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The Atlantic Niño phenomenon exhibits many similarities 
to the stronger El Niño-Southern Oscillation1,2 (ENSO) in 
the Pacific. The eastern equatorial Atlantic is anomalously 

warm, surface trade winds relax and rainfall shifts equatorward 
during positive Atlantic Niño3–6 events. The sea surface tempera-
ture (SST) anomalies in the equatorial cold tongue can reach 1.5 °C, 
and thermocline (20 °C isotherm) depth anomalies can exceed 30 m 
in boreal summer when the events peak. Opposite conditions are 
found during negative events. Coupled ocean–atmosphere interac-
tions—Bjerknes positive and delayed negative feedbacks—similar 
to those in the Pacific can explain most Atlantic Niño variability, 
but other mechanisms can contribute substantially to equatorial 
SST anomalies6,7. The Atlantic Niño has important impacts on the 
climate8–10 and marine biogeochemistry11,12 in the tropical Atlantic 
sector, on ENSO13–17 and on extra-tropical climate18–21.

Recent studies have shown a weakening of the Atlantic Niño 
variability in the past decades22–24. The changes in eastern equato-
rial Atlantic SST variability have been attributed to the combined 
effect of a weakening of the Bjerknes feedback23 (BF) and increased 
heat flux damping23,24 and to a basin-wide warming related to cli-
mate change22. These studies used observational and reanalysis 
datasets to investigate changes in the SST variability during the 
historical period.

Extensive analysis of the projections from the Coupled Model 
Intercomparison Project (CMIP) indicates that ENSO events will 
become stronger under global warming, but large uncertainties 
exist25–30. Large climate model biases in the tropical Atlantic sec-
tor31–34 have discouraged the climate community from carrying 
out a similar in-depth assessment of climate change in the area, 
as have the large uncertainties in the projected weakening of the 
Atlantic Meridional Overturning Circulation, in simulated Atlantic 
Multi-decadal Variability and in their influence on Atlantic Niño 
variability4. While robust shifts and weakening of Atlantic Niño tele-
connections under future global warming have been identified21,35, 
large uncertainties exist in the local rainfall response to a potential 

long-term weakening in Atlantic Niño variability36. However, we 
will show that model biases do not preclude a more robust assess-
ment of global warming impacts on Atlantic Niño variability than 
has been achieved in the Pacific.

Weakened variability of the equatorial Atlantic SST
To investigate how the SST variability in the eastern equatorial 
Atlantic will change under global warming, we use historical simu-
lations and the future highest emissions scenario simulations from 
the CMIP537 and CMIP638 archives. The comparison between the 
historical (1950–1999) and the highest emissions future scenario 
(2050–2099) in the CMIP models shows that the SST variability 
in the eastern equatorial Atlantic sector in June, July and August 
(JJA) is reduced in the majority of the CMIP models (33 out of 40). 
The reduction is statistically significant at the 95% level in most of 
the models (23 out of 33) and there is no statistically significant 
increase in variability in any model (Supplementary Fig. 1, Fig. 1a 
and Supplementary Table 1). The multi-model ensemble mean of 
CMIP5 (CMIP6) shows a reduction of the SST variability of 12% 
(17%) in the future scenario simulation with respect to the histori-
cal simulation (Supplementary Table 1). Considering all CMIP5 
and CMIP6 models, we have a most probable reduction of 14%, 
with an uncertainty of 17%.

The surface zonal winds (UAS, hereafter) in the western Atlantic 
sector also show a reduced future variability in the May, June and 
July (MJJ) season in the CMIP5 and CMIP6 models with only four 
out of 40 models showing increased variability, although not statis-
tically significant (Supplementary Fig. 1, Fig. 1d and Supplementary 
Table 1). The reduction in SST and UAS variability across the CMIP 
models is field significant with global P values as small as 10−15 and 
10−11, respectively, which underscores the robustness of this find-
ing (Methods). The standard deviation of the MJJ UAS anomalies 
averaged over the ensemble is reduced by 14% in CMIP5 and by 
17% in CMIP6, consistent with the amplitude of the reduction in 
JJA SST variability (Supplementary Table 1). The reduction of the 
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UAS variability in the western equatorial Atlantic is consistent with 
a more stratified atmosphere in a future warmer climate35.

The reduction of the standard deviation in both SST and 
UAS is more pronounced and localized in the ensemble mean 
of CMIP6 (Fig. 1c,f) than in CMIP5 (Fig. 1b,e). The weakening 
of the standard deviation of the MJJ zonal winds in the western 
equatorial Atlantic is followed by a weakening of the eastern equa-
torial Atlantic JJA SST variability in both the CMIP5 (Fig. 1b,e)  

and CMIP6 (Fig. 1c,f) ensemble means, suggesting that the 
reduced wind variability may be the cause of the reduced SST 
variability. However, the linear regression between the changes 
in these two variables across the ensemble of models explains 
only 33% of the variance (Supplementary Fig. 1). Consequently, 
there must be other mechanisms that play an important role in 
the reduction of the standard deviation of the SST in the eastern 
equatorial Atlantic.
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Fig. 1 | Weakening of the eastern equatorial Atlantic SST variability. a, Scatter plot of the JJA average standard deviation (Std.) of the SST anomalies 
(SSTa) for the historical period (1950–1999) in the x axis against the standard deviation of SSTa for the scenario period (2050–2099) in the y axis. The 
black line represents the no-change line and is added for easier interpretation. The blue (black) numbers correspond to the CMIP6 (CMIP5) models 
listed in Supplementary Table 1. The blue (black) circle shows the ensemble mean of CMIP6 (CMIP5) models. b,c, Difference between the means of the 
2050–2099 and the 1950–1999 periods standard deviation of the SST anomalies for the ensemble mean of CMIP5 (b) and CMIP6 (c) models, along the 
equator and averaged between 3° S and 3° N. d–f, The same as a–c for the MJJ average standard deviation of the UASa. Grey vertical bars in a and d are 
observational estimates of the standard deviation of the ATL3-averaged JJA SSTa and ATL4-averaged MJJ UASa over the period 1982–2017. The grey 
shading is the ± one standard deviation of the observational ensembles, composed of ERA5, ERSSTv5, OI-SST and HadISST for the SST and of ERA5, 
ERA-interim and NCEP-DOE Reanalysis 2 for the 10 m zonal winds. Months are identified by first letter in b, c, e and f. Contour lines in b, c and in e, f 
represent the change in SST variability and in UAS variability, respectively. Dashed (solid) contour lines indicate a reduction (increase) of the variability. 
Below the figure is a list of the CMIP6 and CMIP5 models used in this study.
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Weakened ocean–atmosphere coupling
We explore the relative importance of the dynamical and thermo-
dynamical drivers of the future changes in the SST, through the 
BF components and the net heat flux damping (Methods). The 
basin-wide weakening of the SST variability and winds in the future 
scenario simulation might be related to a weakening of the BF. As 
the changes in variability in CMIP5 and CMIP6 are rather similar, 
we will consider all CMIP models together in this section.

A majority of the CMIP models, 29 out of 40, agree on a small 
decrease of the first component of the BF; that is the linear regres-
sion of MJJ ATL4 zonal winds anomalies on the JJA ATL3 sea surface 
temperature anomalies (SSTa) (Supplementary Fig. 2a). The sec-
ond component of the BF, the thermocline zonal slope response to 
western equatorial wind anomalies, is reduced in 26 out of 40 mod-
els, but the overall decrease is small (Supplementary Fig. 2b). The 
third component of the BF, which accounts for the local response 
of SSTa to thermocline depth anomalies in the ATL3 region, shows 
the most consistent changes among the models, with 30 out of 40 
CMIP models showing a reduction of the third BF component  
(Fig. 2a). Both the CMIP5 and the CMIP6 multi-model ensemble 
means show a reduction in the strength of this relation in the future 
climate simulations (Fig. 2a).

There is a strong relation between changes in ATL3 JJA SST vari-
ability and the strength of the third BF component that explains 
63% of the spread across the CMIP models (Fig. 2b). Contrastingly, 
the changes in the first and second components of the BF explain 
only little variance of the change in SST variability, 20% and 19% 
(Supplementary Fig. 2c,d). Therefore, the reduced sensitivity of 
SST to local changes in thermocline depth dominates the reduc-
tion of SST variability in the eastern equatorial Atlantic in the 
future scenario. The relevance of the thermocline feedback for 
the reduced variability of Atlantic Niño in recent decades has also 
been observed22. However, the majority of the CMIP models largely 
underestimates the strength of this part of the feedback in historical  

simulations (Fig. 2a), a flaw already present in CMIP5 models39 that 
still persists in the latest CMIP6 generation. As shown below, this 
causes an overall underestimation of the future reduction of SST 
variability by the CMIP models. Nevertheless, we are confident in 
using these models to investigate climate change impacts on the 
Atlantic Niño, as they do simulate the essential dynamics of this 
phenomenon4,34 (Fig. 2a and Supplementary Fig. 2a,b).

Future mean changes of the tropical Atlantic SST
The strength of the third component of the BF, known as the 
thermocline feedback, is linked to the strength of climatological 
upwelling and vertical temperature stratification40. In particu-
lar, a weaker feedback can result from the weaker upwelling of 
relatively warmer subsurface waters. Despite a large intermodel 
spread, the SST change between historical and future scenario 
simulations shows a robust warming of the equatorial Atlantic 
cold tongue consistent with a weakening of the third BF compo-
nent (Supplementary Table 1). The future scenario simulations of 
CMIP5 and CMIP6 models present a warming (Supplementary 
Table 1) of the JJA in the eastern equatorial Atlantic of 2.70 ± 0.58 °C 
and 2.54 ± 0.79 °C, respectively. The CMIP5 and CMIP6 ensem-
bles show a mean warming of 2 °C to 3 °C in the tropical Atlantic 
sector between the historical and the future scenario simulations 
(Fig. 3a,b). The spatial patterns of the future warming rate in the 
multi-model ensemble mean of both CMIPs are rather similar and 
show a strong zonally homogeneous warming along the equato-
rial band. The trade winds are projected to weaken in most of 
the tropical Atlantic in CMIP5 and CMIP6, coinciding with the 
warming pattern (Fig. 3a,b). In the CMIP6 ensemble mean, the 
weakening of the trade winds is particularly strong in the eastern 
equatorial Atlantic and north of 10° N (Fig. 3b). Weaker equatorial 
trade winds will weaken equatorial upwelling and thereby contrib-
ute to a weaker third component of the BF.

The vertical section along the equatorial Atlantic clearly shows 
that future warming of the upper ocean will be greatest from the 
surface down to about 50 m in the eastern equatorial Atlantic and 
70 m in the western equatorial Atlantic in the CMIP5 ensemble 
mean (Fig. 3c). The warming of the upper levels is rather zonally 
homogeneous in both CMIP5 and CMIP6. However, this is not the 
case for the deeper levels where the eastern equatorial Atlantic is 
warming faster than the western side of the basin; this warming 
pattern could be related to changes in oceanic circulation associ-
ated with the subtropical cells and Atlantic Meridional Overturning 
Circulation41. The strong warming of the upper levels in the ensem-
ble mean of both CMIP generations leads to a deeper thermocline 
in the future scenario (Fig. 3c,d). As the thermocline gets deeper, 
the coupling between the thermocline and the SST weakens42. In 
other words, the variability in the SST is less sensitive to the vari-
ability of the thermocline, in agreement with the previously shown 
weakening of the third component of the BF (Fig. 2b). The reduc-
tion of the SST variability could also be affected by changes in the 
thermodynamical coupling between the ocean and the atmosphere. 
However, we find that in the CMIP models, the thermodynamical 
mechanism is not relevant for explaining the change in the SST vari-
ance between the future climate and the historical climate periods 
(Supplementary Fig. 3).

Impact of model biases
Coupled general circulation models show large biases in the tropical 
Atlantic region31–34,43,44 and, in particular, a warm SST bias in JJA in 
the eastern equatorial Atlantic, where projected changes in SST vari-
ability are largest. We find that the models with smaller bias have a 
stronger reduction in SST variability (Fig. 4a), a stronger reduction in 
the third BF component (that is, the thermocline feedback) (Fig. 4b)  
and a larger SST change between future scenario and historical (Fig. 4c).  
Therefore, biases in the models seem to suppress the reduction of 
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Fig. 2 | Dynamical drivers of the weakening of the SST variability.  
a, Changes between the historical and future scenario in the strength of 
the third component of the BF, computed as the linear regression of ATL3 
JJA SSTa onto the ATL3 JJA 20 °C isotherm depth (Z20) anomalies. The 
blue and black dots are the ensemble means of the CMIP6 and CMIP5 
ensemble, respectively. b, Linear regression between the change in JJA 
SSTa standard deviation and the change in the third BF component. The 
change here is defined as the difference of the mean of the scenario period 
(2050–2099) minus the mean of the historical period (1950–1999). The 
vertical grey line in a represents an estimation of the third component 
of the BF from observation and reanalysis datasets over the period 
1982–2017. The grey shading depicts the 95% confidence interval of the 
linear regression. The confidence interval is obtained by taking the 2.5th 
and 97.5th percentile of the distribution of the linear regressions of the 
10,000-time resampled datasets. The blue (black) numbers correspond to 
the CMIP6 (CMIP5) models listed in Supplementary Table 1.
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the SST variability in a future warmer climate through a reduction 
of the weakening of the thermocline feedback.

This relation with SST bias is expected. The strength of the equa-
torial cold tongue and the thermocline feedback are connected 
through the intensity of equatorial upwelling and upper ocean 
vertical temperature gradients. Thereby, a stronger cold tongue is 
associated with a stronger thermocline feedback (explained vari-
ance of 28%, Fig. 4b) and shallower thermocline4. Additionally, 
models with a stronger cold tongue (that is, less biased) show a 
stronger weakening of the cold tongue through a stronger weaken-
ing of the thermocline feedback (explained variances of 19% and 
28%, Fig. 4c,d); supporting previous studies linking the cold tongue 
bias and SST changes45,46. However, SST biases and changes in SST 
variability are not simply related to the thermocline depth biases 
(Supplementary Fig. 4a), although in most models, the eastern 
equatorial thermocline is too deep (Fig. 3c,d) and equatorial SST 
too warm (Supplementary Fig. 4b).

An emergent constraint analysis can be used to better estimate 
future changes when robust mechanisms exist47. These statistically 
significant and physically based relationships identify the strength 
of the Atlantic cold tongue as an emergent constraint for changes in 
Atlantic Niño variability (Methods). In particular, the cold tongue 
SST bias and changes in SST variability present a physically robust 
relation that explains almost 27% of the variance across the mod-
els (Fig. 4a). This emergent relation indicates that a reduction of 

0.18 °C in the standard deviation is most realistic, with a range of 
0.13–0.26 °C determined by uncertainties in the linear regression 
relation. The standard deviation of the observed ATL3-averaged 
JJA SSTa variability is about 0.54 °C during the period 1982–2017. 
Thus, accounting for model errors implies a reduction in variability 
of around 33%, with a range of 24–48% that is much larger than the 
14 ± 17% predicted when considering all models (Supplementary 
Table 1).

Concluding remarks
Eastern equatorial Atlantic SST variability is projected to weaken 
under global warming following the future highest emission sce-
nario simulations of the CMIP5 and CMIP6 models. Similarly, 
the variability of the zonal surface wind in the western equatorial 
Atlantic will also weaken and is related to the reduction in SST vari-
ability as it explains 33% of the intermodel variance, but it is not the 
exclusive reason. Instead, changes in the strength of ocean–atmo-
sphere interaction drive the weaker SST variability. The weakening 
of the third component of the BF, the so-called thermocline feed-
back, explains 63% of the change in the SST variability, independent 
of the change in surface wind variability.

We find that in a warmer future climate, the upper ocean layer 
will become deeper, which makes it less sensitive to upwelling 
anomalies, and equatorial trade winds weaken, which reduces mean 
upwelling strength and thus the impact of subsurface temperature 
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anomalies. This together leads to a weakening of the thermocline 
feedback because the thermocline decouples from the SST vari-
ability. This mechanism is remarkably different from the driving 
mechanisms of climate change in the equatorial Pacific, where 
the changes in the zonal SST gradient under greenhouse forcing 
are most relevant26,48. However, in contrast to our findings in the 
Atlantic, the models in the Pacific show little agreement on the sign 
of the change in SST gradient48.

The future weakening of the boreal summer SST variability in 
the eastern equatorial Atlantic shows large agreement across model 
ensembles of both CMIP generations. Moreover, the weakening 
of SST variability is found in the multi-model ensemble mean of 
the most commonly considered future scenarios (Supplementary  
Figs. 5 and 6) and in the majority of the individual models. 
Furthermore, although biased, many models simulate key aspects of 
the Atlantic Niño, including the BF. Therefore, we are confident in 
the robustness of our results.

The reduction of the SST variability in the future climate could 
be interpreted as an amplification of the already observed weaken-
ing in the recent decades that has been attributed to a weakening of 

the BF and a stronger thermal damping22–24. The role of the BF in 
the CMIP models is key for the weakening in SST variability. On the 
other hand, the CMIP models do not show a significant relation-
ship between changes in the surface net heat fluxes and changes in 
the SST variability. Furthermore, the models do not reproduce the 
strong reduction of SST variability in recent decades, simulating a 
gradual and up to 20 times smaller decrease of the interannual SST 
variability (Supplementary Table 2). This discrepancy with observa-
tions could be caused by internal climate variability or by model 
error and exists even considering the exceptionally strong 201949 
and 2021 Atlantic Niño events.

We find that the future weakening is stronger in the models with 
smaller SST biases. The amplitude of the projected SST variability is 
closely related to the strength of the CMIP model biases through a 
physically consistent mechanism. This emergent constraint predicts 
a most likely variability reduction of around 33%. Thus, reducing 
the biases in the models should increase the reliability of the cli-
mate projections in the tropical Atlantic sector and greatly improve 
our assessment of climate change in the region. We expect the 
reduced SST variability to have important climate impacts locally 
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between detrended model SST and detrended HadISST over the period 1950–1999. The grey shading around 0 °C bias is ± the standard deviation of the 
detrended ATL3-averaged JJA HadISST over the period 1950–1999. b, Scatter plot of JJA ATL3-averaged SST bias and BF3 change. c, Scatter plot of JJA 
ATL3-averaged SST bias and mean SST change. d, Scatter plot of JJA ATL3-averaged mean SST change and BF3 change. The change here is defined as 
the difference of the mean of the scenario period (2050–2099) minus the mean of the historical period (1950–1999). The grey shading depicts the 95% 
confidence interval of the linear regression. The confidence interval is obtained by taking the 2.5th and 97.5th percentile of the distribution of the linear 
regressions of the 10,000-time resampled datasets. The blue (black) numbers correspond to the CMIP6 (CMIP5) models listed in Supplementary Table 1.
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and globally, and current and future research should focus on the 
impacts on rainfall36, on marine productivity and on changes in the 
atmospheric circulation among others.
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Methods
Data. We use monthly mean model output obtained from the two latest CMIP 
generations: CMIP5 (ref. 37) and CMIP6 (ref. 38). We use the following fields 
from the CMIP models: SST, UAS, surface heat fluxes and ocean potential 
temperature. The latter is used to derive the depth of the 20 °C isotherm depth, 
which serves as a proxy for thermocline depth (Z20, hereafter). We use the 
Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST)50 to 
compute the model SST biases over the period 1950–1999. We also use an 
ensemble composed of the European Centre for Medium-range Weather 
forecast (ECMWF) Re-Analysis version 5 (ERA5)51, the NOAA Extended 
Reconstructed Sea Surface Temperature version 5 (ERSSTv5)52, the HadISST 
and the Optimum Interpolation SST analysis version 2 (OISSTv2)53 to estimate 
the ATL3-averaged JJA SST variability over the period 1982–2017. We use 
an ensemble composed of ERA5, ECMWF Re-Analysis (ERA-interim)54 and 
the NCEP-DOE Reanalysis 255 to estimate the ATL4-averaged MJJ 10 m zonal 
wind variability over the period 1982–2017. In addition, we use (OI-SST)56 
available at 1° by 1° horizontal resolution for the period 1981/12 to 2019/12; 
the temperature from Ocean Reanalysis System Version 4 (ORA-S4)57 from the 
European Centre for Medium-range Weather forecast (ECMWF) available at 
1° by 1° horizontal resolution for the period 1958/01 to 2017/12; and the zonal 
wind speed ERA-interim54 available at 0.5° by 0.5° horizontal resolution for the 
period 1979/01 to 2018/12 to estimate the three components of the BF over the 
period 1982/01–2017/12. We investigate future climate changes in the equatorial 
Atlantic using the future emission scenarios, RCP26, RCP45, RCP60, RCP85 and 
SSP126, SSP245, SSP370, SSP585, for CMIP5 and CMIP6, respectively. However, 
most of our results are based on the comparison between historical simulation 
and the highest emissions scenario simulations RCP85 and SSP585. The climate 
models used in this study are listed in Fig. 1 and Supplementary Table 1. We 
use one ensemble member for each of the models, and all model data have been 
interpolated to a common horizontal 1° × 1° grid.

Statistical metrics. We use the standard deviation of the JJA SSTa and the MJJ 
UASa as metrics to investigate the changes in variability between the simulated 
historical and future climate periods. The season JJA (MJJ) is chosen for the SST 
(UAS) variability as it is the season of largest SST (UAS) variability in CMIP5 
and CMIP6 models. For this analysis we use the 50-year periods January 1950 to 
December 1999 and January 2050 to December 2099 for the historical and  
scenario simulations, respectively. We calculate the monthly anomalies by 
subtracting the seasonal cycle evaluated for each time period. All linear trends  
are removed before analysis.

Statistical significance. The evaluation of the statistical significance of variability 
changes in a single model is based on an F-test. Additionally, we compute the 
group significance of two of our main findings: the projected reductions of 
the variability in SST and UAS. The group significance58 is computed using 
two different methods: (i) the Livezey–Chen59 procedure that checks for group 
significance based on the binomial distribution function. This method consists of 
counting the number of local tests that are significant. The global null hypothesis 
can be rejected if the probability of having obtained the observed number of 
local test rejections is not larger than the chosen global P value. This probability 
is computed from the binomial probability distribution function that takes as 
input the number of occurrences, the successes and the P value of choice. (ii) the 
Benjamini–Hochberg procedure60 that corrects the local P values using the False 
Discovery Rate method which accounts for potential false rejections of the null 
hypothesis. The global null hypothesis implies that all local null hypotheses are 
accepted. The individual local null hypothesis can be rejected if the corrected  
P value is smaller than the False Discovery Rate (set to 0.05 in our case). If one 
or more of the local null hypotheses is rejected, then we can reject the global null 
hypothesis and state that our statistics are group or field significant58 at the  
95% significance level.

Quantification of dynamical ocean–atmosphere feedbacks. We compute 
the three components of the BF that involve SST, thermocline depth and zonal 
surface winds61 to explore the potential dynamical drivers of the future changes 
in SST variability. The three components of the BF are estimated through 
linear regression of (1) western equatorial Atlantic (3° S–3° N, 40° W–20° W; 
ATL4) zonal wind stress anomalies upon eastern equatorial Atlantic (3° S–3° N, 
20° W–0°; ATL3) SST anomalies, (2) equatorial thermocline slope anomalies 
regressed onto ATL4 zonal wind stress anomalies and (3) SSTa in ATL3 upon 
thermocline depth anomalies in ATL3. The equatorial thermocline slope is 
computed as the difference between the mean Z20 in ATL3 and ATL4. Linear 
ordinary least squares regressions are used to perform the linear regression in this 
study. The two-sided 95% confidence interval of the regression slopes is based on 
a Student’s t-distribution.

Emergent constraint analysis. We perform an emergent constraint analysis 
to explore the impact of model biases on our findings. We use the SST bias 
in the JJA season during the historical period as our constraint. The SST bias 
is estimated as the difference between detrended model SST and detrended 

HadISST over the period 1950–1999. The grey shading around 0 °C bias is ± the 
standard deviation of the detrended ATL3-averaged JJA mean HadISST over 
the period 1950–1999. The intersection between the linear regression of the 
ATL3-averaged JJA SST variability changes onto the SST bias, and the 0 °C bias 
gives an indication on the potential reduction of the ATL3-averaged JJA SST 
variability if there were no SST bias in the CMIP models.

Data availability
The CMIP6 data can be found at https://esgf-data.dkrz.de/search/cmip6-dkrz/. 
The CMIP5 data can be found at https://esgf-node.llnl.gov/search/cmip5/. The 
ERA5 data can be found at https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels-monthly-means?tab=form. The ERSSTv5 data 
can be found at https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. The 
OI-SST data can be found at https://psl.noaa.gov/data/gridded/data.noaa.oisst.
v2.highres.html. The HadISST data can be found at https://www.metoffice.gov.
uk/hadobs/hadisst/. The NCEP-DOE Reanalysis 2 data can be found at https://
psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. The ORA-S4 data can be 
found at https://www.cen.uni-hamburg.de/en/icdc/data/ocean/easy-init-ocean/
ecmwf-ocean-reanalysis-system-4-oras4.html and the ERA-interim data can 
be found at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era-interim.

Code availability
The data analysis was conducted using the software CDO (https://code.mpimet.
mpg.de/projects/cdo/embedded/cdo.pdf), Matlab (https://www.mathworks.com/
products/matlab.html) and Python (https://www.python.org/). The code that 
was used for data processing, model analysis and figure production is available at 
https://doi.org/10.5281/zenodo.681543362.
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