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Many fish and marine organisms are responding to our planet’s changing climate by shifting

their distribution. Such shifts can drive international conflicts and are highly problematic for

the communities and businesses that depend on these living marine resources. Advances in

climate prediction mean that in some regions the drivers of these shifts can be forecast up to

a decade ahead, although forecasts of distribution shifts on this critical time-scale, while

highly sought after by stakeholders, have yet to materialise. Here, we demonstrate the

application of decadal-scale climate predictions to the habitat and distribution of marine fish

species. We show statistically significant forecast skill of individual years that outperform

baseline forecasts 3–10 years ahead; forecasts of multi-year averages perform even better,

yielding correlation coefficients in excess of 0.90 in some cases. We also demonstrate that

the habitat shifts underlying conflicts over Atlantic mackerel fishing rights could have been

foreseen. Our results show that climate predictions can provide information of direct rele-

vance to stakeholders on the decadal-scale. This tool will be critical in foreseeing, adapting to

and coping with the challenges of a changing future climate, particularly in the most ocean-

dependent nations and communities.
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Our current understanding of the impacts of climate
change typically focuses on the climatic time scale; for
example, 50 or 100 years into the future. While these

timescales are of value to strategic decision-making by, for
example, governments, they are far from the seasonal, annual,
and decadal timescales on which regional bodies, local govern-
ments, businesses and individuals make most of their decisions1.
The recent development of near-term climate predictions2,3 can
potentially fill this gap and examples of such climate services can
already be found on the sub-seasonal and seasonal timescales4,5.
However, on the important annual-to-decadal timescale pre-
dictive skill is currently limited to the ocean6,7, restricting their
applications. Decadal predictions of the ocean could, nevertheless,
be invaluable in supporting climate adaptation and sustainable
development8 in coastal communities and nations, particularly in
the Global South9,10 where ocean-dependency and climate risks
are highest11.

Realising the potential societal benefits of oceanic decadal
predictability, however, requires converting climate predictions
into information that addresses the challenges directly faced by
stakeholders. One such challenge is the ongoing climate-driven
global redistribution of species, the largest since the Last Glacial
Maximum12. Shifts in where species are found (i.e., their dis-
tribution) have been reported in the ocean from the lowest
trophic levels to the largest top-predators13 and are occurring
faster than on land due to the higher vulnerability of marine
species to warming14. Projections suggest that this trend will
continue with impacts being felt globally8,9,15. As traditionally
fished species disappear and new species arrive, local commu-
nities and fishers are required to adapt their fishing techniques,
infrastructure, markets, traditions, and even culinary preferences
to the changed fishing opportunities. International conflicts over
fishing rights can also arise as shifting fish stocks start to straddle
international jurisdictions, an issue that is only expected to
worsen: transboundary stocks may impact as many as 40% of
exclusive economic zones in the future15. Examples of such
conflicts are already being seen16, for example the so-called North
Atlantic “mackerel war”17 between the European Union, Norway,
Iceland, and the Faroe Islands over access to Atlantic mackerel
(Scomber scombrus), and are a leading cause of international
disputes between democracies15,16. The ability to foresee such
shifts can therefore potentially hold the key to both avoiding
conflict and adapting marine fisheries to a changing climate8,15.

Here, we describe the direct applications of decadal climate
predictions to forecast shifts in the habitat and distribution of
marine species. We draw a necessary distinction throughout this
work between the habitat of a species (where conditions are
suitable for occurrence) and its distribution (where it is actually
found). We focus on three exemplar fish species in the North
Atlantic that have shown well-documented distribution shifts in
recent years. The Northeast Atlantic stock of mackerel supports
one of the most valuable fisheries in Europe and recent dis-
tribution shifts into Icelandic and Greenlandic waters18 have
driven the aforementioned conflict over fishing rights. Atlantic
bluefin tuna (Thunnus thynnus) is a large commercially valuable
and endangered top predator: in recent years the species has
shifted into the Irminger Sea and Denmark Strait19, opening up
new fishing opportunities for Iceland and Greenland20. Blue
whiting (Micromesistius poutassou) has at times been one of the
world’s largest fisheries and its spawning distribution shifts reg-
ularly between the waters of the UK, EU, Faroe Islands and areas
beyond national jurisdiction21, a potential point of conflict in
light of the UK’s recent departure from the EU. For each of these
cases we combined existing biological habitat models character-
ising the species’ environment preferences18,19,21 (Supplementary
Table 1) with predictions of the physical environment from

existing climate prediction systems (Supplementary Table 2) to
produce decadal-scale habitat predictions. We then verified these
predictions against habitat estimated from ocean observations
and, to the extent possible, against observations of distribution.

Results and discussion
We first show the ability of climate prediction systems to skilfully
forecast the physical drivers that serve as inputs to the biological
models on multi-annual timescales (see Methods). Habitat
models show that sea surface temperature (SST) in the warmest
month (August) shapes mackerel and bluefin tuna habitat while
sub-surface salinity (250–600 m) during the peak spawning
month (March) is the primary environmental driver shaping blue
whiting spawning habitat (Supplementary Table 1). The five-year
predictive skill of these variables, as assessed by performing ret-
rospective predictions and comparing against observations, is
generally high and statistically greater than zero in most parts of
the domain (Fig. 1). This result is in line with more general results
(e.g., annual and regional averages) reported elsewhere7,22. The
skill also matches well with the regions relevant to each of the
marine species that we consider, providing a solid base from
which to develop habitat forecasts. Similar results are seen when
considering the absolute error in the forecasts (Supplementary
Fig. 1) rather than the correlation (Fig. 1).

The ability to forecast the state of the ocean in these regions
carries over into the ability to forecast habitat on multi-annual
and decadal time scales. Outputs from the climate prediction
systems are used in the habitat models and their habitat predic-
tions are compared with estimates from ocean observations. The
area of suitable habitat (e.g. km2) within the relevant regions of
interest for each species (Fig. 1) was used as our metric of interest.
Pearson correlation coefficients between the forecast habitat
metrics and those derived from observations are generally high,
up to 0.75 for the forecast including all ensemble members
(“Grand ensemble”, Fig. 2). This skill remains high even at dec-
adal lead times, and is significantly greater than zero (p < 0.05) for
all leads and species. Individual modelling systems can have lower
performance, but the combination of models into a grand
ensemble generally gives the best performance.

Importantly, our habitat forecast systems also outperform
alternative simpler approaches. We consider first a persistence
forecast, where “tomorrow is the same as today”, as a much
simpler and commonly used baseline system: a valuable forecast
system should have skill over and above such a reference
forecast23. For short lead times (e.g., one-two years), persistence
forecasts are generally comparable to climate predictions (Fig. 2),
reflecting the high inertia of the ocean. In these cases, the
improvement in skill of habitat forecasts over persistence fore-
casts is generally not significant or at best weak. On the multi-
annual timescale, however, persistence skill starts to fade while
the decadal prediction systems maintain their skill. For all three
fish stocks considered, forecast performance for leads of three or
more years is significantly greater than persistence (p < 0.05 or
better), and can therefore be considered skilful. Alternative skill
metrics considering the absolute errors in the forecasts (via the
Mean-Squared Error skill score, MSESS) and reliability of the
predictive distributions (Continuous Ranked Probability skill
score, CRPSS) also show significant skill across all fish stocks and
for multi-annual to decadal lead times (Supplementary Fig. 2). As
is common in multimodel ensemble systems24, the grand-
ensemble forecast based on all 85 members weighted equally is
also consistently the among the best performing forecasts (Fig. 2)
reiterating the value of large ensembles in climate prediction6.

A second alternative approach to habitat forecasting could be
to use climate projections directly as forecasts: such uninitialized
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projections are much simpler to generate and work with than the
initialised climate predictions used above (where forecasts are
started from estimates of the ocean state). However, similar to
what is seen for forecasts of physical variables in the northern
North Atlantic3,7, our habitat forecasts based on initialised cli-
mate predictions outperform those constructed from uninitialised
climate projections (Supplementary Fig. 3). The gain due to
initialisation is particularly apparent when viewed from a prob-
abilistic point of view: the ability of the forecast systems to cor-
rectly represent the habitat probability distribution (as indicated
by the CRPSS metric) was significantly better than the unin-
itialized forecasts for all lead times and species (Supplementary
Fig. 3c). This result is consistent with expectations, as the initi-
alisation process pushes the predictions towards observations and
narrows their distribution compared to uninitialized models,
yielding forecasts that are both more accurate and more precise.
Given the well-established need to communicate both the most
likely value and the potential range of values (i.e., uncertainty)
together in a forecast25, the significantly better probabilistic
performance of initialised systems makes them clearly superior to
uninitialized models in these cases.

While we capture the majority of the variability when fore-
casting individual years, the forecasts perform even better when
considering averages across multiple years. We calculated multi-
year means of habitat area derived from both the climate pre-
diction systems and observational data, and then re-evaluated the
forecast skill (Fig. 3a–c). Improvements in skill are seen for all fish
stocks, reaching correlation coefficients of 0.95, 0.94 and 0.74 for
predictions of the decadal average (9-year window) for mackerel,
bluefin tuna and blue whiting respectively. Averaging also
improves some persistence forecasts but the habitat forecast
system continues to be significantly better (p < 0.01 for 9 year
averages across all stocks). The ultimate choice of averaging
window clearly depends on the needs of the decision maker using
the forecast: short-term tactical planning may need the individual
years, while longer-term strategic planning may require the
decadal averages or the statistical distribution. Importantly, and
reassuringly, we show significant decadal forecast skill of both the

mean (Pearson correlation and MSESS) and the distribution
(CRPSS), with and without averaging.

The effect of multi-year averaging on our predictions is closely
linked to the source of their skill. On short timescales, process
originating from atmospheric dynamics (e.g., blocking highs)
strongly influence oceanic variability, especially for SST: while
these processes are present in climate models, they are not pre-
dictable beyond weather timescales due to their chaotic nature.
On longer timescales, the North Atlantic subpolar gyre, Atlantic
Multidecadal Variability, and anthropogenic warming set the
background oceanographic conditions on top of which high-
frequency variability is imposed: the representation of all of these
aspects of Atlantic thermohaline circulation benefit from the
initialisation process in climate prediction models and are well
predicted3,6. The ability to capture the lower-frequency variability
of the physical system also propagates into our habitat forecasts,
which are clearly better at capturing multiannual variability than
interannual (e.g. Fig. 3d–f). Multiannual averaging improves
these forecasts further by effectively filtering out the high-
frequency interannual-noise, thereby increasing the relative
contribution of the predictable low-frequency components.
The skill of our habitat forecasts is therefore primarily due to the
strong low-frequency (decadal) variability in the system, together
with the ability of initialised climate prediction models to capture
these processes, paralleling results reported elsewhere26.

It is important to note that the biological models used here
represent the habitat of each species and not their distribution.
Habitat, in this context, corresponds to the spatial locations where
the species could potentially be found, whereas distribution refers to
where the species actually was (or will be) found. Many processes
influence the way in which species do, or do not, use their available
habitat, including competition, presence (or absence) of predators,
schooling and migration, behavioural dynamics, and the need to
reproduce27. Habitat is also further constrained by environmental
factors that are not included in these models (e.g. food quantity and
quality). Forecasts of the presence of habitat should therefore be
viewed as a necessary, but not sufficient, condition to observe a
species at a given location: the presence of suitable habitat does not
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Fig. 1 Ocean state can be skilfully forecast. Predictive skill of physical variables underlying our habitat forecasts from climate prediction systems with a
lead time of five years for (a) mean August sea surface temperaure (SST) and (b) mean March sub-surface (250–600m) salinity. Predictive skill is
expressed as the Pearson correlation coefficient (r) between the forecast and observed values of each variable, with each grid point coloured according to
the local value, evaluated over the period 1960–2018 for SST and 1985–2018 for salinity. Forecast skill is for the grand ensemble mean forecast, i.e., a
forecast averaged across the individual realisations from all model systems. Regions where the correlation coefficient is not significantly greater than 0 (at
the 95% confidence level, as estimated from bootstrapping) are cross-hatched. Lines mark the polygons over which the area of suitable habitat is
calculated in subsequent analyses. Ocean regions not represented by all forecast models are shown in grey.
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guarantee the presence of fish. On the other hand, the absence of
suitable habitat should guarantee the absence of fish. The skill of
our habitat forecasts for predicting distribution shifts is therefore
asymmetrical in practice because habitat models are much better at
predicting absence than presence.

The recent decline in the spawning habitat of blue whiting
illustrates this interplay clearly (Fig. 4b). In the mid-2000s, when
the blue whiting stock was at its highest recorded level,
the observed area of the distribution closely corresponded to the
habitat estimated from oceanographic observations. While the
amount of this habitat slowly declined (a feature predicted by
decadal forecast systems), the area of the distribution collapsed
much more rapidly as the stock shrank due to a high fishing
pressure. Recovery of the stock was accompanied by the expan-
sion of the distribution, but only back to 2/3 of the area seen
earlier (as predicted by the forecast systems). As this example
shows, habitat forecasts are best interpreted as constraints on the
distribution of species.

While the ability to forecast the habitat and distribution of the
fish species that they depend upon is potentially of great value to
stakeholders, avoiding conflicts due to shifting distributions
requires more than just reliable predictions. For example, stake-
holders also need to have the ability to act on this information1,28.
Distribution shifts will often result in both winners and losers and
there is therefore a natural tendency on the part of the negatively
impacted party to resist change. International agreements for
managing such transboundary stocks need to have sufficient
flexibility to cope with distributional shifts, while at the same time
ensuring the sustainability of both the agreement and the fish
stock itself15. Decadal forecasts of habitat and distribution can be
integral to such agreements, allowing foresight and the develop-
ment of adaptive measures29.

More generally, these results also highlight the emerging
potential of marine-ecological forecasting as a climate change
adaptation tool8. While we have focused here on the North
Atlantic region, annual and multi-annual forecast skill is present
in many other large marine ecosystems30 and can underpin the
development of similar forecasts elsewhere31. This technology is
also particularly relevant to Small Island Developing States (SIDS)
and the Global South, where ocean dependency and climate risk
are among the highest in the world9. Regularly produced global-
scale decadal-forecasts22 can support relevant climate services
and thereby the sustainable development and climate adaptation
of these nations8, for example via the UN Decade of Ocean Sci-
ence for Sustainable Development with it’s clear focus on “A
Predicted Ocean”. Decadal-scale forecasts of the ocean, and of the
life in it, thereby represent a tremendous opportunity for cutting
edge climate science to have a direct benefit for the local com-
munities, businesses and individuals that are most at risk from a
changing and variable oceanic climate.

Methods
Study region. We focus on the northern North Atlantic as the basis for this work.
Decadal prediction experiments have shown this region to be one of the most
predictable parts of the planet, especially on the decadal scale32,33. Studies have
shown multi-annual to decadal predictability for sea surface temperature34, upper
ocean heat content35, the Atlantic Meridional Overturning Circulation (AMOC)36,
CO2 uptake37, and the dynamics of the North Atlantic subpolar gyre7,38,39. This
high underlying predictability of the physical system makes the North Atlantic an
ideal candidate in which to develop decadal ecological forecasts and climate
services30,31.

Fish species and habitat models. We focus on three case studies in the North
Atlantic region (Supplementary Table 1); mackerel (Scomber scombrus), bluefin
tuna (Thunnus thynnus) and blue whiting (Micromesistius poutassou). The choice
of these fish species was guided by several factors that we expect will make their
habitats amenable to prediction31. Firstly, as noted above, the species studied are
present in one of the most predictable regions of the global ocean. All of these
species have also shown significant, well-documented shifts in their spatial dis-
tribution in recent decades and there is furthermore an established body of
knowledge characterising the mechanisms and drivers underlying each of these
shifts. Most importantly, habitat models (also known as ecological niche or species
distribution models) parameterising the relationship between observations of these
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Fig. 2 Fish habitat can be skilfully forecast. Forecast skill for the area of
suitable a mackerel, b bluefin tuna, and c blue whiting habitat. Forecast skill
is given as the Pearson correlation coefficient (r) between the forecast
habitat area and that derived from observational data, and is plotted as a
function of forecast lead time into the future calculated across the
appropriate comparison periods. Forecast skill is shown for the mean
forecasts of the individual models (light coloured lines) and for the grand-
ensemble forecast across all ensemble members (heavy red line). The skill
of persistence forecasts (heavy blue lines) are also shown for reference.
Shaded areas for both these key metrics denote the 90% confidence
interval estimated by bootstrapping: 5% of the distribution is therefore
above and 5% below the shaded areas. The hypothesis that the grand-
ensemble forecast outperforms persistence (i.e. a one-tailed test) is tested
for each lead time, and denoted with symbols at the bottom of each panel.
Source data are provided as a Source Data file: exact p values are available
in this source data.
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species and the physical environment already exist. We discuss each of these case
studies in turn below.

Recent shifts in the distribution of mackerel are amongst the most well-known
examples of fish distributional shifts. The feeding distribution of mackerel
expanded northwards and westwards to Iceland in 200740 and Greenland in
201118, leading to international conflicts over fishing rights on this species17. A
wide variety of explanations for these shifts can be found, with the effects of climate
change and density-dependent expansion being the most common41–44. However,
the distribution of mackerel is clearly limited by temperature, with 8.5 °C serving as
a lower threshold18,41. We therefore used the 8.5 °C August-mean isotherm as a
threshold for the habitat of this species. Paralleling other studies with a clearly
defined habitat model18, we focused on the waters around Greenland (specifically
the exclusive economic zone south of 70 °N): being at the cold thermal range limit
of mackerel, the temperature is expected to have a controlling influence on habitat
variations in this region.

Bluefin tuna are pelagic top predators that are widely distributed throughout the
North Atlantic. The thermally suitable feeding habitat of this species expanded by
800 000 km2 from the mid-1980s to the early 2010s, leading to the first
documented observation of the species in Denmark Strait in 201219. Unusually for
fish, Bluefin tuna have the ability to regulate their body temperature: their core
temperature is therefore often above the surrounding waters. Data-storage tags
measuring both internal and external temperatures show that the species can dive
into colder waters during the day for short periods to feed (e.g., horizontally across
fronts or vertically across the thermocline), during which time the core
temperature starts to drop, but then return to surface waters during the night to
warm-up again45. Such studies suggest that the species therefore needs access to
surface waters of at least 10–11 °C to support foraging, which can be interpreted as
a natural limitation on the distribution of the species and definition of habitat19.
These conclusions are also seen in the results of empirical habitat models46–48 that
arrive at similar thresholds based on observations. Entirely independently,

a) ● ●

●

●

b) ● ●

●

●

c)
●

●

●

0 2 4 6 8 10

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Lead time (years)

Metrics
Grand Ens.

Persistence

Mean window

●

1 year

3 years

5 years

9 years

Pearson correlation coefficient (r)

d)

e)

f)

M
ackerel

Bluefin tuna
Blue w

hiting

1960 1970 1980 1990 2000 2010 2020

0

100

200

300

400

500

1000

1250

1500

1750

2000

50

100

150

200

250

Year

Observations
Habitat

Rolling mean

Forecast
Grand Ens.
(5 year lead)

Habitat area (10³ km²)

Fig. 3 Habitat forecasts capture low-frequency variability. The forecast skill of multi-annual averages of habitat area (panels a-c), as characterised by the
Pearson correlation coefficient (r), is shown for the grand-ensemble and persistence forecasts. In addition to the single-year values also plotted in Fig. 2
(solid lines), the skill of multi-year averages (3, 5, and 9 year centred means) are also shown (broken lines with symbols). Lead-time is defined as the
length of time from the issuing of the forecast (1 January) to the middle of the running mean window. Multiyear forecasts are significantly better than
multiyear persistence for all lead times (p < 0.01, one-tailed test, as estimated by bootstrapping). Time-series of habitat metrics (panels d-f) show habitat
estimates based on observations (triangles connected by dotted line) with their three-year running means (solid black lines). Habitat metrics forecast by
the grand-ensemble (solid red line) with a 5-year lead time are shown with the corresponding 90% range of realizations (shaded area). Time series are
shown for the full range of years used to estimate the forecast performance (i.e., 1961–2018 for mackerel and bluefin tuna, 1985–2018 for blue whiting).
Panels (a) and (d) show results for the area of mackerel habitat around south Greenland, panels (b) and (e) bluefin tuna habitat south of Iceland, and (c)
and (f) blue whiting spawning habitat west of Great Britain and Ireland. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30280-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2660 | https://doi.org/10.1038/s41467-022-30280-0 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


mechanistic bioenergetics modelling of the oxygen requirements and aerobic
capacity of the species also reached a similar result46. Like others19,20, we therefore
employ the 11 °C isotherm for the August mean (the warmest month in the region)
to define the cold-limit of thermally-suitable feeding habitat for this species in the
northern North Atlantic.

Blue whiting is a small mesopelagic species found widely throughout the eastern
North Atlantic. The species supports a large commercial fishery, primarily for
industrial uses, that has varied greatly over time: in 2004 it was the world’s third-
largest fishery, with catches of 2.4 million tonnes49. While smaller sub-populations
exist, the largest stock, and the one that supports the majority of the fishery,
migrates between its feeding grounds in the Norwegian Sea and spawning grounds
to the west of Great Britain and Ireland in the Rockall Trough region. Spawning
takes place from February to April50 and the spawning distribution varies
substantially between years, expanding and contracting on and off the Rockall
Plateau51. Initial work linked these changes to the large-scale dynamics of the
North Atlantic sub-polar gyre52; however, more recent work has narrowed this
view down to the local salinity conditions21 (which in turn are shaped by the basin-
scale dynamics of the gyre). This work was based on approximately 34 000
observations (1100 presences) of blue whiting larvae in this region from 1951 to
2005 from the Continuous Plankton Recorder (CPR), which, in addition to the
planktonic species for which it is best known, also regularly captures fish
larvae53,54. A habitat model has been developed and parameterized based on this
data, using latitude, day of year, bathymetry, the solar elevation angle and
environmental variables (averaged over 250–600 m) as predictors. The likelihood of
observing blue whiting larvae in the CPR was found to have a dome-shaped
response to salinity, with larvae occurrence limited to salinities between 35.3 and
35.5 psu. This model shows good agreement with independent observations from
both scientific surveys and the fishery on the stock, and currently forms the basis
for operational forecasts of the spawning distribution55. The full habitat model21

was applied here to define suitable spawning habitat for this species, but was
focused on the northern component of the stock50 where most of the variability has
been observed.

Physical observations. Two different datasets were used as the basis for char-
acterizing the physical environment. Sea surface temperature estimates were based
on the HadISST v1.1 product56, while sub-surface salinity estimates were based on
the EN4 product (v4.2.1 analysis, with Gouretski and Reseghetti’s corrections to the
source profile data57), both from the UK Met Office. Both products are high-
quality, internationally recognized estimates of the state of the ocean covering an
extended time period (HadISST: from 1860, EN4 from 1900) and are presented on
a regular 1° grid as monthly averages.

Decadal forecast models. An ensemble of five decadal prediction systems was
collated for this analysis: all models followed the CMIP6 Decadal Climate-

Prediction Project (DCPP) protocol58. For each decadal prediction system, a
database of retrospective forecasts was available based on annual initialisations. For
each of these initialisations, a fully-coupled (ocean, sea ice, land, atmosphere)
model was run using the CMIP6 historical (for years 1960–2014) and ssp2-4.5 (for
years 2015–2030) forcing from the given starting point to generate forecasts up to
10 years after the initialisation. Multiple realisations were available for each of the
initialisations for each of the model systems, to give a grand ensemble of 85
members. Details are given in the relevant references (Supplementary Table 2) and
the DCPP protocol58: for a more general introduction to climate prediction and
decadal forecasts, several references are recommended3,33,59.

Uninitialized projections. We used uninitialized historical and projected climate
simulations from CMIP660 as an additional form of reference forecast. We selected
a temporal subset of SST and salinity model outputs for the “historical” (covering
the years 1960–2014) and “SSP5-8.5” (2015–2020) experiments. We used one
realization from each model system, with the “Variant Label” identifier being
maintained between the two experiments. Only models that fully covered the
comparison period (1960–2018) were retained. Model outputs presented on sigma
or density vertical axes or unstructured horizontal grids were excluded due to
difficulties in incorporating them into the processing chain. Native model resolu-
tion (grid label “gn”) was used as the first preference, where available, followed by
lower-resolution regridded products (“gr”,”gr1”). After this selection process, 35
models of salinity and 44 models of SST were incorporated into the analysis
(Supplementary Table 3). Details of these experiments are given in the CMIP6
protocol60.

Data processing. Model and observational ocean data (temperature and salinity)
were processed in the same manner. Data stored at multiple model levels (i.e.,
subsurface salinity) were first extracted and then averaged (weighted by layer
thickness) over the 250–600-m depth range to produce two-dimensional fields for
each time step on the native model grid. The months of interest were then
extracted from all fields and regridded using bilinear interpolation onto a common
regular 0.5° latitude-longitude grid covering the regions of interest (Fig. 1).

Observational climatologies. Extracted and regridded observational data were
used to generate monthly climatologies by grid-point averaging based on the 30-
year period from 1985 to 2014 (inclusive). This period was chosen to cover the first
30 years for which predictions were used for all three fish case studies.

Bias correction. Processed model outputs were bias-corrected. Climate model
outputs often show spatially variable systematic biases relative to observed values.
In the case of climate prediction systems, these biases can also vary as a function of
forecast lead time due to the forecast drift phenomenon associated with adjustment
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from the initialized state to the model climate61. All decadal forecast models used
were initialised once per year on the same start date, so it was not necessary to
include start-date dependent bias-corrections (as would be appropriate for fore-
casts started e.g. every month). Model outputs were bias-corrected following the
full field approach, irrespective of the model initialisation technique applied62.
Briefly, the climatological field of each variable (salinity and SST) was calculated for
a given model and forecast lead time by grid-point averaging over the same 30-year
period as the observational climatology. The individual members of the forecast
ensemble were then converted into a forecast anomaly based on this climatology
for a given lead-time. Bias-adjusted full-field forecasts were then produced by
adding the appropriate observational climatology to the forecast anomaly.

Ensemble means. Mean forecasts of environmental parameters for each model
system were produced by averaging the forecast fields across the realisations for
that forecast model. The mean across all 85 realisations in the ensemble was also
calculated to produce a grand-ensemble mean forecast (“Grand Ens.”): in this way,
each realisation was given equal weighting in the forecast, irrespective of the model
system it came from or the number of siblings it may have. We also considered the
mean-of-model-means approach, where the mean-forecasts from each climate
prediction system were averaged, thereby giving each model system equal weight.
However, the performance of this approach was indistinguishable from (or worse
than) the simpler grand ensemble approach, and is not presented here.

Habitat metrics. The skill of the near-term forecasts was evaluated based on
retrospective forecasting (also known as hindcasting, although the meaning of this
term can differ between fields and so is avoided here). The habitat models
described above were applied to the bias-corrected full-field forecasts to generate a
comparable set of retrospective habitat forecasts. Where the habitat model gave a
binary outcome (suitable / unsuitable habitat), the total area of suitable habitat was
calculated directly. The blue whiting habitat model21 however returns the prob-
ability of observing larvae and calibration is therefore needed prior to calculating
the spawning habitat area for the observation of adult fish63: the threshold was
chosen to ensure agreement between the upper quartile of the annual adult dis-
tribution areas observed and the corresponding habitat estimates. The habitat
models were also applied to observational datasets to generate observationally-
based estimates of the area of habitat in a given year (“observed habitat” in
Figures).

Persistence and binned forecasts. Persistence forecasts are used as the primary
choice of reference forecast: a forecast is viewed as skillful if it can outperform such
a baseline23. Persistence forecasts were generated by propagating the habitat
metrics calculated in a given year forward for up to the maximum 10-year forecast
horizon considered here. Binned forecasts (i.e., the average over a multi-year
period) were calculated based on 3, 5, and 9-year windows of habitat metrics from
all data sources (observations, persistence, uninitialized models and forecast
models), and assigned a forecast time corresponding to the centre of the averaging-
window. The skill of both binned and persistence forecasts was then assessed in the
same manner as for other data sources.

Forecast verification and skill. Forecast skill was assessed by comparing the
estimates of habitat based on observed environmental variables with forecasts of
habitat based on the various approaches. The retrospective forecast databases
available differ in their length, and a common comparison period was chosen as
1961–2018 (inclusive) for SST-based variables, based on available coverage across
all models. Initial explorations of salinity forecasts, however, revealed substantial
inconsistencies in the region of interest between observational products prior to the
mid-1980s that propagated into the initial conditions used to initialise the climate
predictions. In the absence of agreement between observational products about
salinity in this region, we therefore limited the comparison period for salinity (and
salinity-based habitat models) to 1985–2018 (inclusive).

Forecast skill was quantified using multiple metrics23,64 including the Pearson
correlation coefficient (r), the Mean Squared Error skill score (MSESS) and the
Continuous Ranked Probability skill score (CRPSS) between observed and
predicted habitat metrics23. Skill-scores were calculated relative to the mean and
standard deviation of the habitat metrics over the climatological period. CRPSS
scores were calculated for the grand ensemble by considering the forecasts across
all 85 ensemble members. Confidence intervals around each of these metrics were
generated for each lead time by a bootstrapping approach i.e. 1) pairwise
resampling of years with replacement; 2) recalculating the appropriate metric; and
3) repeating the process 1000 times. We then interpret these confidence intervals in
terms of a one-tailed test, i.e. is the metric significantly greater than zero. In cases
where two skill metrics are compared (e.g. persistence correlation with forecast
correlation), we use the 1000 samples of each skill metric in a pairwise manner,
comparing the individual values to calculate the proportion of times that one
metric exceeds the other, which we interpret as the significance level.

Distribution and abundance data. Observations of distribution shifts suitable for
verifying forecasts can be challenging to obtain, particularly for widely distributed
species such as those considered here. While we were unable to find suitable

scientific monitoring datasets for bluefin tuna and mackerel, the sudden appear-
ance of these species beyond their traditional range has been well documented in
the scientific literature (see “Fish Species and Habitat Models” section above).

The distribution of blue whiting, however, has been the subject of routine
scientific monitoring surveys since the early 1980s: since 2004 these surveys have
been coordinated and standardised as the International Blue Whiting Spawning
Stock Survey65. Observations of blue whiting from this survey on a regular 2° × 1°
grid were first used to identify the core 99% of the distribution in each year and the
area occupied was then calculated. Estimates of the spawning stock biomass were
obtained from the ICES Standard Graph Database (http://standardgraphs.ices.dk/)
for the most recent stock assessment performed in 2020 (ICES SAG assessment key
13880).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Climate predictions and projections analysed in this study are available from the CMIP
data archives https://esgf-node.llnl.gov/projects/cmip6/. CESM-DPLE data are available
from http://www.cesm.ucar.edu/projects/community-projects/DPLE/. HadISST data is
available from https://www.metoffice.gov.uk/hadobs/hadisst/ and EN4 data from https://
www.metoffice.gov.uk/hadobs/en4/. ICES stock assessment data is available from http://
standardgraphs.ices.dk/. Figure source data are provided with this paper.

Code availability
The code used during the current study is available online: https://github.com/
markpayneatwork/PredictabilityEngine (https://doi.org/10.5281/zenodo.6451271)66.
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