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Abstract
Increasing model resolution can improve the performance of a data assimilation system because it reduces model error, the 
system can more optimally use high-resolution observations, and with an ensemble data assimilation method the forecast 
error covariances are improved. However, increasing the resolution scales with a cubical increase of the computational costs. 
A method that can more effectively improve performance is introduced here. The novel approach called “Super-resolution 
data assimilation” (SRDA) is inspired from super-resolution image processing techniques and brought to the data assimilation 
context. Starting from a low-resolution forecast, a neural network (NN) emulates the fields to high-resolution, assimilates 
high-resolution observations, and scales it back up to the original resolution for running the next model step. The SRDA is 
tested with a quasi-geostrophic model in an idealized twin experiment for configurations where the model resolution is twice 
and four times lower than the reference solution from which pseudo-observations are extracted. The assimilation is performed 
with an Ensemble Kalman Filter. We show that SRDA outperforms both the low-resolution data assimilation approach and 
a version of SRDA with cubic spline interpolation instead of NN. The NN’s ability to anticipate the systematic differences 
between low- and high-resolution model dynamics explains the enhanced performance, in particular by correcting the dif-
ference of propagation speed of eddies. With a 25-member ensemble at low resolution, the SRDA computational overhead 
is 55% and the errors reduce by 40%, making the performance very close to that of the high-resolution system (52% of error 
reduction) that increases the cost by 800%. The reliability of the ensemble system is not degraded by SRDA.

Keywords  Super-resolution · Neural network · Ensemble data assimilation · Quasi-geostrophic model

1  Introduction

The quality of a forecast relates to the accuracy of the initial 
condition and to its dynamical consistency. Data assimila-
tion (DA) methods estimate the initial condition based on 
observations, a dynamical model, and statistical information. 
The Ensemble Kalman Filter (EnKF, Evensen (2003)) is one 
of such method and proceeds in two steps: a Monte Carlo 
model integration and a linear analysis update based on the 
ensemble covariance.

When designing a data assimilation system, computa-
tional resources are limited and there is a trade-off between 
assigning computing resources to the model and increasing 
the cost of the data assimilation method, Lei and Whitaker 
(2017). Increasing the model resolution can (better) resolve 
small-scale processes that are parameterized otherwise, e.g., 
Gent et al. (1995), mitigate model error and better reproduce 
mechanisms of predictability, Hewitt et al. (2017); Lange-
haug et al. (2019). A side advantage of reducing model error 
is that it improves the performance of the data assimilation 
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for ensemble methods that rely heavily on the accuracy of 
the forecast error covariances, Counillon et al. (2021).

Another important added value of increasing resolution 
is that it makes a better use of high-resolution observations 
and removes the representativity errors, Janjić et al. (2018). 
Indeed, several observations (and even more in the upcom-
ing future) are available at resolutions that are typically 
higher than that of basin-scale models. For example, several 
satellites (Sentinel-3, SUOMI, AVHRR, etc.) can provide 
SST observations well below 1-km resolution and the most 
recent altimeter L2 data (SARAL/Altika, Sentinel-3A, and 
CryosSat-2) have an along-track resolution below 7 km, Ver-
ron et al. (2015); Schneider et al. (2017). As a comparison, a 
few forced global data assimilation ocean models are run at a 
grid resolution of 1∕12◦ (see Tonani et al. (2015); Lellouche 
et al. (2018); Metzger et al. (2014)), equivalent to 7.5 km at 
40◦ N (with the exception of NRL at 1∕24◦ , though not public 
yet). Ocean data assimilation is also used for climate pre-
dictions on subseasonal-to-seasonal and seasonal-to-decadal 
timescales. For seasonal-to-decadal predictions, Boer et al. 
(2016), most systems have an horizontal resolution of 1◦ in 
their ocean component, with few running at 0.25◦ (see e.g. 
table 1 in Smith et al. (2020).

There are also pragmatic challenges with increasing reso-
lution. First, increasing resolution of ocean models moves 
them into a gray zone of mixed parameterized/resolved, 
Hallberg (2013), that are difficult to handle. Second, the 
inverse cascade of kinetic energy spectrum lowers the pre-
dictability of small-scale processes, Sandery and Sakov 
(2017). Thus, increasing the resolution requires a higher 
resolution observation network, larger ensemble size, and 
higher frequency of assimilation to outperform lower reso-
lution systems, Thoppil et al. (2021). Since increasing the 
resolution scales with a cubic computational cost, it prohib-
its the use of more advanced data assimilation methods that 
require several instances of the model, Tonani et al. (2015). 
The energy consumption of any operational ocean predic-
tion (at for example submesoscale resolution) and climate 
simulations with models that can explicitly resolve some of 
the most important physical processes would be excessive. 
This study proposes alternate methods that can benefit from 
the high-resolution model and high-resolution observation 
at a reasonable cost.

It is not uncommon for operational or climate centers to 
run concurrently two or more consecutive versions of the 

same system at different resolutions. The old version system 
(at lower resolution) being kept while a new one is being 
developed and its superiority thoroughly demonstrated. 
Some methods have tried to take advantage of the coexist-
ence of a coarse version of the model that can afford an 
ensemble simulation and of a deterministic high-resolution. 
A study by Gao and Xue (2008) introduced a mixed-res-
olution data assimilation algorithm where the covariances 
are computed from the low-resolution dynamic ensemble, 
interpolated to the high-resolution grid to assimilate data 
within the high-resolution deterministic model. The success 
of the method was encouraging but only for small jumps of 
resolution (up to one-fourth). Rainwater and Hunt (2013) 
introduced a mixed-resolution scheme based on the local 
ensemble transform Kalman filter (LETKF, Hunt et  al. 
(2007), using two dynamic ensembles from high- and low-
resolution versions of the Lorenz-96 model and combining 
linearly their covariance matrices to update both ensembles. 
The authors have shown that for a similar computational 
cost, the mixed-resolution scheme can achieve better results 
in terms of RMSE than the high-resolution standalone 
EnKF. Campin et al. (2011) coupled local fine-grained 2d 
models with a coarse-grained hydrostatic model. The result-
ing coupled model performs better than the coarse-grained 
hydrostatic model only, at a computational cost much lower 
than that of a full 3d non-hydrostatic simulation. Machine 
learning techniques provide a framework to explore the vast 
space of nonlinear combinations. Data assimilation and 
machine learning methods have recently been combined to 
benefit from both approaches: Brajard et al. (2021); Gupta 
and Lermusiaux (2021). Following that path, we will try to 
combine a technique from image processing with standard 
data assimilation technique.

Super-resolution schemes aim to increase the resolution 
of an image. These techniques have been applied lately using 
machine learning approaches in geosciences. For example, 
Rodrigues et al. (2018) used a convolutional neural network 
to provide high-resolution weather fields from low-resolu-
tion ones. The method was assessed over a region of South 
America and outperforms in terms of RMSE various linear 
combinations of models at different resolutions. Vandal et al. 
(2018) provided a generalized stacked super-resolution con-
volutional neural network framework for statistical down-
scaling of climate variables. It was tested with the super-
resolution of precipitation fields over the contiguous United 
States and compared to other statistical downscaling meth-
ods. It was shown that this framework performed closely or 
better than the other selected methods, for example, in terms 
of daily predictability, extreme precipitation, and daily root 
mean square error.

In this work, we propose a data assimilation algorithm 
that integrates a low-resolution physical model to produce 
the ensemble forecast. Right before the assimilation step, the 

Table 1   Summary of different model configurations

Name Grid point 
size

Time step State size Snapshot figure

HR 1 1 129 × 129 Fig. 1a
LR 4 2 65 × 65 Fig. 1b
ULR 16 4 33 × 33 Fig. 1c
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ensemble is downscaled to the high-resolution space in order 
to perform the data assimilation step in that space and to take 
advantage from the high-resolution observations. The idealized 
experiment is set up unfavorably to the data assimilation system 
by using ten times stronger friction than the model that produced 
the observations. After the assimilation step, the ensemble is 
upscaled back by sub-sampling to the low-resolution space for 
the next model integration. A neural network and a cubic spline 
interpolation are used to map the low-resolution forecast to 
the high-resolution space. The neural network performs better 
than the cubic spline interpolation which demonstrates the effi-
ciency of the approach. We emphasize that the technique is only 
enhancing the model output resolution (“soft” machine learning) 
that requires much less learning than learning a model from 
scratch (“hard” machine learning, Chantry et al. (2021). If the 
mapping is accurate, our algorithm benefits from both a cheap 
model integration and a high-resolution analysis. By doing so, 
we aim to show that one can benefit from emulating the high-
resolution version of a model from a lower resolution version 
so that one can improve the assimilation process. For doing so, 
the super-resolution data assimilation approach proposed in this 
study requires the availability of a free run (without data assimi-
lation) of the high-resolution version of the model. Such long 
simulations are often produced to assess whether resolution is 
reducing model error and improving representation of observed 
modes of variability, Hewitt et al. (2017); Langehaug et al. 
(2019). As a comparison, the standard Decadal Climate Pre-
diction Project, Boer et al. (2016), that aims to assess prediction 
on seasonal to decadal prediction requires about 8000 model 
years. Carrying such a long experiment with a high-resolution 
Earth System Model is out of reach, while several centers have 
simulations for several centuries with a high-resolution model 
at their disposal (e.g., HighResMIP (High Resolution Model 
Intercomparison Project), authorname (year).

The overview of this article is as follows: the Section 2 pre-
sents the assimilation scheme used in this study and its com-
bination with super-resolution. Section 3 exposes the physi-
cal model used in this study, and the neural network and the 
training set used, as well as the setup of the data assimilation 
experiments. Section 4 displays the results while Section 5 
discusses the results obtained. Section 6 provides the conclu-
sions of this work together with some perspectives.

2 � Methods

2.1 � The deterministic ensemble Kalman filter

Let n be the model state dimension, � ∈ ℝ
n×N an ensemble 

of N model states 
(
�(1),�(2),… ,�(N)

)
 , � ∈ ℝ

n the ensem-
ble mean and � ∈ ℝ

n×N the ensemble anomalies. � and � 
are given by expressions (1a) and (1b) respectively.

where � ∈ ℝ
N×N is the identity matrix and � ∈ ℝ

N is a vector 
with all elements equal to 1. In the following equations, the 
superscripts a and f stand respectively for the analyzed and 
forecast states of the mean and the anomalies.

The true state of the system is noted �t . Let p be the 
number of observations � ; they are defined by Eq. 2:

where � ∈ ℝ
p×n is the observation operator, and � ∈ ℝ

p×p is 
the observation error covariance matrix.

In this study, the deterministic EnKF (DEnKF) intro-
duced by Sakov and Oke (2008) is used. The DEnKF is 
a square-root (deterministic) formulation of the EnKF 
that solves the analysis without the need for perturba-
tion of the observations. It inflates the errors by con-
struction and is intended to perform well in operational 
applications where corrections are small, Sakov and Oke 
(2008). The system has been robustly tested in a vast 
range of systems, Sakov et al. (2012); Counillon et al. 
(2016); Bethke et al. (2021).The DEnKF uses the two 
steps of sequential data assimilation: a forecast step and 
an analysis step.

In the forecast step, each member i is integrated by the 
model from one assimilation cycle k − 1 to the next, k:

where M is an operator that stands for the model integration.
The analysis step of the DEnKF proceeds at assimila-

tion cycle k in two stages, the update of the mean, Eq. 4a, 
and the update of the ensemble anomalies, Eq. 4b:

where :

are respectively the Kalman gain matrix and the back-
ground error covariance matrix estimated from the ensemble 
anomalies.
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The DEnKF method will be used in the following but 
will be referred to as EnKF since the algorithmic parts of 
SRDA are independent of the flavor of the EnKF analysis 
scheme.

2.2 � Super‑resolution data assimilation

The super-resolution method involves a model at two differ-
ent resolutions—high (HR) and low (LR). In the following, 
the subscripts H and L will be used in the equations to denote 
if an object, matrix or vector, is in the HR or the LR space. 
The principle of super-resolution data assimilation is to per-
form the forecast step with the LR model in order to reduce 
its computational cost and to perform the analysis step in the 
HR space to benefit from HR observations.

Let �L be an ensemble of N LR model states (
�

(1)

L
,�

(2)

L
,… ,�

(N)

L

)
 . Following Eq. 3, the forecast step from 

assimilation cycle k − 1 to assimilation k writes for each 
ensemble member:

where ML stands for the LR model integration.
At the end of the forecast step, every member �f ,i

L,k
 is down-

scaled from the LR to the HR grid to produce an emulated HR 
member �f ,i

H,k
 :

where D stands for a downscaling operator from the LR to 
the HR grid. In this study, two different downscaling opera-
tors are used: a cubic spline interpolation operator and a 
neural network (hereafter denoted NN).

The mean �H,k and the anomalies �H,k of the emulated HR 
ensemble at assimilation cycle k are updated based on Eqs. 4a 
and 4b:

where �H,k , �H,k , and �H,k are respectively the HR Kalman 
gain, the HR observation operator, and the HR observations 
at assimilation cycle k.

After the analysis step, every member of the HR ensemble 
is upscaled from the HR grid back to the LR grid before the 
next forecast step:

(6)�
f ,i

L,k
= ML

(
�

a,i

L,k−1

)
, i = 1,… ,N,

(7)�
f ,i

H,k
= D

(
�

f ,i

L,k

)
, i = 1,… ,N,

(8a)�
a

H,k
= �

f

H,k
+ �H,k

(
�H,k − �H,k�

f

H,k

)
,

(8b)�
a

H,k
= �

f

H,k
−

1

2
�H,k�H,k�

f

H,k
,

(9)�
a,i

L,k
= U

(
�

a,i

H,k

)
, i = 1,… ,N,

where U  is the upscaling operator from the HR to the LR 
grid. In this study, U is always a cubic spline interpolation 
operator.

In this study, we have used also an ultra-low-resolution ver-
sion of the model, referred to as ULR (see Section 3.1), instead 
of the LR version. In this case, Eqs. 6, 9, and 7 still apply the 
same.

In the following, depending on the choice of the downscal-
ing method, the super-resolution data assimilation scheme will 
be referred to as SRDA-NN or SRDA-cubic, or simply SRDA 
if there is no need to specify the downscaling method.

2.3 � Rewriting the SRDA as a LR scheme

The goal of this section is to show that the SRDA, as presented 
in Section 2.2, can be rewritten as a LR scheme, in the sense 
that it provides a LR analyzed state and does not require to 
upscale and downscale the whole ensemble at each assimila-
tion cycle.

It can be shown (see Appendix 1) that the SRDA can be 
formulated as follows:

where �̃f
L,k

 and �̃f

L,k
 are respectively the mean and the 

anomalies of a LR ensemble obtained after application of 
the operator Q on the LR background ensemble �f

L,k
 . The 

operator Q is defined (see Appendix 1) as the composition of 
a downscaling operator D , from the LR to the HR grid, and 
the upscaling operator U , from the HR to the LR grid. If the 
operator D stands for the neural network, it corrects the LR 
model error and downscales the fields to the HR grid, and 
the operator Q (by composition of D and U ) stands for the 
correction of the LR model error. If the operator D stands 
for the cubic spline interpolation, the operator Q stands for 
the identity of the LR space. In the following, we will only 
consider the case of Q as an operator that corrects the LR 
model error. We have:

Similarly, �̂f
H,k

 and �̂f

H,k
 are respectively the mean and the 

anomalies of the LR ensemble mapped to the HR obser-
vations’ space after application of a super-resolution 
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observation operator H on the LR background ensemble 
�
f

L,k
 (see Appendix 1). We have:

Following Eqs. 10a–10b, the SRDA can be interpreted as 
the combination of the correction of the LR model error 
(with the operator Q ) and the assimilation of HR observa-
tions with the super-resolution observation (operator H ). As 
the operator Q is the composition of the operator D that 
corrects the LR model error and maps LR fields to the HR 
grid, and the operator U that maps HR fields to the LR grid, 
it is equivalent to an operator that would only correct the LR 
model error. This is why in practice, the operator Q could 
be defined and trained as an operator that only corrects the 
LR model error without the need to downscale and upscale 
the whole ensemble at each assimilation cycle. Thus, this 
formulation requires only the downscaling of the observed 
fields at the observation points. However, it still requires 
to train and use two different operators, the operator Q that 
corrects the LR model error and the super-resolution opera-
tor H . Additionally, the analysis is done in the LR space 
and not in the HR space. In the following, the HR formula-
tion of the SRDA is used, except in the particular case of 
Fig. 13, Section 4, where we show the respective benefits of 
the model error correction and the super-resolution observa-
tion operator.

3 � Models and data

3.1 � Quasi‑geostrophic model

The version of the quasi-geostrophic (QG) model used in 
this study is the same as that of Sakov and Oke (2008). It is 
a 1.5-layer reduced-gravity QG model on a square domain 
with a double-gyre wind forcing and bi-harmonic friction. 
The time evolution of the sea surface elevation � is given 
by Eq. 13:

where:

–	 � = Δ� is the relative vorticity;
–	 � is the gradient of the Coriolis parameter with respect 

to the latitude;
–	 q = � − F� is the potential vorticity;
–	 F is the Froude number;
–	 J(� , q) = �yqx − �xqy (where the subscripts x and y stand 

for the derivative with respect to the directions x and y);
–	 � is a multiplying scalar;
–	 �b is the bottom friction;

(12)�̂
f

H,k
= H

(
�
f

L,k

)
, �̂

f

H,k
= H

(
�
f

L,k

)
−H

(
�
f

L,k

)
.

(13)
�tq = −��x − �J(� , q) − �b� + �hΔ� − �bhΔ

2� + 2�sin(2�y),

–	 �h is the horizontal friction;
–	 �bh is the bi-harmonic horizontal friction;
–	 2�sin(2�y) represents a wind stress forcing term, with y 

being a location on a line of longitude.

We have followed the settings of Sakov and Oke (2008): 
� = 1 , � = 105 , �b = �h = 0 , �bh = 2 × 10−12 for the true 
run and �bh = 2 × 10−11 for the data assimilation experi-
ments. In the following, we note �bht and �bha the bi-har-
monic friction for the true run and for the data assimilation 
experiments respectively. The boundary condition is given 
by � = Δ� = Δ

2� = 0 . An example of output of the QG 
model obtained with these settings is given in Fig. 1. For 
more details about the QG model, see Jelloul and Huck 
(2003); Sakov and Oke (2008). The QG model has been 
used in numerous data assimilation studies such as Sakov 
and Oke (2008); Dubinkina (2013); Attia and Sandu (2019); 
Gilbert et al. (2017); Counillon et al. (2009) among others. 
The QG model is also part of two data assimilation pack-
ages: EnKF-Matlab1 and DAPPER2 (Data Assimilation 
with Python: a Package for Experimental Research) and has 
been considered in the current configuration (observation 
network, assimilation frequency) as a good test case for real-
istic atmospheric or oceanic data assimilating system, Sakov 
and Oke (2008).

In this study, the QG model is used at three different reso-
lutions that are referred to as high-resolution (HR), low-
resolution (LR), and ultra-low-resolution (ULR). Since all 
models inevitably truncate small-scale variations, the true 
run is a free run of the HR version of the model with a 
bi-harmonic horizontal friction coefficient ( �bht ) ten times 
lower than that used for the ensemble ( �bha ), which makes 
the output of the ensemble much smoother than the free 
run. The higher friction also stabilizes the assimilation runs, 
consistently with Sakov and Oke (2008). The free run is used 
to generate the synthetic observations (see Section 3.4), and 
it is the same in every experiment. As the HR, the LR, and 
the ULR grids overlap, the true state can be upscaled by 
sub-sampling to the LR and the ULR grids to compute the 
scores on these grids which allows to compare the different 
approaches. The low- and ultra-low-resolutions are defined 
relatively to the high-resolution version of the model and 
have respectively twice as low and four times as low-reso-
lution as the high-resolution. The three different resolutions 
are summarized in Table 1. In the table, the grid point size 
is expressed in terms of HR grid points, and the time step 
is expressed in terms of that of the HR model. The domain 
used in this study is 129 × 129 . The computational cost of 
doubling the resolution from LR to HR results in an increase 

1  https://​enkf.​nersc.​no/​Code/​EnKF-​Matlab/
2  https://​github.​com/​nanse​ncent​er/​DAPPER
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of the computational cost by a factor 8 as there are 4 times 
more points (in x and y) and one needs to divide the time 
step by two in order to satisfy the Courant-Friedrichs-Lewy 
condition. In order to emphasize the differences between the 
3 different resolutions of the model, we provide in Figs. 2 
and 3, respectively, the plots of the mean kinetic energy 
(MKE) and of the eddy kinetic energy (EKE) for the three 
different resolutions with �bha = 2 × 10−11 (used for the data 
assimilation systems) but also for the high-resolution true 
run (with �bht = 2 × 10−12 ). In all three resolutions using 
�bha = 2 × 10−11 , both MKE and EKE are reduced near the 
northern and southern boundaries of the domain compared 
to the truth. The spatial pattern of MKE and EKE in the HR 
run (panel (b) in Figs. 2 and 3) resembles that of the truth, 
but is on the low side. As the resolution decreases, MKE 
and EKE are further reduced near the northern and southern 
boundaries (being absent in the ULR) but the eddy activity 
intensifies on the western boundary, most particularly for 
EKE that is getting larger than the truth (see panels c and d 
in Fig. 3). We can notice that some numerical instabilities 
start to emerge in the ultra-low-resolution.

3.2 � Training dataset

The neural network (NN) super-resolution operator DHL is 
trained using a dataset obtained from a 1,200,000 time step 
simulation of the HR model and with a bi-harmonic friction 
�bh = 2.0 × 10−11 . From this simulation, K ( K = 10, 001 in 
our case) snapshots �f

H,k
 were regularly sampled every 120 

time steps. At time tk−1 , the HR field is first scaled to low 
dimension using the operator U  as defined in Eq. 9, and 
then the LR model is integrated over Δt ( Δt being the time 
between two assimilation cycles; Δt = 12 in our case), to 
produce a low-resolution field �f

L,k
 such as

We have computed the time auto-correlation, and the cor-
relation is reduced by 80% after 240 time steps. It implies 
that every second sample is assumed to be uncorrelated. 
The 10,000 couples 

(
�L,k,�H,k

)
 can be used to calibrate a 

NN super-resolution operator. The first 8000 samples of 
the dataset constitute the training set, used to optimize the 
parameters of the neural network (see Section 3.3). To avoid 
correlation between the training set and the validation, 3 
samples are ignored and the remaining 1997 samples are 
the validation set, used to evaluate the performances of the 
operator. The validation is thus considered independent from 

(14)�L,k = ML◦U
(
�H,(k−1)

)
.

(a)

(b)

(c)

Fig. 1   Snapshot of the sea level elevation for a the HR model, b the 
LR model, and c the ULR model starting from the same initial condi-
tion and after 60,000 model time steps. The black points stand for the 
location of the observation points

▸
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the training set. We applied the same procedure to produce 
the dataset in the ULR case.

Note that, while this procedure aims at mimicking the 
low-resolution forecast members �f

L,k
 obtained in the SRDA 

approach, the statistical distribution of the forecast could 
be slightly different in the training phase as during the data 
assimilation. Indeed in the training/validation, the LR fore-
cast is initialized with an upscaled HR simulation, whereas 
during the SRDA algorithm the forecast is initialized with 
an upscaled analysis. If the model contains bias, the analysis 
states can be statistically different from the states obtained 
by a HR model. If this is the case, an additional DA step 
could be performed to produce the training set, similarly to 
what is done in Brajard et al. (2021).

3.3 � Super‑resolution neural network

The neural network architecture is the enhanced deep super-
resolution network (EDSR) adapted from Lim et al. (2017) 
in which super-resolution is applied to RGB photographic 
images. However, geophysical fields present differences with 
photographic images. First, the number of channels is not 
fixed to 3 (red, green, blue). In the case of the quasi-geos-
trophic model, there is only one channel corresponding to 
the sea surface elevation. Second, the pattern and texture of 
sea surface elevation are smoother and more homogeneous 

than patterns in photographic images. For those reasons, 
the network chosen has been slightly simplified by specify-
ing only one input channel and by reducing the number of 
degrees of freedoms (hereafter denoted weights) in com-
parison with Lim et al. (2017). A diagram of the network 
is presented in Fig. 4. We give hereafter a short description 
of all the blocks; a more complete description can be found 
in Lim et al. (2017).

The Scaling block is a simple scaling function that scales 
the input feature images. In our case, it is a multiplicative 
factor of 0.04 so that the values are mainly between −1 and 
1. There are no trainable weights in this block.

The Conv block is a convolutional block as introduced 
in LeCun et al. (1989). In our model, each convolutional 
block is composed of 16 filters of size 3 × 3 . The weights of 
the filters are optimized during the training phase.

The ReLU block is a nonlinear function f defined by 
f (x) = max(0, x) applied pointwise to each input feature. It 
enables the model to be non-linear.

The ResBlock is a non-linear convolutive block in which 
the input is added to the output of the block. In particular, it 
mitigates the gradient vanishing problem in deep learning 
architecture and it has been proved to be efficient in image 
processing problems, He et al. (2016). The weights to be 
optimized are the weights of the filter of the convolutional 
blocks.

Fig. 2   Mean kinetic energy for 
a the truth, b the high-resolu-
tion, c the low-resolution, and d 
the ultra-low-resolution

)b()a(

)d()c(
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The Shuffle is where the scaling is realized in practice. 
The block takes as inputs F × 22 image features of size 
nL × nL where nL is the size of the low-resolution image 
( 64 × 64 for LR and 32 × 32 for ULR) and produce F image 
feature of size nH × nH where nH = 2 × nL by intertwines 
input features into spatial blocks. In other terms, this layer 
is a specific type of reshaping operator from a tensor of size 
(nL, nL,F × 22) to a tensor of size (2nL, 2nL,F) . There are no 
trainable weights in this block. This procedure is detailed 
in Shi et al. (2016).

The total number of weights of the neural network is 
22,273 for the model mapping LR to HR, and 23,361 for 
the model mapping ULR to HR.

The training of the model consists of optimizing the 
weights of the convolutional blocks to minimize the mean 
absolute error between the output and the target contained in 
the training set. The optimizer chosen is Adam Kingma and 
Ba (2014), with a learning rate of 10−4 and a batch size of 32. 
The training is stopped after 100 epochs (an epoch is when 
all the training samples have been presented to the model). 
After each epoch, the weights of the neural network have 
been modified several times. Figure 5 shows the evolution 
of the loss (mean absolute error) as a function of the epochs. 
It can be seen that the decreasing of the loss has been stabi-
lized after 100 epochs for both models (ULR and LR) and 

that errors on the validation and training sets are very close. 
Very little tuning of the training was performed because 
most of the settings were chosen from Lim et al. (2017); in 
particular, the validation set has not been used for an early 
stopping of the training. Fine-tuning would be possible and 
could help reduce the cost of the training and of the model 
computation, but it was found to be unnecessary here given 
the relative simplicity of the physical system considered.

3.4 � Setup of the data assimilation experiments

We have used a twin experiment to assess the validity of the 
SRDA scheme. The experiment is carried over a time win-
dow of 6000 time steps with an analysis step every 12 time 
steps, which amounts to a total of 500 assimilation cycles. 
Twelve time steps correspond also to the frequency of the 
model outputs in the training of the neural network. The data 
assimilation experiments have been performed in a different 
setting than that of the true run. The experiment is not a per-
fect twin experiment as the bi-harmonic friction coefficient 
used for the true run, �bht = 2.0 × 10−12 , is different from that 
used to run the ensemble in the data assimilation experiments, 
�bha = 2.0 × 10−11 and it reflects on the dynamical behavior 
of the model (see Figs. 2 and 3). The initial ensemble at the 

Fig. 3   Eddy kinetic energy for a 
the truth, b the high-resolution, 
c the low-resolution, and d the 
ultra-low-resolution

)b()a(

)d()c(
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beginning of the simulation is independent from the initial 
state used in the true.

In order to evaluate the benefits from the SRDA scheme, 
we compare it to the standard EnKF at HR, LR, and ULR 
resolution (referred to hereafter as EnKF-HR, EnKF-LR, 
and EnKF-ULR respectively).

The synthetic observations are generated by adding 
a Gaussian noise with zero mean and standard deviation 
�o,H = 2 to the true run. With a spacing between tracks of 

400 km and an angle at the equator of 66◦ , the location of 
the observation points mimics altimeter satellite tracks like 
the reference satellites Topex-Poséïdon and the Jason series. 
There are 300 observation points; thus, the number of obser-
vations is two orders of magnitude smaller than the size of 
the HR state vector. The LR (resp. ULR) observations are 
the same as those of the true run and their location is derived 
from that of the HR grid by shifting each observation point 
to the nearest LR (resp. ULR) grid point. In the case where 
two observations are shifted to the same grid point, the point 
with the highest initial ordinate is shifted to the point above 
(see Fig. 1b and c) in order to avoid two observations to 
overlap. This results in an increase of the observation error 
over the LR and the ULR grids, respectively: �o,L = 2.4 and 
�o,UL = 3.7 . The error observations are uncorrelated and the 
observation error matrix is diagonal, � = �2

o
� ( �o being equal 

to �o,H , �o,L , and �o,UL depending on the resolution of the 
model). For each observation point i, and each grid point 
j, the observation operator is defined as follows: �ij = 1 if j 
corresponds to the observation point i, 0 otherwise.

In order to mitigate the impact of sampling errors from 
the finite size ensemble, a local analysis scheme using a 
Gaspari and Cohn function as a tapering function was 
used, Sakov and Bertino (2011). The optimal localization 
radius is empirically estimated for each scheme and for each 
ensemble size, see Section 4.1.

At each assimilation cycle k, the performance of the dif-
ferent assimilation schemes is estimated using the spatial 

Fig. 4   Diagram representing the NN model. The Upsample block is used only for upsample from ULR to HR, otherwise only one Upsample 
block is used

Fig. 5   Convergence of the training of the NN models on log-scale for 
the loss. Solid line represents the loss of the validation set and the 
dashed line the loss of the training set. The blue line is the loss of the 
LR model and the orange line is the loss of the ULR model
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root mean square error rk , Eq. 15, the ensemble spread sk 
Fortin et al. (2014), Eq. 16, and the Pearson correlation coef-
ficient ck , Eq. 17.

where �̄a
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The temporal means of these scores, computed over the 

assimilation cycles beyond cycle 10, are presented. Hence, 
the first 10 assimilation cycles correspond to the time 
needed for the system to converge to stable performance 
(assimilation spin up) and are not relevant.

For the EnKF-HR, the SRDA-NN, and the SRDA-cubic 
schemes, the assimilation step is performed in the HR space. 
The scores r, s, and c are thus computed in the HR space 
while for the EnKF-LR scheme (EnKF-ULR respectively), 
the scores are computed in the LR (ULR) space. As these 
scores are averaged over the size of the domain (r and s) 
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the scores despite the difference in resolution of the different 
schemes.

4 � Results

4.1 � Super‑resolution

Examples of HR fields reconstructed from LR and ULR are 
shown in Fig. 6. The original high-resolution field has been 
arbitrarily chosen in the validation dataset. The reconstructions 
by a cubic-spline interpolation and the NN model are com-
pared. Due to the spatial variability, the reconstructed fields are 
not easily distinguishable and appear very alike to the true HR 
field (represented in contour plot). Nevertheless, looking at the 
difference between the reconstructed field and the truth (sec-
ond raw in Fig. 6), we can see that NN reduces significantly the 
error of the interpolation. As expected, the error of the recon-
struction is higher from ULR than from LR and the error, and 
it is more important in dynamical active regions. In Fig. 7a, 
we show the Hovmöller plot of the sea surface elevation along 
a fixed latitude ( y = 10 ). This section is a characteristic eddy 
pathway near the southern boundary (with EKE showing a 
maximum, see Fig. 3). We clearly see the signature of eddies 
travelling westward and eastward. With the cubic spline inter-
polation, there is a bimodal error pattern at the location of the 
eddy, which is characteristic of a displacement error—to the 
east of the true location (see Fig. 7b and c). It shows that NN 
can also mitigate some systematic biases (here eddy travelling 
speed) compared to cubic spline interpolation.

Fig. 6   Snapshot (top row) of the HR-reconstructed sea level elevation 
from LR field and ULR field computed by the cubic spline interpola-
tion and by the neural network. The contour (with values of −18, −4 
in dotted lines and 4, 18 in solid lines) corresponds to the true state. 

The bottom row represents the difference between the reconstructed 
field and the true reference field. The snapshot belongs to the valida-
tion set (not used for optimizing the NN)
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In Fig. 8 and in Table 2, the root-mean-squared error aver-
aged over the whole validation period is presented. It confirms 
that there is a significant overall improvement in the reconstruc-
tion with NN. This result also confirms that the improvement is 
most noticeable in the high mesoscale activity region.

4.2 � Data assimilation

The data assimilation experiments are performed with 
the different assimilation schemes (EnKF-HR, EnKF-LR, 
SRDA-NN, SRDA-cubic), and at different ensemble sizes. 
For each experiment, a sensitivity analysis was performed 
to identify the optimal inflation coefficient and localization 
radius (in terms of RMSE), which allows for a fair com-
parison of the different schemes. While the optimal infla-
tion coefficient is roughly the same for all the schemes (not 
shown), the optimal localization radius of the EnKF-HR is 
larger than that of all the other schemes. In the following, the 
results exhibited are those obtained with the optimal parame-
ters unless explicitly stated. This general sensitivity analysis 
was also performed for both the EnKF-LR and EnKF-ULR.

Figure 9 displays the mean RMSE of the different assimi-
lation schemes for (a) the LR ensemble and (b) the ULR 
ensemble. For both ensembles, the EnKF-LR/ULR scheme 
(black bars) displays the worst results because of increased 
model error and sub-optimal use of observations. The 
SRDA-cubic scheme (blue bars) displays better results in 
terms of RMSE compared to those of the EnKF-LR/ULR 
with a reduction of the RMSE of approximately 18% for 
the LR ensemble and up to 34% for the ULR ensemble with 

Fig. 7   a Hovmöller plot of sea 
level elevation along the south-
ern boundary (y=10; see red 
line in Fig. 3a). Error along that 
section at time b t

1
 and c t

2

(a)

)c()b(

Fig. 8   Root mean square error of the HR-reconstructed sea level ele-
vation from the LR field (left column) and from the ULR field (right 
column) by the cubic spline interpolation (top row) and the neural 
network (bottom row). The error is computed on the validation set 
(not used for optimization)

Table 2   Root-mean-squared error of the different super-resolution 
models

LR ULR

Interp. 1.87 × 10−1 5.16 × 10−1

NN 5.51 × 10−2 1.96 × 10−1
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a 5-members ensemble. The only difference between the 
EnKF-LR/ULR and the SRDA-cubic occurs in the assimi-
lation step (performed in the HR space for SRDA-cubic). It 
shows the benefits from assimilating the HR observations 
in the HR space. For example, with an ensemble size of 5 
members, the EnKF-LR diverges while it converges with 
SRDA-cubic. The EnKF-ULR converges with 5 members 
but the error is very large. The SRDA-NN scheme (green 
bars) displays better results than the EnKF-LR/ULR and 
the SRDA-cubic. The neural network downscaling reduces 
the forecast error of the LR/ULR model and provides HR 
background states that are closer to the realistic HR fields 
than with the SRDA-cubic; see Section 4.1. This results in 
a better estimation of prior and as such of the analysis. The 
reduction of RMSE compared to the EnKF-LR/ULR is about 
38–40% for the LR ensemble and ranges from 57 to 73% for 
the ULR ensemble. This is anticipated because the model 
error is larger in the ULR than in the LR case so that the 
NN can more efficiently improve the performance. In the 
particular case of the LR ensemble with an ensemble size 
of 5 members, the SRDA-NN, the mean RMSE is close to 
that of the EnKF-HR. Despite an important reduction of the 
LR/ULR model error, the emulated HR fields computed by 
the neural network are still filled with error, which results 
ultimately in worse results of the SRDA-NN compared to the 
EnKF-HR (red bars) but at a fraction of its computational 
cost; see Table 3. SRDA-NN shows an increased RMSE than 
EnKF-HR between 11 and 14% (depending on the ensemble 
size) for the LR ensemble, and between 28 and 49% for the 
ULR ensemble. For both the LR and the ULR ensembles, 
SRDA-NN converges for small ensembles, N = 5, 10 , and 
increasing the ensemble size yields only slight improve-
ments as for the EnKF-HR.

Figure 10 displays the time series of the RMSE for the 
different assimilation schemes with an ensemble size of 
N = 50 for the LR ensemble (Fig. 10a) and for the ULR 
ensemble (Fig. 10b). At each assimilation cycle, the per-
formance of the different schemes is well in line with the 
time average statistics (Fig. 9). Conclusion are very similar 
for other ensemble sizes (not shown). The EnKF-LR/ULR 

performs worse than all the other schemes. The SRDA-cubic 
performs worse than the SRDA-NN while the EnKF-HR 
performs better than all the other schemes. The RMSE of the 
SRDA-NN scheme displays more stable performance than 
EnKF-LR/ULR and the SRDA-cubic schemes, in particular 
during challenging events (for example around assimilation 
cycles 150 or between assimilation cycles 300 and 350). 
This demonstrates the ability of the NN-scheme to better 
cope with challenging events. Hence, the reduction of RMSE 
of the SRDA-NN compared to the two previous schemes 
can reach up to 45% during challenging events (e.g., at 
assimilation cycle 300–350 in Fig. 10a), while the average 
improvement of the mean RMSE was 37% compared to the 
EnKF-LR and 24% compared to the SRDA-cubic with the 
LR ensemble.

Figure 11 displays the time series of the Pearson cor-
relation coefficient for ensemble size N = 50 . The conclu-
sions of the relative performances of the schemes remain 
the same as for the time series of the RMSE. The EnKF-
LR/ULR and the EnKF-HR perform respectively the worst 
and the best while the SRDA-NN performs better than 
the SRDA-cubic. However, the relative improvement of 
the correlation is not the same as before, as the correla-
tions of all the schemes are larger than 0.95 for the LR 
ensemble and 0.88 for the ULR ensemble, meaning that 
all the schemes perform well in terms of correlation. The 
temporal evolution of the correlation is as expected anti-
correlated to that of RMSE. For example, between the 
assimilation cycles 300 and 350, there is a drop of the 
correlation for the EnKF-LR and the SRDA-cubic (concur-
rently to an increase in RMSE) schemes while it remains 
high for SRDA-NN (RMSE remains low).

Figure 12 displays the averaged RMSE versus the aver-
aged ensemble spread for each ensemble size and each 
assimilation scheme, for the LR ensemble, Fig. 12a, and for 
the ULR ensemble, Fig. 12b. For each configuration (ensem-
ble size, assimilation scheme), a point whose coordinates 
are the averaged RMSE and the averaged ensemble spread 
is plotted. In an ensemble prediction system, the ensemble 
spread should match the error of the ensemble mean, Fortin 

Fig. 9   Mean RMSE for the 
different schemes at 5 differ-
ent ensemble sizes (5, 10, 25, 
50, 100) for the corresponding 
optimal inflation coefficient 
and localization radius. The 
EnKF-LR did not converge for 
ensemble size of 5 members

)b()a(
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et al. (2014); Rodwell et al. (2016), if a configuration dis-
plays a correct relation spread/error, the corresponding point 
should be close to the diagonal (black dashed line). For the 
optimal parameters, all the schemes display a good spread/
error relation for the different ensemble sizes, except for the 
case of N = 5 for the SRDA-cubic and the EnKF-LR/ULR 
where the spread of the ensemble is underestimated (in the 
sense that it is smaller than the RMSE). This is a common 
behavior for ensemble DA as spurious correlations are large 
with only five members, and it is hard to tune inflation to 
preserve reliability. On the contrary, the values of SRDA-NN 
are all on the diagonal, implying that it preserves well the 
reliability of the system for all ensemble sizes.

The LR version of the SRDA (Section 2.3), referred to 
hereafter in this paragraph as LR-SRDA, was also tested 
and compared to the initial formulation of the SRDA (Sec-
tion 2.2). The SRDA and the LR-SRDA provided similar 
results (not shown). Rewriting the SRDA as a LR scheme 
allows estimating and comparing the respective benefits of 
the LR model error and the super-resolution observation 
operator. Figure 13 displays the time series of the RMSE 
with an ensemble size of 25 members, for the EnKF-LR 
(black line), the standard SRDA (red line), the LR-SRDA 
with only model error correction (blue line), and the LR-
SRDA with only the super-resolution observation operator 
(green line). It shows that the benefits of SRDA come from 

Fig. 10   Time series of the 
RMSE for a the LR ensemble 
and b the ULR ensemble and 
ensemble size N = 50

)b()a(

Fig. 11   Time series of the 
Pearson correlation coefficient 
for a the LR ensemble and b the 
ULR ensemble and ensemble 
size N = 50

)b()a(

Fig. 12   Averaged RMSE versus 
averaged ensemble spread for a 
the LR ensemble and b the ULR 
ensemble. The black symbols 
stand for the EnKF-LR, the 
blue ones for the SRDA-cubic, 
the green ones for the SRDA-
NN, and the red ones for the 
EnKF-HR

)b()a(
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the combination of model error correction and the super-
resolution observation operator. We note that the correction 
of the model error is particularly important for constraining 
the error during challenging events (for  example between 
assimilation cycles 300 and 350) while the super-resolution 
observation operator achieves a continuous improvement 
over the standard EnKF but struggles during challenging 
events.

5 � Discussion

In this section, we discuss the potential applicability of the 
method with realistic models and highlight some foreseen 
challenges.

The method aims at high-dimension systems as it pro-
vides accurate high-resolution analyses at a cost close to that 
of a low-resolution model. The costs of the algorithms are 
summarized in Table 3. All the experiments were done on 
an Intel Broadwell CPU with 64 GiB of memory except the 
training of the neural net that was computed on a NVIDIA 
V100 GPUs. The small overhead of SRDA-NN compared 
with the cost of SRDA-cubic is due to the NN step that is 
more costly than the cubic interpolation.

Note that the overall cost of SRDA is strongly reduced 
compared to that of the EnKF-HR because of the low cost 
of the LR ensemble. It should be noted that the overhead 
on the LR version of the system resides in the analysis step 
only. Thus, the additional cost depends on the respective 
share of model integration and the analysis step in the total 
cost. In the QG model, the cost of the model integration 
is about 80% of the total cost while for a realistic ocean 

prediction system, Sakov et al. (2012), and climate predic-
tion system, Bethke et al. (2021), the analysis is usually 
much less than the total cost (2% in Sakov et al. (2012). 
We thus expect that the additional cost of the SRDA would 
be lower for such applications. There are additional costs 
ahead of the assimilation, both to produce a high-resolu-
tion simulation and to train the neural network. The cost 
of training the neural network is generally smaller (it is 
only done once) and the cost of applying the NN is pre-
dictable, so it can be taken into account when designing 
the data assimilation system. The high-resolution run is 
most often already available from model performance test-
ing and comparison experiments. The results presented 
here are obtained in the univariate case (the variable in 
the QG model defines the state unequivocally, Sakov and 
Oke (2008). Using this method for more realistic setups 
would need a multivariate downscaling operator. In prin-
ciple, this is straightforward either using the DA method, 
which handles well multivariate state vectors, or using an 
image super-resolution neural network designed for 3 out-
put variables (R,G,B). In the latter case, the NN will need 
to satisfy the physical balances of multivariate models. 
For instance, even small differences of salinity or tem-
perature can make the density profile unstable. To address 
this problem, there might be a need to add physical con-
straints in the neural network training (see, e.g., Beucler 
et al. (2021). Note that physical constraints can also be 
imposed by an adequate choice of predictors specified as 
an input of the super-resolution operator. For example, 
it is expected that non-flat bathymetry can impact the 
downscaling procedure, so the high-resolution bathymetry 
should be specified as an input of the NN.

In the proposed configuration, the SRDA was applied to 
a high-resolution version of the same model, but we fore-
see that the technique could be also applied to a different 
model as made available from the destination Earth program, 

Fig. 13   Time series of the RMSE for the EnKF-LR (black line), the 
SRDA (red line), Eqs.  10a–10b with only model correction (blue 
line) and with only the super-resolution observation operator (green 
line)

Table 3   Cost of the different algorithm

Algorithm name Number of model 
integrations

Wall clock time

EnKF-HR I 27m20s
EnKF-LR I/8 6m03s
SRDA-cubic (LR) I/8 9m29s
SRDA-NN (LR) I/8 9m32s
EnKF-ULR I/64 2m26s
SRDA-cubic (ULR) I/64 7m20s
SRDA-NN (ULR) I/64 7m37s
 HR simulation for training 1,200,000 2h49m12s
D

HL
 training (LR) 0 8min14s

D
HL

 training (ULR) 0 8min51s
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Voosen (2020), or even directly to a high-resolution obser-
vational dataset if available.

Furthermore, we have yet only considered downscaling of 
the whole domain. However, the SRDA algorithm could be 
adapted to perform high-resolution analysis only in selected 
sub-regions of the domain where the error is expected to be 
high—e.g., in regions of high mesoscale activity or where 
the model is not eddy resolving, where high-resolution 
nested models are available and where high-resolution is 
available (e.g., HF radar). This potentially opens for a local 
version of SRDA where resolution is only locally increased. 
For such application, the emulator could use convolutional 
layers, Bocquet et al. (2019).

Finally, we have used the SRDA scheme with the EnKF 
data assimilation method but we foresee that it could be 
applied to several other sequential data assimilation methods 
such as 3DVAR, Tonani et al. (2015), or the EnOI, Oke et al. 
(2010); Evensen (2003). The EnKF has the advantage of 
providing flow-dependent covariance, but one can use static 
covariances to perform assimilation in the high-resolution 
space. With such methods, one does not need to perform 
an ensemble of low-resolution but a single instance would 
be sufficient. One could also combine the flow-dependent 
properties of the low-resolution ensemble with a high-res-
olution static covariance using hybrid covariance methods, 
Hamill and Snyder (2000); Counillon et al. (2009); Wang 
et al. (2007).

6 � Conclusion

In this study, we presented a new data assimilation scheme 
derived from the Ensemble Kalman Filter that embeds a 
super-resolution neural network into a data assimilation 
system. This new scheme works as follows: the forecast 
step is performed at low resolution to limit the compu-
tational cost, but the analysis step is performed at high 
resolution to benefit optimally from the high-resolution 
observations. The scheme is called “super-resolution data 
assimilation” (SRDA) because the resolution of the back-
ground ensemble is enhanced to perform the assimilation 
step in the high-resolution space. Two different downs-
caling operators were studied and compared: a straight-
forward cubic spline interpolation operator and a more 
advanced convolutional neural network operator that is 
commonly used for enhancing photographic images. The 
method was tested in an idealized twin experiment with 
a factor of two and four in resolution.

The neural network was trained with a dataset of match-
ing pairs between low- and high-resolution states and outper-
formed the cubic spline interpolation operator. In particular, 
the neural network was able to correct the position of the 
eddies of the reconstructed fields, reducing the impact of the 

low-resolution model error. The downscaling performance 
was, as expected, better for a factor of two than a factor of 
four in resolution.

The downscaling performance proved important for the 
data assimilation performance. Both SRDA with cubic spline 
interpolation and with neural network perform better than the 
standard low-resolution EnKF. But the SRDA neural network, 
as it also reduces model error, performs better than its counter-
part, and provides results close to those of the standard high-
resolution EnKF at a much lower computational cost.

Nonetheless, this study was carried out in an idealized twin 
experiment framework, with a 2-dimensional monovariate 
model. The limitations of this method and its applicability to 
a more realistic model have been discussed and some tracks to 
overcome those limitations have been advanced.

A: Rewriting the SRDA as a LR scheme

If the LR and the HR grids overlap, the upscaling operator 
U is equivalent to a sub-sampling operator and is then linear. 
Applying U to the system of Eqs. 8a–8b leads to:

where �a
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)
 

and U and H being linear, we have:

For the sake of simplicity, in the following, we define the 
operators Q and H:
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Q is an operator that maps the LR background ensemble �L,k 
into the LR space and can be interpreted as an operator that 
corrects the LR model error; see Section 4.1. In Eq. 23a, Q 
is defined as the composition of the operators U and D , but 
it could be defined as an operator that minimizes the mean 
absolute error between the output and the training set 
upscaled to the LR grid. U

(
�
f

H,k

)
 and U

(
�

f

H,k

)
 represent 

then the mean and the anomalies of the corrected ensemble 
�̃L,k . In the following, we note:

H is an operator that maps the LR background ensemble �L,k 
into the HR observation space and can be interpreted as a 
super-resolution observation operator. In Eq. 23b, HH,k is 
defined using the operator D , but it could also be defined by 
proceeding to the super-resolution of the LR ensemble �L,k 
at the observation points. �H,k�

f

H,k
 and �H,k�

f

H,k
 represent 

respectively the mean and the anomalies, at the HR obser-
vation points, of the downscaled LR ensemble �L,k . In the 
following, we note:

Replacing the terms U
(
�
f

H,k

)
 , U

(
�

f

H,k

)
 , �H,k�

f

H,k
 , and 

�H,k�
f

H,k
 in Eq. 18a-18b, respectively by �̃f

L,k
 , �̃f

L,k
 , �̂f

H,k
 , and 

�̂
f

H,k
 , we get Eq. 10a-10b.
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