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We introduce a new subclass of chordal graphs that generalizes the class of split graphs, 
which we call well-partitioned chordal graphs. A connected graph G is a well-partitioned 
chordal graph if there exist a partition P of the vertex set of G into cliques and a tree T
having P as a vertex set such that for distinct X, Y ∈ P , (1) the edges between X and Y
in G form a complete bipartite subgraph whose parts are some subsets of X and Y , if X
and Y are adjacent in T , and (2) there are no edges between X and Y in G otherwise. A 
split graph with vertex partition (C, I) where C is a clique and I is an independent set is a 
well-partitioned chordal graph as witnessed by a star T having C as the center and each 
vertex in I as a leaf, viewed as a clique of size 1. We characterize well-partitioned chordal 
graphs by forbidden induced subgraphs, and give a polynomial-time algorithm that given a 
graph, either finds an obstruction, or outputs a partition of its vertex set that asserts that 
the graph is well-partitioned chordal.
We observe that there are problems, for instance Densest k-Subgraph and b-Coloring, 
that are polynomial-time solvable on split graphs but become NP-hard on well-partitioned 
chordal graphs. On the other hand, we show that the Geodetic Set problem, known to be
NP-hard on chordal graphs, can be solved in polynomial time on well-partitioned chordal 
graphs.
We also answer two combinatorial questions on well-partitioned chordal graphs that 
are open on chordal graphs, namely that each well-partitioned chordal graph admits a 
polynomial-time constructible tree 3-spanner, and that each (2-connected) well-partitioned 
chordal graph has a vertex that intersects all its longest paths (cycles).

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A central methodology in the study of the complexity of computationally hard graph problems is to impose additional 
structure on the input graphs, and determine if the additional structure can be exploited in the design of an efficient al-
gorithm. Typically, one restricts the input to be contained in a graph class, which is a set of graphs that share a common 
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Fig. 1. A well-partitioned chordal graph.

structural property. For example, the class of forests is the class of graphs that do not contain a cycle. Following the estab-
lishment of the theory of NP-hardness, numerous problems were investigated in specific classes of graphs; either providing 
a polynomial-time algorithm for a problem � on a specific graph class, while � is NP-hard in a more general setting, or 
showing that � remains NP-hard on a graph class. We refer to the textbooks [10,34] for a detailed introduction to the 
subject. A key question in this field is to find for a given problem � that is hard on a graph class A, a subclass B � A such 
that � is efficiently solvable on B. Naturally, the goal is to narrow down the gap A \ B as much as possible, and several 
notions of hardness/efficiency can be applied. For instance, we can require our target problem to be NP-hard on A and 
polynomial-time solvable on B; or, from the viewpoint of parameterized complexity [21,24], we require a target parameter-
ized problem � to be W[1]-hard on A, while � is in FPT on B, or a separation in the kernelization complexity [28] of �
between A and B.

Chordal graphs are arguably one of the main characters in the algorithmic study of graph classes. They find applications 
for instance in computational biology [55], optimization [57], and sparse matrix computations [32]. The class of split graphs 
is an important subclass of the class of chordal graphs. The complexities of computational problems on chordal and split 
graphs often coincide, see e.g., [6,7,27,48]; however, this is not always the case. For instance, several variants of graph (ver-
tex) coloring problems are polynomial-time solvable on split graphs and NP-hard on chordal graphs, see the works of Havet 
et al. [37], and of Silva [56]. Also, the Sparsest k-subgraph [61] and Densest k-subgraph [20] problems are polynomial-time 
solvable on split graphs and NP-hard on chordal graphs. Other problems, for instance the Tree 3-Spanner problem [9], are 
easy on split graphs, while their complexity on chordal graphs is still unresolved.

In this work, we introduce the class of well-partitioned chordal graphs, a subclass of chordal graphs that generalizes split 
graphs, which can be used as a tool for narrowing down complexity gaps for problems that are hard on chordal graphs, and 
easy on split graphs. The definition of well-partitioned chordal graphs is mainly motivated by a property of split graphs: the 
vertex set of a split graph can be partitioned into sets that can be viewed as a central clique of arbitrary size and cliques 
of size one that have neighbors only in the central clique. Thus, this partition has the structure of a star. Well-partitioned 
chordal graphs relax these ideas in two ways: by allowing the parts of the partition to be arranged in a tree structure 
instead of a star, and by allowing the cliques in each part to have arbitrary size. The interaction between adjacent parts 
P and Q remains simple: it induces a complete bipartite graph between a subset of P and a subset of Q . Such a tree 
structure is called a partition tree, and we give an example of a well-partitioned chordal graph in Fig. 1. We formally define 
this class in Section 3.

The main structural contribution of this work is a characterization of well-partitioned chordal graphs by forbidden in-
duced subgraphs. We also provide a polynomial-time recognition algorithm. We list the set O of obstructions in Fig. 2.

Theorem 1.1. A graph is a well-partitioned chordal graph if and only if it has no induced subgraph isomorphic to a graph in O. 
Furthermore, there is a polynomial-time algorithm that given a graph G, outputs either an induced subgraph of G isomorphic to a 
graph in O, or a partition tree of each connected component which confirms that G is a well-partitioned chordal graph.

Before we proceed with the discussion of the other results of this paper, we would like to briefly touch on the rela-
tionship of well-partitioned chordal graphs and width parameters. Each split graph is a well-partitioned chordal graph, and 
there are split graphs whose maximum induced matching width (mim-width) depends linearly on the number of vertices [46]. 
This rules out the applicability of any algorithmic meta-theorem based on one of the common width parameters such as 
tree-width or clique-width, to the class of well-partitioned chordal graphs. It is known that mim-width is a lower bound 
for them [58].

We now discuss the applicability and significance of well-partitioned chordal graphs by considering some algorithmic 
and combinatorial problems restricted to this graph class. First, we consider problems that are known to be polynomial-time 
solvable on split graphs and NP-hard on chordal graphs. It is not difficult to observe that the chordal graphs constructed 
in the NP-hardness proofs for vertex-coloring problems studied in the works [37,56], as well as the graphs in the NP-
hardness proofs for Densest k-Subgraph [20] and Sparsest k-Subgraph [61] are in fact well-partitioned chordal graphs. We 
immediately narrowed down the complexity gaps of these problems from Chordal \ Split to Well-partitioned chordal \
2



J. Ahn, L. Jaffke, O. Kwon et al. Discrete Mathematics 345 (2022) 112985
O 1 O 2 O 3 O 4

W1,t , t ≥ 0

t triangles

W2,t , t ≥ 0

t triangles

W3,t , t ≥ 0

t triangles

Hk , k ≥ 4

Fig. 2. The set of obstructions O for well-partitioned chordal graphs.

Split. In this work, we consider the Geodetic Set problem and show that the picture changes in this case. While the 
problem is known to be NP-hard on chordal graphs [22], we are able to devise a polynomial-time algorithm to solve it 
on well-partitioned chordal graphs. In this case, we narrowed down the complexity gap from Chordal \ Split to Chordal \
Well-partitioned chordal.

Besides narrowing the complexity gap between the classes of chordal and split graphs, the class of well-partitioned 
chordal graphs can also be useful as a step towards solving problems that are open for chordal graphs, but whose solution 
is known for split graphs thanks to their restricted structure. A natural path to a resolution of such questions on chordal 
graphs is to extend their solutions on split graphs to graph classes that are structurally closer to chordal graphs. Well-
partitioned chordal graphs exhibit a tree structure, which makes them a natural target in such a scenario. We consider two 
such questions. We show that every (2-connected) well-partitioned chordal graph has a vertex that intersects all its longest 
paths (cycles), while the corresponding question on chordal graphs has remained an open problem [5]. We also show that 
every well-partitioned chordal graph has a polynomial-time constructible tree 3-spanner, while the complexity of the Tree 
3-Spanner problem still remains unresolved on chordal graphs [9].

This paper is organized as follows. We give some preliminary definitions in Section 2, and introduce the class of well-
partitioned chordal graphs in Section 3. In Section 4, we prove the characterization of well-partitioned chordal graphs in 
terms of forbidden induced subgraphs which gives a polynomial-time recognition algorithm for the class. We consider the
Geodetic Set problem, the transversals of longest paths and cycles, and the Tree 3-Spanner problem on well-partitioned 
chordal graphs in Sections 5, 6, and 7, respectively. We conclude in Section 8.

2. Preliminaries

For a positive integer n, we let [n] := {i ∈ N | 1 ≤ i ≤ n}. All graphs considered here are simple and finite. For a graph 
G we denote by V (G) and E(G) the vertex set and edge set of G , respectively. For an edge uv ∈ E(G), we call u and 
v its endpoints. We say that G is isomorphic to H if there is a bijection φ : V (G) → V (H) such that for all u, v ∈ V (G), 
uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H). We say that H is a subgraph of G , denoted by H ⊆ G , if V (H) ⊆ V (G) and 
E(H) ⊆ E(G).

For graphs G and H , let G ∪ H be the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). For a vertex v of 
a graph G , NG (v) := {w ∈ V (G) | v w ∈ E(G)} is the set of neighbors of v in G , and we let NG [v] := NG(v) ∪ {v}. The degree
of v is degG(v) := |NG(v)|. Given a set X ⊆ V (G), we let NG (X) := ⋃

v∈X NG(v) \ X and NG [X] := NG(X) ∪ X . In all of the 
above, we may drop G as a subscript if it is clear from the context. The subgraph induced by X , denoted by G[X], is the 
graph (X, {uv ∈ E(G) | u, v ∈ X}). We denote by G − X the graph G[V (G) \ X], and for a single vertex x ∈ V (G), we use the 
shorthand ‘G − x’ for ‘G −{x}’. For two sets X, Y ⊆ V (G), we denote by G[X, Y ] the graph (X ∪ Y , {xy ∈ E(G) | x ∈ X, y ∈ Y }). 
We say that X is complete to Y if X ∩ Y = ∅ and each vertex in X is adjacent to every vertex in Y .

Let G be a graph. We say that G is trivial if |V (G)| = 1. A graph G is called complete if uv ∈ E(G) for all distinct vertices 
u, v ∈ V (G), and empty if E(G) = ∅. A set X ⊆ V (G) is a clique if G[X] is complete, and an independent set if G[X] is 
empty. A graph G is called bipartite if there is a 2-partition (A, B) of V (G), called a bipartition of G , such that A and B are 
3
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independent sets in G . A bipartite graph G on bipartition (A, B) is called complete bipartite if A is complete to B . For positive 
integers n and m, we denote by Kn,m a complete bipartite graph with bipartition (A, B) such that |A| = n and |B| = m. A 
graph is a star if it is either trivial or isomorphic to K1,n for some positive integer n.

A graph G is connected if for each 2-partition (X, Y ) of V (G) with X �= ∅ and Y �= ∅, there is a pair x ∈ X , y ∈ Y such that 
xy ∈ E(G), and it is disconnected otherwise. A connected component of G is a maximal connected subgraph of G . A vertex 
v ∈ V (G) is a cut vertex if G − v has more connected components than G . A graph is 2-connected if it does not contain a cut 
vertex. A block B of a graph G is a maximal 2-connected subgraph of G . A cycle is a connected graph all of whose vertices 
have degree 2. A graph that has no cycle as a subgraph is called a forest, a connected forest is a tree, and a tree of maximum 
degree at most 2 is a path. The vertices of degree one in a tree are called leaves and the leaves of a path are its endpoints. 
A connected subgraph of a tree is called a subtree.

A hole in a graph G is an induced cycle of G of length at least 4. A graph is chordal if it has no hole. A vertex v
is simplicial if NG(v) is a clique. We say that a graph G has a perfect elimination ordering v1, . . . , vn if vi is simplicial in 
G[{vi, vi+1, . . . , vn}] for each i ∈ [n − 1]. It is known that a graph is chordal if and only if it has a perfect elimination order-
ing [29]. We will use the following hole detecting algorithm and an algorithm to generate a perfect elimination ordering of 
a chordal graph.

Theorem 2.1 (Nikolopoulos and Palios [49]). Given a graph G, one can detect a hole in G in time O(|V (G)| + |E(G)|2), if one exists.

Theorem 2.2 (Rose et al. [54]). Given a graph G, one can generate a perfect elimination ordering of G in time O(|V (G)| + |E(G)|), if 
one exists.

A graph G is a split graph if there is a 2-partition (C, I) of V (G) such that C is a clique and I is an independent set. 
For a family F of graphs, the intersection graph of F is the graph with vertex set F and edge set {ST | S, T ∈ F , S �=
T , and V (S) ∩ V (T ) �= ∅}. It is well-known that every chordal graph is the intersection graph of subtrees of some tree [31].

3. Well-partitioned chordal graphs

A connected graph G is a well-partitioned chordal graph if there exist a partition P of V (G) and a tree T having P as a 
vertex set such that the following hold.

(i) Each part X ∈P is a clique in G .
(ii) For each edge XY ∈ E(T ), there are subsets X ′ ⊆ X and Y ′ ⊆ Y such that

E(G[X, Y ]) = {xy | x ∈ X ′, y ∈ Y ′}.
(iii) For each pair of distinct X, Y ∈ V (T ) with XY /∈ E(T ), E(G[X, Y ]) = ∅.

The tree T is called a partition tree of G , and the elements of P are called its bags. A graph is a well-partitioned chordal 
graph if all of its connected components are well-partitioned chordal graphs. We remark that a connected well-partitioned 
chordal graph can have more than one partition tree. Also, observe that well-partitioned chordal graphs are closed under 
taking induced subgraphs.

We say that a bag B in a partition tree T of G is a leaf bag if degT (B) = 1, and it is an internal bag if degT (B) > 1.
A useful concept when considering partition trees of well-partitioned chordal graphs is that of a boundary of a bag. Let 

T be a partition tree of a connected well-partitioned chordal graph G and let X, Y ∈ V (T ) be two bags that are adjacent 
in T . The boundary of X with respect to Y , denoted by bd(X, Y ), is the set of vertices of X that have a neighbor in Y , i.e.,

bd(X, Y ) := {x ∈ X | NG(x) ∩ Y �= ∅}.
By item (ii) of the definition of the class, we know that bd(X, Y ) is complete to bd(Y , X).

We now consider the relation between well-partitioned chordal graphs and other well-studied classes of graphs. It is 
easy to see that every well-partitioned chordal graph G is a chordal graph because every leaf of the partition tree of a 
component of G contains a simplicial vertex of G , and after removing this vertex, the remaining graph is still a well-
partitioned chordal graph. Thus, we may construct a perfect elimination ordering. We show that, in fact, well-partitioned 
chordal graphs constitute a subclass of substar graphs. A graph is a substar graph [18,39] if it is an intersection graph of 
substars of a tree.

Proposition 3.1. Every well-partitioned chordal graph is a substar graph.

Proof. Let G be a well-partitioned chordal graph with V (G) = {vi | i ∈ [n]} and a partition tree T . We will exhibit a substar 
intersection model for G . That is, we will show that there exists a tree F and substars S1, . . . , Sn of F such that vi v j ∈ E(G)

if and only if V (Si) ∩ V (S j) �= ∅.
4
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Let F be the tree obtained from T by the 1-subdivision of every edge. We denote by v XY ∈ V (F ) the vertex originated 
from the 1-subdivision of the edge XY ∈ E(T ). Note that N F (v XY ) = {X, Y }. For every vi ∈ V (G), we create a substar of 
F in the following way. Let B ∈ V (T ) be the bag containing vi . Then Si is a star with the center B and the leaf set 
{v BY | vi ∈ bd(B, Y ) for some Y ∈ V (T )}.

To see that this is indeed an intersection model for G , let vi v j ∈ E(G). If there exists B ∈ V (T ) such that vi, v j ∈ B , 
then B ∈ V (Si) ∩ V (S j). If vi and v j are not contained in the same bag, by item (ii), there exist A, B ∈ V (T ) such that 
vi ∈ A, v j ∈ B and AB ∈ E(T ). Then, v AB ∈ V (Si) ∩ V (S j). In both cases we have that V (Si) ∩ V (S j) �= ∅. Now suppose 
V (Si) ∩ V (S j) �= ∅. Note that, by construction, two stars that intersect either have the same center or they intersect in a 
vertex that is a leaf of both of them. If Si and S j have the same center B , then vi, v j ∈ B and hence, by item (i), vi v j ∈ E(G). 
If Si and S j have a common leaf, then this leaf is a vertex originated by the 1-subdivision of an edge. Then, there exist 
A, B ∈ V (T ) such that vi ∈ bd(A, B) and v j ∈ bd(B, A) and thus, by item (ii), vi v j ∈ E(G). �

From the definition of well-partitioned chordal graphs, one can also see that every split graph is a well-partitioned 
chordal graph. Indeed, if G is a split graph with clique C and independent set I , the partition tree of G will be a star, with 
the clique C as its central bag and each vertex of I contained in a different leaf bag. We show that, in fact, every starlike 
graph is a well-partitioned chordal graph. A starlike graph [35] is an intersection graph of substars of a star.

Proposition 3.2. Every starlike graph is a well-partitioned chordal graph.

Proof. Let G be a starlike graph with V (G) = {vi | i ∈ [n]} and let S be the host star of the substar intersection model of G
and Si be the substar of S associated with vertex vi . We may assume that G is connected and every vertex of S is contained 
in some substar of the intersection model.

We know that vi v j ∈ E(G) if and only if V (Si) ∩ V (S j) �= ∅. To show that G is a well-partitioned chordal graph, we will 
construct a partition tree for G . Let c be the center of S and f1, . . . , fk be its leaves. The partition tree T for G will be a 
star with center C and leaves F1, . . . , Fk such that C = {vi ∈ V (G) | c ∈ Si} and F j = {vi ∈ V (G) | V (Si) = { f j}}. Note that 
this is indeed a partition of the vertex set of G , since each substar of S either contains the center or consists of a single 
leaf and every vertex of S is contained in some substar of the intersection model. Now we show this is indeed a partition 
tree for G . Note that, by construction, each bag is a clique, so item (i) holds. Also note that, for every i, if v ∈ Fi , then 
NG(v) ⊆ Fi ∪ C , thus item (iii) of the definition holds. Finally, note that the vertices of Fi are true twins in G , since the 
substars of S corresponding to those vertices consist of a single vertex, namely f i . Hence, item (ii) also holds. We conclude 
that T is a partition tree for G . �

We will show that the graph O 1 in Fig. 2 is not a well-partitioned chordal graph. On the other hand, it is not difficult 
to see that O 1 is a substar graph. Also note that a path graph on 5 vertices is a well-partitioned chordal graph but not 
a starlike graph. These observations together with Propositions 3.1 and 3.2 show that we have the following hierarchy of 
graph classes between split graphs and chordal graphs:

split
graphs

�
starlike
graphs

�
well-partitioned
chordal graphs

�
substar
graphs

�
chordal
graphs

4. Characterization by forbidden induced subgraphs

This section is entirely devoted to the proof of Theorem 1.1. That is, we show that the set O of graphs depicted in 
Fig. 2 is the set of all minimal forbidden induced subgraphs for well-partitioned chordal graphs, and give a polynomial-time 
recognition algorithm for this graph class. For convenience, we say that an induced subgraph of a graph that is isomorphic 
to a graph in O is an obstruction for well-partitioned chordal graphs, or simply an obstruction.

In Subsection 4.1, we show that the graphs in O are not well-partitioned chordal graphs (Proposition 4.2). In Subsec-
tion 4.2, we introduce the notion of a boundary-crossing path which is the main tool for devising the polynomial-time 
recognition algorithm. The resulting algorithm is in fact a certifying algorithm [45], meaning that it always outputs a cer-
tificate together with the Yes/No-answer on any input. In case of a Yes-instance the algorithm provides a partition tree and 
in case of a No-instance it outputs an obstruction. We present it in Subsection 4.3, which also concludes the proof of the 
characterization by forbidden induced subgraphs for well-partitioned chordal graphs.

It is not difficult to observe that no graph in O contains another graph in O as an induced subgraph. We remark that 
the results in Subsection 4.1 imply that graphs in O are minimal graphs with respect to the induced subgraph relation that 
are not well-partitioned chordal graphs.

The diamond graph is the graph obtained from K4 by removing an edge. Note that for all s ∈ [3], t ≥ 0, the graph W s,t

in O (see Fig. 2) contains two diamonds as induced subgraphs.
5
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Fig. 3. Labellings of graphs O 1, O 2, O 3, and O 4.

4.1. Graphs in O are not well-partitioned chordal graphs

To argue that none of the graphs in O is a well-partitioned chordal graph, we make the following observation about 
cliques, which follows immediately from the definition of the partition tree.

Observation 4.1. Let G be a connected well-partitioned chordal graph, and D be a clique in G. In any partition tree T of G, there are 
at most two bags whose intersection with D is non-empty.

Given a connected well-partitioned chordal graph G and a clique D in G , we say that a partition tree of G respects D if 
it contains a bag having all the vertices of D . For a non-empty proper subset D ′ ⊂ D , we say that a partition tree splits D
into (D ′, D \ D ′) if it contains two distinct bags B1 and B2 such that B1 ∩ D = D ′ and B2 ∩ D = D \ D ′ . If a partition tree 
splits D into (D ′, D \ D ′) for some D ′ ⊂ D , then we may simply say that it splits D . By Observation 4.1, each partition tree 
either respects or splits each clique.

For s ∈ [3] and t ≥ 0, the vertex set of a block of W s,t having more than 3 vertices is called a wing of W s,t .

Proposition 4.2. The graphs in O are not well-partitioned chordal graphs.

Proof. For k ≥ 4, Hk is not a chordal graph, so it is not a well-partitioned chordal graph.
We prove an auxiliary claim that will be useful to show that the graphs O 1, O 2, O 3, and O 4 in O are not well-

partitioned chordal graphs.

Claim 4.2.1. Let H be a connected graph and D = {x, y, z} ⊆ V (H) be a clique in H.

(i) If there are adjacent vertices u, v ∈ V (H) \ D such that D � NH (u) and D � NH (v), and ∅ �= NH (u) ∩ D �= NH (v) ∩ D �= ∅, 
then H has no partition tree respecting D.

(ii) If there exists a vertex u ∈ V (H) \ D such that NH (u) ∩ D = {y, z}, then H has no partition tree splitting D into ({x, y}, {z}).
(iii) If there exist two non-adjacent vertices u, v ∈ V (H) \ D such that NH (u) ∩ D = D = NH (v) ∩ D, then H has no partition tree 

splitting D.

Proof. In order to prove item (i), suppose there is a partition tree T of H respecting D , and let B be the bag containing D . 
First, since D � NH (u) and D � NH (v), we have that neither v nor u is contained in B as B is a clique in H . Furthermore, 
since NH (u) ∩ D �= ∅ and NH (v) ∩ D �= ∅, and since uv ∈ E(G), it cannot be the case that u and v are in distinct bags, 
otherwise there would be a triangle in T . However, since NH (u) ∩ D �= NH (v) ∩ D , u and v cannot be in the same bag 
either.

Now we proceed to the proof of item (ii). Suppose there is a partition tree T of H that splits D into ({x, y}, {z}), and 
denote the two bags intersecting D by B1 and B2 with B1 ∩ D = {x, y} and B2 ∩ D = {z}. Since u is not adjacent to x, u /∈ B1. 
Since x ∈ NH (z) ∩ B1 and x /∈ NH (u) ∩ B1, u cannot be contained in B2 either. However, since uz, uy ∈ E(G), if u is in a bag 
other than B1 and B2, then {u, y, z} is a clique that intersects three distinct bags of T , a contradiction with Observation 4.1.

To conclude, we prove item (iii). Suppose there is a partition tree T of H that splits D , and again denote the two bags 
intersecting D by B1 and B2, with B1 ∩ D = {x, y} and B2 ∩ D = {z}. First, since u and v are non-adjacent, they cannot be 
in the same bag. Furthermore, there cannot be a bag B3 ∈ V (T ) \ {B1, B2} such that {u, v} ∩ B3 �= ∅: both u and v have 
neighbors in B1 and in B2, so this would imply the existence of a clique that intersects three distinct bags of T (B1, B2, 
and B3). The last case that remains is when u ∈ B1 and v ∈ B2. However, in this case, B1 contains a vertex that is adjacent 
to v , namely x, and a vertex that is not adjacent to v , namely u, a contradiction. �

Now, let us consider the obstructions O 1, O 2, O 3 and O 4 and assume that their vertices are labeled as in Fig. 3.
By Observation 4.1, each partition tree either respects or splits every clique. First, consider the graph O 1 and the clique 

D = {a, c, d}. Because of the vertices e and f , we can observe that, by Claim 4.2.1(i), no partition tree of O 1 respects D . 
Furthermore, we obtain by Claim 4.2.1(ii) that no partition tree splits D into ({a, c}, {d}), ({a, d}, {c}), and ({c, d}, {a}) because 
6
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of the vertices b, f , and b, respectively. Thus, no partition tree of O 1 splits D . Hence, O 1 does not admit a partition tree 
and therefore it is not a well-partitioned chordal graph.

For O 2, consider again the clique {a, c, d}. The arguments are similar to the previous ones, except that the vertex e
should be used to show that no partition tree splits {a, c, d} into ({a, d}, {c}).

For O 3, consider the clique D = {b, d, e}. Because of the vertices f and g , we observe that, by Claim 4.2.1(i), no partition 
tree of O 3 respects D . On the other hand, because of a and c, we observe that by Claim 4.2.1(iii), no partition tree of O 3
splits D . Hence, O 3 is not a well-partitioned chordal graph.

For O 4, consider the clique D = {b, c, g}. Because of the vertices d and h, we conclude by Claim 4.2.1(i) that no partition 
tree of O 4 respects D . Since N O 4 (d) ∩ D = {c, g} = D \ {b}, by Claim 4.2.1(ii), no partition tree of O 4 splits D into ({b, c}, {g})
or ({b, g}, {c}). Thus, we may assume that each partition tree splits D into ({c, g}, {b}). Let B1 and B2 be the two bags such 
that B1 ∩ D = {c, g} and B2 ∩ D = {b}.

Since hc /∈ E(G), we have that h /∈ B1. Also, since N O 4 (h) ∩ {g, c} �= N O 4 (d) ∩ {g, c}, h and d cannot be in the same bag. 
Thus, we conclude that d ∈ B1, otherwise {d, h, g} would be a clique that intersects three distinct bags of T . By considering 
the clique {b, c, f }, we conclude by symmetry that {a, b, f } is contained in the same bag, which is B2. As i is adjacent 
to neither a nor d, the bag containing i forms a clique with B1 and B2, a contradiction. We conclude that O 4 is not a 
well-partitioned chordal graph.

Next, we show that for all s ∈ [3] and t ≥ 0, W s,t is not a well-partitioned chordal graph. We first claim the following.

Claim 4.2.2. For each s ∈ [3] and t ≥ 0, W s,t has no partition tree having a bag whose intersection with its wing consists of only the 
cut vertex contained in the wing.

Proof. Suppose there are a partition tree T1 of W1,t , a bag B of T1, and a wing {a, b, c, d} of W1,t such that

• d is a cut vertex of W1,t ,
• ac /∈ E(W1,t), and
• B ∩ {a, b, c, d} = {d}.

This implies that there exists a bag B1 such that {a, b} ⊆ B1, otherwise {a, b, d} would be a clique that intersects three 
distinct bags of T1. Since a and c are non-adjacent, c /∈ B1 and, by assumption, c /∈ B . Thus {b, c, d} is a clique intersecting 
three bags of T1, a contradiction with Observation 4.1.

Next, suppose there is a partition tree T2 of W2,t that contains a bag B whose intersection with a wing of W2,t consists 
of the cut vertex alone. If the affected wing is isomorphic to the diamond, then the argument follows from the same 
argument given before. Now, assume that {a, b, c, d, e, f } is the affected wing where

• d is a cut vertex of W2,t ,
• {a, b, c, d} is a clique,
• NW2,t (e) = {b, c, f } and NW2,t ( f ) = {c, e}.

First, there must exist a bag B1 containing {a, b, c}, otherwise there is a clique violating Observation 4.1. Since neither e nor 
f is adjacent to a, {e, f } ∩ B1 = ∅. Since NW2,0(e) ∩ B1 �= NW2,0( f ) ∩ B1, by Claim 4.2.1(i), there is no partition tree respecting 
{a, b, c}, a contradiction.

The claim regarding W3,t follows as well by noting that the wings of W3,t are isomorphic to the one considered in the 
latter case. �

Claim 4.2.3. For each s ∈ [3] and t ≥ 0, W s,t is not a well-partitioned chordal graph.

Proof. Suppose that there is a partition tree T of W s,t . Let A1 and A2 be the wings of W s,t , and for i ∈ [2], let di be the 
cut vertex of W s,t contained in Ai . By Claim 4.2.2, we can assume that the bag B containing d1 satisfies |B ∩ A1| ≥ 2. If 
d1 = d2, then |B ∩ A2| = 1 and this contradicts Claim 4.2.2. So, we may assume that d1 �= d2.

Now, let C1, C2, . . . , Cm be the set of distinct triangles in W s,t such that

• d1 ∈ V (C1) \ V (C2) and d2 ∈ V (Cm) \ V (Cm−1), and
• for each i ∈ [m − 1], Ci and Ci+1 intersect.

For convenience, let C0 = A1 and Cm+1 = A2. Let q be the largest integer j in {0} ∪ [m] such that the bag containing 
V (C j) ∩ V (C j+1) has at least two vertices of C j . Such an integer exists since j = 0 satisfies the condition.

We claim that q = m. Assume that q < m, and let B be the bag containing V (Cq) ∩ V (Cq+1). Since q < m, Cq+1 is a 
triangle. Because of Observation 4.1, there must exist a bag containing two other vertices of Cq+1. This implies that q + 1
also satisfies the condition.

Thus, q = m. But this contradicts Claim 4.2.2 for the wing A2. We conclude that W s,t is not a well-partitioned chordal 
graph. �
7
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This concludes the proof of Proposition 4.2. �
4.2. Boundary-crossing paths

In the remaining part of this section, we present the certifying algorithm for well-partitioned chordal graphs. Here, we 
define the main concept of a boundary-crossing path and prove some useful lemmas.

Let G be a connected well-partitioned chordal graph with partition tree T . For a bag X of T and B ⊆ X , a vertex 
z ∈ V (G) \ X is said to cross B in X , if it has neighbors both in B and in X \ B . In this case, we also say that B has a crossing 
vertex. In the following definitions, a path X1 X2 · · · X� in T is considered to be ordered from X1 to X� . Let � ≥ 3 be an 
integer. A path X1 X2 · · · X� in T is called a boundary-crossing path if for each i ∈ [� − 2], there is a vertex in Xi that crosses 
bd(Xi+1, Xi+2). A boundary-crossing path X1 X2 · · · X� in T is exclusive if

• for each i ∈ [� − 2], there is no bag Y ∈ V (T ) \ {Xi} containing a vertex that crosses bd(Xi+1, Xi+2),

and it is complete if

• for each i ∈ [� − 2], bd(Xi, Xi+1) is complete to Xi+1.

If a boundary-crossing path is both complete and exclusive, then we call it good. For convenience, we say that any path in 
T with at most two bags is a boundary-crossing path.

The outline of the algorithm is as follows. First we may assume that a given graph G is chordal, as we can detect a hole 
in polynomial time using Theorem 2.1 if it exists. We may also assume that G is connected. So, it has a simplicial vertex v , 
and by an inductive argument, we can assume that G − v is a well-partitioned chordal graph. As v is simplical, G − v is also 
connected, and thus it admits a partition tree T . If v has neighbors only in a single bag of T , say B , then we can simply 
add one new bag B v only containing v to T , and add an edge between B v and B . The resulting tree is a partition tree of 
G . Thus, we may assume that v has neighbors in two distinct bags, say C1 and C2. Then our algorithm is divided into three 
parts:

1. We find a maximal good boundary-crossing path ending in C2C1 (or C1C2). To do this, when we currently have a good 
boundary-crossing path Ci Ci−1 · · · C2C1, find a bag Ci+1 containing a vertex crossing bd(Ci, Ci−1). If there is no such 
bag, then this path is maximal. Otherwise, we argue that in polynomial time either we can find an obstruction, or 
verify that Ci+1Ci · · · C2C1 is good.

2. Assume that CkCk−1 · · · C2C1 is the obtained maximal good boundary-crossing path. Then we can in polynomial time 
modify T so that no vertex crosses bd(C2, C1).

3. We show that if no vertex crosses bd(C2, C1) and no vertex crosses bd(C1, C2), then we can extend T to a partition 
tree of G .

Regarding Step 2, Lemma 4.3 shows that when a maximal good boundary-crossing path CkCk−1 · · · C2C1 is given, we can 
modify T to a partition tree T ′ such that no vertex crosses bd(C ′

2, C
′
1), where C ′

1 and C ′
2 are the bags in T ′ that correspond 

to C1 and C2 in T , respectively – in particular, they are the bags containing the neighbors of v .

Lemma 4.3. Let G be a graph, v be a simplicial vertex, and G − v be a connected well-partitioned chordal graph with partition tree 
T such that v has neighbors in two distinct bags C1 and C2 . Let CkCk−1 · · · C1 be a good boundary-crossing path for some integer 
k ≥ 3 such that no vertex crosses bd(Ck, Ck−1). One can in polynomial time output a partition tree T ′ of G − v that contains a good 
boundary-crossing path C ′

k−1Ck−2 · · · C1 such that no vertex in G − v crosses bd(C ′
k−1, Ck−2).

Proof. Since no vertex crosses bd(Ck, Ck−1), we can partition the neighbors of Ck in T into S1 and S2 such that for all S1 ∈
S1, we have that bd(Ck, S1) ⊆ Ck \ bd(Ck, Ck−1), and for all S2 ∈ S2, bd(Ck, S2) ⊆ bd(Ck, Ck−1). Let C ′

k := Ck \ bd(Ck, Ck−1)

and C ′
k−1 := Ck−1 ∪ bd(Ck, Ck−1). We obtain T ′ from T as follows.

• Remove Ck and Ck−1, and add C ′
k and C ′

k−1.
• Make all bags that have been adjacent to Ck−1 in T adjacent to C ′

k−1.
• Make all bags in S1 adjacent to C ′

k , and all bags in S2 adjacent to C ′
k−1.

Since bd(Ck, Ck−1) is complete to Ck−1, C ′
k−1 is indeed a clique in G − v , and thus we conclude that T ′ is a partition 

tree of G − v . Since C ′
k−1 contains Ck−1 and there is no edge between bd(Ck, Ck−1) and Ck−2, we know that C ′

k−1Ck−2 · · · C1

is a good boundary-crossing path. Clearly, T ′ can be obtained in polynomial time.
We claim that no vertex crosses bd(C ′

k−1, Ck−2). Suppose for a contradiction that there exists a vertex q ∈ V (G − v) \
C ′

k−1 that crosses bd(C ′
k−1, Ck−2). We consider two cases. First, we assume q also crosses bd(Ck−1, Ck−2). Since Ck · · · C1

is exclusive, any vertex crossing bd(Ck−1, Ck−2) is in bd(Ck, Ck−1). This means that q ∈ C ′ , a contradiction. Now assume 
k−1

8
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W −
1,t , t ≥ 0

r

t triangles

W −
2,t , t ≥ 0

r

t triangles

Fig. 4. The graphs W −
1,t and W −

2,t .

that q is a vertex in V (G − v) \ (Ck ∪ Ck−1) that is adjacent to a vertex in bd(C ′
k−1, Ck−2) = bd(Ck−1, Ck−2) and a vertex in 

C ′
k−1 \ Ck−1 = bd(Ck, Ck−1). But this would mean that there is a triangle in T , a contradiction.

We conclude that no vertex in G − v crosses bd(C ′
k−1, Ck−2). �

With respect to Step 3, we prove the following lemma.

Lemma 4.4. Let G be a graph, v be a simplicial vertex, and G − v be a connected well-partitioned chordal graph with partition tree T
such that v has neighbors in two distinct bags C1 and C2 . If every vertex of G − v crosses neither bd(C1, C2) nor bd(C2, C1), then one 
can output a partition tree for G in polynomial time.

Proof. Assume that every vertex of G − v crosses neither bd(C1, C2) nor bd(C2, C1). Let S1 denote all neighbors of C1 in 
T such that for each S1 ∈ S1, bd(C1, S1) ⊆ C1 \ bd(C1, C2); let S2 denote the set of all neighbors of C2 in T such that for 
each S2 ∈ S2, bd(C2, S2) ⊆ C2 \ bd(C2, C1); and let S12 := (NT (C1) ∪ NT (C2)) \ {C1, C2} \S1 \S2. Since every vertex of G − v
crosses neither bd(C1, C2) nor bd(C2, C1), for every S ∈ S12, we have NG(S) ∩ (C1 ∪ C2) ⊆ bd(C1, C2) ∪ bd(C2, C1).

Now, let C ′
1 := C1 \ bd(C1, C2), C ′

2 := C2 \ bd(C2, C1), and C ′
12 := bd(C1, C2) ∪ bd(C2, C1). We obtain T ′ from T as follows.

• Remove C1 and C2; add C ′
1, C ′

2, and C ′
12; make C ′

1 and C ′
2 adjacent to C ′

12.
• Make all bags in S1 adjacent to C ′

1, all bags in S2 adjacent to C ′
2, and all bags in S12 adjacent to C ′

12.
• Add a new bag Cv := {v}, and make it adjacent to C ′

12.

This yields a partition tree of G . �
Considering Step 1, we present some lemmas useful to find an obstruction. To describe subparts of the long obstructions 

W s,t , we use the graphs W −
1,t and W −

2,t as shown in Fig. 4. Note that each of them has a distinguished vertex r, that we call 
terminal.

The following lemma will be useful to find a wing at the beginning of a boundary-crossing path.

Lemma 4.5. Let G be a connected well-partitioned chordal graph with partition tree T . Let XY Z be a boundary-crossing path in T
such that bd(Y , Z) is complete to Z , and B be a non-empty proper subset of Z . Suppose that one of the following conditions does not 
hold.

(i) bd(X, Y ) is complete to Y .
(ii) There is no bag X ′ ∈ V (T ) \ {X} that contains vertices crossing bd(Y , Z).

Then one can in polynomial time output an induced subgraph H of G[X ∪ X ′ ∪ Y ∪ Z ] for some neighbor X ′ of Y in T (X ′ can be X) 
that is isomorphic to W −

1,1 or W −
2,0 , with the terminal vertex being mapped to a vertex in B, say rH , such that V (H) ∩ B = {rH }.

Proof. Let x ∈ bd(X, Y ) be a vertex that crosses bd(Y , Z). Choose a neighbor y in bd(Y , Z) and a neighbor y′ in Y \bd(Y , Z)

of x. Since bd(Y , Z) is complete to Z by assumption, y has a neighbor in B and a neighbor in Z \ B . Let z and z′ be these 
neighbors, respectively. We illustrate this situation and the following arguments in Fig. 5.

Suppose that (i) does not hold, i.e., that bd(X, Y ), in particular the vertex x, is not complete to Y . Then, x has a non-
neighbor, say y′′ in Y . If y′′ ∈ Y \ bd(Y , Z), then the set {x, y, y′, y′′, z, z′} induces a W −

1,1 with the terminal being mapped 
to z. See Fig. 5(a). On the other hand, if y′′ ∈ bd(Y , Z), then {x, y, y′, y′′, z, z′} induce a W −

2,0 with the terminal vertex being 
mapped to z. See Fig. 5(b). So, we may assume that (i) holds.

Now suppose that (ii) does not hold, and let x′ ∈ X ′ be a vertex crossing bd(Y , Z). Then, x′ has a neighbor y ∈ bd(Y , Z)

and a neighbor y′ ∈ Y \ bd(Y , Z). By (i), x is adjacent to y and y′ . Then G[X ∪ X ′ ∪ Y ∪ Z ] contains a W −
1,1 with terminal z. 

To illustrate, one may think of x′ in this case as y′′ in Fig. 5(a), except the difference that now x′ is in a new bag X ′ , while 
y′′ is in Y . �

We use the following lemmas to find an obstruction or extend a good boundary-crossing path.
9
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Fig. 5. Visual aides to the proof of Lemma 4.5.

Lemma 4.6. Let G be a connected well-partitioned chordal graph with partition tree T , and let B be a vertex set contained in some 
bag C1 . If CkCk−1 · · · C1 is a boundary-crossing path for some k ≥ 2 such that C2 has a vertex that crosses B in C1 , then one can in 
polynomial time either

1. output an induced subgraph H isomorphic to W −
s,t for some s ∈ [3] and t ≥ 0 with terminal v such that V (H) ∩ B = {v},

2. output an induced subgraph H isomorphic to W −
1,0 on {a, z1, z2, w} such that both a and w have degree 2 in H, a ∈ bd(D, C1)

for some neighbor bag D of C1 , z2 ∈ C1 \ B, and z1, w ∈ B, or
3. verify that it is a good boundary-crossing path such that bd(C2, C1) is complete to C1 and no other bag contains a vertex crossing 

B in C1 .

Proof. We prove the lemma by induction on k. Assume that k = 2. We check whether bd(C2, C1) is complete to C1. Suppose 
not. Let a ∈ bd(C2, C1). Let z1 be a neighbor of a in B , z2 be a neighbor of a in C1 \ B , and w be a non-neighbor of a in C1. 
If w ∈ C1 \ B , then {a, z1, z2, w} induces W −

1,0 with terminal z1, so we have outcome 1. If w ∈ B , then {a, z1, z2, w} induces 
a graph as in Case 2. Otherwise, we conclude that bd(C2, C1) is complete to C1.

We find a bag D �= C2 in T containing a vertex d crossing B in C1. If such a vertex d exists, then by the above procedure, 
we may assume that d is complete to C1. Then similarly to the previous case when w ∈ C1 \ B , again we can find an induced 
subgraph isomorphic to the diamond on {a, d, z1, z2}. If such a vertex does not exist, then we conclude that no other bag 
contains a vertex crossing B in C1.

Now, we assume that k ≥ 3. By the induction hypothesis, the claim holds for the path Ck−1Ck−2 · · · C1. We can assume 
that it is good.

We check whether bd(Ck, Ck−1) is not complete to Ck−1, and there is a bag D ∈ V (T ) \ {Ck} that has a vertex crossing 
bd(Ck−1, Ck−2). If neither of them holds, then we verified that CkCk−1 · · · C1 is good. Assume one of two statements holds.

Let X := bd(Ck−2, Ck−3) if k ≥ 4 and X = B if k = 3. Now, by applying Lemma 4.5 to the pair (CkCk−1Ck−2, X), we 
can find an induced subgraph H isomorphic to W −

1,1 or W −
2,0 in G[Ck ∪ D ∪ Ck−1 ∪ Ck−2] for some neighbor D of Ck−1

in T so that its terminal r is mapped to some vertex in X and V (H) ∩ X = {r}. If k = 3, then we have outcome 1 as 
X = B .

Assume k ≥ 4. Let xk−2 := r. We recursively choose pairs of vertices (xi, yi) for i ∈ [k − 3] as follows. First assume 
i > 1 and xi+1 is defined but xi is not defined yet. Then choose a neighbor xi of xi+1 in bd(Ci, Ci−1) and a neigh-
bor yi of xi+1 in Ci \ bd(Ci, Ci−1). Such neighbors exist since xi+1 crosses bd(Ci, Ci−1). When i = 1, choose a neighbor 
x1 of x2 in B and y1 of x2 in C1 \ B . Then it is clear that G[{x1, y1, x2, y2, . . . , xk−3, yk−3} ∪ V (H)] is isomorphic to 
W −

s′,t′ for some s′ ∈ {1, 2} and t′ ≥ 0 with terminal x1 such that its intersection on B is exactly x1. This concludes the 
lemma. �
Lemma 4.7. Let G1 and G2 be two connected graphs with non-empty sets A ⊆ V (G1) and B ⊆ V (G2), and G be the graph obtained 
from the disjoint union of G1 and G2 by adding all edges between A and B such that

• for every v ∈ B, G[V (G1) ∪ {v}] is isomorphic to W −
s,t with terminal v for some s ∈ {1, 2} and t ≥ 0,

• G2 is a well-partitioned chordal graph with partition tree T such that B is contained in some bag C1.

Then the following two statements hold.

(1) If CkCk−1 · · · C1 is a boundary-crossing path in T for some k ≥ 2 such that C2 has a vertex that crosses B in C1 , then one can 
in polynomial time either output an obstruction in G, or verify that it is a good boundary-crossing path such that bd(C2, C1) is 
complete to C1 and no other bag contains a vertex crossing B in C1 .
10
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(2) If C2C1 is a boundary-crossing path in T , that is, an edge in T , then one can in polynomial time either output an obstruction in G, 
or find a maximal good boundary-crossing path ending in C2C1 such that bd(C2, C1) is complete to C1 and no other bag contains 
a vertex crossing B in C1 .

Proof. We prove (1). Applying Lemma 4.6 to G2 and B , we conclude that in polynomial time, we can either

1. output an induced subgraph H isomorphic to W −
s,t for some s ∈ [3] and t ≥ 0 with terminal v such that V (H) ∩ B = {v},

2. output an induced subgraph H isomorphic to the diamond on {a, z1, z2, w} such that a, w have degree 2 in H , a ∈
bd(D, C1) for some neighbor bag D of C1, z2 ∈ C1 \ B , and z1, w ∈ B , or

3. verify that it is a good boundary-crossing path such that bd(C2, C1) is complete to C1 and no other bag contains a 
vertex crossing B in C1.

For case (i) it is clear that together with an obstruction W −
s,t in G[V (G1) ∪ {v}] given by the assumption, G[V (H) ∪ V (G1)]

is isomorphic to W s,t for some s ∈ [3] and t ≥ 0. For case (ii), we can observe that G[V (H) ∪ V (G1)] is an obstruction as 
follows.

• If G[V (G1) ∪ {z1}] is isomorphic to W −
1,0, then G[V (G1) ∪ {a, w, z1, z2}] is isomorphic to O 3.

• If G[V (G1) ∪ {z1}] is isomorphic to W −
2,0, then G[V (G1) ∪ {a, w, z1, z2}] is isomorphic to O 4.

• If G[V (G1) ∪ {z1}] is isomorphic to W −
s,t for some s ∈ {1, 2} and t ≥ 1, then G[V (G1) ∪ {a, w, z1, z2}] is isomorphic to 

W s′,t−1 for some s′ ∈ {2, 3}.

It shows the statement (1).
Now, we show (2). By (1), we can in polynomial time either output an obstruction, or verify that bd(C2, C1) is complete 

to C1 and no other bag crosses bd(C2, C1). For i ≥ 3, we recursively find a neighbor bag Ci of Ci−1 that has a vertex crossing 
bd(Ci−1, Ci−2). If there is such a bag Ci , then by applying (1), one can in polynomial time find an obstruction or guarantee 
that Ci Ci−1 · · · C1 is good. As the graph is finite, this procedure terminates with some path CkCk−1 · · · C1 such that it is good 
and no vertex crosses bd(Ck, Ck−1), unless we found an obstruction. �
4.3. A certifying algorithm

In this subsection, we prove the following.

Proposition 4.8. Given a connected graph G, one can in polynomial time either output an obstruction in G or output a partition tree 
of G confirming that G is a well-partitioned chordal graph.

As explained in Subsection 4.2, we mainly consider the case when G is a connected chordal graph, v is a simplicial 
vertex of G and G − v is a connected well-partitioned chordal graph with partition tree T , and v has neighbors in two 
distinct bags C1 and C2. Throughout the following, we assume these conditions on G , v , T , C1, and C2, so we omit them 
in the statements of lemmas and the like. We deal with the following three cases:

• Case 1: C1 ⊆ NG(v).
• Case 2: bd(C1, C2) \ NG(v) �= ∅ and C2 \ NG(v) �= ∅.
• Case 3: C1 \ NG(v) �= ∅, C2 \ NG(v) �= ∅ and NG (v) = bd(C1, C2) ∪ bd(C2, C1).

In each case, we show that one can in polynomial time either find an obstruction or output a partition tree of G . This is 
proved in Lemmas 4.9, 4.10, and 4.11, respectively. We give a proof of Proposition 4.8 assuming that these lemmas hold.

Proof of Proposition 4.8. We apply Theorem 2.1 to find a hole in G if one exists. We may assume that G is chordal. Since a 
graph is a well-partitioned chordal graph if and only if its connected components are well-partitioned chordal graphs, it is 
sufficient to show it for each connected component. From now on, we assume that G is connected. Using the algorithm in 
Theorem 2.2, we can find a perfect elimination ordering (v1, v2, . . . , vn) of G in polynomial time.

For each i ∈ [n], let Gi := G[{vi, vi+1, . . . , vn}]. Observe that since G is connected and vi is simplicial in Gi for all 
1 ≤ i ≤ n − 1, each Gi is connected. From i = n to 1, we recursively find either an obstruction or a partition tree of Gi . 
Clearly, Gn admits a partition tree. Let 1 ≤ i ≤ n − 1, and assume that we obtained a partition tree T of Gi+1.

Since vi is simplicial in Gi , NGi (vi) is a clique. This implies that there are at most two bags in V (T ) that have a non-
empty intersection with NGi (vi). If there is only one such bag in V (T ), say C , we can construct a partition tree of Gi by 
simply adding a bag consisting of vi and making it adjacent to C .

Hence, from now on, we can assume that there are precisely two distinct adjacent bags C1, C2 ∈ V (T ) that have a 
non-empty intersection with NGi (vi). As NGi (vi) is a clique, we can observe that NGi (vi) ⊆ bd(C1, C2) ∪ bd(C2, C1).
11
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Fig. 6. Proof of Claim 4.9.1.

If C1 ⊆ NGi (vi) or C2 ⊆ NGi (vi), then by Lemma 4.9, we can in polynomial time either output an obstruction or output 
a partition tree of Gi . Thus, we may assume that C1 \ NGi (vi) �= ∅ and C2 \ NGi (vi) �= ∅. If bd(C1, C2) \ NGi (vi) �= ∅ or 
bd(C2, C1) \ NGi (vi) �= ∅, then by Lemma 4.10, we can in polynomial time either output an obstruction or output a partition 
tree of Gi . Thus, we may further assume that bd(C1, C2) \ NGi (vi) = ∅ and bd(C2, C1) \ NGi (vi) = ∅. Then by Lemma 4.11, we 
can in polynomial time either output an obstruction or output a partition tree of Gi , and this concludes the proposition. �

Now, we focus on proving the three lemmas.

Lemma 4.9. If C1 ⊆ NG(v), then one can in polynomial time either output an obstruction in G or output a partition tree of G confirm-
ing that G is a well-partitioned chordal graph.

Proof. Since v is a simplicial vertex, we have that bd(C1, C2) = C1. If NG(v) ∩ C2 = bd(C2, C1), then we can obtain a 
partition tree of G by adding v to C1. Thus, we may assume that NG (v) ∩ C2 �= bd(C2, C1).

Assume that C2 = bd(C2, C1). Since bd(C2, C1) is complete to C1, we have that C1 ∪ C2 is a clique. Hence, we can obtain 
a partition tree T ′ of G from T by removing C1 and C2, adding a new bag C∗ = C1 ∪ C2, making all neighbors of C1
and C2 in T adjacent to C∗ , and adding a new bag C v := {v} and making Cv adjacent to C∗ . Thus, we may assume that 
C2 \ bd(C2, C1) �= ∅.

Since C1 = bd(C1, C2), no vertex of G − v crosses bd(C1, C2). If no vertex of G − v crosses bd(C2, C1), then by Lemma 4.4, 
we can obtain a partition tree of G in polynomial time. Thus, we may assume that there is a bag C3 having a vertex that 
crosses bd(C2, C1). So, C3C2C1 is a boundary-crossing path. We will find either an obstruction or a maximal good boundary-
crossing path ending in C3C2C1. We first check that C3C2C1 is good, unless some obstruction from O appears.

Claim 4.9.1. Let z1 ∈ NG(v) ∩ C1 , z2 ∈ NG(v) ∩ C2 , w ∈ bd(C2, C1) \ NG(v), and a ∈ C2 \ bd(C2, C1).

(i) If there is a vertex x ∈ V (G) \ {v, a, w, z1, z2} such that NG(x) ∩ {v, a, w, z1, z2} = {a, w}, then G[{v, a, w, z1, z2, x}] is isomor-
phic to O 1 .

(ii) If there is a vertex x ∈ V (G) \ {v, a, w, z1, z2} such that NG(x) ∩{v, a, w, z1, z2} = {a, z2}, then G[{v, a, w, z1, z2, x}] is isomor-
phic to O 2 .

(iii) If there is a pair of distinct non-adjacent vertices x, y ∈ V (G) \ {v, a, w, z1, z2} such that NG(x) ∩ {v, a, w, z1, z2} = NG(y) ∩
{v, a, w, z1, z2} = {a, w, z2}, then G[{v, a, w, z1, z2, x, y}] is isomorphic to O 3.

Proof. It is straightforward to check it; see Fig. 6. �

Claim 4.9.2. One can in polynomial time output an obstruction or verify that C3C2C1 is good.

Proof. We consider the bag C3, and first check whether bd(C3, C2) is complete to C2. If so, then we are done. Otherwise, 
choose a vertex p ∈ bd(C3, C2), and a non-neighbor q of p in C2. As p crosses bd(C2, C1), p has a neighbor a in C2 \
bd(C2, C1) and a neighbor b in bd(C2, C1). There are three possibilities; q is contained in one of NG (v) ∩ C2, bd(C2, C1) \
NG(v), or C2 \ bd(C2, C1). Let z1 ∈ NG(v) ∩ C1.

If q and b are in distinct parts of NG (v) ∩ C1 and bd(C2, C1) \ NG(v), then G[{p, q, z1, a, b, v}] is isomorphic to O 1 or O 2
by Claims 4.9.1(i) and (ii). Assume q and b are in the same part of NG (v) ∩ C1 or bd(C2, C1) \ NG(v). Then by the previous 
argument, we may assume that p is complete to one of the sets NG (v) ∩ C1 or bd(C2, C1) \ NG(v) that does not contain 
q. Then by choosing a vertex in this set, we can again output O 1 or O 2. Thus, we may assume that q is contained in 
C2 \ bd(C2, C1) and p is complete to bd(C2, C1). Then q �= a and by using vertices from NG (v) ∩ C1 and bd(C2, C1) \ NG(v)

together with {a, p, q, v, z1}, we can output O 3 by Claim 4.9.1(iii).
To verify whether C3C2C1 is exclusive, we check if there exists another neighbor bag D �= C3 of C2 having a vertex q that 

crosses bd(C2, C1). If there is such a vertex q, then by applying the previous procedure, we may assume that q is complete 
to C2. Thus, by using vertices from each of NG (v) ∩ C2, bd(C2, C1) \ NG(v), and C2 \ bd(C2, C1) together with {p, q, z1, v}, 
we can output O 3 by Claim 4.9.1(iii). Otherwise, C3C2C1 is a good boundary-crossing path. �
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Fig. 7. Illustration of some obstructions appearing in the proof of Claim 4.10.1.

By Claim 4.9.2, we may assume that C3C2C1 is good. If no bag contains a vertex crossing bd(C3, C2), then C3C2C1 is a 
maximal good boundary-crossing path. So, we may assume that there is a bag C4 containing a vertex crossing bd(C3, C2).

We choose z1 ∈ NG(v) ∩ C1, z2 ∈ NG(v) ∩ C2, w ∈ bd(C2, C1) \ NG(v), and a ∈ C2 \ bd(C2, C1). To apply Lemma 4.7, let 
G1 = G[{v, z1, z2, w, a}] and G2 be the component of G − V (C2) that contains C3 and G ′ = G[V (G1) ∪ V (G2)]. It is clear 
that G ′ can be obtained from the disjoint union of G1 and G2 by adding edges between bd(C3, C2) and {w, a, z2}. Also, for 
each vertex p ∈ bd(C3, C2), {p} ∪ V (G1) is a wing of W2,0 with terminal p.

Thus, by (2) of Lemma 4.7, we can in polynomial time either output an obstruction, or find a maximal good boundary-
crossing path ending in C4C3 in G2 such that bd(C4, C3) is complete to C3 and no other bag contains a vertex crossing C3. 
Thus, in the latter case, we obtain a maximal boundary-crossing path ending in C2C1 in G − v . We now repeatedly apply 
Lemma 4.3 to modify T along this path and obtain a partition tree T ′ of G − v such that no vertex crosses bd(C2, C1). Note 
that, for simplicity, we call again C1 and C2 the bags of T ′ containing the neighbors of v . We can now apply Lemma 4.4 to 
obtain a partition tree of the entire graph G in polynomial time. �
Lemma 4.10. If bd(C1, C2) \ NG(v) �= ∅ and C2 \ NG(v) �= ∅, then one can in polynomial time either output an obstruction in G or 
output a partition tree of G confirming that G is a well-partitioned chordal graph.

Proof. We choose a neighbor z1 of v in bd(C1, C2), a neighbor z2 of v in bd(C2, C1) and a non-neighbor x of v in bd(C1, C2). 
We first consider the case when bd(C1, C2) = C1.

Case 1 (bd(C1, C2) = C1). Note that no vertex in G − v crosses bd(C1, C2). If no vertex in G − v crosses bd(C2, C1), then we 
can obtain a partition tree of G from T by Lemma 4.4. We may assume that there is a bag C3 containing a vertex a that 
crosses bd(C2, C1).

Claim 4.10.1. One can in polynomial time output an obstruction or verify that C3C2C1 is good.

Proof. As a crosses bd(C2, C1), a has a neighbor both in C2 \ bd(C2, C1) and in bd(C2, C1). Let b1 and b2 be neighbors of a
in C2 \ bd(C2, C1) and bd(C2, C1), respectively.

Assume that a and v have no common neighbors. Then b2 is not adjacent to v and z2 is not adjacent to a. So, 
G[{a, b1, b2, z2, z1, v}] is isomorphic to O 1, see Fig. 7(a). Thus, we may assume that a and v have the common neighbor in 
bd(C2, C1). We assume that z2 is a common neighbor.

Now suppose that there is a vertex w ∈ C2 \bd(C2, C1) that is not adjacent to a. Recall that since NG (v) ∩C2 ⊆ bd(C2, C1), 
we have that v is not adjacent to w . Thus, we can output a W1,0 on {v, x, z1, z2, a, b1, w}, see Fig. 7(b). So, we may assume 
that a is complete to C2 \ bd(C2, C1).

Assume that there is a vertex w ∈ bd(C2, C1) that is not adjacent to a. Note that v may or may not be adjacent to w . If 
v is adjacent to w , then G contains O 3 as an induced subgraph, and if v is not adjacent to w , then G contains O 2 as an 
induced subgraph; both these cases are illustrated in Fig. 8. Otherwise, we conclude that a is complete to C2.

To check whether C3C2C1 is exclusive, we find a bag D �= C3 containing a vertex w crossing bd(C2, C1). If there is no 
such a vertex, then it is exclusive. Assume that such a vertex w exists. By repeating the above argument, we may assume 
that w is complete to C2. Then, G[{v, z1, z2, x, a, b1, w}] is isomorphic to W1,0 (see Fig. 7(b), but note that in this case 
w /∈ C2). �

By Claim 4.10.1, we may assume that C3C2C1 is good. Let a ∈ C2 \ bd(C2, C1). If no bag contains a vertex crossing 
bd(C3, C2), then C3C2C1 is a maximal good boundary-crossing path. So, we may assume that there is a bag C4 containing a 
vertex crossing bd(C3, C2).
13
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Fig. 8. Illustration of some more obstructions appearing in the proof of Claim 4.10.1. Note that the edge between v and w may or may not be present, 
depending on which we either have an O 3 or an O 2 as an induced subgraph in G .

To apply Lemma 4.7, let G1 = G[{v, x, z1, z2, a}] and G2 be the component of G − V (C2) containing C3 and G ′ =
G[V (G1) ∪ V (G2)]. It is clear that G ′ can be obtained from the disjoint union of G1 and G2 by adding edges between 
bd(C3, C2) and {a, z2}. Observe that for each vertex p ∈ bd(C3, C2), G[{p, a, v, z1, z2, z}] is isomorphic to W −

1,1 with terminal 
p.

By (2) of Lemma 4.7, we can in polynomial time either output an obstruction, or find a maximal good boundary-crossing 
path ending in C4C3 in G2 such that bd(C4, C3) is complete to C3 and no other bag contains a vertex crossing C3. Thus, 
in the latter case, we obtain a maximal boundary-crossing path ending in C2C1 in G − v . We can now repeatedly apply 
Lemma 4.3 to modify T along this path and obtain a partition tree T ′ for G − v such that no vertex crosses bd(C2, C1). 
Note that, for simplicity, we call again C1 and C2 the bags of T ′ containing the neighbors of v . We can now apply Lemma 4.4
to obtain a partition tree for the entire graph G in polynomial time.

Case 2 (C1 \ bd(C1, C2) �= ∅). If there is no vertex crossing bd(C1, C2) and no vertex crossing bd(C2, C1) in G − v , then by 
Lemma 4.4, one can output a partition tree of G from T in polynomial time. Recall that we have neighbors of v , namely 
z1 ∈ bd(C1, C2) and z2 ∈ bd(C2, C1), and a non-neighbor of v , namely x ∈ bd(C1, C2).

Claim 4.10.2. If there is a vertex crossing bd(C1, C2) or bd(C2, C1), then one can in polynomial time output an obstruction or output 
a partition tree of G from T confirming that G is a well-partitioned chordal graph.

Proof. First we consider the case in which only bd(C1, C2) has a crossing vertex. Let a be a vertex in a bag C3 ∈ V (T ) \
{C1, C2} that crosses bd(C1, C2). Let b ∈ C1 \ bd(C1, C2) be a neighbor of a. Note that a neighbor of a in bd(C1, C2) is either 
adjacent to v , as z1, or non-adjacent to v , as x. As in Claim 4.9.1, we can restrict the way NG (a) intersects {x, b, z1}, and as 
we did in Claim 4.9.2, we can deduce that bd(C3, C1) is complete to C1 and that there is no bag other than C3 containing 
a vertex that crosses bd(C1, C2).

Observe that {v, z1, z2, x, a, b} induces a W −
2,0 with terminal vertex a. By applying Lemma 4.7 similarly to Case 1, one 

can in polynomial time find an obstruction or find a maximal good boundary-crossing path ending in C3C1C2. In the latter 
case, we apply Lemma 4.3 to modify T along this path and obtain a partition tree T ′ of G − v such that no vertex crosses 
bd(C1, C2). Then, since both bd(C1, C2) and bd(C2, C1) have no crossing vertices, we can apply Lemma 4.4 to obtain a 
partition tree of G .

Now we consider the case in which only bd(C2, C1) has a crossing vertex. Let a be a vertex in a bag C3 that crosses 
bd(C2, C1). Note that {v, z1, z2, x} is a wing of W1,0 with terminal z2, as in Case 1 (see (b) of Fig. 7). As in Claim 4.10.1 and 
Lemma 4.7, we can find a maximal good boundary-crossing path ending in C2C1. We apply Lemma 4.3 to modify T along 
this path and obtain a partition tree T ′ of G − v such that no vertex crosses bd(C2, C1). Then, since both bd(C1, C2) and 
bd(C2, C1) have no crossing vertices, we can apply Lemma 4.4 to obtain a partition tree of G .

To conclude, in the case in which both bd(C1, C2) and bd(C2, C1) have crossing vertices, we can first modify T along 
a maximal boundary-crossing path ending in C2C1, then along a maximal boundary-crossing path ending in C1C2. In this 
way we obtain a partition tree of G − v in which, again, both bd(C1, C2) and bd(C2, C1) have no crossing vertices and we 
proceed with Lemma 4.4. �

This concludes the lemma. �
Lemma 4.11. If C1 \ NG(v) �= ∅, C2 \ NG(v) �= ∅ and NG(v) = bd(C1, C2) ∪bd(C2, C1), then one can in polynomial time either output 
an obstruction in G or output a partition tree of G confirming that G is a well-partitioned chordal graph.

Proof. We first show that if at least one of bd(C1, C2) and bd(C2, C1) has no crossing vertex, then we can obtain a partition 
tree of G .
14
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Claim 4.11.1. If there is no vertex crossing bd(C1, C2), then one can obtain a partition tree of G from T in polynomial time. The same 
holds for bd(C2, C1).

Proof. We prove the claim for bd(C1, C2) and note that the argument for bd(C2, C1) is symmetric. Let C ′
1 := C1 \ bd(C1, C2), 

and C ′
12 := bd(C1, C2) ∪{v}. Let S1 ⊆ NT (C1) be such that for all S1 ∈ S1, bd(C1, S1) ⊆ C1 \ bd(C1, C2), and let S2 ⊆ NT (C1)

be such that for all S2 ∈ S2, bd(C1, S2) ⊆ bd(C1, C2). We obtain a partition tree T ′ of G from T as follows.

· Remove C1; add C ′
1 and C ′

12; make C ′
1 adjacent to C ′

12, and C ′
12 adjacent to C2.

· Make each bag in S1 adjacent to C ′
1, and each bag in S2 adjacent to C ′

12.

This yields a partition tree of G . �

From now on, we assume that both bd(C1, C2) and bd(C2, C1) have crossing vertices. Let C ′
2 be a bag containing a vertex 

crossing bd(C1, C2), and let C3 be a bag containing a vertex crossing bd(C2, C1). For convenience, let C ′
1 := C1.

Using Lemma 4.6 with B = bd(C ′
1, C2), we recursively find a longer good boundary-crossing path or a partial obstruction. 

Starting from C ′
2C ′

1, for a path C ′
i C

′
i−1 · · · C ′

1, we find a neighbor bag C ′
i+1 of C ′

i that contains a vertex crossing bd(C ′
i, C

′
i−1). 

At the end, either we can find one of first two outcomes in Lemma 4.6, or we can find a maximal good boundary-crossing 
path ending in C ′

2C ′
1C2. In the latter case, we can repeatedly apply Lemma 4.3 to modify T along this path and obtain 

a partition tree T ′ of G − v such that no vertex crosses bd(C ′
1, C

′
2). We can now apply Claim 4.11.1 to obtain a partition 

tree of the entire graph G . Thus, we may assume that we have an induced subgraph H1 which is one of two outcomes in 
Lemma 4.6. Let v1 be the terminal of H1 in bd(C ′

1, C2).
By applying the same argument for C2C3, we may assume that we have an induced subgraph H2 which is one of two 

outcomes in Lemma 4.6. Let v2 be the terminal of H2 in bd(C2, C1).
If both H1 and H2 are the first outcome in Lemma 4.6, then G[V (H1) ∪ V (H2) ∪ {v}] is isomorphic to W s,t for some 

s ∈ [3] and t ≥ 0. If H1 is the first outcome and H2 is the second outcome of Lemma 4.6, then G[V (H1) ∪ V (H2) ∪ {v}] is 
isomorphic to W s,t for some s ∈ {2, 3} and t ≥ 0, where G[V (H2) ∪ {v, v1}] is isomorphic to W −

2,0. If both are the second 
outcomes in Lemma 4.6, then G[V (H1) ∪ V (H2) ∪ {v}] is isomorphic to O 4, and this concludes the lemma. �
5. Geodetic sets

For two vertices v and w in a graph G , we denote by I[v, w] the set of all vertices lying on a shortest path between 
v and w . For a vertex set S ⊆ V (G), we denote by I[S] := ⋃

v,w∈S I[v, w]. The set I[S] is called a geodetic closure of S [36]. 
Such a set S is called a geodetic set if I[S] = V (G). The Geodetic Set problem asks, given a graph G , for the smallest size of 
any geodetic set in G .

The study of geodetic sets was initiated by Harary et al. [36] in 1986, and is related to convexity measures in graphs; we 
refer to [51] for an overview. Harary et al. [36] showed that the Geodetic Set problem is NP-hard on general graphs, see 
also [4]. Dourado et al. [22] showed that Geodetic Set remains NP-hard on chordal graphs, and that it is polynomial-time 
solvable on split graphs. We extend their ideas to give a polynomial-time algorithm for well-partitioned chordal graphs, the 
main result of this section.

Theorem 5.1. There is a polynomial-time algorithm that given a well-partitioned chordal graph G, computes a minimum-size geodetic 
set of G.

Before we proceed to the proof of Theorem 5.1, it is worth mentioning that the complexity of Geodetic Set has also 
been deeply studied on other graph classes. Besides the above mentioned results, it was shown to be NP-hard on chordal 
bipartite [22] and bipartite [23] graphs, as well as co-bipartite [25], subcubic [11], and planar graphs [17]. Very recently, 
Chakraborty et al. [16] showed NP-hardness on subcubic partial grids, which unifies hardness on subcubic, planar, and 
bipartite graphs. Interestingly, they showed that Geodetic Set is NP-hard even on interval graphs, while a polynomial-
time algorithm for proper interval graphs is known due to Ekim et al. [25]. Other graph classes that are known to admit 
polynomial-time algorithms are cographs [22], outerplanar graphs [47], block-cactus graphs [25], and solid grid graphs [16]. 
Kellerhals and Koana [41] recently assessed the parameterized complexity of Geodetic Set, and proved it to be W[1]-hard 
parameterized by solution size plus pathwidth plus feedback vertex set, while devising FPT-algorithms for the parameter 
feedback edge set as well as for tree-depth.

We first observe that any geodetic set of a graph contains all its simplicial vertices. Since the neighborhood of a simplicial 
vertex v is a clique, v is never an internal vertex of any shortest path: Suppose v is an internal vertex of a path P , and 
let u1 and u2 be the two neighbors of v in P . Since u1 and u2 are adjacent, we can obtain a shorter path P ′ from P by 
replacing u1 vu2 with u1u2 such that P ′ has the same endpoints as P .

Observation 5.2. Let G be a graph and let v ∈ V (G) be a simplicial vertex in G. Then, every geodetic set of G contains v.
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Fig. 9. Illustration of the proof of Lemma 5.4. The top drawing shows item 1 and the bottom one item 2.

From now on we assume that we are given a connected well-partitioned chordal graph G with partition tree T , such 
that T has at least two nodes (otherwise, G is simply a complete graph). If G is not connected, we can apply the procedure 
described below to each of its connected components. As a consequence of Observation 5.2, we have that each leaf bag of 
T has a vertex that is contained in every geodetic set of G . Let B ∈ V (T ) be a leaf bag with neighbor C . If bd(B, C) �= B , 
then each vertex in B \ bd(B, C) is simplicial. If bd(B, C) = B , then each vertex in B is simplicial. This also immediately 
implies that each non-simplicial vertex in a leaf bag is on some shortest path between two simplicial vertices: if we have a 
non-simplicial vertex in B , then bd(B, C) �= B and the non-simplicial vertices are precisely the ones in bd(B, C). Since T has 
at least two nodes, there is some other leaf bag in T which again has some simplicial vertex, say x. Now, each shortest path 
from a simplicial vertex in B to x uses some vertex from bd(B, C), and since the vertices in bd(B, C) are twins in G[B ∪ C], 
each of them is on such a shortest path.

Observation 5.3. Let G be a connected well-partitioned chordal graph with partition tree T , and let S be the set of simplicial vertices 
of G. Each leaf bag B of T contains a simplicial vertex, and B ⊆ I[S].

In the following, we adapt the idea of Dourado et al. [22] about split graphs to the case of internal bags in a partition tree 
of a well-partitioned chordal graph. First, we prove a small auxiliary lemma; for an illustration of its arguments see Fig. 9.

Lemma 5.4. Let G be a connected well-partitioned chordal graph with partition tree T , let S denote the set of simplicial vertices of G, 
and let B ∈ V (T ) be an internal bag.

1. For distinct C1, C2 ∈ NT (B), bd(B, C1) ∩ bd(B, C2) ⊆ I[S].
2. For all C1, C2 ∈ NT (B) with bd(B, C1) ∩ bd(B, C2) = ∅, we have that bd(B, C1) ∪ bd(B, C2) ⊆ I[S].

Proof. 1. Let u ∈ bd(B, C1) ∩ bd(B, C2). There are leaves D1, D2 in T such that C1 BC2 is on the path from D1 to D2 in T . 
By Observation 5.3, for all i ∈ [2], Di contains a simplicial vertex, say xi . Each shortest path from x1 to x2 is of the form 
x1 · · · y1zy2 · · · x2, where y1 ∈ C1, y2 ∈ C2, and z ∈ bd(B, C1) ∩bd(B, C2). Since the vertices in bd(B, C1) ∩bd(B, C2) are twins 
in G[B ∪ C1 ∪ C2], x1 · · · y1uy2 · · · x2 is also a shortest path from x1 to x2, and therefore u ∈ I[x1, x2] ⊆ I[S].

2. The proof is similar to (i), with the difference that each shortest path between the (corresponding) vertices x1 and x2
uses both a vertex from bd(B, C1) and one from bd(B, C2). �
Lemma 5.5. Let G be a connected well-partitioned chordal graph with partition tree T , let S denote the set of simplicial vertices of G, 
and let B ∈ V (T ) be an internal bag. If B contains a simplicial vertex, then B ⊆ I[S].

Proof. Let X be the set of vertices in B that are not contained in any boundary. Note that X ⊆ S . Then, we obtain T ′ from 
T by removing B , adding a bag B ′ := B \ X and a bag X . We make all bags in NT (B) ∪ {X} adjacent to B ′ in T ′ . Since B is 
a clique, X is a clique and complete to B ′ , satisfying the requirements of the definition of a partition tree. Since no vertex 
in X was in any boundary, the boundaries from the other neighbors of B ′ in T ′ remain the same as the ones in T to B . We 
can conclude that T ′ is a partition tree of G . Moreover, each vertex v ∈ B ′ is in bd(B ′, X) and at least one more boundary, 
since v /∈ X . By Lemma 5.4(1), B ′ ⊆ I[S], so B ′ ∪ X = B ⊆ I[S].

We may thus assume that each simplicial vertex v of B is contained in a boundary. Clearly, a simplicial vertex can be con-
tained in at most one boundary; let C ∈ NT (B) be such that v ∈ bd(B, C). Since v is simplicial, we have that bd(B, C) = B . 
Therefore, for each vertex u ∈ B such that there is some neighbor C ′ �= C of B with u ∈ bd(B, C ′), we have by Lemma 5.4(1) 
that u ∈ I[S]. On the other hand, each vertex in B \ ⋃

C ′∈NT (B)\{C} bd(B, C ′) is simplicial as well, so we can conclude that 
B ⊆ I[S]. �
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Fig. 10. Problematic vertices and problem solvers.

In the remainder, we show how to deal with vertices that are not on shortest paths between simplicial vertices. We call 
such vertices problematic, and they are the ones that are contained in internal bags without simplicial vertices and do not 
fall under one of the cases of Lemma 5.4. For an illustration of a problematic vertex, see Fig. 10a.

Definition 5.6. Let G be a connected well-partitioned chordal graph with partition tree T , and let B ∈ V (T ) be an internal 
bag that does not contain any simplicial vertex. A vertex v ∈ B is called problematic if

1. there is a unique C ∈ NT (B) such that v ∈ bd(B, C), and
2. for each C ′ ∈ NT (B) \ {C}, bd(B, C) ∩ bd(B, C ′) �= ∅.

In this case we call C a problematic neighbor bag.

Suppose that some bag B has no simplicial vertex. Then each shortest path in G between two simplicial vertices that 
uses a vertex from B passes through two neighbors of B . If a vertex is problematic, then it cannot be on any such shortest 
path, and if it is not problematic, then it falls under one of the cases of Lemma 5.4, which leads to the following observation.

Observation 5.7. Let G be a connected well-partitioned chordal graph with partition tree T , let S denote the set of simplicial vertices 
of G, and let B ∈ V (T ) be an internal bag with B ∩ S = ∅. Let P be the set of problematic vertices of B, then P = B \ I[S].

By similar reasoning, we observe that if a problematic vertex in B is on some shortest path, then this shortest path has 
to have an endpoint in B .

Observation 5.8. Let G be a connected well-partitioned chordal graph with partition tree T , and let B ∈ V (T ) be an internal bag. Let 
v ∈ B be a problematic vertex. Any shortest path that has v as an internal vertex has one endpoint in B.

By Observations 5.7 and 5.8, we know that if a bag B has no simplicial vertex and it has at least one problematic vertex, 
then we need at least one more vertex from B in any geodetic set. The following notion captures in which situation a single 
additional vertex suffices. We illustrate the following definition in Fig. 10b.

Definition 5.9. Let G be a connected well-partitioned chordal graph with partition tree T and let B ∈ V (T ). Let P ⊆ B
denote the set of problematic vertices in B and C1, . . . , C� the problematic neighbor bags. A vertex v ∈ B is called a problem 
solver if for each i ∈ [�], either v /∈ bd(B, Ci) or bd(B, Ci) ∩ P = {v}.

Lemma 5.10. Let G be a connected well-partitioned chordal graph with partition tree T and let S denote the set of simplicial vertices 
of G. Let B ∈ V (T ) be an internal bag containing a problematic vertex and let W ⊆ V (G) with S ⊆ W ⊆ V (G) \ B. For each v ∈ B, 
B ⊆ I[W ∪ {v}] if and only if v is a problem solver.

Proof. Throughout the proof, we denote by P the set of problematic vertices of B and by C1, . . . , C� the problematic 
neighbor bags. Let v ∈ B .

Suppose that v is a problem solver. By Observation 5.7, each vertex in B \ I[S] is problematic, so we have to argue that 
each problematic vertex is on a shortest path from v to a vertex in W . Let u ∈ P with problematic neighbor bag C . If 
bd(B, C) ∩ P = {u} and u = v , then clearly u ∈ I[W ∪ {v}]. Otherwise we have that v /∈ bd(B, C), so each shortest path from 
v that goes through C contains a vertex from bd(B, C). Moreover, there is a leaf D ∈ V (T ) such that C is on the path from 
D to B in T . By Observation 5.3, D has a simplicial vertex so the first direction follows.
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For the other direction, suppose for a contradiction that B ⊆ I[W ∪ {v}], while v is not a problem solver. Since v is not 
a problem solver, for some i ∈ [�], v ∈ bd(B, Ci) and there is some u ∈ (bd(B, Ci) ∩ P ) \ {v}. Since u ∈ I[W ∪ {v}], u is on a 
shortest path between v and some vertex in W , denote that path by Q . Since u is problematic, it is not on a shortest path 
between two vertices in W . Moreover, by Observation 5.8, one of the endpoints of Q has to be in B . Since B ∩ W = ∅, we 
know that one of the endpoints of the path is v .

If Q uses a vertex from Ci , in particular from bd(Ci, B), then we can remove u from Q and go from the vertex in 
bd(Ci, B) directly to v and obtain a shorter path, a contradiction. If Q does not use a vertex from Ci , then it must use a 
vertex from some other neighbor of B , say D ∈ NT (B) \ {Ci}. This is because the other endpoint of Q , distinct than v , is 
not contained in B . Now, since u is problematic, we have that u /∈ bd(B, D). However, Q contains a vertex in bd(B, D), so 
we can remove u from Q and obtain a shorter path with the same endpoints, again a contradiction. �

Next we show that if there are at least two distinct problematic neighbor bags, then two additional vertices always 
suffice.

Lemma 5.11. Let G be a connected well-partitioned chordal graph with partition tree T , let S denote the set of simplicial vertices of G, 
let B ∈ V (T ) be an internal bag containing a problematic vertex and let W ⊆ V (G) with S ⊆ W ⊆ V (G) \ B. If there are two distinct 
problematic neighbor bags of B, then there are two vertices v1, v2 ∈ B such that B ⊆ I[W ∪ {v1, v2}].

Proof. Let C1, C2 ∈ NT (B) be two distinct problematic neighbor bags of B , and for all i ∈ [2], let vi be a problematic vertex 
in bd(B, Ci).

We claim that B ⊆ I[W ∪{v1, v2}]. By Observation 5.7, we have to argue that each problematic vertex in B except v1, v2
is on a shortest path from v1 or v2 to a vertex in W .

Let u be a problematic vertex other than v1, v2 and let C ∈ NT (B) be the corresponding problematic neighbor bag. 
Suppose C = C1. There is a leaf bag D (containing a simplicial vertex by Observation 5.3) such that C is on the path from 
D to B in T , and each shortest path from a vertex in D to a vertex in B \ bd(B, C) uses a vertex from bd(B, C). Since 
v2 /∈ bd(B, C) by the definition of a problematic vertex, it follows that u ∈ I[W ∪ {v2}]. On the other hand, if C �= C1, then 
we have that u ∈ I[W ∪ {v1}]. We can conclude that B ⊆ I[W ∪ {v1, v2}]. �

Finally we show that in the remaining case when there is only one problematic neighbor bag and no problem solver, 
then any geodetic set of G has to include all problematic vertices.

Lemma 5.12. Let G be a connected well-partitioned chordal graph with partition tree T , let S denote the set of simplicial vertices of G, 
let B ∈ V (T ) be an internal bag containing a problematic vertex and let W ⊆ V (G) with S ⊆ W ⊆ V (G) \ B. Let P ⊆ B be the set of 
problematic vertices of B. If there is a neighbor C ∈ NT (B) such that P ⊆ bd(B, C) and there is no problem solver, then every geodetic 
set of G contains P .

Proof. Note that the condition that there is no problem solver is equivalent to the condition that bd(B, C) = B; any vertex 
outside of bd(B, C) would be a problem solver. Suppose that some v ∈ P is on a shortest path between two vertices x1
and x2. Since v is a problematic vertex, we may assume by Observation 5.8 that x1 ∈ B and x2 /∈ B . Let D ∈ V (T ) denote 
the bag containing x2. Let C∗ ∈ NT (B) denote the neighbor of B that is on the path from D to B in T . If C∗ �= C , then 
v cannot be in an internal vertex of a shortest path from x1 to x2: since v is problematic, v /∈ bd(B, C∗). We may assume 
that C∗ = C . Since x1 ∈ B = bd(B, C), v cannot be an internal vertex on a shortest path from x1 to x2. We can conclude that 
every geodetic set of G must contain v . �

Now that we have covered all the cases, we can derive the algorithm to compute a minimum geodetic set of a well-
partitioned chordal graph by properly prioritizing the cases. We describe the procedure in Algorithm 1.

We now argue the correctness of the algorithm. In line 1, it adds all simplicial vertices to the set it produces. This is 
safe by Observation 5.2. By Observation 5.3, any vertex contained in any leaf bag of the partition tree is contained in the 
geodetic closure of the simplicial vertices.

Let S be the set S obtained in the final loop. Let B be an internal bag. In line 3, the algorithm asserts that if B contains 
a simplicial vertex, then no additional vertex of B has to be added. Correctness of this decision is argued in Lemma 5.5. 
Also, if B has no problematic vertex, then no additional vertex of B has to be added. Now, we can assume that B has no 
simplicial vertex but has a problematic vertex. Then based on Lemmas 5.10 to 5.12, we add a vertex set in the algorithm so 
that the geodetic closure of the resulting set contains B . Thus, S is a geodetic set.

We claim that S is a minimum geodetic set. Suppose that this is not a minimum geodetic set, and let Ŝ be a minimum 
geodetic set. For every leaf bag B , B ∩ S = B ∩ Ŝ = B ∩ S , which implies that there is an internal bag B such that |̂S ∩ B| <
|S ∩ B|. As |S ∩ B| > 0, by lines 3 and 4 of Algorithm 1, B contains no simplicial vertices and contains a problematic vertex. 
We consider three cases corresponding to Lemmas 5.10 to 5.12.
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Input : A connected well-partitioned chordal graph G with partition tree T .
Output : A minimum-size geodetic set of G .

1 Find the set S of simplicial vertices of G;
2 foreach internal bag B ∈ V (T ) do
3 if B contains a simplicial vertex then do nothing;
4 else if B contains no problematic vertex then do nothing ;
5 else if there is a problem solver v ∈ B then S ← S ∪ {v};
6 else if B has two distinct problematic neighbor bags C1 and C2 then
7 Let v1 ∈ bd(B, C1) and v2 ∈ bd(B, C2) be problematic;
8 S ← S ∪ {v1, v2};
9 else S ← S ∪ P , where P is the set of problematic vertices in B;

10 return S;

Algorithm 1: A polynomial-time algorithm for finding a minimum-size geodetic set of a well-partitioned chordal 
graph.

• (Case 1. B has a problem solver.) In this case, |S ∩ B| = 1 by line 5, and by our assumption, |̂S ∩ B| = 0. However, since 
B contains a problematic vertex, by Lemma 5.10, Ŝ is not a geodetic set, a contradiction. Thus, we may assume that B
has no problem solver.

• (Case 2. There are at least two distinct problematic neighbor bags.) By line 6, |S ∩ B| = 2 and by our assumption, 
|̂S ∩ B| < 2. However, Lemma 5.10 says that if B has no problem solver, then at least two vertices are necessary to 
contain B as a geodetic closure, and we deduce that Ŝ is not a geodetic set, a contradiction. Finally, we may assume 
that there are no two distinct problematic neighbor bags.

• (Case 3. There is only one problematic neighbor bag.) In this case, all the problematic vertices in B are contained in 
any geodetic set by Lemma 5.12 and S ∩ B is exactly the set of such vertices by line 9. So, it is not possible that 
|̂S ∩ B| < |S ∩ B| and we have a contradiction.

We conclude that S is a minimum geodetic set.
It is easy to verify that each line in Algorithm 1 takes polynomial time, and that the main loop has a polynomial number 

of iterations. Since well-partitioned chordal graphs can be recognized in polynomial time by an algorithm that produces a 
partition tree if one exists, see Proposition 4.8, this proves Theorem 5.1.

6. Transversals of longest paths and cycles

It is well-known that in a connected graph, every two longest paths always share a common vertex. In 1966, Gallai [30]
asked whether every graph contains a vertex that belongs to all of its longest paths. This question, whose answer is already 
known to be negative in general [60,62], was shown to have a positive answer on several well-known graph classes. It is not 
difficult to see that it holds for trees, and it has been shown for outerplanar graphs and 2-trees [53], which has later been 
generalized to series-parallel graphs, or equivalently, graphs of treewidth at most 2 [19]. (Interestingly, the couterexample 
for general graphs [60] has treewidth 3.) Besides that, Gallai’s question has a positive answer on circular arc graphs [5,
40], P4-sparse (which includes cographs) and (P5, K1,3)-free graphs [15], dually chordal graphs [38], bipartite permutation 
graphs [14] and 2K2-free graphs [33]. As alluded to above, it has a positive answer on split graphs [42], and this result has 
been generalized to starlike graphs [15].

Both split graphs and starlike graphs are subclasses of well-partitioned chordal graphs. It remains a challenging open 
problem to determine whether all chordal graphs admit a longest path transversal of size one. As a step towards answering 
this question for chordal graphs, we show that well-partitioned chordal graphs admit such a transversal.

A closely related question is whether a 2-connected graph has a vertex that intersects all its longest cycles. This question 
has also been studied extensively on various graph classes, and several of the above mentioned references contain positive 
answers to this question on the corresponding graph classes. In some cases the results are not stated explicitly, but it is not 
too difficult to adapt the proofs for the case of longest paths to the case of longest cycles. In this section, we answer this 
question positively on 2-connected well-partitioned chordal graphs as well.

We start with the following lemma, the proof of which exploits the Helly property1 of subtrees of a tree to show the 
existence of a bag of the partition tree that intersects all longest paths of a well-partitioned chordal graph. The same proof 
strategy has been used by Rautenbach and Sereni [52] to show that for any graph G , there exists a set of size tw(G) + 1
that intersects all the longest paths of G .

Lemma 6.1. Let G be a connected well-partitioned chordal graph with partition tree T . Then there exists X ∈ V (T ) such that every 
longest path of G contains a vertex of X.

1 The Helly property of trees states that in every tree, every collection of pairwise intersecting subtrees has a common nonempty intersection.
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Proof. Let P1, . . . , P� be the longest paths of G . For each i ∈ [�], the set of bags of T containing at least one vertex from 
Pi forms a subtree of T . Let Ti be such a subtree. Since in any connected graph every two longest paths have a vertex in 
common, we have that V (Ti) ∩ V (T j) �= ∅ for every i �= j. By the Helly property of subtrees of a tree, there exists X ∈ V (T )

such that X ∈ V (Ti) for every i ∈ [�]. That is, X is a bag of T that intersects every longest path of G . �
We prove a similar lemma for longest cycles of 2-connected well-partitioned chordal graphs. The proof of this lemma 

follows the same lines as the one presented above, hence we omit it here.

Lemma 6.2. Let G be a 2-connected well-partitioned chordal graph with partition tree T . Then there exists X ∈ V (T ) such that every 
longest cycle of G contains a vertex of X.

We now proceed to prove the main results of this section.

Theorem 6.3. Every connected well-partitioned chordal graph contains a vertex that intersects all its longest paths.

Proof. Let G be a connected well-partitioned chordal graph. If G is a complete graph, then the result is trivial. Thus, we 
may assume that G is not a complete graph, and it implies that any partition tree of G consists of at least two bags.

By Lemma 6.1, there exists a bag B ∈ V (T ) such that every longest path of G contains a vertex of B . Let B1, . . . , Bk be 
the neighbors of B in T . We define Ti to be the connected component of T − B containing Bi and Gi to be the subgraph 
of G induced by the vertices contained in the bags of Ti . Let pi be the length of a longest path in Gi with one endpoint in 
bd(Bi, B). We may assume without loss of generality that p1 ≥ pi for every i > 1.

We will now show that every longest path of G contains all the vertices of bd(B, B1). Let P be a longest path of G
and suppose for a contradiction that there exists v ∈ bd(B, B1) such that v /∈ V (P ). Recall that V (P ) ∩ B �= ∅. If there exist 
x, y ∈ B such that xy ∈ E(P ), then we can obtain a path longer than P by inserting v between x and y in P , a contradiction 
with the fact that P is a longest path of G . Similarly, no endpoint of P belongs to B , otherwise we would also find a path 
longer than P in G . The same holds also if there exists x ∈ bd(B, B1) and y ∈ bd(B1, B) such that xy ∈ E(P ). Indeed, since 
bd(B, B1) ∪ bd(B1, B) is a clique, we would again find a path longer than P by inserting v between x and y in P . Therefore 
P contains no edge crossing from B to B1, which implies that V (P ) ∩ V (G1) = ∅. Let P = x1x2 · · · xt and let x j be a vertex 
of V (P ) ∩ B such that for every i ≥ 1 we have x j+i /∈ B . Such a vertex exists since xt /∈ B .

Assume that x j+1 ∈ bd(Ba, B) for some a ∈ [k]. Note that x j+1x j+2 · · · xt is a path in Ga with an endpoint in bd(Ba, B). 
Hence the length of this path is at most p1. Let y1 y2 · · · yp1+1 be a longest path in G1 with an endpoint y1 ∈ bd(B1, B). 
Then x1x2 · · · x j v y1 y2 · · · yp1+1 is a path in G that is longer than P , a contradiction. �

With a more careful argument, we can prove the analogous result for longest cycles.

Theorem 6.4. Every 2-connected well-partitioned chordal graph contains a vertex that intersects all its longest cycles.

Proof. Let G be a 2-connected well-partitioned chordal graph. If G is a complete graph, then the result is trivial. Thus, we 
may assume that G is not a complete graph, and it implies that any partition tree of G consists of at least two bags.

We start as in the proof of Theorem 6.3. By Lemma 6.2, there exists a bag B ∈ V (T ) such that every longest cycle of G
contains a vertex of B . Note that we can assume B is not a leaf of T , since if all the longest cycles intersect a bag that is 
a leaf, they also intersect the bag that is the neighbor of such a leaf. Let B1, . . . , Bk be the neighbors of B in T . We define 
Ti to be the connected component of T − B containing Bi and let Gi to be the subgraph of G induced by the vertices 
contained in the bags of Ti .

Now, let pi be the length of a longest path in Gi with both endpoints in bd(Bi, B). Note that this is well-defined, since 
|bd(Bi, B)| ≥ 2 for every i, as G is a 2-connected graph. We may assume without loss of generality that p1 ≥ pi for every 
i > 1.

We will now show that every longest cycle of G contains all the vertices of bd(B, B1). Let C be a longest cycle of G and 
suppose for a contradiction that there exists v ∈ bd(B, B1) such that v /∈ V (C). We first point out the following.

Claim 6.4.1. |V (C) ∩ B| ≥ 2.

Proof. We already know that |V (C) ∩ B| ≥ 1. Suppose for a contradiction that |V (C) ∩ B| = 1. Then there exist x1, x2, x3 ∈
V (C) such that x1, x2, and x3 appear consecutively in the cycle, and x2 ∈ B and x1, x3 /∈ B . In particular, x2 belongs to 
the boundary between B and some neighboring bag Bi , and x1, x3 ∈ bd(Bi, B). Since G is 2-connected, there exists u ∈
bd(B, Bi), with u �= x2, such that u /∈ V (C). Thus, we can add u between x2 and x3 in C and obtain a cycle longer than C , a 
contradiction. �

If there exist x, y ∈ B such that xy ∈ E(C), then we can obtain a cycle longer than C by inserting v between x and y in 
C , a contradiction with the fact that C is a longest cycle of G . The same holds if there exist x ∈ bd(B, B1) and y ∈ bd(B1, B)
20



J. Ahn, L. Jaffke, O. Kwon et al. Discrete Mathematics 345 (2022) 112985
such that xy ∈ E(C). Indeed, since bd(B, B1) ∪bd(B1, B) is a clique, we would again find a cycle longer than C by inserting v
between x and y in C . Therefore C contains no edge crossing from B to B1, which implies that V (C) ∩ V (G1) = ∅. Consider 
u ∈ bd(B, B1) such that u �= v . We consider two cases.

First assume that u ∈ V (C). Since C cannot have two consecutive vertices in B , there exists i �= 1 such that u ∈ bd(B, Bi), 
and there exists u′ ∈ bd(Bi, B) such that uu′ ∈ E(C). Moreover, by the above claim, there exists u′′ ∈ V (C) ∩ bd(B, Bi) such 
that if P is the subpath of C starting in u, ending in u′′ , and containing u′ , then (V (P ) \ {u, u′′}) ⊆ V (Gi). Note also that 
|E(P )| ≤ pi + 2, since the neighbors of u and u′′ in P belong to bd(Bi, B). Let y1 y2 · · · yq be a longest path of G1 with 
both endpoints in bd(B1, B) and let P ′ = uy1 y2 · · · yq vu′′ . Let C ′ be the cycle obtained from C by replacing P by P ′ . Since 
|E(P ′)| = p1 + 3 and p1 ≥ pi , we have that C ′ is a cycle longer than C , a contradiction.

Now we consider the case in which u /∈ V (C). Recall that C cannot have two consecutive vertices in B . By Claim 6.4.1, 
there exists i �= 1 such that V (C) ∩ V (Gi) �= ∅. Let x, x′, y, y′ ∈ V (C) be such that x, y ∈ bd(B, Bi), x′, y′ ∈ bd(Bi, B), xx′, yy′ ∈
E(C) and the subpath P of C starting in x, ending in y, and containing x′ and y′ is such that (V (P ) \ {x, y}) ⊆ V (Gi). Note 
that it can be the case that x′ = y′ . Moreover, |E(P )| ≤ pi +2. Let y1 y2 · · · yq be a longest path of G1 with both endpoints in 
bd(B1, B) and let P ′ = xuy1 y2 · · · yq v y. Let C ′ be the cycle obtained from C by replacing P by P ′ . Since |E(P ′)| = p1 +4 and 
p1 ≥ pi , we have that C ′ is a cycle longer than C , a contradiction. This concludes the proof that all the vertices of bd(B, B1)

are contained in all longest cycles of G . �
7. Tree 3-spanners

For a connected graph G and a positive integer t , a spanning tree T of G is a tree t-spanner of G if for every pair (v, w)

of vertices in G , distT (v, w) ≤ t · distG(v, w), where distG(v, w) (resp., distT (v, w)) denotes the length of shortest path in G
(resp., T ) from v to w . The Tree t-Spanner problem asks whether a given graph G has a tree t-spanner. Tree t-spanners are 
motivated from applications including network research and computational geometry [3,43]. Cai and Corneil [13] showed 
that Tree t-Spanner is linear-time solvable if t ≤ 2, and is NP-complete if t ≥ 4. For t = 3, the complexity of Tree 3-Spanner

is not yet unveiled. Brandstädt et al. [9] investigated the complexity of Tree t-Spanner on chordal graphs of small diameter. 
They showed that for even t ≥ 4 (resp., odd t ≥ 5) it is NP-complete to decide if a chordal graph of diameter at most 
t + 1 (resp., t + 2) has a tree t-spanner. On the other hand, for any even t (resp., odd t), every chordal graph of diameter 
at most t − 1 (resp., t − 2) admits a tree t-spanner which can be found in linear time. Brandstädt et al. [9] also showed 
that Tree 3-Spanner is polynomial-time solvable on chordal graphs of diameter at most 2. On general chordal graphs, the 
complexity of Tree 3-Spanner is still open. Several subclasses of chordal graphs, such as split [59], very strongly chordal [9], 
and interval [44] graphs were shown to be tree 3-spanner admissible, meaning that each of its members admits a tree 3-
spanner. In the above mentioned cases, such tree 3-spanners can always be computed in polynomial time. We show that 
the same holds for well-partitioned chordal graphs, generalizing the result for split graphs [59].

Before we proceed to the proof of this result, we point out that a subclass of chordal graphs that is not tree 3-spanner 
admissible and yet has a polynomial-time algorithm for Tree 3-Spanner is that of 2-sep chordal graphs, as shown by Das 
and Panda [50]. Other (non-chordal) graph classes that are known to be tree 3-spanner admissible are bipartite ATE-free 
graphs [8] (which include convex graphs) and permutation graphs [44]; and there are polynomial-time algorithms for Tree 
3-Spanner on cographs and co-bipartite graphs [12], as well as planar graphs [26].

We now proceed to the proof of the main result of this section. More specifically, we show that given a connected 
well-partitioned chordal graph, one can always find a tree 3-spanner in polynomial time.

Theorem 7.1. Every connected well-partitioned chordal graph admits a tree 3-spanner, which one can find in polynomial time.

Proof. Let G be a connected well-partitioned chordal graph with partition tree T . We choose a bag R of T and consider it 
as a root bag. For each non-root bag B , let P (B) denote the parent bag of B . For each non-root bag B ,

• let S∗
B be a star whose center is in bd(B, P (B)) and all leaves are exactly the vertices in V (B) \ bd(B, P (B)),

• let S∗∗
B be a star whose center is in bd(P (B), B) and all leaves are exactly the vertices in bd(B, P (B)), and

• let S B := S∗
B ∪ S∗∗

B .

Observe that the vertex set of S B consists of all vertices of B and one vertex in bd(P (B), B). Moreover, S B is a tree. For the 
root bag R , let S R be a star in G[R]. We claim that U := ⋃

B∈V (T ) S B is a tree 3-spanner of G . It is sufficient to show that 
U is a spanning tree, and for every edge v w in G , distU (v, w) ≤ 3.

We first verify that U is a spanning tree. Note that for each non-root bag B , S B is a tree containing all vertices of B
and at least one edge between B and P (B), and furthermore, S R is a spanning tree of G[R]. Therefore, U is a connected 
subgraph containing all vertices of G . Suppose that U contains a cycle C .

Observe that for each non-root bag B of T , the center of S∗∗
B separates V (B) and V (P (B)) in U . Let B ′ be the bag 

containing a vertex of C such that distT (R, B ′) is minimum. Since U [V (B ′)] has no cycle, there is a child bag B ′′ of 
B ′ containing a vertex of C . By the above observation, V (B ′) ∩ V (C) has only one vertex that is the center of S∗∗

B ′′ . As 
|V (B ′) ∩ V (C)| = 1, there is no other child bag of B ′ containing a vertex of C .
21
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We can observe that there is no child bag of B ′′ containing a vertex of C . If such a bag exists, then by the same argument, 
we derive that |V (B ′′) ∩ V (C)| = 1, a contradiction. Therefore, C is contained in S B ′′ , but by the construction, S B ′′ has no 
cycle. We conclude that U is a spanning tree.

Now, we claim that for every edge v w in G , distU (v, w) ≤ 3. Choose an edge v w of G . If v w is an edge in a bag B , 
then distU (v, w) = distS B (v, w) ≤ 3. Assume that v w is an edge between a bag B and its parent P (B) so that v ∈ V (B) and 
w ∈ V (P (B)). If v w ∈ E(S B), then it is trivial. Assume that w /∈ V (S B). Let z be the vertex of S B contained in P (B). Then 
distU (v, w) = distS B (v, z) + distS P (B)

(z, w) ≤ 3.
Our construction of a tree 3-spanner for G immediately follows the partition tree T of G . By Proposition 4.8, a partition 

tree of a well-partitioned chordal graph can be obtained in polynomial time, and therefore one can find a tree 3-spanner 
for G in polynomial time. �
8. Conclusions

In this paper, we introduced the class of well-partitioned chordal graphs, a subclass of chordal graphs that generalizes the 
class of split graphs. We provided a characterization by a set of forbidden induced subgraphs which also gave a polynomial-
time recognition algorithm. We showed that well-partitioned chordal graphs can be used to narrow down complexity gaps 
for problems that are NP-hard on chordal graphs and polynomial-time solvable on split graphs. In particular, we showed 
that Geodesic Set is an example of such a problem that becomes polynomial-time solvable on well-partitioned chordal 
graphs. On the other hand, we observed that there are problems that are NP-hard on chordal graphs and remain NP-hard 
on well-partitioned chordal graphs, even though they are polynomial-time solvable on split graphs. It would be interesting 
to see other problems for which well-partitioned chordal graphs can be used to better understand the complexity difference 
between split graphs and chordal graphs.

Another typical characterization of (subclasses of) chordal graphs is via vertex orderings. For instance, chordal graphs are 
famously characterized as the graphs admitting perfect elimination orderings [29]. It would be interesting to see if well-
partitioned chordal graphs admit a concise characterization in terms of vertex orderings as well. While the degree of the 
polynomial in the runtime of our recognition algorithm is moderate, our algorithm does not run in linear time. We therefore 
ask if it is possible to recognize well-partitioned chordal graphs in linear time; and note that a characterization in terms of 
vertex orderings can be a promising step in this direction.
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