision may not effectively prevent the disease.
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Water can also still be viewed as a source of cholera outbreaks. Even when routine
water treatments are carried out, cholera can still be transmitted when: dosing errors are
made, treatment is forgotten, or the piped water supply is contaminated [25]. In fact,
John Snow made history in public health by tracing and discovering that the source of the
London cholera epidemic in 1854 was contaminated water from a water pump.

This discussion does not intend to discredit the crucial role of clean water provision.
Having access to safe drinking water is central to living a life in dignity and upholding
human rights [38]. However, it is problematic when resources are overly focused on WASH
interventions. During the major wave of the epidemic, when stakeholders chose not to
vaccinate the public but instead prioritized WASH [13]; and after the epidemic, when
humanitarian actors utilized the water-fighting system, Cholera Risk Model predictive
tool [15] without considering the endogenous feedback loops of cholera transmission. Such
policy is likely to result in the “Shifting the Burden” system archetype; relying on reactive
quick fixes that lead to unintended consequences of lower priorities and fewer resources
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for other interventions. For instance, vaccination provides three-year protection compared
to one-day protection from water provision.

One might argue that the water provision should eventually transition from emergency
water trucking or chlorine tablets to building water treatment plants. Nevertheless, such
a long-term WASH development strategy is not part of the emergency cholera response
model boundary. Additionally, such policy is not suitable in a conflict-affected context
where the infrastructures are intentionally being obliterated.

Fourth, sewage plant treatment can potentially be the leverage point for the silent
spreaders who make the cholera transmission harder to fight. The sensitivity test findings
highlight that the model is strongly (numerically) sensitive to changes in the value of
“bacteria shedding from asymptomatic cases” due to asymptomatic individuals having the
highest ratio (75%) among the total infected population. It is rather challenging to intervene
in this population at the individual level as they are asymptomatic. However, it is still
crucial to have intervention(s) targeting or controlling the impact from the silent spreaders.
One of the potential interventions is sanitation, such as sewage plant treatment.

The sensitivity test results also show that the model is strongly sensitive towards
sewage system treatment. Sewage management and food safety are two critical areas for
preparedness and response to the cholera outbreak. However, because these fields are not
mandated by the health care system or the WASH cluster, they are frequently overlooked
or dealt with ad hoc during the response [14,25]. This problem is also indicated by the lack
of cholera modeling literature on sewage treatment.

The highest numbers of cholera cases have been reported in areas with non-functional
sewage treatment plants [43]. Without functional sewage treatment plants, sewage effluents
are frequently diverted to impoverished neighborhoods and agricultural lands, contami-
nating shallow aquifers and wells used by local civilians and private tankers [1,26]. The
reuse of sewage effluents for irrigation is an essential alternative water source for Yemen.

Sewage treatment helps remove contaminants from sewage to produce effluent suit-
able for discharge to the surrounding environment or reuse [1,26,35]. For instance, farmers
in Yemen collect sewage effluent directly from stabilization ponds to irrigate various
crops [44]. A study by Al-Sharabee in 2009 (cited in Al-gheeti et al. [35]) reports that the
zone area near the Sana’a wastewater treatment plant depends upon the sewage effluents
for 95% of crop irrigation. However, Yemen’s current sewage effluent quality is generally
poor, since none of the existing sewage treatment plants produce effluents that comply
with the effluent quality regulations [44].

Although reports specifying project impact evaluation are uncommon in the published
literature [17], a well-maintained sewage treatment plant is assumed to produce effluents
that meet quality regulations, thereby improving sanitary conditions and reducing Vibrio
cholerae contamination in drinking water sources [1,26].

While this cholera response model is useful for clarifying policy problems and reshap-
ing mental models, it is just as important to be transparent regarding the model’s limitations,
assumptions, and boundary conditions. The cholera response model has several limitations,
many of which stem from data quality or availability problems when approximating or
estimating more detailed quantified representations of important dynamics. For instance,
a lack of information regarding the weight of various WASH intervention impacts on the
overall sanitary conditions in Al-Hudaydah. Sensitivity analysis has been used to provide
some insurance against such uncertainties. The model’s limitations nonetheless restrict the
quantitative precision of the model’s projections, which should be borne in mind when
interpreting its results. In other words, this cholera response model is not intended for
high-precision quantitative forecasting or prediction.

Regardless of the outlined limitations, this cholera response model has shown both
the compounding factors that exacerbate the epidemic and the operational dynamics in
controlling the epidemics. The model stresses the importance of distinct asymptomatic and
symptomatic reinforcing feedback loops, where interventions must target both. Most im-
portantly, the intervention starting time plays the essential role in controlling the epidemic.
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Lastly, the model identifies the unknown unintended consequences, such as ‘shifting the
burden’ from overly focused water provision intervention. To conclude, the model paves
the way for a more robust cholera response policy analysis in the future. The next steps
include further analysis of how each intervention impacts the epidemic control, building
a use-friendly model interface, and adapting the model to reflect cholera outbreaks in
other countries.
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