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A B S T R A C T   

Introduction:: Necrotizing Soft Tissue Infections (NSTI) are severe infections with high mortality affecting a 
heterogeneous patient population. There is a need for a clinical decision support system which predicts outcomes 
and provides treatment recommendations early in the disease course. 
Methods:: To identify relevant clinical needs, interviews with eight medical professionals (surgeons, intensivists, 
general practitioner, emergency department physician) were conducted. This resulted in 24 unique questions. 
Mortality was selected as first endpoint to develop a machine learning (Random Forest) based prediction model. 
For this purpose, data from the prospective, international INFECT cohort (N = 409) was used. 
Results:: Applying a feature selection procedure based on an unsupervised algorithm (Boruta) to the  > 1000 
variables available in INFECT, including baseline, and both NSTI specific and NSTI non-specific clinical data 
yielded sixteen predictive parameters available on or prior to the first day on the intensive care unit (ICU). Using 
these sixteen variables 30-day mortality could be accurately predicted (AUC = 0.91, 95% CI 0.88–0.96). Except 
for age, all variables were related to sepsis (e.g. lactate, urine production, systole). No NSTI-specific variables 
were identified. Predictions significantly outperformed the SOFA score(p < 0.001, AUC = 0.77, 95% CI 
0.69–0.84) and exceeded but did not significantly differ from the SAPS II score (p = 0.07, AUC = 0.88, 95% CI 
0.83–0.92). The developed model proved to be stable with AUC  > 0.8 in case of high rates of missing data (50% 
missing) or when only using very early (<1 h) available variables. 
Conclusions:: This study shows that mortality can be accurately predicted using a machine learning model. It 
lays the foundation for a more extensive, multi-endpoint clinical decision support system in which ultimately 
other outcomes and clinical questions (risk for septic shock, AKI, causative microbe) will be included.   
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1. Introduction 

Necrotizing soft-tissue infections (NSTI) are rare, fulminant in-
fections, which affect a heterogeneous population in regards to age, sex, 
and the presence of comorbidities [1]. Both a single pathogen (mono-
microbial type) or multiple pathogens acting synergistically (poly-
microbial type) may be responsible, with different pathogenic 
mechanisms [2]. Besides local tissue destruction these pathogens cause 
systemic toxicity leading to sepsis, and in many cases septic shock 
(28–50%) [3,4]. If left untreated, NSTI will be fatal within days, making 
timely recognition an essential prerequisite for successful disease man-
agement. Current reported mortality is 10–29% [3,5–9]. Besides mor-
tality, long-term morbidity is extensive: functionally due to scars, 
amputations, fatigue, as well as psychosocially, which may including 
fear for recurrence, post-traumatic stress, depression and changes in 
social activities [10–13]. 

A major challenge in the treatment of NSTI is to provide adequate, 
individualized treatment as early as possible, while preventing over- 
treatment or under-treatment. Support for treatment decisions has 
until now been limited to simple algorithmic procedures in guidelines 
[14], and overall substantial differences exist internationally, which 
include optimal time to second surgery [15–17], and whether or not to 
use Hyperbaric Oxygen Therapy (HBOT) [17,16] or Intravenous 
Immunoglobulin (IVIG) [18,15,16]). To better tailor treatment on in-
dividual patients, various prediction scores for NSTI (or sepsis in gen-
eral) can be used. Diagnostically, the LRINEC score can be used to 
discern between patients with high and low risk of NSTI, although its 
usefulness is under debate [19,20]. Also, Acute Kidney Injury (AKI) 
[21,22] or risk of developing septic shock [23] may be predicted. The 
prediction of mortality, which is important for both treatment allocation 
as well as in the communication with patients and their families, is 
currently performed using general ICU mortality predictions (SOFA 
score [24], SAPS II [25], SAPS III [26], APACHE IV score [27]). It has 
however not been sufficiently studied how well these general mortality 
prediction scores perform among patients with NSTI. For example, one 
study found the SAPS II mortality prediction to be less in case of sepsis 
compared to other disorders for which patients were admitted to the ICU 
[28]. Also, the requirement of different predictive scoring systems to 
estimate different outcomes is not very practical. Ideally, a more 
comprehensive overview of expected disease characteristics, disease 
progression, and outcomes would be obtained early after admission. 

We believe the outlined shortcomings in efficacy (accuracy, appli-
cability) of general clinical scoring systems might be addressed by a so- 
called clinical decision support system (CDSS). A CDSS is a framework 
aiming to link health observations (e.g. clinical data, patient-reported 
outcomes) with health knowledge, thereby supporting the decision- 
making process by providing consultation to medical personnel. The 
predictive models underlying a CDSS can be trained for identification of 
disease, disease stages, patient stratification as well as recognising 
patient-specific patterns. They have shown promising results in the 
diagnosis of sepsis [29,30], and gain popularity as personalised medi-
cine tools [31]. A CDSS holds many advantages compared to the current 
scoring systems in use. They can be designed to be highly versatile, 
addressing different health endpoints at the same time, such as treat-
ment choices or prognostic outcomes. Creation of such a multiple- 
endpoint CDSS abrogates the need for individual scoring systems used 
in parallel. Furthermore, CDSS are flexible regarding the use of available 
information and can be tailored towards one specific disease. Another 
advantage is their circular, iterative design. By including a database 
management system in the CDSS framework new patients can easily be 
added or available information updated in an automated manner. This, 
in turn, makes predictions more and more accurate - so the system learns 
as it grows. 

A CDSS is expected to improve evidence based treatment, both by 
being used complementary to local guidelines, or by use on its own. 
Here, we present the first two steps towards the realization of a multiple- 

endpoint CDSS for improving NSTI patient care. Firstly, an overview of 
clinical needs was acquired by means of interviews with clinicians. 
Secondly, one of many identified relevant outcomes (mortality) was 
selected as the first to base our predictive system on, which provides 
proof of how a AI based CDSS could assist the decision-making process. 
In an attempt to compare our CDSS to current systems in use, we 
benchmarked its performance on the SAPS II and SOFA score at 
admission. 

2. Methods 

2.1. Ethics 

The INFECT study used in this work was approved by the national or 
regional ethics committees and data protections agencies in all partici-
pating countries. Written informed consent was obtained from every 
patient or their legal surrogate as soon as possible. In all cases, consent 
was obtained from the patient when possible. The data collection pro-
tocol has been published previously [41]. The INFECT project is regis-
tered at ClinicalTrials.gov, number NCT01790698. 

2.2. INFECT study cohort 

The INFECT data set utilized in this study is the result of an inter-
national, multicentre, prospective, cohort study of adult patients with 
NSTI included prospectively at five Scandinavian hospitals, which were 
referral centers for NSTI (INFECT study: ClinicalTrials.gov, number 
NCT01790698, posted on February 13, 2013 with the last update on 
April 23, 2018). A total of 409 patients above the age of 18 and with 
surgically confirmed NSTI cases were enrolled during February 2013 
and June 2017 in five different referral centres for patients with NSTI. 
Participating centres included: Rigshospitalet, Copenhagen University 
Hospital, Denmark; Karolinska University Hospital, Solna, Sweden; 
Blekinge Hospital, Karlskrona, Sweden; Sahlgrenska University Hospi-
tal, Gothenburg, Sweden, and Haukeland University Hospital, Bergen, 
Norway [41]. Data recorded in the INFECT study include patient de-
mographics, clinical data (blood samples, clinical findings), daily ICU 
data for a period of up to 7 days (fluid administration, medication, 
observed parameters), information regarding specific treatments and 
samples (surgical procedures, microbiological findings, HBO treat-
ments), as well as follow-up data (90-day follow-up, 365-day follow-up). 
All of this information is encoded in a total of approximately 2,400 
variables, making the INFECT study the largest prospective study in 
patients with NSTI to date. A detailed description on the INFECT cohort, 
including subject demographics, is offered by Madsen et al. [41]. 

2.3. Semi-structured interviews 

To create an overview of the various relevant clinical questions, 
semi-structured interviews were conducted (Fig. 1, Supplementary Note 
9). An interview guide was constructed with the PerMIT project group, 
an international consortium dedicated to demonstrating the potential 
benefits of personalized medicine approaches for NSTI and sepsis pa-
tients (https://permedinfect.com/, Grant No. 8113-00009B). Eight cli-
nicians (3 ICU specialists, 2 surgeons, 1 microbiologist, 1 ER specialist, 1 
general practitioner) were interviewed by one of the authors (JS). 
During the interviews, participants were asked which clinical questions 
they believed were most relevant in the various phases (pre-hospital, 
pre-ICU, ICU). When new questions emerged, those were added. Each 
participant was asked to attribute a score for relevance to each question; 
(3) highly relevant, (2) relevant, or (1) interesting but not relevant. In 
case of insufficient knowledge on a topic, it could be left blank. Some 
questions were added later in the process, in which case fewer partici-
pants scored it for relevance. The average score for the relevance of each 
of the questions was calculated for those that attributed a score to a 
question. 
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2.4. Data pre-processing 

2.4.1. Time-dissection of data set 
To identify the earliest possible time-point for mortality predictions, 

the data set was split into 11 subsets. Respective subsets comprised: 
ENTRY (upon hospital admission), PRE-SURGERY (prior to first surgical 
procedure), POST-SURGERY (posterior to first surgical procedure and 
prior to ICU admission), BASELINE (BL; first 24 h of ICU admission), 
ICU-day1 (first day in ICU), ICU-day2 (second day in ICU), ICU-day3, 
ICU-day4, ICU-day5, ICU-day6, ICU-day7. The ICU day follows the 
fluid charts, typically from 06.00 to 06.00. Day 1 is from admission time 
to the start of the fluid chart the next day, giving variable lengths of day 
1 from 0 to 24 h. To address this discrepancy between patients, the 
BASELINE data set was included, as variables therein pertain to time of 
ICU admittance and 24 h forth. 

2.4.2. Data cleaning & imputation 
The selected (binary) target was 30-day mortality (upon first 

admission to the study centre). All other clinical endpoints were 
omitted, as were patients with missing mortality data (n = 4), resulting 
in a sample of 349 alive and 56 deceased patients. Only data available 
upon ICU admission were included. Irrelevant or potentially biasing 
variables (e.g. PatientIDs, dates), duplicates, or variables with disput-
able accuracy due to subjectivity of the data (i.e. estimated Glasgow 
Coma Scale) were additionally removed from the analysis. Imputation 
was performed if the total number of missing entries per variable did not 
exceed 5%, while variables with higher percentages of missing data 
were discarded. Discarded variables included mostly cytokine mea-
surements, few preoperative lab values (hemoglobin, glucose, lactate, 
natrium), skin anesthesia and crepitus upon presentation, gas upon 
radiology, alcohol, and smoking status. To account for the mixed data 
types present in the data sets, we differentiated between continuous 
(numerical), binary, and categorical features during imputation. 

Continuous features were treated using the IterativeImputer from scikit- 
learn [42] and scaled through min–max normalisation. Missing binary 
information was completed using k-Nearest Neighbours method. Cate-
gorical features, such as hospital names, were imputed by the most 
frequently occurring value and encoded to numerical representation by 
an ordinal encoder. For the total numbers of variables and patients 
included in each subset after data cleaning and imputation see Supple-
mentary Note 3. 

2.4.3. Variable selection 
Relevant variables were selected using a combination of unsuper-

vised filtering and manual curation in a two-step process. Firstly, the 
preprocessed, time-dissected data sets underwent an unsupervised 
feature selection step, in which the full feature space was filtered using 
the python implementation of the Boruta algorithm [43]. Secondly, 
during optimization of the best-performing model, the filtered variables 
were manually curated, removing variables that were deemed imprac-
tical to use in clinical practice. A more detailed description on the 
feature selection procedure can be found in Supplementary Note 2. The 
original variable names in the INFECT data set, abbreviations used in 
this publication, and a more detailed clinical description of curated 
variables can be found in Supplementary Note 4. 

2.5. Classification 

2.5.1. Model development and validation 
Random Forest Classifiers (RFC) were utilized to predict patient 

mortality [44]. Robust internal validation was achieved by an iterative 
5-fold double cross-validation (DCV) approach (100 iterations). To 
quantify the quality of the classification models, we calculated and 
compared several different metrics, including areas under the receiver 
operating characteristic curve (ROC AUC), the F1 score, and the F2 score. 
Conversion of SAPS II and SOFA scores to probabilities of mortality was 

Fig. 1. A graphical display of the various (24 unique) treatment support questions (orange) and outcomes (green) which resulted from interviews with 8 clinicians 
from different involved specialties. The questions and outcomes are abbreviated, the full questions can be found in Supplementary Note 9. The questions and 
outcomes are distributed according to phase of the diagnostic and treatment process on the x-axis, and clinical relevance as attributed by the interviewed clinicians 
on the y-axis. In the first two phases (Pre-hospital phase and ED phase) arrows are placed which indicate how various questions are connected. Grey boxes are added 
where needed to improve the interdependence of various questions. 
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done using the relationship established by Le Gall et al. [32] and Moreno 
et al. [45], respectively. Confidence intervals of ROC curves were 
computed using bootstrapping. For the p-values, a two-sided test for 
difference in AUC was performed. For additional information on model 
development, validation and metrics please refer to Supplementary Note 
2. Model calibration curves can be found in Supplementary Note 8 
(Supplementary Fig. 7). 

2.5.2. Assessing model stability 
To assess the robustness of our systems towards missing variables, 

iterative random removal of variables was conducted. Therefore, a pre- 
specified number of variables (between 1 and m − 1 where m is the total 
number of variables in the subset) were removed from the data set and 
the reduced model was trained and validated using the same approach 
as during model development. 

2.5.3. Selection of surrogate variables 
Surrogate variables were determined by calculating the absolute 

Pearson correlation for selected (primary) variables with the whole 
feature space, excluding cross-correlation amongst primary variables 
themselves. The effects on model performance were assessed by 
replacing missing variables through surrogates, random variables, or 
removing them from the data set for all patients. Random variables were 
defined as features with absolute correlations of less than 5% with any 
primary variable (correlation < 0.05). Model training and validation 
were carried out using the iterative DCV described above (100 
iterations). 

2.6. Software 

For all classification algorithms the implementations available in the 
scikit-learn Python library (version 0.24.1) [42] were used. ROC curve 
bootstrapping and p-value calculation was done using the R package 
pROC [46]. 

3. Results 

3.1. Interviews 

The interviews yielded a total of 24 unique questions that were 
deemed relevant in the diagnostic and treatment process of patients with 

NSTI. All emerged during the first five interviews. Of these questions, 14 
were treatment support questions, and 10 were predictions (Fig. 1). 
Most questions (14) concerned the ICU phase, but relevant questions 
were also identified in the pre-ICU phase (7) and the pre-hospital phase 
(4). One question, regarding expected microbial etiology, was deemed 
relevant in both the ICU and pre-ICU phase, and therefore mentioned in 
both phases with a different score for relevance (Fig. 1). As can be 
observed in the table (Supplementary Note 9, Supplementary Table 4) 
and figure (Fig. 1), there was substantial variation (1.5–3.0) in the 
average scores for relevance attributed to the different questions. 
Although all questions are relevant to varying degrees, those that can 
potentially be answered by the available INFECT data set are of most 
relevance for the initial development of a CDSS on NSTI. Among the 
most relevant (score >2) of these questions were the prediction of 
causative microbes, chance of developing septic shock, chance of mor-
tality, and chance of developing Acute Kidney Injury (AKI). Of these 
relevant endpoints, the prediction of mortality was selected as the first 
to develop an artificial intelligence based approach within the CDSS. 

3.2. Earliest time point for prediction of mortality 

Comparison of prediction performances showed distinct differences 
between different time-dissected data (Fig. 2). Prediction with ICU data 
sets (BASELINE (BL) - ICU-day7) revealed that performance peaks using 
data acquired within the first 24 h in the ICU (BL), constituting the 
earliest time point for satisfactory mortality predictions. Therefore, the 
BL data set was selected to act as the base for further analysis. 

3.3. Model optimisation 

The BL model included a total of 20 variables derived through un-
supervised feature selection. To further refine our model, we conducted 
manual curation, leading to the removal of the variables ‘total blood 
product administration’ (impracticality), ‘total fluid administration’, 
‘systolic blood pressure’ (duplicate entries), ‘Glasgow Coma Score 
(GCS)’ (disputable accuracy due to subjectivity of the data), after which 
16 variables remained (Fig. 3A, Fig. 3B, Supplementary Note 4). Com-
parison of the predictive power of this model to the SAPS II and SOFA 
score (Fig. 3C) revealed excellent discriminatory power (AUC = 0.91 
(95% CI, 0.88–0.96)) of our system, outperforming the SOFA score 
(AUC = 0.77 (95% CI, 0.69–0.84)), p-value=5.07E − 05) and showing 

Fig. 2. Comparison prediction performances of time-dissected data sets. Scores displayed as average F1-score (macro averaging) over 100 double cross-validation 
iterations. Notches represent 95% confidence interval around the median. 
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slightly, yet not statistically significantly, higher AUC than the SAPS II 
score (AUC = 0.88 (95% CI, 0.83–0.92), p-value=0.07). 

Probabilities of death were derived and examined for all patients 
(Fig. 4A). The calculated likelihood of mortality for patients that are 
known to be alive (blue) ranges from 0% to around 40% with a domi-
nating peak at around 10%, illustrating the ability of our system to 
proficiently identify non-critically ill patients. In the probability distri-
butions of patients known to have deceased (orange), the picture is less 
distinct. Three subgroups of patients can be distinguished, with peaks 
around 20, 60, and 80% respectively. The lowest-performing subgroup 
constituted more often of individuals dying at later time points (after 
day 10), indicating that predictions are better for early deaths (Fig. 4B). 
It is evident from Fig. 4A that using an intuitive threshold of 50% for 
identifying patients with higher probabilities of death is not optimal and 
results in elevated numbers of false-negative predictions (Table 1). 
Determination of the optimal threshold (through trying to minimize the 
number of false negatives) instead yielded an ideal cutoff value of 30% 
(26%, red line), resulting in a good trade-off between the number of 
false-positive (FP) and false-negative (FN) predictions. 

3.4. Improving flexibility and usability 

To maximize the flexibility of the developed system the 16 selected 
variables were grouped into subsets according to their availability 
(Fig. 5A). Performance comparison showed that not all identified pre-
dictors needed to be included for the model to perform well (Fig. 5B). 
Using only variables obtainable within an hour in the ICU (BLOOD set) 

resulted in a satisfactory mortality prediction. Comparison to the SAPS II 
and SOFA score proved good discriminatory power with AUC < 0.8 
(Supplementary Note 5). 

In an everyday clinical setting, some variables may be missing. To 
simulate the effect of missing data a specified number of random vari-
ables from our data sets were iteratively removed and subsequently the 
predictive power of the perturbed set was measured (Fig. 6). This 
highlights the stability of our system towards missing information, with 

Fig. 3. Overview (A) manually curated variables (ordered alphabetically), (B) respective feature importance, and (C) prediction performances of manually curated 
variables displayed as ROC curve with SAPS/SOFA score as comparison. The relative importance displayed is the number of iterations (100) minus the (geometric) 
mean ranking of variables according to their importance during mortality predictions; rank 1 indicated the most important variable and rank 16 the least important. 

Fig. 4. Calculated probabilities of patient mortality. (A) CDSS predictions for patients known to be alive (blue) or deceased (orange). (B) Patients known to be 
deceased, plotted with regard to their time-point of death. Red line indicates the optimal decision threshold when aiming to minimise false-negative predictions. 
Densities calculated from the average probability of mortality for each patient over 100 iterations. 

Table 1 
Summary of model accuracy at different threshold levels. Highlighted in bold is 
the threshold identified as optimal trade-off between model precision and recall 
when aiming to reduce false-negatives as much as possible.  

Threshold [%] TN [%] FP [%] FN [%] TP [%] TPR TNR 

0 0 86 0 14 1.00 0.00 
10 62 24 1 13 0.93 0.72 
20 75 12 3 11 0.79 0.86 
30 80 6 4 10 0.71 0.93 
40 84 2 6 8 0.57 0.98 
50 85 1 7 7 0.50 0.99 
60 86 0 9 5 0.36 1.00 
70 86 0 11 3 0.21 1.00 
80 86 0 12 2 0.14 1.00 
90 86 0 14 0 0.00 1.00 
100 86 0 14 0 0.00 1.00 

TN - true negatives FP - false positives FN - false negatives. 
TP - true positives TPR - true positive rate TNR - true negative rate. 
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ROC AUC scores remaining high (AUC 0.9) even when removing more 
than half of the data (e.g. removing variables: AUC  = 0.89 (95% CI, 
0.88–0.89)). Similar results were obtained when using the early avail-
able BLOOD set (Supplementary Note 6). The gradual increase of stan-
dard deviation can be accredited to differences in the importance of 
variables (Fig. 3B). With higher missingness rates, important features in 
the successful prediction of patient mortality are more likely to be ab-
sent, and subsequently prediction performance decreases. 

Despite the robustness of our system, excluding (key) variables like 
urine, lactate, or amount of administered noradrenaline, has a negative 
impact on model performance. Therefore, alternative measurements 
replacing potentially missing variables were identified (Table 2). 
Exchanging variables with their highly correlated alternatives revealed 
no noticeable loss of performance, illustrating the relevance of the 
approach (Supplementary Note 7, Supplementary Fig. 5). In the case of 
multiple missing variables, compensation for absent values performs 
better than simply removing the missing values from the model. This is 
of special importance in scenarios of high missingness rates (> 60%) 
(Supplementary Note 7, Supplementary Fig. 6). 

4. Discussion 

This study provides a proof of concept for the development of a 

CDSS. After the identification of clinically relevant endpoints, one of the 
most relevant (30-day mortality) was taken as health endpoint to 
develop a machine learning based predictive system. The developed 

Fig. 5. Taking variable availability into account. (A) Variables included in subsets of BL model. Time points indicate the approximate time of availability in the ICU. 
(B) Prediction performances of models trained on selected variable subsets. 

Fig. 6. Assessment of model stability through iterative removal of random variables. 24 HOUR set with a total number of 16 variables. Displayed as average ROC- 
AUC score over 100 iterations. Notches represent 95% confidence interval around the median. 

Table 2 
Overview on selected surrogate variables and their respective Pearson correla-
tion to the original variable. Best performing surrogates are highlighted in bold.  

Original Surrogate Correlation 

Age - - 
Lowest systolic BP (BL) Skin bullae (preop) − 0.17 

Highest pulse (BL) Potassium (BL) 0.27 
Lactate (BL) Potassium (BL) 0.26 

Base excess (BL) Creatinine (preop) − 0.33 
INR (BL) Chronic liver disease 0.29 

Bicarbonate (BL) Creatinine (preop) − 0.36 
pH (BL) Creatinine (preop) − 0.37 

Bilirubin (BL) Chronic liver disease 0.26 
CRP (BL) CRP (preop) 0.67 

Creatinine (BL) Creatinine (preop) 0.88 
Platelets (BL) WBC (BL) 0.35 

Carbamide (BL) Creatinine (preop) 0.63 
Noradrenaline (BL) Potassium (BL) 0.22 

Total urine (BL) Creatinine (preop) − 0.25 
Total fluids (BL) Corticosteroid use 0.22  
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model was found to be proficient in predicting mortality with similar or 
better accuracy as general scoring systems in use. 

The variables important for prediction were diverse, ranging from 
demographics and vital measurements to information obtainable only 
after a certain time period spent in the ICU. However, all of the selected 
variables are well-known parameters when assessing the vital state of 
patients, especially in the ICU. Therefore, many of the identified vari-
ables can also be found in established scoring systems like the SAPS II 
(age, pulse, systolic blood pressure, bicarbonate, carbamide)[32], SOFA 
score (platelets, bilirubin, creatinine, urine output, vasopressor 
requirement)[25], or APACHE IV score (pH) [47]. Also previously 
described as associated with mortality were lactate [33,34], base excess 
[35], C-reactive protein [36], and INR [37]. Since fluid requirement 
increases depending on sepsis severity, this predictor was expected as 
well. More computationally-oriented publications comparable to the 
work carried out here have reported similar variables as informative, 
although their ranking of importance differs [38–40,29]. The fact that 
all selected variables were previously found to be associated with risk of 
mortality in sepsis patients validate the findings from this study. It is 
evident that the selected variables do not include information unique to 
NSTI, such as the type of causative micro-organism, anatomical location 
affected, or surgical findings. This is likely due to the fact that mortality 
of these patients in the ICU is primarily due to sepsis, making it logical 
that identified predictors are connected to the systemic disease rather 
than the local characteristics of NSTI. Estimation of NSTI specific end-
points, such as wound size or need for amputation, may yield a more 
specialised set of predictive variables. Our CDSS performed equally well 
as the long established SOFA and SAPS score. Reasons thereof can be 
various, and might include the fact that our CDSS uses more variables 
(16 variables versus 6 (SOFA) or 15 (SAPS II)). An observation sup-
porting this is that our performance suffers upon including less variables 
(Fig. 5B). Another explanation may lie in the algorithm underlying the 
predictive systems; in case of complex, non-linear interactions between 
variables, Random Forest may be better suited to model the data 
structure than the more simplistic logistic regression model used by the 
SOFA score. The final CDSS envisioned should not merely deliver a bi-
nary prediction of patient outcomes, but rather give information on the 
likelihood of an event, which can subsequently be interpreted by clini-
cians. When examining the calculated likelihood of death for each pa-
tient, the CDSS notably seems much more capable of identifying 
survivors than patients at risk. This pronounced difference might be 
ground in the heavy imbalance observed in the data set, potentially 
favoring the identification of alive patients. The observed clustering of 
deceased patients during the first week is explainable from a clinical 
perspective, since patients with refractory septic shock will often die in 
the first day after admission. Since those early deaths represent the 
majority of those who died during admission, it is unsurprising that most 
predictors selected are related to septic shock, and may therefore lead to 
the most accurate predictions for early deaths. 

The exceptional stability of our CDSS is of high clinical relevance, as 
missing measurements are frequent in a typical clinical setting. Strate-
gies of handling missing data when working with the existing scoring 
systems include imputation strategies such as i) replacement by a pre-
vious measurement or ii) assuming the value to be in the normal phys-
iological range. Although easy to use, both of these approaches may 
introduce erroneous data points potentially biasing predictions and 
should thus be applied with care. Not all variables possess equal 
explanatory power, leading to more and less favorable scenarios of data 
missingness. Suggestions of alternative measurements could mitigate 
the effect of missing variables, especially of those with high predictive 
power. Our results suggest that including alternative variables can be 
successfully implemented in the case of well-suited surrogates (e.g. with 
correlation > 0.5) and is of special importance when multiple mea-
surements are missing. 

By engaging the clinical specialists upfront through interviews, we 
were able to not only clearly identify clinical needs, but also rank them 

according to relevance. Although no classic qualitative approach was 
applied and the ranking system used is not a validated method, we 
believe the obtained overview is sufficient to act as a starting point for 
the design of a CDSS. However, although questions in all phases would 
ideally be supported, the data set utilised in this study limits the possi-
bilities to perform predictions for questions in the pre-ICU phases, 
mainly because of the lack of sufficient pre-hospital data as well as the 
lack of non-NSTI patients for diagnostic predictions. Therefore, the 
initial CDSS will be designed for use in the ICU, and include the most 
relevant questions in the ICU phase. When adjacent data sets become 
available, this could be expanded in the future. During model develop-
ment, we used the largest NSTI cohort available as of today. Unfortu-
nately, currently there is no NSTI cohort of comparable quality available 
which could have been used as a validation cohort. However, the au-
thors behind this study are in the process of planning a prospective study 
on Dutch patients to validate and improve the system. We believe that a 
prospective validation is the most appropriate study design to test a 
decision support system, as it not only gives feedback on the general-
izability of the model, but also on its practicality, as well as a direct 
comparison to clinicians’ decisions, ultimately justifying the incorpo-
ration of a CDSS. Despite the current lack of external validation we have 
taken care of deploying robust internal validation techniques during 
variable selection and model optimization phases. Imbalance of labels is 
a common problem when working with health care data. While resam-
pling techniques can be used to equalize ratios, these must be used with 
caution, as they artificially craft patients. We thus regarded the imbal-
ance ratio as ’natural’, as it reflects the real mortality rates and took care 
in maintaining the same ratio of labels during data splitting. The final 
framework uses a small number of predictors that are readily available 
in most ICUs, which facilitates international use. The possibility of 
providing various input variables allows this CDSS to be used at different 
stages throughout the treatment process. Despite the potential benefits 
of a CDSS it must be stressed that there is an inherent risk for misuse, as 
with any tools of this kind. Special care must be taken when relating 
probabilities to outcomes, as e.g. the intuitive classification threshold of 
50% does not translate to a 50% risk of mortality. Proper application and 
consistent monitoring of results will be essential in fostering trust in a 
DSS utilizing machine learning algorithms. 

To successfully deploy the comprehensive multiple-endpoint CDSS 
envisioned, future efforts will cover the inclusion of a data management 
system, the extension of the framework to cover a wider array of clinical 
questions identified in the interviews, and model deployment through a 
(free) web application. Additionally, the integration of more diverse 
data types will be aspired (e.g. -omics data) to refine patient stratifica-
tion and deduce underlying biological disease mechanisms. The lack of 
NSTI-specific information needed to estimate the risk of mortality pro-
vides the opportunity of testing the developed framework on a more 
general sepsis cohort, thereby broadening its field of application. 
Simultaneously, however, the inclusion of more NSTI-specific variables 
will enable the creation of a specialized framework addressing health 
endpoints unique to NSTI, such as the prediction of suspected microbi-
ological species. 

5. Conclusion 

In summary, our study lays the foundation of a comprehensive CDSS 
for NSTI patients. To the best of our knowledge, we have for the first 
time provided a qualitative assessment of the clinically relevant ques-
tions in NSTI patient care. By intertwining clinical and bioinformatic 
expertise, we have developed a tool proficient in predicting 30-day 
mortality for patients with NSTI admitted to the ICU. The possibility 
for users to adapt the input variables without severely affecting model 
performance is a major advantage compared to other clinical scoring 
systems currently in use. Furthermore, the framework itself can be easily 
expanded to other health endpoints related to NSTI diagnosis and 
treatment, thus creating a universal tool for improving NSTI care and 
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outcomes. 

6. Summary Table 

What was already known on the topic:  

• Resource allocation for NSTI patients in ICU care is complex and 
multifactorial  

• Not sufficient clinical tools exist for adequate NSTI patient care 

What this study added to our knowledge:  

• Identification and ranking of clinical problems at different stages in 
NSTI patient care  

• Machine learning algorithms outperform clinical scoring systems 
currently in use 

• A CDSS developed in close collaboration with clinicians has the po-
tential to assist and improve clinical decision making 
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