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Abstract
The skilful prediction of climatic conditions on a forecast horizon of months to decades into the future remains a main 
scientific challenge of large societal benefit. Here we assess the hindcast skill of the Norwegian Climate Prediction Model 
(NorCPM) for sea surface temperature (SST) and sea surface salinity (SSS) in the Arctic–Atlantic region focusing on the 
impact of different initialization methods. We find the skill to be distinctly larger for the Subpolar North Atlantic than for the 
Norwegian Sea, and generally for all lead years analyzed. For the Subpolar North Atlantic, there is furthermore consistent 
benefit in increasing the amount of data assimilated, and also in updating the sea ice based on SST with strongly coupled 
data assimilation. The predictive skill is furthermore significant for at least two model versions up to 8–10 lead years with the 
exception for SSS at the longer lead years. For the Norwegian Sea, significant predictive skill is more rare; there is relatively 
higher skill with respect to SSS than for SST. A systematic benefit from more complex data assimilation approach can not 
be identified for this region. Somewhat surprisingly, skill deteriorates quite consistently for both the Subpolar North Atlantic 
and the Norwegian Sea when going from CMIP5 to corresponding CMIP6 versions. We find this to relate to change in the 
regional performance of the underlying physical model that dominates the benefit from initialization.
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1  Introduction

Skillful decadal climate predictions are beneficial to soci-
ety by potentially providing information to stakeholders, 
contributing to political and economical decision-making, 
and by guiding the planning of climate adaptation measures 
(Vera et al. 2010; Kushnir et al. 2019). Dynamical predic-
tions are achieved by initialization of climate models with 
the observed climate state through data assimilation (DA) or 
alternative synchronization methods. The initialization can 
reduce the forecast error by considering the internal vari-
ability and the mean forced response in the climate system 

(Meehl et al. 2009; Yeager et al. 2012), thus achieving skill-
ful predictions regionally up to a decade (Smith et al. 2019).

Decadal climate predictions are still in their early stages 
of development, the first initialized coupled ocean-atmos-
pheric efforts started in the beginning of the 2000s (e.g. 
Smith et  al. 2007; Keenlyside et  al. 2008). Since then, 
many procedures and techniques have been developed to 
deal with inherent initialization problems such as initial 
“shocks”, model drift, and a growing variety of assimilated 
data. Developments range from the primary initialization of 
the surface ocean component to additional initialization of 
the subsurface ocean and other components of the climate 
system (Morioka et al. 2018); from updates of single model 
components (Weakly-Coupled DA) to cross-component 
updates during DA in particular model components (which 
we denote here as Strongly-Coupled DA) (Penny et al. 2019) 
are current aspects under development and investigation.

Comparisons between multiple DA approaches and tech-
niques using the same model can help to understand how 
different initialization procedures affect the skill of certain 
physical processes (Polkova et al. 2019b), as for example 
the Atlantic Meridional Overtuning Circulation. To this 
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end, the Norwegian Climate Prediction Model (NorCPM), 
developed by the Bjerknes Center for Climate Research, is 
a valuable tool. NorCPM consists of a fully-coupled Earth-
system model performing ensemble-based sequential DA, 
based in the Norwegian Earth System model (NorESM). 
The Norwegian initiative has been through many buildup 
stages, evolving from surface ocean initialization (Counil-
lon et al. 2016) to assimilation of subsurface observations 
(Wang et al. 2017) and initializing the sea ice component 
(Kimmritz et al. 2018). A comparison of these stages and 
their effects on skill, focusing on a specific region or physi-
cal process, can contribute to the NorCPM development by 
identifying strengths and deficiencies of the different ini-
tialization techniques.

On interannual-to-decadal timescales, the Arctic-Atlantic 
region (Fig. 1a) is characterized by poleward propagation of 
thermohaline anomalies from the Subpolar North Atlantic 
(SPNA) towards the Arctic through the Norwegian Sea (NS) 
(Eldevik et al. 2009; Årthun and Eldevik 2016). Årthun et al. 
(2017) identified that the propagation is mainly driven by 

advection, with a characteristic time scale of 14 years and 
propagation speed of 2 cm/s. According to the anomalies 
travel time the prediction horizon varies between 7 and 10 
years influencing climate variability over Scandinavia and 
the state of sea ice in the Arctic (Årthun et al. 2017). Based 
on observation-based ocean data, Buckley et al. (2019) iden-
tified a decorrelation time of winter-time SST and upper 
ocean heat content of 4–6 years in the SPNA and 2–3 years 
in the NS. Based on predictions systems, the SPNA is one of 
the most predictable areas in the world (Yeager et al. 2012; 
Buckley et al. 2019). Some models have demonstrated sig-
nificant skill up to 10 years in advance for sea surface tem-
perature and upper ocean heat content (van Oldenborgh et al. 
2012; Matei et al. 2012; Yeager et al. 2012; Buckley et al. 
2019; Smith et al. 2020).

Despite the NS receiving thermohaline anomalies from 
the SPNA (Årthun and Eldevik 2016), Langehaug et al. 
(2017) found skill of only up to 1–3 years in the NS, which 
is less than what is found for the SPNA region (Matei et al. 
2012). Assessing similarities and differences in predictive 

Fig. 1   a Schematic diagram 
highlighting the SPNA area 
(60 W–10 W, 50 N–65 N), 
according to Robson et al. 
(2012), and the NS, according 
to Asbjørnsen et al. (2019), in 
transparent black. The main 
currents analyzed in this study 
are the North Atlantic Current 
(NAC; pink) and the Norwegian 
Atlantic Current (NwAC; pur-
ple) with its recirculation (yel-
low). The white arrows indicate 
cold and fresh surface water 
from the Arctic. Ridges and Pla-
teau are indicated with R. and P. 
respectively. b Hindcast winter 
SST in the SPNA in version 
V5s (red). c Hindcast winter 
SST in the NS in version V5s 
(red). The black curves show 
the respective reanalysis used 
to initialize the model. Grey 
shading represents the spread 
of the ensemble members of the 
reanalysis. The starting time of 
each hindcast is indicated by a 
green circle
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skill between these two regions for different initializa-
tion techniques will improve our understanding of which 
approaches are most beneficial in enhancing predictive skill 
and identify sources of uncertainty in the NS.

The present work focuses on investigating the sensitivity 
of decadal predictive skill of NorCPM to different initializa-
tion techniques, and assessing which one leads to higher pre-
dictive skill for the SPNA and NS. The variables analyzed 
are those constrained by the DA: sea surface temperature 
(SST) and sea surface salinity (SSS). These surface vari-
ables are important for marine ecosystems, Arctic sea ice, 
and atmospheric climate (Årthun et al. 2012, 2018a, b). 
Here, skill is defined as the ability of the prediction sys-
tem (NorCPM) to reproduce the same variability of these 
quantities as in the reanalysis used to initialize NorCPM. 
In addition, SST variability in NorCPM is compared to that 
from HadSST2. Five versions of NorCPM are systematically 
analyzed (Table 1), to primarily investigate how different 
representations of the ocean initial state and external forc-
ings can affect the predictive skill in the SPNA and the NS 
for different lead years.

2 � Data and methods

2.1 � Norwegian climate prediction model (NorCPM)

NorCPM (Counillon et  al. 2014, 2016) is based on the 
Norwegian Earth System Model (NorESM) (Bentsen et al. 
2013) adding the Ensemble Kalman Filter (EnKF) as the DA 
method (Evensen 2003). The fully coupled NorCPM consists 
of MICOM (ocean), CAM4 (atmosphere), CICE4 (sea ice), 
CLM4 (land model), and the coupler CPL7; its structure is 
largely based on the The Community Climate System Model 
version 4 (CCSM4) (Gent et al. 2011), while its sea ice and 
land models are based on the Community Earth System 
Model version 1.0.3 (CESM1) (Vertenstein et al. 2012). The 

ocean/sea-ice and atmospheric components have horizontal 
resolution of 1 × 1 and 1.9 × 2.5 , respectively.

The DA in NorCPM is based on anomaly initialization. In 
this process, monthly anomalies are assimilated, generating 
a reanalysis field that is used to initialize the decadal hind-
cast. In anomaly DA, the choice of the climatology reference 
period is relevant to calculate the mean and the subsequent 
anomalies. In this study there are two reference periods 
(Table 1). The DA is applied in the ocean component using 
sea surface temperature data from HadSST2 (Rayner et al. 
2006) and, additionally, subsurface hydrographic profiles 
from EN4.2.1 (Good et al. 2013) dependent on the particular 
version. Each reanalysis has 30 ensemble members.

The predictions are initialized from the reanalysis and run 
freely for 10 years, where each hindcast has between 5 and 
20 members depending on the version. In this study, we used 
results from five different versions: V5, V5w, and V5s, based 
on NorESM1-ME (Bentsen et al. 2013; Tjiputra et al. 2013) 
defined here as NorCPM-CMIP5; V6w, and V6s based on 
NorCPM1 (Bethke et al. 2021) defined here as NorCPM-
CMIP6. Details of each version including their respective 
reference period for calculating anomalies are described in 
Table 1.

The version V5 assimilates SST through weakly-coupled 
data assimilation method (WCDA) in the ocean component 
(described further bellow). Version V5w uses the same 
assimilation method, but in addition to SST also assimilates 
hydrographic profiles of temperature and salinity. The imple-
mentation of the T-S profiles DA is described in Wang et al. 
(2017). These authors report an improvement of the system 
accuracy, generating a reanalyses field suitable to be used at 
seasonal-to-decadal predictions.

The version V5s (Bethke et al. 2021) assimilates SST 
and hydrographic profiles, updating the sea ice state through 
strongly-coupled data assimilation (SCDA) with updates and 
post-processing of the sea ice state following Kimmritz et al. 
(2018). The transition from WCDA to SCDA is the pathway 

Table 1   NorCPM versions characteristics

The total number of members for those versions with more than 5 is in brackets

Version
(Underlying model)

Assimilated data CMIP forcing Assimi-
lation 
method

Ensemble size Climatology 
reference 
period

Initialization frequency

V5
(NorESM1-ME)

SST (HadSST2) CMIP5 WCDA 5 (20) 1950–2010 Every 2 years

V5w
(NorESM1-ME)

SST (HadSST2)
Hydrographic profiles (EN4.2.1)

CMIP5 WCDA 5 1980–2010 Every 2 years

V5s
(NorESM1-ME)

SST (HadSST2)
Hydrographic profiles (EN4.2.1)

CMIP5 SCDA 5 (10) 1980–2010 Every 2 years

V6w
(NorCPM1)

SST (HadSST2)
Hydrographic profiles (EN4.2.1)

CMIP6 WCDA 5 (10) 1980–2010 Every 1 years

V6s
(NorCPM1)

SST (HadSST2)Hydrographic 
profiles (EN4.2.1)

CMIP6 SCDA 5 (10) 1950–2010 Every 1 years



	 L. Passos et al.

1 3

defined for major operational forecast centers (Penny et al. 
2017). Both DA approaches have two stages; the analysis 
stage where the DA is performed, and the forecast stage 
when the components of the system interact through the 
coupler. In NorCPM, the WCDA method only updates the 
other components during the forecast stage. The information 
exchange between ocean and the other components (sea-ice, 
land, atmosphere) is achieved dynamically through cross-
component fluxes during the forecast stage. By contrast, 
in the NorCPM’s SCDA implementation, the information 
exchange between ocean and sea ice is additionally real-
ized by using the cross-domain error covariance, allowing 
ocean observations to instantaneously impact the sea ice 
state variables during the analysis stage (there is no update 
for atmosphere and land in the analysis step). Therefore, the 
information exchange between ocean and sea ice is achieved 
statistically during the analysis stage, but also dynamically 
during the forecast stage. Additionally to the SCDA, the ver-
sion V5s also has the observation error variance of the T-S 
profiles (EN4.2.1) inflated in the areas with sea ice concen-
tration higher than 50% (Bethke et al. 2021). This additional 
inflation was applied to deal with the sparsity of TS profiles 
underneath the sea ice that makes the observations there 
unreliable.

The implementations V6w and V6s (Bethke et al. 2021) 
have the same approach as V5w and V5s, but use external 
forcings as prescribed by the Coupled Model Intercom-
parison Project Phase 6 (CMIP6), while CMIP5 forcing 
is used for V5, V5w and V5s. Besides that, the version 
NorCPM-CMIP6 has re-tuning, and minor code modifica-
tions unrelated to forcing upgrades (like bug fixes). The 
detailed description of the code changes and their effects is 
in Bethke et al. (2021). The main difference between CMIP5 
and CMIP6 protocols is the set of climate forcings applied 
such as greenhouse gases (Meinshausen et al. 2017), ozone 
concentrations, atmospheric aerosols (tropospheric and vol-
canic) (Thomason et al. 2018), and solar forcing (Matthes 
et al. 2016). The CMIP6 protocol is more precise than the 
CMIP5 protocol in the way these external forcings should be 
implemented, however different models may require adap-
tations in the forcing implementation due to their specific 
features and limitations (Lurton et al. 2020; Sellar et al. 
2020). In NorCPM, the re-tuning due to the CMIP6 forc-
ings’s implementation included an increase of the conden-
sation threshold for low clouds and a decrease of the snow 
albedo over sea ice adjusting parameters that affect snow 
metamorphosis (Bethke et al. 2021).

V5, V5w and V5s were initialized each second year, 
while V6w and V6s were initialized every year. All simula-
tions are initialized on November 1st. Figure 1b, c show 
an example of the SST winter time series of the reanalysis 
(black curves) and the hindcast (red curves) in the SPNA 
and NS of the version V5s. Both areas show a positive SST 

trend between 1985 and 2010 for the reanalysis and also for 
the hindcast (although smaller trends in the hindcast com-
pared to the reanalysis in the NS). The simulation period 
of the reanalysis and hindcast for each version is shown in 
Fig. 2. In order to compare all versions, the only overlapping 
period is 1983–1999, comprising 9 initializations. To com-
pare all hindcast versions with the same number of ensemble 
members, we use 5 members, which is the total ensemble 
number of V5w. For those versions with higher number of 
ensemble members we randomly selected five members. 
The ensemble members selected represent the variance of 
the ensemble mean. An example of the skill variance of V5 
for all 20 members and for 5 members used in the calcula-
tion is in Fig. 3. Additionally, in the implementations with 
yearly initialization frequency (V6w and V6s), only every 
second start date was used. In this way, all versions were 
systematically compared with the same ensemble size and 
initialization frequency.

2.2 � Hindcast skill and uncertainty

In this study, the predictive skill is quantified using the 
anomaly correlation coefficient (ACC) and root mean square 
error (RMSE), which are usual ways to analyze decadal cli-
mate prediction skill according to Goddard et al. (2013). The 
skill assessment of the hindcast for SST and SSS for each 
version is done against the ensemble mean of the respective 
NorCPM reanalysis (30 members) and HadSST2. The skill 
is measured using the ACC as a function of the lead year. 
The first lead year here is the next year after the start date, 
and so on. SST and SSS are averaged (without weighting) in 
time every 3 lead years (1–3, 2–4, 4–6, 5–7, 6–8, 7–9, and 
8–10), and then averaged in space (not detrended) for the 
SPNA and the NS regions, as defined in Fig. 1a. After that, 
the ACC is calculated according to Eq. (1).

where LY is the lead year and ini denote a certain start date 
for the relevant lead year. hind is the ensemble mean of the 
hindcast of a start date, and hind means the mean of all start 
dates for the relevant lead year. rean is the ensemble mean 
of the respective reanalysis of a start date, and rean means 
the mean of all start dates for the correspondent lead year. 
The ACCs are subject to sampling uncertainty due to the 
small number of initializations and limited ensemble size. 
To account for this uncertainty we computed the 25–75% 
bootstrap confidence interval and we consider two ACCs 
statistically separated if their confidence intervals do not 
overlap. The significance level is calculated by the stand-
ard two-sided Students t-test (O’Mahony 1986) at 90% and 

(1)

ACCLY =

∑9

ini=1
(hindini − hindLY )(reanini − reanLY )

�

∑9

ini=1
(hindini − hindLY )

2

�

∑9

ini=1
(reanini − reanLY )

2
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not accounting for auto and cross/covariances due to the 
short comparison period and, therefore, the number of ini-
tializations. The predictive skill is calculated for the winter 
period, defined here as January–April average. This study 
focus on winter because of the persistence of SST anoma-
lies in this season, when the atmosphere-ocean coupling is 
most vigorous and creates a sea surface temperature anomaly 
that reaches the base of the deep winter mixed layer and 
reemerges in the following winter, contributing to the natu-
ral decadal climate variability in the North Atlantic (Alex-
ander and Deser 1995; Watanabe and Kimoto 2000). The 
drift was calculated according to Choudhury et al. (2017) 
Method Mean Drift Correction. We calculated the drift of 
the ensemble mean using Eq. (2).

where lead is the lead year and n is the number of initializa-
tions. Equation (2) gives the drift as a constant value for each 
lead year. There is drift in the SPNA (Fig. 1b). However, 
removing this drift from the time series for each lead year 
does not affect the correlation/ACC, as it is only subtracted a 
constant value. The same goes for RMSE, removing the drift 
from the time series before calculating RMSE does not affect 
the results. This is because we consider anomalies relative 
to their respective climatologies, when calculating RMSE, 
according to Goddard et al. (2013). In the other side, the 
drift would have an impact on the RMSE, if it was calculated 
the difference between hindcast and reanalysis without sub-
tracting the respective climatology. Consider that the drift 
removal does not affect the metrics used in this study, all the 
results presented here are not drift corrected.

3 � Predictive skill in different versions 
of NorCPM

The predictive skill of SST and SSS in different versions of 
NorCPM in the SPNA (black lines) and in the NS (red lines) 
is shown in Fig. 4. The skill is higher in the SPNA than in 
the NS in most versions and lead years. In the SPNA, the 
version V5w and V5s are the only ones with significant skill 
at all lead years for SST (Fig. 4 upper panel). For SSS, only 
V5s has values higher than or close the significance level 
(Fig. 4 lower panel). Skill differences between implemen-
tations and versions are smaller at shorter lead years, and 
become more pronounced at medium and longer lead years.

In the NS, there is no single implementation that performs 
higher than the significance level at all lead years neither for 
SST nor for SSS (red lines in Fig. 4 upper and lower pan-
els). For SST, at shorter lead years, V5 is the only version 
with skill higher than the significance level, while at medium 

(2)Driftlead =
1

n

n
∑

i=1

Hindlead,i − Reanlead,i

lead years V5w is the one with highest skill. At longer lead 
years, V5s and V6w have the highest skill in the NS (Fig. 4 
upper panel). For SSS, the versions with the highest skill are 
similar to the ones for SST (Fig. 4 lower panel), although 
the differences between versions at shorter lead years are 
smaller for SSS than for SST. We note that V6s presents 
a high anti-correlation at longer lead years for both SST 
(− 0.8) and SSS (− 0.75).

The predictive skill in the CMIP6 versions, V6w and 
V6s, is lower than the respective CMIP5 versions, V5w and 
V5s. The differences between them are more pronounced at 
medium and longer lead years. In the next subsections, we 
assess in more details the effects of the different initializa-
tion techniques on the predictive skill in the SPNA and NS.

3.1 � Skill effects of assimilating subsurface data 
using different climatology reference periods

The assimilation of subsurface data in the ocean is impor-
tant for a realistic representation of mass transport, mixed-
layer depth and eddy kinetic energy; however, the subsurface 
ocean has only been adequately observed in the last decades, 
and differences in the frequency and quality of observed 
temperature and salinity data can result in spurious signals in 
the assimilated field (Yang et al. 2017). In order to deal with 
this problem, one approach is for the models to calculate 
ocean transport processes by only initializing SST. In this 
way, the subsurface field is initialized indirectly (Keenlyside 
et al. 2008); a similar approach was used in version V5. 
However, recent studies have shown a skill improvement 
in the North Atlantic when assimilating subsurface data 
using, for example, lagged-initialization methods (Tatebe 
et al. 2012; Kröger et al. 2018). To evaluate the effects of 
subsurface initialization on the predictive skill in NorCPM 
we compare versions V5 and V5w in the SPNA and in the 
NS. Nevertheless, differences between these versions are not 
limited to the type of data assimilated, since they use differ-
ent climatology reference periods (Table 1). We will briefly 
come back to this in the discussion.

The inclusion of subsurface data increases the predic-
tive skill and decreases the error of the hindcast for SST 
and SSS in the SPNA. In this area, the differences are more 
pronounced at medium and longer lead years (Fig. 5a, c, 
Supplementary Figures 15a, c). Unlike the SPNA, SST skill 
in the NS is higher when using only surface data assimila-
tion at shorter lead years (Fig. 5b). At medium lead years, 
the addition of subsurface data does not generate statistically 
significant differences between the two versions. For SSS in 
the NS, adding subsurface data assimilation improves the 
predictive skill at medium lead years (Fig. 5d). The RMSE 
for SST in the NS is slightly higher at shorter lead years in 
V5w, after that the error is statistically equal for both ver-
sions (Supplementary Figure 15b). In the NS, the RMSE 
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for SSS is the same at short lead years between versions 
and slightly higher in V5w at medium and longer lead years 
(Supplementary Figure 15d). We note that using HadSST2 
data instead of the reanalysis, we find similar results for both 
regions (Fig. 5a, b and Supplementary Figure 15a, b).

3.2 � Skill effects of weakly vs strongly‑coupled DA 
and ensemble inflation

Sea ice is an important component of the climate system, 
since it helps regulate the heat transfer between the ocean 
and the atmosphere with a global effect on climate scales, 
impacting the slow-evolving thermohaline circulation (Hol-
land et al. 2001; Liu et al. 2019). This component was thus 
chosen to initiate the implementation of SCDA in NorCPM 
(see Kimmritz et al. 2018, for DA of sea ice concentration 
updating the sea ice and the ocean state). In the strongly-
coupled method the observations are used to update other 
model components through cross-covariance error, being 
an alternative to improve consistency between the analyzed 
state of each component and eliminate initial shocks (Penny 
et al. 2017). In this approach, the main challenge is to deal 
with the differences in spatial and temporal scales between 
ocean, atmosphere and sea ice. The scales of ocean and sea 
ice are more alike than those of ocean/sea ice and atmos-
phere, making the jointly update of ocean-sea ice a natural 
“starter” for SCDA. Idealized and non-idealized studies have 
demonstrated advances in the strongly-coupled approach 
between ocean and atmosphere (Lu et al. 2015a, b; Sluka 
et al. 2016) and between ocean and sea ice (Kimmritz et al. 
2018). Considering that the SCDA approach has recently 
been developed, it is important to understand whether it 
has a positive impact on the predictive skill, or whether it 
transfers biases from one component to another (Penny et al. 
2017).

The evaluation of the predictive skills of V5w (WCDA) 
and V5s (SCDA+inflation) is shown in Fig. 6. In addition 
to the jointly update of the ocean and sea ice during analysis 
stage (SCDA), an error inflation is applied as described in 
Sect. 2. The effect of these implementations on the predictive 
skill differs depending on the area. In the SPNA, V5s shows 
slightly higher predictive skill and lower RMSE than V5w 
for both SST and SSS (Fig. 6a, c, Supplementary Figure 16a, 
c) at all lead times. In the NS, WCDA (V5w) has higher skill 
than V5s at shorter and medium lead times for SST (Fig. 6b) 
and at medium lead times for SSS (Fig. 6d).The RMSE of 
SST and SSS is statistically similar for both versions in the 
NS (Supplementary Figure 16b, d). Using HadSST2 data 
instead of the reanalysis, we find similar results for both 
regions (Fig. 6a, b, Supplementary Figure 16a, b).

The difference between V6w and V6s is similar to the 
described above for V5w and V5s. Also in NorCPM-CMIP6 
versions, the SCDA with additional inflation has a positive 

impact over the skill in the SPNA for almost all lead years; 
and for the NS, it maintains the skill at first lead years lead-
ing to a significant anti-correlation at longer lead years (Sup-
plementary Figures 17, 18). An overall assessment of the 
spatial peculiarities between V5w and V5s are detailed in 
Sect. 4.

3.3 � Skill differences between NorCPM‑CMIP5 
and NorCPM‑CMIP6

The NorCPM-CMIP6 versions include in its underlying 
physical model the CMIP6 forcings, re-tuning, and minor 
code modifications. Thus, the differences discussed here are 
not regarding to the different CMIP forcings, but it is regard-
ing to different model versions in addition to different CMIP 
forcings. The underlying model of NorCPM-CMIP5 ver-
sions is NorESM1-ME, while the underlying model of Nor-
CPM-CMIP6 versions is called NorCPM1; the differences 
between the underlying versions are described in Table 2. To 
compare the predictive skill between NorCPM-CMIP5 and 
NorCPM-CMIP6, we here compare V5w (CMIP5) and V6w 
(CMIP6), since both have the same initialization approach 
(Table 1). For NorCPM-CMIP6 we use the same number of 
initializations as NorCPM-CMIP5 (every second year), as 
described in Sect. 2.

In the SPNA, the NorCPM-CMIP5 version has SST skill 
higher than the significance level for all lead years. The 
NorCPM-CMIP6 version has the same SST skill/RMSE as 
NorCPM-CMIP5 at shorter lead years (up to 3–5 years), but 
lower than the significance level after 5–7 years (Fig. 7a) 
in addition to a higher RMSE (Supplementary Figure 19a). 
SSS has statistically the same predictive skill in both ver-
sions up to 2–4 years. After 3–5 lead years, the skill of 
SSS in NorCPM-CMIP6 is lower than in NorCPM-CMIP5 
(Fig. 7c) while the RMSE is statistically the same for both 
versions (Supplementary Figure 19c).

In the NS, the NorCPM-CMIP5 version has higher 
SST skill than the NorCPM-CMIP6 version at shorter 
lead years (up to 4–6 years); after that the skill is statisti-
cally equal, and then lower at 8–10 lead years (Fig. 7b). 
At all lead years the RMSE is statistically similar for 

Table 2   NorCPM’s underlying models used to verify the effects of 
CMIP forcings on the North Atlantic skill

For a better understanding of the code’s modifications refer to Bethke 
et al. (2021)

Version (Hindcast) CMIP forcing Code 
modifica-
tions

NorESM1-ME (NorCPM-CMIP5) CMIP5 NO
NorCPM1_1 (No Hind.) CMIP6 NO
NorCPM1 (NorCPM-CMIP6) CMIP6 YES
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both versions (Supplementary Figure 19b). For SSS in 
the NS, the predictive skill of NorCPM-CMIP5 version 
is higher than NorCPM-CMIP6 at almost all lead years 
with the biggest differences between versions at medium 
lead years (Fig. 7d), it is also when the RMSE for V6w is 
higher than in V5w (Supplementary Figure 19d). Using 
HadSST2 data instead of the reanalysis, we find similar 
results for both regions (Fig. 7a, b, Supplementary Fig-
ure 19a, b).

The drop of skill of the most recent V6w compared to 
its previous version V5w is also verified between V6s and 
V5s (not shown). The implementation of the new set of 
CMIP6 forcings caused the underlying model, NorCPM1, 
to need further adjustments and parametrizations, while 
NorCPM-CMIP5 (NorESM1-ME) had been adjusted for a 
longer period. It was challenging to systematically verify 
and reach the same level of tuning for NorCPM-CMIP6 
as NorCPM-CMIP5 in time for the CMIP submission. 
Recently, it was verified that the land surface types and 
transient land-use [used in the new version] caused an 
unrealistic land-cryosphere cooling trend over the histori-
cal period in NorCPM1 (Bethke et al. 2021). This issue 
in the historical period affects the skill in both regions in 
different ways (Fig. 8).

3.4 � CMIP6 forcing effects on historical simulations

Considering the differences between versions described 
in Sect. 3.3, it is not possible to analyze the effect of the 
CMIP6 forcings on the predictive skill of the hindcast using 
NorCPM-CMIP6. Nevertheless, since there is a historical 
simulation with CMIP6 forcing and no code updates (Nor-
CPM1_1), we compare it with the historical simulations 
from the underlying models of NorCPM-CMIP5 (NorESM-
ME) and NorCPM-CMIP6 (NorCPM1). The details of the 
historical simulations are described in Table 2.

The effect of the CMIP6 forcings on the SPNA is overall 
positive (compare red and black curve; Fig. 8a), increas-
ing the models skill above the significance level. The posi-
tive effect on the skill due to the CMIP6 forcings is also 
found in 28 historical simulations by Borchert et al. (2021) 
in the SPNA. Despite of that, in the NS the effect of the 
new forcings is the opposite. The historical simulation from 
NorCPM1_1 (CMIP6) has a lower and not significant cor-
relation compared to that from NorESM-ME (CMIP5) (com-
pare red and black curve; Fig. 8). The lower skill could be 
related to the trends in SST. The historical simulation with 
the highest skill in the NS (NorCPM1) is the only one with 
a warming trend similar to that in HadSST2 in the period 

Fig. 2   Experiment time period 
for each version of NorCPM. 
The black line indicate the 
period of the reanalysis used 
and the respective hindcast 
(grey line). The vertical size 
of the grey lines indicate the 
initialization frequency of 
each experiment, which varies 
between every year (V6w and 
V6s) and every second year 
(V5, V5w, and V5s). The red 
lines indicate the overlapping 
period used for comparison

Fig. 3   Skill variance for all lead 
years of V5’s 20 members and 
its 5 members ensemble mean 
used to calculate the results. 
The results are shown for 90% 
of confidence level. The hind-
cast is correlated with its own 
reanalysis
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analyzed (Fig. 9). The result from Fig.  4 highlights that the 
effect of the new CMIP6 forcings on the skill is not similar 
for all regions.

4 � Overall predictive skill 
between the Subpolar North Atlantic 
and the Norwegian Sea

According to the analysis made in Sect. 3, the version V5s 
(CMIP5, SCDA+error inflation) has the overall highest 
skill in the SPNA with significant values for almost all lead 
years for SST and SSS (Fig. 4). In the NS, the version V5w 
(CMIP5, WCDA) is the only version with significant values 
at medium lead years for SST and SSS (Fig. 4). Considering 
this, the comparison between the SPNA and the NS in this 
section will be evaluated based on V5s and V5w. The spatial 
evolution of skill with lead year for SST and SSS for both 
versions is shown in Figs. 10 and 11, respectively.

In the SPNA, the version V5w has a large area with skill 
higher than 0.6 at 1–3 lead years. Near Newfoundland Basin 
is the only area where the correlation at this lead year is 

null or negative (Fig. 10a). This pattern remains up to 7–9 
lead years (Fig. 10k), with the exception of another area 
with low skill that forms at lead year 2–4 near the Rock-
all Plateau (Fig. 10b). This is an area where branches of 
NAC merge and flow northward towards the NS (Daniault 
et al. 2016); this low skill area remains up to 5–7 lead years 
(Fig. 10i). At lead years 8–10, significant predictive skill 
in the SPNA is mainly localized in the Labrador Sea and 
south of Greenland (Fig. 10l). Comparing version V5w and 
V5s at 1–3 lead years, V5s shows higher skill in most of 
the SPNA with predictive skill higher than 0.8 (Fig. 10e). 
At 1–3 lead years there is a lower skill area near the New-
foundland Basin, and at 2–4 lead years there is also a lower 
skill area near the Rockall Plateau (Fig. 10e, f). However, in 
V5s these two areas with poor skill are smaller compared to 
that in V5w. This pattern remains the same up to 6–8 lead 
years (Fig. 10n). After that, the two areas with poor skill 
grow and merge, and at 8–10 lead years significant predic-
tive skill in the SPNA is localized in the eastern part, near 
to Iceland, and in the Labrador Sea (Fig. 10p). Most parts 
of the Labrador Sea still have values higher than 0.8, which 
is not seen in V5w at 8–10 lead years (Fig. 10l). In both 

Fig. 4   Anomaly correlation 
coefficient for winter (Jan–
Apr) SST (upper panel) and 
SSS (lower panel) at shorter, 
medium and longer lead years 
in different versions of NorCPM 
in the SPNA (black) and in the 
NS (red). The vertical bars indi-
cate the 25 and 75 percentiles 
and the dashed grey lines show 
the 90% significance level. The 
respective anomaly correlation 
coefficient calculated using the 
linearly detrended time series 
are in grey for the SPNA and in 
light red for the NS
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Fig. 5   Anomaly correlation 
coefficient for winter (Jan–Apr) 
between NorCPM hindcasts 
V5 and V5w and the respective 
reanalysis and HadSST2 for 
SST from SPNA (a) and NS (b) 
and SSS from SPNA (c) and NS 
(d). The vertical bars indicate 
the 25 and 75 percentiles and 
the dashed grey lines show the 
90% significance level

Fig. 6   Anomaly correlation 
coefficient between NorCPM 
hindcasts V5w and V5s and 
the respective reanalysis and 
HadSST2 for winter (Jan–Apr) 
SST from SPNA (a) and NS (b) 
and SSS from SPNA (c) and NS 
(d). The vertical bars indicate 
the 25 and 75 percentiles and 
the dashed grey lines show the 
90% significance level
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versions, NorCPM struggles to represent SST variability 
near Newfoundland Basin and Rockall Plateau.

In the NS, the version V5w has predictive skill of 0.6–0.8 
at 1–3 lead years in most of the area from the Green-
land–Scotland Ridge to the Knipovich Ridge (Fig. 10a). 
The skill remains in the area, in a narrow region close to 
Norway, up to 7–9 lead years (Fig. 10k). At 4–6 lead years, 
skill is also seen in the Barents Sea (Fig. 10d). At 5–7 lead 
years, an anti-correlation area forms within the Norwegian 
and Lofoten basins (Fig. 10i). This feature grows at the sub-
sequent lead years becoming significant from 6 to 8 lead 
years (Fig. 10j). At lead years 8–10, the anti-correlation area 

expands and there is no significant skill in the NS (Fig. 10l). 
In the V5s case, the significant predictive skill in the NS 
at 1–3 lead years is only seen in a narrow region close to 
southern Norway (Fig. 10e). At 3–5 lead years, the area with 
skill extends to the northern Norway (Fig. 10g), and to the 
Barents Sea at 4–6 lead years (Fig. 10h). However, in this 
version the anti-correlation forms early, at 2–4 lead years, 
in addition to being in a larger area comprising the Norwe-
gian and Lofoten basins (Fig. 10f). The anti-correlation is 
significant from 3–5 to 6–8 lead years (Fig. 10g, h, m, n). 
After that, the anti-correlation is not significant and the area 
decreases in size (Fig. 10o, p). Unlike V5w, in V5s at 8–10 

Fig. 7   Anomaly correlation 
coefficient between NorCPM 
hindcasts V5w and V6w and 
the respective reanalysis and 
HadSST2 for winter (Jan–Apr) 
SST from SPNA (a) and NS (b) 
and SSS from SPNA (c) and NS 
(d). The vertical bars indicate 
the 25 and 75 percentiles and 
the dashed grey lines show the 
90% significance level

Fig. 8   Anomaly correlation 
coefficient between historical 
simulations of NorESM-ME, 
NorCPM1, end NorCPM1_1 
and HadSST2 for winter (Jan–
Apr) SST from SPNA (a) and 
NS (b). The vertical bars indi-
cate the 25 and 75 percentiles 
and the dashed grey lines show 
the 90% significance level
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lead years there is a large area in the NS, extending to the 
SPNA, with predictive skill of 0.6–0.8 (Fig. 10p). These are 
the only lead years where V5s performs better than V5w in 
the NS.

To better understand the differences between V5s and 
V5w, we have investigated the predictive skill of these 
two version in the very first months after the initialization 
(Nov–Apr; Fig. 12). In the SPNA, the skill is equal/higher 
for V5s than for V5w for all lead months for SST/SSS 
(Fig. 12a, c). However, in the NS, after the third lead month, 
the SST skill of V5s drops below that of V5w (Fig. 12b); 
for SSS the skill drops for V5s after the first lead month 
(Fig. 12c).

To investigate these differences in the NS more in detail, we 
consider a zonal section at 67.5° N, across the southern part of 
the Nordic Seas (map in Fig. 12). We calculate the RMSE for 
sea ice area, SST, and SSS for the first months after initializa-
tion (Fig. 13). Overall, V5s has higher RMSE than V5w. Right 
after the initialization, an error starts to develop in V5s for 

both the sea ice area and SST between 20◦ W and 10◦ W, and 
synchronously increases with time (Fig. 13). The analysis of 
ACC shows a skill decrease in V5s for both sea ice area and 
SST between 30◦ W and 20◦ W (not shown).

In view of the above comparison, the SCDA and the error 
inflation (version V5s) have a positive impact on the pre-
dictive skill in the SPNA, especially in the Labrador Sea. 
However, this version has a negative effect on the predictive 
skill in the NS, specifically in the Norwegian and Lofoten 
basins, where a strong anti-correlation area is formed and 
develops early in the hindcast. Furthermore, the skill in the 
Barents Sea also degrades in this version.

5 � Discussion

In this study, we have assessed the sensitivity of decadal 
predictive skill in the Subpolar North Atlantic (SPNA) and 
in the Norwegian Sea (NS) to the use of different types of 

Fig. 9   Linear trend calculated for each grid point between 1984 and 2010 for HadSST2 (a), NorESM-ME (b), NorCPM1 (c), and NorCPM1_1 
(d). Significant values (p < 0.05) are indicated by the hatched regions
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data assimilation techniques in NorCPM. The effect of the 
external forcings does not influence the comparison between 
the different versions, however, gives overall less skill com-
pared to the results including the linear trends (Fig. 14upper 
panel, lower panel).

The SPNA is one of the areas with highest predictive skill 
at decadal time scales in climate prediction systems (Yeager 
and Robson 2017). It is also an important source region of 

predictability to the NS (Årthun et al. 2017; Langehaug 
et al. 2017), and the correct representation of mechanisms 
underlying decadal variability is thus important for climate 
predictability in the Arctic–Atlantic region.

The predictability in the SPNA and in the NS has been 
associated with specific physical mechanisms that act on 
different time scales. The Atlantic Meridional Overturn-
ing Circulation (AMOC) is pointed out as a key source 

Fig. 10   Spatial anomaly correlation coefficient of SST in each grid 
point for V5w: 1–3 years (a), 2–4 years (b), 3–5 years (c), 4–6 years 
(d), 5–7 years (i), 6–8 years (j), 7–9 years (k), 8–10 years (l). For 
V5s: 1–3 years (e), 2–4 years (f), 3–5 years (g) and 4–6 years (h), 5–7 

years (m), 6–8 years (n), 7–9 years (o), 8–10 years (p). The SPNA 
and NS regions are shown by the black boxes. Significant values are 
indicated by the hatched regions
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of decadal to multidecadal climate predictability in the 
SPNA. However, recently the Labrador Sea Water thick-
ness anomalies have been indicated as a precursor of upper 
ocean heat content predictability in this area, as well as 
an important driver influencing the southward ocean cir-
culation (Ortega et al. 2020; Yeager 2020). The Labrador 
Sea Water is formed by convective processes driven by 
high oceanic heat losses during winter. The intense heat 

loss is associated with sea ice formation (Yeager 2020) 
and reduce the density stratification in the Labrador Sea. 
Dense Labrador Sea Water is carried southward as part 
of the deep branch of AMOC. Thus, the representation of 
sea ice plays an important role in the predictive skill of 
the SPNA. On a shorter time scale, SST variability with a 
period of 13–18 years has been found to dominate in the 

Fig. 11   Spatial anomaly correlation coefficient of SSS in each grid 
point for V5w: 1–3 years (a), 2–4 years (b), 3–5 years (c), 4–6 years 
(d), 5–7 years (i), 6–8 years (j), 7–9 years (k), 8–10 years (l). For 
V5s: 1–3 years (e), 2–4 years (f), 3–5 years (g) and 4–6 years (h), 5–7 

years (m), 6–8 years (n), 7–9 years (o), 8–10 years (p). The SPNA 
and NS regions are shown by the black boxes. Significant values are 
indicated by the hatched regions
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North Atlantic, and is suggested to contribute to recent 
cold anomaly in the SPNA (Årthun et al. 2021).

The pronounced decadal variability in the SPNA is linked 
to northward propagation of thermohaline anomalies and 
largely contributes to predictability in the NS (Årthun et al. 
2017). The Greenland-Scotland Ridge (GSR) is where the 
warm and salty waters of the North Atlantic Current (NAC) 
enters the NS (Fig. 1). The representation of the flow across 
the GSR is thus important since it is the gateway of thermo-
haline anomalies coming from the SPNA. Heuzé and Årthun 
(2019) suggest, based on analysis of 23 CMIP5 models, that 
the model resolution and bathymetry in the GSR is a key fac-
tor for the oceanic heat transport from the North Atlantic to 
the Arctic. In addition, analysis from observations and ocean 
state estimate show that unrealistic eddy fluxes, and air-sea 
heat fluxes in the Norwegian Sea can limit the predictability 
carried by the poleward heat anomalies (Chafik et al. 2015; 
Asbjørnsen et al. 2019). The air-sea fluxes in this area are 
considerable; the Lofoten basin alone is responsible for 1/3 
of the heat loss in the Nordic Seas, despite only covering 1/5 
of its total area (Richards and Straneo 2015).

The NorCPM study herein shows that the increase of 
complexity in the initialization method in the CMIP5 ver-
sions (V5–V5s) results in a general skill increase for the 
SPNA, whereas the same is not achieved in the NS. Inde-
pendent of the initialization approach used, there is a large 

skill difference between the SPNA and NS, suggesting that 
there are difficulties in representing the physical processes in 
the NS or predictability might be more limited in this region 
compared to the SPNA. In NorCPM, one of the physical 
processes taking place in the SPNA, AMOC, is in relatively 
good agreement with observations (V5; Counillon et al. 
2016). On the other hand, in the NS the propagation of SST 
anomalies is not properly represented by the model (V6w; 
Langehaug et al. 2021), and the surface currents are rather 
broader in the SPNA and NS (NorESM1-M; the underlying 
model of NorCPM; Langehaug et al. 2018). A similar result 
is found in the system MPI-ESM-LR; the use of oceanic 
EnKF improves the predictive skill in the SPNA, especially 
in the Labrador and Irminger Seas, while decreases the skill 
in the NS compared to the historical run (Brune and Baehr 
2020). The spatial ACC maps in Fig. 10 show significant 
SST skill in a narrow region close to Norway, but in the 
frontal region where Atlantic Water meets Arctic Water the 
skill is largely reduced. The ACC maps showed that SST 
skill decreases in the Norwegian and Lofoten basins. These 
areas are dominated by intense eddy activity (Raj et al. 2019) 
and surface heat fluxes (Richards and Straneo 2015) and 
the non-significant SST skill can indicate the struggling of 
the prediction system to properly represent these processes. 
This will be further discussed below, when comparing the 
versions V5w and V5s.

Fig. 12   Anomaly correlation 
coefficient between NorCPM 
hindcasts V5w and V5s and the 
respective reanalysis for the first 
6 months after the initializa-
tion (Nov–April) for SST from 
SPNA (a) and NS (b) and for 
SSS from SPNA (c) and NS (d). 
The vertical bars indicate the 
25 and 75 percentiles and the 
dashed grey lines show the 90% 
significance level
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The addition of subsurface data with the use of a differ-
ent climatology reference period in the initialization method 
showed a general positive impact on the predictive skill in 
both regions. In the SPNA, this initialization method gener-
ated a considerable improvement of the skill in the surface 
ocean that lasted at medium and longer lead years, while 
for the NS the gain of skill was only related to SSS. Con-
sidering both ACC maps (Figs. 10, 11) and RMSE maps 
(Supplementary Figures 20, 21, 22), there is low or no skill 
in similar regions for SST and SSS: in the Newfoundland 
Basin, and in the Norwegian and Lofoten basins. The reason 
for gain in skill only for SSS in the NS could be due to the 
fact that SST is more influenced by local surface forcing 
than the SSS in this area (Asbjørnsen et al. 2019; Furevik 
et al. 2002). In addition to the inclusion of subsurface data, 
the different climatology reference periods used might also 
have an influence on the skill. The sparsity and quality of the 
observed data before the 1980s can increase the uncertain-
ties in the mean climate calculation, which in turn can affect 
the uncertainties of anomalies used in the data assimilation. 
Unfortunately, with the available implementations it was not 

possible to separate the effects of subsurface data assimila-
tion and the different climatology reference periods.

Furthermore, we have looked at the impact of a jointly 
update of the ocean and sea ice (SCDA) and additional error 
inflation (comparison of versions V5w and V5s). When 
the sea-ice is corrected by the covariation with the ocean 
temperature, the surface ocean skill is slightly higher in 
the SPNA, while in the NS such increase is not verified. 
The reanalysis of V5s is the only one with strongly reduced 
bias in Arctic sea ice thickness, which grow back over lead 
years causing a strong drift in the hindcast (Bethke et al. 
2021). The main differences between V5w (WCDA) and V5s 
(SCDA) in the NS are: significant SST skill in the V5s is 
only found in the southwest area at 1–3 lead years compared 
to a larger area in V5w that extends towards the Knipowich 
Ridge (10a); a significant anti-correlation area over the Nor-
wegian and Lofoten basins appears earlier in V5s compared 
to V5w, at 2–4 lead years in the former (Fig. 10g). The anti-
correlation area is also seen in the NorCPM-CMIP6 ver-
sions, being stronger in V6s than in V6w (Supplementary 
Figures 17, 18), and it is also seen in the historical run of 

Fig. 13   RMSE calculated for the section North of Iceland (67.5° N). 
Longitude in the axis X and lead months after initialization in the 
axis Y. The calculation was made for versions V5w sea ice area (a), 

SST (b), SSS (c) and for V5s sea ice area (d), SST (e), SSS (f). In the 
right upper panel is the section position
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the respective model version (figure not shown). The anti-
correlation area is also associated with high SST RMSE 
(Supplementary Figures 20, 21) extending from the Jan 
Mayen to the Mohn–Knipovich Ridges, the occurrence area 
of the Arctic Front. The Arctic Front is localized near the 
sea ice edge and is characterized by the interaction of the 
colder and fresher Arctic Water with the warmer and more 
saline Atlantic Water (Swift and Aagard 1981). Along the 
front, observations show active air-sea interaction (Raj et al. 
2019); while high-resolution numerical simulations verified 
cross-ridge exchange on Mohn–Knipovich Ridge leading to 
a cooling and freshening of the Norwegian Atlantic Current 
(Ypma et al. 2020). It is uncertain, however, how the Arctic 
Front is represented in NorCPM, and is beyond the scope of 
this study. However, the results herein shows that this region 
and associated processes are difficult to represent in a coarse 
climate model.

In the SPNA the SCDA version, V5s, increased the skill 
and decreased the RMSE for both SST and SSS. The SST 
RMSE reduction is seen in the Labrador Sea and over the 
MAR (Supplementary Figures 20e–h, m–o), while the SSS 
RMSE decrease happens in the Labrador Sea and on the 

Reykjanes Ridge, at 2–4 and 3–5 lead years (Supplementary 
Figures 22f, g, respectively). Despite the improvement in 
V5s version, in both V5s and V5w the model struggles to 
represent SSS over the MAR. Results from another dynami-
cal prediction system, CESM-DPLE, show that the MAR 
plays an important role in the SPNA predictability, inducing 
a strong coupling between the AMOC and the SPNA circu-
lation through the propagation of deep water mass anoma-
lies (Yeager 2020). However, this mechanism has not been 
assessed in the present study.

Initialized decadal hindcasts from CMIP6 improved the 
representation of SST in the SPNA compared to CMIP5 
according to Borchert et al. (2021). This study analyzed 
6(7) prediction systems from CMIP5 (CMIP6) and showed 
that 88% of the SPNA SST variance at lead years 5–7 is 
explained by CMIP6 hindcasts, while CMIP5 explains only 
42%. Borchert et al. (2021) attribute this difference to a good 
representation of the SPNA SST in CMIP6 historical simu-
lations due to an increase of ensemble size, as well as to a 
high predictive skill in CMIP6 after the end of the CMIP5 
period. In our study, ensemble size, number of initializa-
tions, and period analyzed were the same for all versions. 

Fig. 14   Anomaly correlation 
coefficient for winter (Jan–Apr) 
SST in the SPNA (upper panel-
black) and SST in the NS (lower 
panel-red) at shorter, medium 
and longer lead years in differ-
ent versions of NorCPM. The 
vertical bars indicate the 25 and 
75 percentiles and the dashed 
grey lines show the 90% sig-
nificance level. The respective 
anomaly correlation coefficient 
calculated using the linearly 
detrended time series are in 
the upper panel (grey) for the 
SPNA and in lower panel (light 
red) for the NS
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In NorCPM-CMIP6 the drop of skill is related to a wrong 
surface land temperature trend, in particular over the Cana-
dian Arctic, that affects the atmospheric state and circulation 
over the North Atlantic and also the Nordic Seas (Bethke 
et al. 2021). Thus, the comparison here between versions 
NorCPM-CMIP5 and NorCPM-CMIP6 includes changes 
in the code and in the forcings, which makes it difficult to 
evaluate their isolated effects on the predictive skill.

Intercomparisons between prediction systems or versions 
can be an important approach to better understand how well 
some physical processes are represented in the model and 
might help to identify weaknesses and indicate potential 
directions for further development. To investigate the pre-
dictive skill in the Nordic Seas, Langehaug et al. (2017) 
analyzed the results of three prediction systems. The authors 
suggested a relationship between resolution and SST skill in 
the analyzed systems, in addition to highlighting that unre-
alistic sea ice cover could be a relevant bias in the Nordic 
Seas. Three initialization approaches were tested by Polkova 
et al. (2014), and the best results for sea surface height in 
the North Atlantic were verified in the full state initialization 
with heat and freshwater flux corrections. On the other hand, 
Polkova et al. (2019a) found improvements in some parts 
of the North Atlantic for surface temperatures and upper 
ocean heat content with a combination of ensemble Kalman 
filter and filtered anomaly initialization. Based on this, it is 
not possible to define an optimal technique for all areas and 
variables even using the same prediction system (Höschel 
et al. 2019), which is analogue to the results of this work.

6 � Summary and conclusions

The goal of this study was to assess and quantify the impact 
of different initialization strategies on the development of 
the Norwegian Climate Prediction Model (NorCPM). The 
investigation was focused on the Subpolar North Atlantic 
(SPNA) and the Norwegian Sea (NS). The predictive skill 
was tested against NorCPM’s own reanalysis, and for SST 
also against HadSST2.

The comparison among versions showed that the choice 
of Data Assimilation (DA) method appears to have larg-
est impact on medium to long lead years. In the SPNA, 
increasing initialization complexity resulted in a general 
skill increase within NorCPM-CMIP5 versions, however, 
the same was not found for the NS. The additional assimila-
tion of subsurface data in addition to a different climatology 
reference period gave a general skill improvement in both 
areas (Sect. 3.1). An improvement was found for both SST 
and SSS in the SPNA, while in the NS the skill for SST was 
maintained at medium and longer lead years and improved 
for SSS between 2–4 and 5–7 lead years.

The joint update of the ocean and sea ice (Strongly Cou-
pled DA) with additional inflation error increased surface 
ocean skill in the SPNA and decreased it in the NS. This 
version presented an area with highly negative ACC over the 
Norwegian and Lofoten basins associated with high RMSE 
between the Jan Mayen and Mohn-Knipovich Ridges, show-
ing that this version struggles in particular to represent ocean 
processes in these areas in the NS. The comparison between 
NorCPM-CMIP5 and NorCPM-CMIP6 showed a reduced 
ocean skill in the latter due to erroneous land surface condi-
tions that affect the atmospheric state over the North Atlantic 
and Nordic Seas.

In general, the comparison of skill in this study shows 
that the NorCPM-CMIP5 version with the Strongly Coupled 
DA has the highest skill in the SPNA and without it (Weakly 
Coupled DA) for the NS. Furthermore, the results from this 
study show that despite the NS being directly influenced by 
thermohaline anomalies coming from the SPNA, the circu-
lation of the Atlantic Water in the Norwegian and Lofoten 
basins and its interaction with colder and fresher waters over 
the Jan Mayen and Mohn–Knipovich Ridges are aspects that 
need to be improved in NorCPM. A better representation of 
the complex bathymetry close to the Greenland–Scotland 
Ridge and in the NS along with an eddy permitting grid 
might be a way to improve NorCPM results in the NS.

The NS is the path by which thermohaline anomalies 
coming from the North Atlantic influence the Arctic sea ice 
cover (Onarheim et al. 2015), cod stock (Årthun et al. 2018a) 
and the surface air temperature over Scandinavia (Årthun 
et al. 2017). The identification of the most suitable DA 
approach for the Arctic-Atlantic region contributes to the 
development of NorCPM. Identifying the main challenges 
to predictive skill in the NS furthermore contributes to a 
better representation of key processes not just in NorCPM, 
but also in other prediction systems. The results show that 
areas with processes as intense surface heat fluxes and eddy 
activity within the Norwegian–Lofoten Basins and in the 
area of the Arctic Front, might be key areas to improve NS 
skill. The investigation of the NS skill in other prediction 
systems might help to guide development for improvement 
in NorCPM.
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