Well-partitioned chordal graphs */

Jungho Ahn ${ }^{\text {a,b }}$, Lars Jaffke ${ }^{\mathrm{c}, *}$, O-joung Kwon ${ }^{\text {d,b }}$, Paloma T. Lima ${ }^{\mathrm{e}}$
${ }^{\text {a }}$ Department of Mathematical Sciences, KAIST, Daejeon, South Korea
${ }^{\mathrm{b}}$ Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea
${ }^{\text {c }}$ Department of Informatics, University of Bergen, Bergen, Norway
${ }^{\text {d }}$ Department of Mathematics, Hanyang University, Seoul, South Korea
${ }^{\text {e }}$ Computer Science Department, IT University of Copenhagen, Copenhagen, Denmark

A R T I C L E I N F O

Article history:

Received 6 August 2021
Received in revised form 4 May 2022
Accepted 7 May 2022
Available online 19 May 2022

Keywords:

Well-partitioned chordal graph
Forbidden induced subgraphs
Graph class
Longest path transversal
Tree spanner
Geodetic set

Abstract

We introduce a new subclass of chordal graphs that generalizes the class of split graphs, which we call well-partitioned chordal graphs. A connected graph G is a well-partitioned chordal graph if there exist a partition \mathcal{P} of the vertex set of G into cliques and a tree \mathcal{T} having \mathcal{P} as a vertex set such that for distinct $X, Y \in \mathcal{P}$, (1) the edges between X and Y in G form a complete bipartite subgraph whose parts are some subsets of X and Y, if X and Y are adjacent in \mathcal{T}, and (2) there are no edges between X and Y in G otherwise. A split graph with vertex partition (C, I) where C is a clique and I is an independent set is a well-partitioned chordal graph as witnessed by a star \mathcal{T} having C as the center and each vertex in I as a leaf, viewed as a clique of size 1 . We characterize well-partitioned chordal graphs by forbidden induced subgraphs, and give a polynomial-time algorithm that given a graph, either finds an obstruction, or outputs a partition of its vertex set that asserts that the graph is well-partitioned chordal. We observe that there are problems, for instance Densest k-Subgraph and b-Coloring, that are polynomial-time solvable on split graphs but become NP-hard on well-partitioned chordal graphs. On the other hand, we show that the Geodetic Set problem, known to be NP-hard on chordal graphs, can be solved in polynomial time on well-partitioned chordal graphs. We also answer two combinatorial questions on well-partitioned chordal graphs that are open on chordal graphs, namely that each well-partitioned chordal graph admits a polynomial-time constructible tree 3 -spanner, and that each (2-connected) well-partitioned chordal graph has a vertex that intersects all its longest paths (cycles).

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A central methodology in the study of the complexity of computationally hard graph problems is to impose additional structure on the input graphs, and determine if the additional structure can be exploited in the design of an efficient algorithm. Typically, one restricts the input to be contained in a graph class, which is a set of graphs that share a common

[^0]

Fig. 1. A well-partitioned chordal graph.
structural property. For example, the class of forests is the class of graphs that do not contain a cycle. Following the establishment of the theory of NP-hardness, numerous problems were investigated in specific classes of graphs; either providing a polynomial-time algorithm for a problem Π on a specific graph class, while Π is NP-hard in a more general setting, or showing that Π remains NP-hard on a graph class. We refer to the textbooks $[10,34]$ for a detailed introduction to the subject. A key question in this field is to find for a given problem Π that is hard on a graph class \mathcal{A}, a subclass $\mathcal{B} \subsetneq \mathcal{A}$ such that Π is efficiently solvable on \mathcal{B}. Naturally, the goal is to narrow down the gap $\mathcal{A} \backslash \mathcal{B}$ as much as possible, and several notions of hardness/efficiency can be applied. For instance, we can require our target problem to be NP-hard on \mathcal{A} and polynomial-time solvable on \mathcal{B}; or, from the viewpoint of parameterized complexity [21,24], we require a target parameterized problem Π to be $\mathrm{W}[1]$-hard on \mathcal{A}, while Π is in FPT on \mathcal{B}, or a separation in the kernelization complexity [28] of Π between \mathcal{A} and \mathcal{B}.

Chordal graphs are arguably one of the main characters in the algorithmic study of graph classes. They find applications for instance in computational biology [55], optimization [57], and sparse matrix computations [32]. The class of split graphs is an important subclass of the class of chordal graphs. The complexities of computational problems on chordal and split graphs often coincide, see e.g., [6,7,27,48]; however, this is not always the case. For instance, several variants of graph (vertex) coloring problems are polynomial-time solvable on split graphs and NP-hard on chordal graphs, see the works of Havet et al. [37], and of Silva [56]. Also, the Sparsest k-Subgraph [61] and Densest k-Subgraph [20] problems are polynomial-time solvable on split graphs and NP-hard on chordal graphs. Other problems, for instance the Tree 3-Spanner problem [9], are easy on split graphs, while their complexity on chordal graphs is still unresolved.

In this work, we introduce the class of well-partitioned chordal graphs, a subclass of chordal graphs that generalizes split graphs, which can be used as a tool for narrowing down complexity gaps for problems that are hard on chordal graphs, and easy on split graphs. The definition of well-partitioned chordal graphs is mainly motivated by a property of split graphs: the vertex set of a split graph can be partitioned into sets that can be viewed as a central clique of arbitrary size and cliques of size one that have neighbors only in the central clique. Thus, this partition has the structure of a star. Well-partitioned chordal graphs relax these ideas in two ways: by allowing the parts of the partition to be arranged in a tree structure instead of a star, and by allowing the cliques in each part to have arbitrary size. The interaction between adjacent parts P and Q remains simple: it induces a complete bipartite graph between a subset of P and a subset of Q. Such a tree structure is called a partition tree, and we give an example of a well-partitioned chordal graph in Fig. 1. We formally define this class in Section 3.

The main structural contribution of this work is a characterization of well-partitioned chordal graphs by forbidden induced subgraphs. We also provide a polynomial-time recognition algorithm. We list the set \mathbb{O} of obstructions in Fig. 2.

Theorem 1.1. A graph is a well-partitioned chordal graph if and only if it has no induced subgraph isomorphic to a graph in \mathbb{O}. Furthermore, there is a polynomial-time algorithm that given a graph G, outputs either an induced subgraph of G isomorphic to a graph in \mathbb{O}, or a partition tree of each connected component which confirms that G is a well-partitioned chordal graph.

Before we proceed with the discussion of the other results of this paper, we would like to briefly touch on the relationship of well-partitioned chordal graphs and width parameters. Each split graph is a well-partitioned chordal graph, and there are split graphs whose maximum induced matching width (mim-width) depends linearly on the number of vertices [46]. This rules out the applicability of any algorithmic meta-theorem based on one of the common width parameters such as tree-width or clique-width, to the class of well-partitioned chordal graphs. It is known that mim-width is a lower bound for them [58].

We now discuss the applicability and significance of well-partitioned chordal graphs by considering some algorithmic and combinatorial problems restricted to this graph class. First, we consider problems that are known to be polynomial-time solvable on split graphs and NP-hard on chordal graphs. It is not difficult to observe that the chordal graphs constructed in the NP-hardness proofs for vertex-coloring problems studied in the works [37,56], as well as the graphs in the NPhardness proofs for Densest k-Subgraph [20] and Sparsest k-Subgraph [61] are in fact well-partitioned chordal graphs. We immediately narrowed down the complexity gaps of these problems from Chordal \Split to Well-partitioned chordal \backslash

Fig. 2. The set of obstructions \mathbb{O} for well-partitioned chordal graphs.
Split. In this work, we consider the Geodetic Set problem and show that the picture changes in this case. While the problem is known to be NP-hard on chordal graphs [22], we are able to devise a polynomial-time algorithm to solve it on well-partitioned chordal graphs. In this case, we narrowed down the complexity gap from Chordal \Split to Chordal \backslash Well-partitioned chordal.

Besides narrowing the complexity gap between the classes of chordal and split graphs, the class of well-partitioned chordal graphs can also be useful as a step towards solving problems that are open for chordal graphs, but whose solution is known for split graphs thanks to their restricted structure. A natural path to a resolution of such questions on chordal graphs is to extend their solutions on split graphs to graph classes that are structurally closer to chordal graphs. Wellpartitioned chordal graphs exhibit a tree structure, which makes them a natural target in such a scenario. We consider two such questions. We show that every (2-connected) well-partitioned chordal graph has a vertex that intersects all its longest paths (cycles), while the corresponding question on chordal graphs has remained an open problem [5]. We also show that every well-partitioned chordal graph has a polynomial-time constructible tree 3 -spanner, while the complexity of the Tree 3-SPANNER problem still remains unresolved on chordal graphs [9].

This paper is organized as follows. We give some preliminary definitions in Section 2, and introduce the class of wellpartitioned chordal graphs in Section 3. In Section 4, we prove the characterization of well-partitioned chordal graphs in terms of forbidden induced subgraphs which gives a polynomial-time recognition algorithm for the class. We consider the Geodetic Set problem, the transversals of longest paths and cycles, and the Tree 3-Spanner problem on well-partitioned chordal graphs in Sections 5, 6, and 7, respectively. We conclude in Section 8.

2. Preliminaries

For a positive integer n, we let $[n]:=\{i \in \mathbb{N} \mid 1 \leq i \leq n\}$. All graphs considered here are simple and finite. For a graph G we denote by $V(G)$ and $E(G)$ the vertex set and edge set of G, respectively. For an edge $u v \in E(G)$, we call u and v its endpoints. We say that G is isomorphic to H if there is a bijection $\phi: V(G) \rightarrow V(H)$ such that for all $u, v \in V(G)$, $u v \in E(G)$ if and only if $\phi(u) \phi(v) \in E(H)$. We say that H is a subgraph of G, denoted by $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

For graphs G and H, let $G \cup H$ be the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. For a vertex v of a graph $G, N_{G}(v):=\{w \in V(G) \mid v w \in E(G)\}$ is the set of neighbors of v in G, and we let $N_{G}[v]:=N_{G}(v) \cup\{v\}$. The degree of v is $\operatorname{deg}_{G}(v):=\left|N_{G}(v)\right|$. Given a set $X \subseteq V(G)$, we let $N_{G}(X):=\bigcup_{v \in X} N_{G}(v) \backslash X$ and $N_{G}[X]:=N_{G}(X) \cup X$. In all of the above, we may drop G as a subscript if it is clear from the context. The subgraph induced by X, denoted by $G[X]$, is the graph ($X,\{u v \in E(G) \mid u, v \in X\}$). We denote by $G-X$ the graph $G[V(G) \backslash X]$, and for a single vertex $x \in V(G)$, we use the shorthand ' $G-x$ ' for ' $G-\{x\}$ '. For two sets $X, Y \subseteq V(G)$, we denote by $G[X, Y]$ the graph ($X \cup Y,\{x y \in E(G) \mid x \in X, y \in Y\}$). We say that X is complete to Y if $X \cap Y=\emptyset$ and each vertex in X is adjacent to every vertex in Y.

Let G be a graph. We say that G is trivial if $|V(G)|=1$. A graph G is called complete if $u v \in E(G)$ for all distinct vertices $u, v \in V(G)$, and empty if $E(G)=\emptyset$. A set $X \subseteq V(G)$ is a clique if $G[X]$ is complete, and an independent set if $G[X]$ is empty. A graph G is called bipartite if there is a 2-partition (A, B) of $V(G)$, called a bipartition of G, such that A and B are
independent sets in G. A bipartite graph G on bipartition (A, B) is called complete bipartite if A is complete to B. For positive integers n and m, we denote by $K_{n, m}$ a complete bipartite graph with bipartition (A, B) such that $|A|=n$ and $|B|=m$. A graph is a star if it is either trivial or isomorphic to $K_{1, n}$ for some positive integer n.

A graph G is connected if for each 2-partition (X, Y) of $V(G)$ with $X \neq \emptyset$ and $Y \neq \emptyset$, there is a pair $x \in X, y \in Y$ such that $x y \in E(G)$, and it is disconnected otherwise. A connected component of G is a maximal connected subgraph of G. A vertex $v \in V(G)$ is a cut vertex if $G-v$ has more connected components than G. A graph is 2 -connected if it does not contain a cut vertex. A block B of a graph G is a maximal 2-connected subgraph of G. A cycle is a connected graph all of whose vertices have degree 2. A graph that has no cycle as a subgraph is called a forest, a connected forest is a tree, and a tree of maximum degree at most 2 is a path. The vertices of degree one in a tree are called leaves and the leaves of a path are its endpoints. A connected subgraph of a tree is called a subtree.

A hole in a graph G is an induced cycle of G of length at least 4. A graph is chordal if it has no hole. A vertex v is simplicial if $N_{G}(v)$ is a clique. We say that a graph G has a perfect elimination ordering v_{1}, \ldots, v_{n} if v_{i} is simplicial in $G\left[\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}\right]$ for each $i \in[n-1]$. It is known that a graph is chordal if and only if it has a perfect elimination ordering [29]. We will use the following hole detecting algorithm and an algorithm to generate a perfect elimination ordering of a chordal graph.

Theorem 2.1 (Nikolopoulos and Palios [49]). Given a graph G, one can detect a hole in G in time $\mathcal{O}\left(|V(G)|+|E(G)|^{2}\right)$, if one exists.
Theorem 2.2 (Rose et al. [54]). Given a graph G, one can generate a perfect elimination ordering of G in time $\mathcal{O}(|V(G)|+|E(G)|)$, if one exists.

A graph G is a split graph if there is a 2-partition (C, I) of $V(G)$ such that C is a clique and I is an independent set. For a family \mathcal{F} of graphs, the intersection graph of \mathcal{F} is the graph with vertex set \mathcal{F} and edge set $\{S T \mid S, T \in \mathcal{F}, S \neq$ T, and $V(S) \cap V(T) \neq \emptyset\}$. It is well-known that every chordal graph is the intersection graph of subtrees of some tree [31].

3. Well-partitioned chordal graphs

A connected graph G is a well-partitioned chordal graph if there exist a partition \mathcal{P} of $V(G)$ and a tree \mathcal{T} having \mathcal{P} as a vertex set such that the following hold.
(i) Each part $X \in \mathcal{P}$ is a clique in G.
(ii) For each edge $X Y \in E(\mathcal{T})$, there are subsets $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$ such that

$$
E(G[X, Y])=\left\{x y \mid x \in X^{\prime}, y \in Y^{\prime}\right\}
$$

(iii) For each pair of distinct $X, Y \in V(\mathcal{T})$ with $X Y \notin E(\mathcal{T}), E(G[X, Y])=\emptyset$.

The tree \mathcal{T} is called a partition tree of G, and the elements of \mathcal{P} are called its bags. A graph is a well-partitioned chordal graph if all of its connected components are well-partitioned chordal graphs. We remark that a connected well-partitioned chordal graph can have more than one partition tree. Also, observe that well-partitioned chordal graphs are closed under taking induced subgraphs.

We say that a bag B in a partition tree \mathcal{T} of G is a leaf bag if $\operatorname{deg}_{\mathcal{T}}(B)=1$, and it is an internal bag if $\operatorname{deg}_{\mathcal{T}}(B)>1$.
A useful concept when considering partition trees of well-partitioned chordal graphs is that of a boundary of a bag. Let \mathcal{T} be a partition tree of a connected well-partitioned chordal graph G and let $X, Y \in V(\mathcal{T})$ be two bags that are adjacent in \mathcal{T}. The boundary of X with respect to Y, denoted by $\operatorname{bd}(X, Y)$, is the set of vertices of X that have a neighbor in Y, i.e.,

$$
\operatorname{bd}(X, Y):=\left\{x \in X \mid N_{G}(x) \cap Y \neq \emptyset\right\}
$$

By item (ii) of the definition of the class, we know that $\operatorname{bd}(X, Y)$ is complete to $\operatorname{bd}(Y, X)$.
We now consider the relation between well-partitioned chordal graphs and other well-studied classes of graphs. It is easy to see that every well-partitioned chordal graph G is a chordal graph because every leaf of the partition tree of a component of G contains a simplicial vertex of G, and after removing this vertex, the remaining graph is still a wellpartitioned chordal graph. Thus, we may construct a perfect elimination ordering. We show that, in fact, well-partitioned chordal graphs constitute a subclass of substar graphs. A graph is a substar graph $[18,39]$ if it is an intersection graph of substars of a tree.

Proposition 3.1. Every well-partitioned chordal graph is a substar graph.
Proof. Let G be a well-partitioned chordal graph with $V(G)=\left\{v_{i} \mid i \in[n]\right\}$ and a partition tree \mathcal{T}. We will exhibit a substar intersection model for G. That is, we will show that there exists a tree F and substars S_{1}, \ldots, S_{n} of F such that $v_{i} v_{j} \in E(G)$ if and only if $V\left(S_{i}\right) \cap V\left(S_{j}\right) \neq \emptyset$.

Let F be the tree obtained from \mathcal{T} by the 1 -subdivision of every edge. We denote by $v_{X Y} \in V(F)$ the vertex originated from the 1 -subdivision of the edge $X Y \in E(\mathcal{T})$. Note that $N_{F}\left(v_{X Y}\right)=\{X, Y\}$. For every $v_{i} \in V(G)$, we create a substar of F in the following way. Let $B \in V(\mathcal{T})$ be the bag containing v_{i}. Then S_{i} is a star with the center B and the leaf set $\left\{v_{B Y} \mid v_{i} \in \operatorname{bd}(B, Y)\right.$ for some $\left.Y \in V(\mathcal{T})\right\}$.

To see that this is indeed an intersection model for G, let $v_{i} v_{j} \in E(G)$. If there exists $B \in V(\mathcal{T})$ such that $v_{i}, v_{j} \in B$, then $B \in V\left(S_{i}\right) \cap V\left(S_{j}\right)$. If v_{i} and v_{j} are not contained in the same bag, by item (ii), there exist $A, B \in V(\mathcal{T})$ such that $v_{i} \in A, v_{j} \in B$ and $A B \in E(\mathcal{T})$. Then, $v_{A B} \in V\left(S_{i}\right) \cap V\left(S_{j}\right)$. In both cases we have that $V\left(S_{i}\right) \cap V\left(S_{j}\right) \neq \emptyset$. Now suppose $V\left(S_{i}\right) \cap V\left(S_{j}\right) \neq \emptyset$. Note that, by construction, two stars that intersect either have the same center or they intersect in a vertex that is a leaf of both of them. If S_{i} and S_{j} have the same center B, then $v_{i}, v_{j} \in B$ and hence, by item (i), $v_{i} v_{j} \in E(G)$. If S_{i} and S_{j} have a common leaf, then this leaf is a vertex originated by the 1 -subdivision of an edge. Then, there exist $A, B \in V(\mathcal{T})$ such that $v_{i} \in \operatorname{bd}(A, B)$ and $v_{j} \in \operatorname{bd}(B, A)$ and thus, by item (ii), $v_{i} v_{j} \in E(G)$.

From the definition of well-partitioned chordal graphs, one can also see that every split graph is a well-partitioned chordal graph. Indeed, if G is a split graph with clique C and independent set I, the partition tree of G will be a star, with the clique C as its central bag and each vertex of I contained in a different leaf bag. We show that, in fact, every starlike graph is a well-partitioned chordal graph. A starlike graph [35] is an intersection graph of substars of a star.

Proposition 3.2. Every starlike graph is a well-partitioned chordal graph.

Proof. Let G be a starlike graph with $V(G)=\left\{v_{i} \mid i \in[n]\right\}$ and let S be the host star of the substar intersection model of G and S_{i} be the substar of S associated with vertex v_{i}. We may assume that G is connected and every vertex of S is contained in some substar of the intersection model.

We know that $v_{i} v_{j} \in E(G)$ if and only if $V\left(S_{i}\right) \cap V\left(S_{j}\right) \neq \emptyset$. To show that G is a well-partitioned chordal graph, we will construct a partition tree for G. Let c be the center of S and f_{1}, \ldots, f_{k} be its leaves. The partition tree \mathcal{T} for G will be a star with center C and leaves F_{1}, \ldots, F_{k} such that $C=\left\{v_{i} \in V(G) \mid c \in S_{i}\right\}$ and $F_{j}=\left\{v_{i} \in V(G) \mid V\left(S_{i}\right)=\left\{f_{j}\right\}\right\}$. Note that this is indeed a partition of the vertex set of G, since each substar of S either contains the center or consists of a single leaf and every vertex of S is contained in some substar of the intersection model. Now we show this is indeed a partition tree for G. Note that, by construction, each bag is a clique, so item (i) holds. Also note that, for every i, if $v \in F_{i}$, then $N_{G}(v) \subseteq F_{i} \cup C$, thus item (iii) of the definition holds. Finally, note that the vertices of F_{i} are true twins in G, since the substars of S corresponding to those vertices consist of a single vertex, namely f_{i}. Hence, item (ii) also holds. We conclude that \mathcal{T} is a partition tree for G.

We will show that the graph O_{1} in Fig. 2 is not a well-partitioned chordal graph. On the other hand, it is not difficult to see that O_{1} is a substar graph. Also note that a path graph on 5 vertices is a well-partitioned chordal graph but not a starlike graph. These observations together with Propositions 3.1 and 3.2 show that we have the following hierarchy of graph classes between split graphs and chordal graphs:

$$
\underset{\text { graphs }}{\text { split }} \subsetneq \text { graphs } \subsetneq \text { graph } \subsetneq \text { well-partitioned } \subsetneq{ }^{\text {substar }} \subsetneq \begin{gathered}
\text { chordal } \\
\text { graphs } \\
\\
\\
\text { graphs }
\end{gathered}
$$

4. Characterization by forbidden induced subgraphs

This section is entirely devoted to the proof of Theorem 1.1 . That is, we show that the set \mathbb{O} of graphs depicted in Fig. 2 is the set of all minimal forbidden induced subgraphs for well-partitioned chordal graphs, and give a polynomial-time recognition algorithm for this graph class. For convenience, we say that an induced subgraph of a graph that is isomorphic to a graph in \mathbb{O} is an obstruction for well-partitioned chordal graphs, or simply an obstruction.

In Subsection 4.1, we show that the graphs in \mathbb{O} are not well-partitioned chordal graphs (Proposition 4.2). In Subsection 4.2, we introduce the notion of a boundary-crossing path which is the main tool for devising the polynomial-time recognition algorithm. The resulting algorithm is in fact a certifying algorithm [45], meaning that it always outputs a certificate together with the Yes/No-answer on any input. In case of a Yes-instance the algorithm provides a partition tree and in case of a No-instance it outputs an obstruction. We present it in Subsection 4.3, which also concludes the proof of the characterization by forbidden induced subgraphs for well-partitioned chordal graphs.

It is not difficult to observe that no graph in \mathbb{O} contains another graph in \mathbb{O} as an induced subgraph. We remark that the results in Subsection 4.1 imply that graphs in \mathbb{O} are minimal graphs with respect to the induced subgraph relation that are not well-partitioned chordal graphs.

The diamond graph is the graph obtained from K_{4} by removing an edge. Note that for all $s \in[3], t \geq 0$, the graph $W_{s, t}$ in \mathbb{O} (see Fig. 2) contains two diamonds as induced subgraphs.

Fig. 3. Labellings of graphs O_{1}, O_{2}, O_{3}, and O_{4}.

4.1. Graphs in \mathbb{O} are not well-partitioned chordal graphs

To argue that none of the graphs in \mathbb{O} is a well-partitioned chordal graph, we make the following observation about cliques, which follows immediately from the definition of the partition tree.

Observation 4.1. Let G be a connected well-partitioned chordal graph, and D be a clique in G. In any partition tree \mathcal{T} of G, there are at most two bags whose intersection with D is non-empty.

Given a connected well-partitioned chordal graph G and a clique D in G, we say that a partition tree of G respects D if it contains a bag having all the vertices of D. For a non-empty proper subset $D^{\prime} \subset D$, we say that a partition tree splits D into ($D^{\prime}, D \backslash D^{\prime}$) if it contains two distinct bags B_{1} and B_{2} such that $B_{1} \cap D=D^{\prime}$ and $B_{2} \cap D=D \backslash D^{\prime}$. If a partition tree splits D into ($D^{\prime}, D \backslash D^{\prime}$) for some $D^{\prime} \subset D$, then we may simply say that it splits D. By Observation 4.1, each partition tree either respects or splits each clique.

For $s \in[3]$ and $t \geq 0$, the vertex set of a block of $W_{s, t}$ having more than 3 vertices is called a wing of $W_{s, t}$.
Proposition 4.2. The graphs in \mathbb{O} are not well-partitioned chordal graphs.

Proof. For $k \geq 4, H_{k}$ is not a chordal graph, so it is not a well-partitioned chordal graph.
We prove an auxiliary claim that will be useful to show that the graphs O_{1}, O_{2}, O_{3}, and O_{4} in \mathbb{O} are not wellpartitioned chordal graphs.

Claim 4.2.1. Let H be a connected graph and $D=\{x, y, z\} \subseteq V(H)$ be a clique in H.
(i) If there are adjacent vertices $u, v \in V(H) \backslash D$ such that $D \nsubseteq N_{H}(u)$ and $D \nsubseteq N_{H}(v)$, and $\emptyset \neq N_{H}(u) \cap D \neq N_{H}(v) \cap D \neq \emptyset$, then H has no partition tree respecting D.
(ii) If there exists a vertex $u \in V(H) \backslash D$ such that $N_{H}(u) \cap D=\{y, z\}$, then H has no partition tree splitting D into ($\{x, y\},\{z\}$).
(iii) If there exist two non-adjacent vertices $u, v \in V(H) \backslash D$ such that $N_{H}(u) \cap D=D=N_{H}(v) \cap D$, then H has no partition tree splitting D.

Proof. In order to prove item (i), suppose there is a partition tree \mathcal{T} of H respecting D, and let B be the bag containing D. First, since $D \nsubseteq N_{H}(u)$ and $D \nsubseteq N_{H}(v)$, we have that neither v nor u is contained in B as B is a clique in H. Furthermore, since $N_{H}(u) \cap D \neq \emptyset$ and $N_{H}(v) \cap D \neq \emptyset$, and since $u v \in E(G)$, it cannot be the case that u and v are in distinct bags, otherwise there would be a triangle in \mathcal{T}. However, since $N_{H}(u) \cap D \neq N_{H}(v) \cap D, u$ and v cannot be in the same bag either.

Now we proceed to the proof of item (ii). Suppose there is a partition tree \mathcal{T} of H that splits D into ($\{x, y\},\{z\}$), and denote the two bags intersecting D by B_{1} and B_{2} with $B_{1} \cap D=\{x, y\}$ and $B_{2} \cap D=\{z\}$. Since u is not adjacent to $x, u \notin B_{1}$. Since $x \in N_{H}(z) \cap B_{1}$ and $x \notin N_{H}(u) \cap B_{1}, u$ cannot be contained in B_{2} either. However, since $u z, u y \in E(G)$, if u is in a bag other than B_{1} and B_{2}, then $\{u, y, z\}$ is a clique that intersects three distinct bags of \mathcal{T}, a contradiction with Observation 4.1.

To conclude, we prove item (iii). Suppose there is a partition tree \mathcal{T} of H that splits D, and again denote the two bags intersecting D by B_{1} and B_{2}, with $B_{1} \cap D=\{x, y\}$ and $B_{2} \cap D=\{z\}$. First, since u and v are non-adjacent, they cannot be in the same bag. Furthermore, there cannot be a bag $B_{3} \in V(\mathcal{T}) \backslash\left\{B_{1}, B_{2}\right\}$ such that $\{u, v\} \cap B_{3} \neq \emptyset$: both u and v have neighbors in B_{1} and in B_{2}, so this would imply the existence of a clique that intersects three distinct bags of $\mathcal{T}\left(B_{1}, B_{2}\right.$, and B_{3}). The last case that remains is when $u \in B_{1}$ and $v \in B_{2}$. However, in this case, B_{1} contains a vertex that is adjacent to v, namely x, and a vertex that is not adjacent to v, namely u, a contradiction.

Now, let us consider the obstructions O_{1}, O_{2}, O_{3} and O_{4} and assume that their vertices are labeled as in Fig. 3.
By Observation 4.1, each partition tree either respects or splits every clique. First, consider the graph O_{1} and the clique $D=\{a, c, d\}$. Because of the vertices e and f, we can observe that, by Claim 4.2.1(i), no partition tree of O_{1} respects D. Furthermore, we obtain by Claim 4.2 .1 (ii) that no partition tree splits D into $(\{a, c\},\{d\}),(\{a, d\},\{c\})$, and ($\{c, d\},\{a\})$ because
of the vertices b, f, and b, respectively. Thus, no partition tree of O_{1} splits D. Hence, O_{1} does not admit a partition tree and therefore it is not a well-partitioned chordal graph.

For O_{2}, consider again the clique $\{a, c, d\}$. The arguments are similar to the previous ones, except that the vertex e should be used to show that no partition tree splits $\{a, c, d\}$ into ($\{a, d\},\{c\}$).

For O_{3}, consider the clique $D=\{b, d, e\}$. Because of the vertices f and g, we observe that, by Claim 4.2.1(i), no partition tree of O_{3} respects D. On the other hand, because of a and c, we observe that by Claim 4.2.1(iii), no partition tree of O_{3} splits D. Hence, O_{3} is not a well-partitioned chordal graph.

For O_{4}, consider the clique $D=\{b, c, g\}$. Because of the vertices d and h, we conclude by Claim 4.2.1(i) that no partition tree of O_{4} respects D. Since $N_{O_{4}}(d) \cap D=\{c, g\}=D \backslash\{b\}$, by Claim 4.2.1(ii), no partition tree of O_{4} splits D into ($\left.\{b, c\},\{g\}\right)$ or $(\{b, g\},\{c\})$. Thus, we may assume that each partition tree splits D into $(\{c, g\},\{b\})$. Let B_{1} and B_{2} be the two bags such that $B_{1} \cap D=\{c, g\}$ and $B_{2} \cap D=\{b\}$.

Since $h c \notin E(G)$, we have that $h \notin B_{1}$. Also, since $N_{O_{4}}(h) \cap\{g, c\} \neq N_{O_{4}}(d) \cap\{g, c\}, h$ and d cannot be in the same bag. Thus, we conclude that $d \in B_{1}$, otherwise $\{d, h, g\}$ would be a clique that intersects three distinct bags of \mathcal{T}. By considering the clique $\{b, c, f\}$, we conclude by symmetry that $\{a, b, f\}$ is contained in the same bag, which is B_{2}. As i is adjacent to neither a nor d, the bag containing i forms a clique with B_{1} and B_{2}, a contradiction. We conclude that O_{4} is not a well-partitioned chordal graph.

Next, we show that for all $s \in[3]$ and $t \geq 0, W_{s, t}$ is not a well-partitioned chordal graph. We first claim the following.
Claim 4.2.2. For each $s \in[3]$ and $t \geq 0, W_{s, t}$ has no partition tree having a bag whose intersection with its wing consists of only the cut vertex contained in the wing.

Proof. Suppose there are a partition tree \mathcal{T}_{1} of $W_{1, t}$, a bag B of \mathcal{T}_{1}, and a wing $\{a, b, c, d\}$ of $W_{1, t}$ such that

- d is a cut vertex of $W_{1, t}$,
- $a c \notin E\left(W_{1, t}\right)$, and
- $B \cap\{a, b, c, d\}=\{d\}$.

This implies that there exists a bag B_{1} such that $\{a, b\} \subseteq B_{1}$, otherwise $\{a, b, d\}$ would be a clique that intersects three distinct bags of \mathcal{T}_{1}. Since a and c are non-adjacent, $c \notin B_{1}$ and, by assumption, $c \notin B$. Thus $\{b, c, d\}$ is a clique intersecting three bags of \mathcal{T}_{1}, a contradiction with Observation 4.1.

Next, suppose there is a partition tree \mathcal{T}_{2} of $W_{2, t}$ that contains a bag B whose intersection with a wing of $W_{2, t}$ consists of the cut vertex alone. If the affected wing is isomorphic to the diamond, then the argument follows from the same argument given before. Now, assume that $\{a, b, c, d, e, f\}$ is the affected wing where

- d is a cut vertex of $W_{2, t}$,
- $\{a, b, c, d\}$ is a clique,
- $N_{W_{2, t}}(e)=\{b, c, f\}$ and $N_{W_{2, t}}(f)=\{c, e\}$.

First, there must exist a bag B_{1} containing $\{a, b, c\}$, otherwise there is a clique violating Observation 4.1. Since neither e nor f is adjacent to $a,\{e, f\} \cap B_{1}=\emptyset$. Since $N_{W_{2,0}}(e) \cap B_{1} \neq N_{W_{2,0}}(f) \cap B_{1}$, by Claim 4.2.1(i), there is no partition tree respecting $\{a, b, c\}$, a contradiction.

The claim regarding $W_{3, t}$ follows as well by noting that the wings of $W_{3, t}$ are isomorphic to the one considered in the latter case.

Claim 4.2.3. For each $s \in[3]$ and $t \geq 0, W_{s, t}$ is not a well-partitioned chordal graph.
Proof. Suppose that there is a partition tree \mathcal{T} of $W_{s, t}$. Let A_{1} and A_{2} be the wings of $W_{s, t}$, and for $i \in[2]$, let d_{i} be the cut vertex of $W_{s, t}$ contained in A_{i}. By Claim 4.2.2, we can assume that the bag B containing d_{1} satisfies $\left|B \cap A_{1}\right| \geq 2$. If $d_{1}=d_{2}$, then $\left|B \cap A_{2}\right|=1$ and this contradicts Claim 4.2.2. So, we may assume that $d_{1} \neq d_{2}$.

Now, let $C_{1}, C_{2}, \ldots, C_{m}$ be the set of distinct triangles in $W_{s, t}$ such that

- $d_{1} \in V\left(C_{1}\right) \backslash V\left(C_{2}\right)$ and $d_{2} \in V\left(C_{m}\right) \backslash V\left(C_{m-1}\right)$, and
- for each $i \in[m-1], C_{i}$ and C_{i+1} intersect.

For convenience, let $C_{0}=A_{1}$ and $C_{m+1}=A_{2}$. Let q be the largest integer j in $\{0\} \cup[m]$ such that the bag containing $V\left(C_{j}\right) \cap V\left(C_{j+1}\right)$ has at least two vertices of C_{j}. Such an integer exists since $j=0$ satisfies the condition.

We claim that $q=m$. Assume that $q<m$, and let B be the bag containing $V\left(C_{q}\right) \cap V\left(C_{q+1}\right)$. Since $q<m, C_{q+1}$ is a triangle. Because of Observation 4.1, there must exist a bag containing two other vertices of C_{q+1}. This implies that $q+1$ also satisfies the condition.

Thus, $q=m$. But this contradicts Claim 4.2.2 for the wing A_{2}. We conclude that $W_{s, t}$ is not a well-partitioned chordal graph. 」

This concludes the proof of Proposition 4.2.

4.2. Boundary-crossing paths

In the remaining part of this section, we present the certifying algorithm for well-partitioned chordal graphs. Here, we define the main concept of a boundary-crossing path and prove some useful lemmas.

Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}. For a bag X of \mathcal{T} and $B \subseteq X$, a vertex $z \in V(G) \backslash X$ is said to cross B in X, if it has neighbors both in B and in $X \backslash B$. In this case, we also say that B has a crossing vertex. In the following definitions, a path $X_{1} X_{2} \cdots X_{\ell}$ in \mathcal{T} is considered to be ordered from X_{1} to X_{ℓ}. Let $\ell \geq 3$ be an integer. A path $X_{1} X_{2} \cdots X_{\ell}$ in \mathcal{T} is called a boundary-crossing path if for each $i \in[\ell-2]$, there is a vertex in X_{i} that crosses $\operatorname{bd}\left(X_{i+1}, X_{i+2}\right)$. A boundary-crossing path $X_{1} X_{2} \cdots X_{\ell}$ in \mathcal{T} is exclusive if

- for each $i \in[\ell-2]$, there is no bag $Y \in V(\mathcal{T}) \backslash\left\{X_{i}\right\}$ containing a vertex that crosses $\operatorname{bd}\left(X_{i+1}, X_{i+2}\right)$,
and it is complete if
- for each $i \in[\ell-2], \operatorname{bd}\left(X_{i}, X_{i+1}\right)$ is complete to X_{i+1}.

If a boundary-crossing path is both complete and exclusive, then we call it good. For convenience, we say that any path in \mathcal{T} with at most two bags is a boundary-crossing path.

The outline of the algorithm is as follows. First we may assume that a given graph G is chordal, as we can detect a hole in polynomial time using Theorem 2.1 if it exists. We may also assume that G is connected. So, it has a simplicial vertex v, and by an inductive argument, we can assume that $G-v$ is a well-partitioned chordal graph. As v is simplical, $G-v$ is also connected, and thus it admits a partition tree \mathcal{T}. If v has neighbors only in a single bag of \mathcal{T}, say B, then we can simply add one new bag B_{v} only containing v to \mathcal{T}, and add an edge between B_{v} and B. The resulting tree is a partition tree of G. Thus, we may assume that v has neighbors in two distinct bags, say C_{1} and C_{2}. Then our algorithm is divided into three parts:

1. We find a maximal good boundary-crossing path ending in $C_{2} C_{1}$ (or $C_{1} C_{2}$). To do this, when we currently have a good boundary-crossing path $C_{i} C_{i-1} \cdots C_{2} C_{1}$, find a bag C_{i+1} containing a vertex crossing $\operatorname{bd}\left(C_{i}, C_{i-1}\right)$. If there is no such bag, then this path is maximal. Otherwise, we argue that in polynomial time either we can find an obstruction, or verify that $C_{i+1} C_{i} \cdots C_{2} C_{1}$ is good.
2. Assume that $C_{k} C_{k-1} \cdots C_{2} C_{1}$ is the obtained maximal good boundary-crossing path. Then we can in polynomial time modify \mathcal{T} so that no vertex crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$.
3. We show that if no vertex crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$ and no vertex crosses $b d\left(C_{1}, C_{2}\right)$, then we can extend \mathcal{T} to a partition tree of G.

Regarding Step 2, Lemma 4.3 shows that when a maximal good boundary-crossing path $C_{k} C_{k-1} \cdots C_{2} C_{1}$ is given, we can modify \mathcal{T} to a partition tree \mathcal{T}^{\prime} such that no vertex crosses $\operatorname{bd}\left(C_{2}^{\prime}, C_{1}^{\prime}\right)$, where C_{1}^{\prime} and C_{2}^{\prime} are the bags in \mathcal{T}^{\prime} that correspond to C_{1} and C_{2} in \mathcal{T}, respectively - in particular, they are the bags containing the neighbors of v.

Lemma 4.3. Let G be a graph, v be a simplicial vertex, and $G-v$ be a connected well-partitioned chordal graph with partition tree \mathcal{T} such that v has neighbors in two distinct bags C_{1} and C_{2}. Let $C_{k} C_{k-1} \cdots C_{1}$ be a good boundary-crossing path for some integer $k \geq 3$ such that no vertex crosses $\operatorname{bd}\left(C_{k}, C_{k-1}\right)$. One can in polynomial time output a partition tree \mathcal{T}^{\prime} of $G-v$ that contains a good boundary-crossing path $C_{k-1}^{\prime} C_{k-2} \cdots C_{1}$ such that no vertex in $G-v$ crosses $\operatorname{bd}\left(C_{k-1}^{\prime}, C_{k-2}\right)$.

Proof. Since no vertex crosses $\operatorname{bd}\left(C_{k}, C_{k-1}\right)$, we can partition the neighbors of C_{k} in \mathcal{T} into \mathcal{S}_{1} and \mathcal{S}_{2} such that for all $S_{1} \in$ \mathcal{S}_{1}, we have that $\operatorname{bd}\left(C_{k}, S_{1}\right) \subseteq C_{k} \backslash \operatorname{bd}\left(C_{k}, C_{k-1}\right)$, and for all $S_{2} \in \mathcal{S}_{2}, \operatorname{bd}\left(C_{k}, S_{2}\right) \subseteq \operatorname{bd}\left(C_{k}, C_{k-1}\right)$. Let $C_{k}^{\prime}:=C_{k} \backslash \operatorname{bd}\left(C_{k}, C_{k-1}\right)$ and $C_{k-1}^{\prime}:=C_{k-1} \cup \operatorname{bd}\left(C_{k}, C_{k-1}\right)$. We obtain \mathcal{T}^{\prime} from \mathcal{T} as follows.

- Remove C_{k} and C_{k-1}, and add C_{k}^{\prime} and C_{k-1}^{\prime}.
- Make all bags that have been adjacent to C_{k-1} in \mathcal{T} adjacent to C_{k-1}^{\prime}.
- Make all bags in \mathcal{S}_{1} adjacent to C_{k}^{\prime}, and all bags in \mathcal{S}_{2} adjacent to C_{k-1}^{\prime}.

Since $\operatorname{bd}\left(C_{k}, C_{k-1}\right)$ is complete to $C_{k-1}, C_{k-1}^{\prime}$ is indeed a clique in $G-v$, and thus we conclude that \mathcal{T}^{\prime} is a partition tree of $G-v$. Since C_{k-1}^{\prime} contains C_{k-1} and there is no edge between $\operatorname{bd}\left(C_{k}, C_{k-1}\right)$ and C_{k-2}, we know that $C_{k-1}^{\prime} C_{k-2} \cdots C_{1}$ is a good boundary-crossing path. Clearly, \mathcal{T}^{\prime} can be obtained in polynomial time.

We claim that no vertex crosses $\operatorname{bd}\left(C_{k-1}^{\prime}, C_{k-2}\right)$. Suppose for a contradiction that there exists a vertex $q \in V(G-v) \backslash$ C_{k-1}^{\prime} that crosses $\operatorname{bd}\left(C_{k-1}^{\prime}, C_{k-2}\right)$. We consider two cases. First, we assume q also crosses $\operatorname{bd}\left(C_{k-1}, C_{k-2}\right)$. Since $C_{k} \cdots C_{1}$ is exclusive, any vertex crossing $\operatorname{bd}\left(C_{k-1}, C_{k-2}\right)$ is in $\operatorname{bd}\left(C_{k}, C_{k-1}\right)$. This means that $q \in C_{k-1}^{\prime}$, a contradiction. Now assume

Fig. 4. The graphs $W_{1, t}^{-}$and $W_{2, t}^{-}$.
that q is a vertex in $V(G-v) \backslash\left(C_{k} \cup C_{k-1}\right)$ that is adjacent to a vertex in $\operatorname{bd}\left(C_{k-1}^{\prime}, C_{k-2}\right)=\operatorname{bd}\left(C_{k-1}, C_{k-2}\right)$ and a vertex in $C_{k-1}^{\prime} \backslash C_{k-1}=\operatorname{bd}\left(C_{k}, C_{k-1}\right)$. But this would mean that there is a triangle in \mathcal{T}, a contradiction.

We conclude that no vertex in $G-v$ crosses $\operatorname{bd}\left(C_{k-1}^{\prime}, C_{k-2}\right)$.
With respect to Step 3, we prove the following lemma.
Lemma 4.4. Let G be a graph, v be a simplicial vertex, and $G-v$ be a connected well-partitioned chordal graph with partition tree \mathcal{T} such that v has neighbors in two distinct bags C_{1} and C_{2}. If every vertex of $G-v$ crosses neither $\operatorname{bd}\left(C_{1}, C_{2}\right)$ nor $\operatorname{bd}\left(C_{2}, C_{1}\right)$, then one can output a partition tree for G in polynomial time.

Proof. Assume that every vertex of $G-v$ crosses neither $\operatorname{bd}\left(C_{1}, C_{2}\right)$ nor $\operatorname{bd}\left(C_{2}, C_{1}\right)$. Let \mathcal{S}_{1} denote all neighbors of C_{1} in \mathcal{T} such that for each $S_{1} \in \mathcal{S}_{1}, \operatorname{bd}\left(C_{1}, S_{1}\right) \subseteq C_{1} \backslash \operatorname{bd}\left(C_{1}, C_{2}\right)$; let \mathcal{S}_{2} denote the set of all neighbors of C_{2} in \mathcal{T} such that for each $S_{2} \in \mathcal{S}_{2}, \operatorname{bd}\left(C_{2}, S_{2}\right) \subseteq C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$; and let $\mathcal{S}_{12}:=\left(N_{\mathcal{T}}\left(C_{1}\right) \cup N_{\mathcal{T}}\left(C_{2}\right)\right) \backslash\left\{C_{1}, C_{2}\right\} \backslash \mathcal{S}_{1} \backslash \mathcal{S}_{2}$. Since every vertex of $G-v$ crosses neither $\operatorname{bd}\left(C_{1}, C_{2}\right)$ nor $\operatorname{bd}\left(C_{2}, C_{1}\right)$, for every $S \in \mathcal{S}_{12}$, we have $N_{G}(S) \cap\left(C_{1} \cup C_{2}\right) \subseteq \operatorname{bd}\left(C_{1}, C_{2}\right) \cup \operatorname{bd}\left(C_{2}, C_{1}\right)$.

Now, let $C_{1}^{\prime}:=C_{1} \backslash \operatorname{bd}\left(C_{1}, C_{2}\right), C_{2}^{\prime}:=C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$, and $C_{12}^{\prime}:=\operatorname{bd}\left(C_{1}, C_{2}\right) \cup \operatorname{bd}\left(C_{2}, C_{1}\right)$. We obtain \mathcal{T}^{\prime} from \mathcal{T} as follows.

- Remove C_{1} and C_{2}; add $C_{1}^{\prime}, C_{2}^{\prime}$, and C_{12}^{\prime}; make C_{1}^{\prime} and C_{2}^{\prime} adjacent to C_{12}^{\prime}.
- Make all bags in \mathcal{S}_{1} adjacent to C_{1}^{\prime}, all bags in \mathcal{S}_{2} adjacent to C_{2}^{\prime}, and all bags in \mathcal{S}_{12} adjacent to C_{12}^{\prime}.
- Add a new bag $C_{v}:=\{v\}$, and make it adjacent to C_{12}^{\prime}.

This yields a partition tree of G.
Considering Step 1, we present some lemmas useful to find an obstruction. To describe subparts of the long obstructions $W_{s, t}$, we use the graphs $W_{1, t}^{-}$and $W_{2, t}^{-}$as shown in Fig. 4. Note that each of them has a distinguished vertex r, that we call terminal.

The following lemma will be useful to find a wing at the beginning of a boundary-crossing path.
Lemma 4.5. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}. Let $X Y Z$ be a boundary-crossing path in \mathcal{T} such that $\operatorname{bd}(Y, Z)$ is complete to Z, and B be a non-empty proper subset of Z. Suppose that one of the following conditions does not hold.
(i) $\operatorname{bd}(X, Y)$ is complete to Y.
(ii) There is no bag $X^{\prime} \in V(\mathcal{T}) \backslash\{X\}$ that contains vertices crossing $\operatorname{bd}(Y, Z)$.

Then one can in polynomial time output an induced subgraph H of $G\left[X \cup X^{\prime} \cup Y \cup Z\right]$ for some neighbor X^{\prime} of Y in \mathcal{T} (X^{\prime} can be X) that is isomorphic to $W_{1,1}^{-}$or $W_{2,0}^{-}$, with the terminal vertex being mapped to a vertex in B, say r_{H}, such that $V(H) \cap B=\left\{r_{H}\right\}$.

Proof. Let $x \in \operatorname{bd}(X, Y)$ be a vertex that crosses $\operatorname{bd}(Y, Z)$. Choose a neighbor y in $\operatorname{bd}(Y, Z)$ and a neighbor y^{\prime} in $Y \backslash \operatorname{bd}(Y, Z)$ of x. Since $\operatorname{bd}(Y, Z)$ is complete to Z by assumption, y has a neighbor in B and a neighbor in $Z \backslash B$. Let z and z^{\prime} be these neighbors, respectively. We illustrate this situation and the following arguments in Fig. 5.

Suppose that (i) does not hold, i.e., that $\operatorname{bd}(X, Y)$, in particular the vertex x, is not complete to Y. Then, x has a nonneighbor, say $y^{\prime \prime}$ in Y. If $y^{\prime \prime} \in Y \backslash \operatorname{bd}(Y, Z)$, then the set $\left\{x, y, y^{\prime}, y^{\prime \prime}, z, z^{\prime}\right\}$ induces a $W_{1,1}^{-}$with the terminal being mapped to z. See Fig. 5(a). On the other hand, if $y^{\prime \prime} \in \operatorname{bd}(Y, Z)$, then $\left\{x, y, y^{\prime}, y^{\prime \prime}, z, z^{\prime}\right\}$ induce a $W_{2,0}^{-}$with the terminal vertex being mapped to z. See Fig. 5(b). So, we may assume that (i) holds.

Now suppose that (ii) does not hold, and let $x^{\prime} \in X^{\prime}$ be a vertex crossing $\operatorname{bd}(Y, Z)$. Then, x^{\prime} has a neighbor $y \in \operatorname{bd}(Y, Z)$ and a neighbor $y^{\prime} \in Y \backslash \operatorname{bd}(Y, Z)$. By (i), x is adjacent to y and y^{\prime}. Then $G\left[X \cup X^{\prime} \cup Y \cup Z\right]$ contains a $W_{1,1}^{-}$with terminal z. To illustrate, one may think of x^{\prime} in this case as $y^{\prime \prime}$ in Fig. 5(a), except the difference that now x^{\prime} is in a new bag X^{\prime}, while $y^{\prime \prime}$ is in Y.

We use the following lemmas to find an obstruction or extend a good boundary-crossing path.

Fig. 5. Visual aides to the proof of Lemma 4.5.

Lemma 4.6. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}, and let B be a vertex set contained in some bag C_{1}. If $C_{k} C_{k-1} \cdots C_{1}$ is a boundary-crossing path for some $k \geq 2$ such that C_{2} has a vertex that crosses B in C_{1}, then one can in polynomial time either

1. output an induced subgraph H isomorphic to $W_{s, t}^{-}$for some $s \in[3]$ and $t \geq 0$ with terminal v such that $V(H) \cap B=\{v\}$,
2. output an induced subgraph H isomorphic to $W_{1,0}^{-}$on $\left\{a, z_{1}, z_{2}, w\right\}$ such that both a and w have degree 2 in $H, a \in \operatorname{bd}\left(D, C_{1}\right)$ for some neighbor bag D of $C_{1}, z_{2} \in C_{1} \backslash B$, and $z_{1}, w \in B$, or
3. verify that it is a good boundary-crossing path such that $\operatorname{bd}\left(C_{2}, C_{1}\right)$ is complete to C_{1} and no other bag contains a vertex crossing B in C_{1}.

Proof. We prove the lemma by induction on k. Assume that $k=2$. We check whether $\operatorname{bd}\left(C_{2}, C_{1}\right)$ is complete to C_{1}. Suppose not. Let $a \in \operatorname{bd}\left(C_{2}, C_{1}\right)$. Let z_{1} be a neighbor of a in B, z_{2} be a neighbor of a in $C_{1} \backslash B$, and w be a non-neighbor of a in C_{1}. If $w \in C_{1} \backslash B$, then $\left\{a, z_{1}, z_{2}, w\right\}$ induces $W_{1,0}^{-}$with terminal z_{1}, so we have outcome 1 . If $w \in B$, then $\left\{a, z_{1}, z_{2}, w\right\}$ induces a graph as in Case 2. Otherwise, we conclude that $\operatorname{bd}\left(C_{2}, C_{1}\right)$ is complete to C_{1}.

We find a bag $D \neq C_{2}$ in \mathcal{T} containing a vertex d crossing B in C_{1}. If such a vertex d exists, then by the above procedure, we may assume that d is complete to C_{1}. Then similarly to the previous case when $w \in C_{1} \backslash B$, again we can find an induced subgraph isomorphic to the diamond on $\left\{a, d, z_{1}, z_{2}\right\}$. If such a vertex does not exist, then we conclude that no other bag contains a vertex crossing B in C_{1}.

Now, we assume that $k \geq 3$. By the induction hypothesis, the claim holds for the path $C_{k-1} C_{k-2} \cdots C_{1}$. We can assume that it is good.

We check whether $\operatorname{bd}\left(C_{k}, C_{k-1}\right)$ is not complete to C_{k-1}, and there is a bag $D \in V(\mathcal{T}) \backslash\left\{C_{k}\right\}$ that has a vertex crossing $\operatorname{bd}\left(C_{k-1}, C_{k-2}\right)$. If neither of them holds, then we verified that $C_{k} C_{k-1} \cdots C_{1}$ is good. Assume one of two statements holds.

Let $X:=\operatorname{bd}\left(C_{k-2}, C_{k-3}\right)$ if $k \geq 4$ and $X=B$ if $k=3$. Now, by applying Lemma 4.5 to the pair $\left(C_{k} C_{k-1} C_{k-2}, X\right)$, we can find an induced subgraph H isomorphic to $W_{1,1}^{-}$or $W_{2,0}^{-}$in $G\left[C_{k} \cup D \cup C_{k-1} \cup C_{k-2}\right]$ for some neighbor D of C_{k-1} in \mathcal{T} so that its terminal r is mapped to some vertex in X and $V(H) \cap X=\{r\}$. If $k=3$, then we have outcome 1 as $X=B$.

Assume $k \geq 4$. Let $x_{k-2}:=r$. We recursively choose pairs of vertices $\left(x_{i}, y_{i}\right)$ for $i \in[k-3]$ as follows. First assume $i>1$ and x_{i+1} is defined but x_{i} is not defined yet. Then choose a neighbor x_{i} of x_{i+1} in $\operatorname{bd}\left(C_{i}, C_{i-1}\right)$ and a neighbor y_{i} of x_{i+1} in $C_{i} \backslash \operatorname{bd}\left(C_{i}, C_{i-1}\right)$. Such neighbors exist since x_{i+1} crosses $\operatorname{bd}\left(C_{i}, C_{i-1}\right)$. When $i=1$, choose a neighbor x_{1} of x_{2} in B and y_{1} of x_{2} in $C_{1} \backslash B$. Then it is clear that $G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{k-3}, y_{k-3}\right\} \cup V(H)\right]$ is isomorphic to $W_{s^{\prime}, t^{\prime}}^{-}$for some $s^{\prime} \in\{1,2\}$ and $t^{\prime} \geq 0$ with terminal x_{1} such that its intersection on B is exactly x_{1}. This concludes the lemma.

Lemma 4.7. Let G_{1} and G_{2} be two connected graphs with non-empty sets $A \subseteq V\left(G_{1}\right)$ and $B \subseteq V\left(G_{2}\right)$, and G be the graph obtained from the disjoint union of G_{1} and G_{2} by adding all edges between A and B such that

- for every $v \in B, G\left[V\left(G_{1}\right) \cup\{v\}\right]$ is isomorphic to $W_{s, t}^{-}$with terminal v for some $s \in\{1,2\}$ and $t \geq 0$,
- G_{2} is a well-partitioned chordal graph with partition tree \mathcal{T} such that B is contained in some bag C_{1}.

Then the following two statements hold.
(1) If $C_{k} C_{k-1} \ldots C_{1}$ is a boundary-crossing path in \mathcal{T} for some $k \geq 2$ such that C_{2} has a vertex that crosses B in C_{1}, then one can in polynomial time either output an obstruction in G, or verify that it is a good boundary-crossing path such that $\operatorname{bd}\left(C_{2}, C_{1}\right)$ is complete to C_{1} and no other bag contains a vertex crossing B in C_{1}.
(2) If $C_{2} C_{1}$ is a boundary-crossing path in \mathcal{T}, that is, an edge in \mathcal{T}, then one can in polynomial time either output an obstruction in G, or find a maximal good boundary-crossing path ending in $C_{2} C_{1}$ such that $\operatorname{bd}\left(C_{2}, C_{1}\right)$ is complete to C_{1} and no other bag contains a vertex crossing B in C_{1}.

Proof. We prove (1). Applying Lemma 4.6 to G_{2} and B, we conclude that in polynomial time, we can either

1. output an induced subgraph H isomorphic to $W_{s, t}^{-}$for some $s \in[3]$ and $t \geq 0$ with terminal v such that $V(H) \cap B=\{v\}$,
2. output an induced subgraph H isomorphic to the diamond on $\left\{a, z_{1}, z_{2}, w\right\}$ such that a, w have degree 2 in $H, a \in$ $\operatorname{bd}\left(D, C_{1}\right)$ for some neighbor bag D of $C_{1}, z_{2} \in C_{1} \backslash B$, and $z_{1}, w \in B$, or
3. verify that it is a good boundary-crossing path such that $\operatorname{bd}\left(C_{2}, C_{1}\right)$ is complete to C_{1} and no other bag contains a vertex crossing B in C_{1}.

For case (i) it is clear that together with an obstruction $W_{s, t}^{-}$in $G\left[V\left(G_{1}\right) \cup\{v\}\right]$ given by the assumption, $G\left[V(H) \cup V\left(G_{1}\right)\right]$ is isomorphic to $W_{s, t}$ for some $s \in[3]$ and $t \geq 0$. For case (ii), we can observe that $G\left[V(H) \cup V\left(G_{1}\right)\right]$ is an obstruction as follows.

- If $G\left[V\left(G_{1}\right) \cup\left\{z_{1}\right\}\right]$ is isomorphic to $W_{1,0}^{-}$, then $G\left[V\left(G_{1}\right) \cup\left\{a, w, z_{1}, z_{2}\right\}\right]$ is isomorphic to O_{3}.
- If $G\left[V\left(G_{1}\right) \cup\left\{z_{1}\right\}\right]$ is isomorphic to $W_{2,0}^{-}$, then $G\left[V\left(G_{1}\right) \cup\left\{a, w, z_{1}, z_{2}\right\}\right]$ is isomorphic to O_{4}.
- If $G\left[V\left(G_{1}\right) \cup\left\{z_{1}\right\}\right]$ is isomorphic to $W_{s, t}^{-}$for some $s \in\{1,2\}$ and $t \geq 1$, then $G\left[V\left(G_{1}\right) \cup\left\{a, w, z_{1}, z_{2}\right\}\right]$ is isomorphic to $W_{s^{\prime}, t-1}$ for some $s^{\prime} \in\{2,3\}$.

It shows the statement (1).
Now, we show (2). By (1), we can in polynomial time either output an obstruction, or verify that bd (C_{2}, C_{1}) is complete to C_{1} and no other bag crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$. For $i \geq 3$, we recursively find a neighbor bag C_{i} of C_{i-1} that has a vertex crossing $\operatorname{bd}\left(C_{i-1}, C_{i-2}\right)$. If there is such a bag C_{i}, then by applying (1), one can in polynomial time find an obstruction or guarantee that $C_{i} C_{i-1} \cdots C_{1}$ is good. As the graph is finite, this procedure terminates with some path $C_{k} C_{k-1} \cdots C_{1}$ such that it is good and no vertex crosses $\operatorname{bd}\left(C_{k}, C_{k-1}\right)$, unless we found an obstruction.

4.3. A certifying algorithm

In this subsection, we prove the following.
Proposition 4.8. Given a connected graph G, one can in polynomial time either output an obstruction in G or output a partition tree of G confirming that G is a well-partitioned chordal graph.

As explained in Subsection 4.2, we mainly consider the case when G is a connected chordal graph, v is a simplicial vertex of G and $G-v$ is a connected well-partitioned chordal graph with partition tree \mathcal{T}, and v has neighbors in two distinct bags C_{1} and C_{2}. Throughout the following, we assume these conditions on G, v, \mathcal{T}, C_{1}, and C_{2}, so we omit them in the statements of lemmas and the like. We deal with the following three cases:

- Case 1: $C_{1} \subseteq N_{G}(v)$.
- Case 2: $\operatorname{bd}\left(C_{1}, C_{2}\right) \backslash N_{G}(v) \neq \emptyset$ and $C_{2} \backslash N_{G}(v) \neq \emptyset$.
- Case 3: $C_{1} \backslash N_{G}(v) \neq \emptyset, C_{2} \backslash N_{G}(v) \neq \emptyset$ and $N_{G}(v)=\operatorname{bd}\left(C_{1}, C_{2}\right) \cup \operatorname{bd}\left(C_{2}, C_{1}\right)$.

In each case, we show that one can in polynomial time either find an obstruction or output a partition tree of G. This is proved in Lemmas 4.9, 4.10, and 4.11, respectively. We give a proof of Proposition 4.8 assuming that these lemmas hold.

Proof of Proposition 4.8. We apply Theorem 2.1 to find a hole in G if one exists. We may assume that G is chordal. Since a graph is a well-partitioned chordal graph if and only if its connected components are well-partitioned chordal graphs, it is sufficient to show it for each connected component. From now on, we assume that G is connected. Using the algorithm in Theorem 2.2, we can find a perfect elimination ordering ($v_{1}, v_{2}, \ldots, v_{n}$) of G in polynomial time.

For each $i \in[n]$, let $G_{i}:=G\left[\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}\right]$. Observe that since G is connected and v_{i} is simplicial in G_{i} for all $1 \leq i \leq n-1$, each G_{i} is connected. From $i=n$ to 1 , we recursively find either an obstruction or a partition tree of G_{i}. Clearly, G_{n} admits a partition tree. Let $1 \leq i \leq n-1$, and assume that we obtained a partition tree \mathcal{T} of G_{i+1}.

Since v_{i} is simplicial in $G_{i}, N_{G_{i}}\left(v_{i}\right)$ is a clique. This implies that there are at most two bags in $V(\mathcal{T})$ that have a nonempty intersection with $N_{G_{i}}\left(v_{i}\right)$. If there is only one such bag in $V(\mathcal{T})$, say C, we can construct a partition tree of G_{i} by simply adding a bag consisting of v_{i} and making it adjacent to C.

Hence, from now on, we can assume that there are precisely two distinct adjacent bags $C_{1}, C_{2} \in V(\mathcal{T})$ that have a non-empty intersection with $N_{G_{i}}\left(v_{i}\right)$. As $N_{G_{i}}\left(v_{i}\right)$ is a clique, we can observe that $N_{G_{i}}\left(v_{i}\right) \subseteq \operatorname{bd}\left(C_{1}, C_{2}\right) \cup \operatorname{bd}\left(C_{2}, C_{1}\right)$.

Fig. 6. Proof of Claim 4.9.1.
If $C_{1} \subseteq N_{G_{i}}\left(v_{i}\right)$ or $C_{2} \subseteq N_{G_{i}}\left(v_{i}\right)$, then by Lemma 4.9, we can in polynomial time either output an obstruction or output a partition tree of G_{i}. Thus, we may assume that $C_{1} \backslash N_{G_{i}}\left(v_{i}\right) \neq \emptyset$ and $C_{2} \backslash N_{G_{i}}\left(v_{i}\right) \neq \emptyset$. If bd $\left(C_{1}, C_{2}\right) \backslash N_{G_{i}}\left(v_{i}\right) \neq \emptyset$ or $\operatorname{bd}\left(C_{2}, C_{1}\right) \backslash N_{G_{i}}\left(v_{i}\right) \neq \emptyset$, then by Lemma 4.10, we can in polynomial time either output an obstruction or output a partition tree of G_{i}. Thus, we may further assume that $\operatorname{bd}\left(C_{1}, C_{2}\right) \backslash N_{G_{i}}\left(v_{i}\right)=\emptyset$ and $\operatorname{bd}\left(C_{2}, C_{1}\right) \backslash N_{G_{i}}\left(v_{i}\right)=\emptyset$. Then by Lemma 4.11, we can in polynomial time either output an obstruction or output a partition tree of G_{i}, and this concludes the proposition.

Now, we focus on proving the three lemmas.
Lemma 4.9. If $C_{1} \subseteq N_{G}(v)$, then one can in polynomial time either output an obstruction in G or output a partition tree of G confirming that G is a well-partitioned chordal graph.

Proof. Since v is a simplicial vertex, we have that $\operatorname{bd}\left(C_{1}, C_{2}\right)=C_{1}$. If $N_{G}(v) \cap C_{2}=\operatorname{bd}\left(C_{2}, C_{1}\right)$, then we can obtain a partition tree of G by adding v to C_{1}. Thus, we may assume that $N_{G}(v) \cap C_{2} \neq \operatorname{bd}\left(C_{2}, C_{1}\right)$.

Assume that $C_{2}=\operatorname{bd}\left(C_{2}, C_{1}\right)$. Since $\operatorname{bd}\left(C_{2}, C_{1}\right)$ is complete to C_{1}, we have that $C_{1} \cup C_{2}$ is a clique. Hence, we can obtain a partition tree \mathcal{T}^{\prime} of G from \mathcal{T} by removing C_{1} and C_{2}, adding a new bag $C^{*}=C_{1} \cup C_{2}$, making all neighbors of C_{1} and C_{2} in \mathcal{T} adjacent to C^{*}, and adding a new bag $C_{v}:=\{v\}$ and making C_{v} adjacent to C^{*}. Thus, we may assume that $C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right) \neq \emptyset$.

Since $C_{1}=\operatorname{bd}\left(C_{1}, C_{2}\right)$, no vertex of $G-v$ crosses $\operatorname{bd}\left(C_{1}, C_{2}\right)$. If no vertex of $G-v$ crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$, then by Lemma 4.4, we can obtain a partition tree of G in polynomial time. Thus, we may assume that there is a bag C_{3} having a vertex that crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$. So, $C_{3} C_{2} C_{1}$ is a boundary-crossing path. We will find either an obstruction or a maximal good boundarycrossing path ending in $C_{3} C_{2} C_{1}$. We first check that $C_{3} C_{2} C_{1}$ is good, unless some obstruction from \mathbb{O} appears.

Claim 4.9.1. Let $z_{1} \in N_{G}(v) \cap C_{1}, z_{2} \in N_{G}(v) \cap C_{2}, w \in \operatorname{bd}\left(C_{2}, C_{1}\right) \backslash N_{G}(v)$, and $a \in C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$.
(i) If there is a vertex $x \in V(G) \backslash\left\{v, a, w, z_{1}, z_{2}\right\}$ such that $N_{G}(x) \cap\left\{v, a, w, z_{1}, z_{2}\right\}=\{a, w\}$, then $G\left[\left\{v, a, w, z_{1}, z_{2}, x\right\}\right]$ is isomorphic to O_{1}.
(ii) If there is a vertex $x \in V(G) \backslash\left\{v, a, w, z_{1}, z_{2}\right\}$ such that $N_{G}(x) \cap\left\{v, a, w, z_{1}, z_{2}\right\}=\left\{a, z_{2}\right\}$, then $G\left[\left\{v, a, w, z_{1}, z_{2}, x\right\}\right]$ is isomorphic to O_{2}.
(iii) If there is a pair of distinct non-adjacent vertices $x, y \in V(G) \backslash\left\{v, a, w, z_{1}, z_{2}\right\}$ such that $N_{G}(x) \cap\left\{v, a, w, z_{1}, z_{2}\right\}=N_{G}(y) \cap$ $\left\{v, a, w, z_{1}, z_{2}\right\}=\left\{a, w, z_{2}\right\}$, then $G\left[\left\{v, a, w, z_{1}, z_{2}, x, y\right\}\right]$ is isomorphic to O_{3}.

Proof. It is straightforward to check it; see Fig. 6. \lrcorner
Claim 4.9.2. One can in polynomial time output an obstruction or verify that $C_{3} C_{2} C_{1}$ is good.
Proof. We consider the bag C_{3}, and first check whether $\operatorname{bd}\left(C_{3}, C_{2}\right)$ is complete to C_{2}. If so, then we are done. Otherwise, choose a vertex $p \in \operatorname{bd}\left(C_{3}, C_{2}\right)$, and a non-neighbor q of p in C_{2}. As p crosses $\operatorname{bd}\left(C_{2}, C_{1}\right), p$ has a neighbor a in $C_{2} \backslash$ $\operatorname{bd}\left(C_{2}, C_{1}\right)$ and a neighbor b in $\operatorname{bd}\left(C_{2}, C_{1}\right)$. There are three possibilities; q is contained in one of $N_{G}(v) \cap C_{2}, \operatorname{bd}\left(C_{2}, C_{1}\right) \backslash$ $N_{G}(v)$, or $C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$. Let $z_{1} \in N_{G}(v) \cap C_{1}$.

If q and b are in distinct parts of $N_{G}(v) \cap C_{1}$ and $b d\left(C_{2}, C_{1}\right) \backslash N_{G}(v)$, then $G\left[\left\{p, q, z_{1}, a, b, v\right\}\right]$ is isomorphic to O_{1} or O_{2} by Claims 4.9.1(i) and (ii). Assume q and b are in the same part of $N_{G}(v) \cap C_{1}$ or $\operatorname{bd}\left(C_{2}, C_{1}\right) \backslash N_{G}(v)$. Then by the previous argument, we may assume that p is complete to one of the sets $N_{G}(v) \cap C_{1}$ or $\operatorname{bd}\left(C_{2}, C_{1}\right) \backslash N_{G}(v)$ that does not contain q. Then by choosing a vertex in this set, we can again output O_{1} or O_{2}. Thus, we may assume that q is contained in $C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$ and p is complete to $\operatorname{bd}\left(C_{2}, C_{1}\right)$. Then $q \neq a$ and by using vertices from $N_{G}(v) \cap C_{1}$ and $b d\left(C_{2}, C_{1}\right) \backslash N_{G}(v)$ together with $\left\{a, p, q, v, z_{1}\right\}$, we can output O_{3} by Claim 4.9.1(iii).

To verify whether $C_{3} C_{2} C_{1}$ is exclusive, we check if there exists another neighbor bag $D \neq C_{3}$ of C_{2} having a vertex q that crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$. If there is such a vertex q, then by applying the previous procedure, we may assume that q is complete to C_{2}. Thus, by using vertices from each of $N_{G}(v) \cap C_{2}, \operatorname{bd}\left(C_{2}, C_{1}\right) \backslash N_{G}(v)$, and $C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$ together with $\left\{p, q, z_{1}, v\right\}$, we can output O_{3} by Claim 4.9.1(iii). Otherwise, $C_{3} C_{2} C_{1}$ is a good boundary-crossing path. \lrcorner

Fig. 7. Illustration of some obstructions appearing in the proof of Claim 4.10.1.

By Claim 4.9.2, we may assume that $C_{3} C_{2} C_{1}$ is good. If no bag contains a vertex crossing bd $\left(C_{3}, C_{2}\right)$, then $C_{3} C_{2} C_{1}$ is a maximal good boundary-crossing path. So, we may assume that there is a bag C_{4} containing a vertex crossing bd $\left(C_{3}, C_{2}\right)$.

We choose $z_{1} \in N_{G}(v) \cap C_{1}, z_{2} \in N_{G}(v) \cap C_{2}, w \in \operatorname{bd}\left(C_{2}, C_{1}\right) \backslash N_{G}(v)$, and $a \in C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$. To apply Lemma 4.7, let $G_{1}=G\left[\left\{v, z_{1}, z_{2}, w, a\right\}\right]$ and G_{2} be the component of $G-V\left(C_{2}\right)$ that contains C_{3} and $G^{\prime}=G\left[V\left(G_{1}\right) \cup V\left(G_{2}\right)\right]$. It is clear that G^{\prime} can be obtained from the disjoint union of G_{1} and G_{2} by adding edges between $\operatorname{bd}\left(C_{3}, C_{2}\right)$ and $\left\{w, a, z_{2}\right\}$. Also, for each vertex $p \in \operatorname{bd}\left(C_{3}, C_{2}\right),\{p\} \cup V\left(G_{1}\right)$ is a wing of $W_{2,0}$ with terminal p.

Thus, by (2) of Lemma 4.7, we can in polynomial time either output an obstruction, or find a maximal good boundarycrossing path ending in $C_{4} C_{3}$ in G_{2} such that $\operatorname{bd}\left(C_{4}, C_{3}\right)$ is complete to C_{3} and no other bag contains a vertex crossing C_{3}. Thus, in the latter case, we obtain a maximal boundary-crossing path ending in $C_{2} C_{1}$ in $G-v$. We now repeatedly apply Lemma 4.3 to modify \mathcal{T} along this path and obtain a partition tree \mathcal{T}^{\prime} of $G-v$ such that no vertex crosses bd $\left(C_{2}, C_{1}\right)$. Note that, for simplicity, we call again C_{1} and C_{2} the bags of \mathcal{T}^{\prime} containing the neighbors of v. We can now apply Lemma 4.4 to obtain a partition tree of the entire graph G in polynomial time.

Lemma 4.10. If $\operatorname{bd}\left(C_{1}, C_{2}\right) \backslash N_{G}(v) \neq \emptyset$ and $C_{2} \backslash N_{G}(v) \neq \emptyset$, then one can in polynomial time either output an obstruction in G or output a partition tree of G confirming that G is a well-partitioned chordal graph.

Proof. We choose a neighbor z_{1} of v in $\operatorname{bd}\left(C_{1}, C_{2}\right)$, a neighbor z_{2} of v in $\operatorname{bd}\left(C_{2}, C_{1}\right)$ and a non-neighbor x of v in bd $\left(C_{1}, C_{2}\right)$. We first consider the case when $\operatorname{bd}\left(C_{1}, C_{2}\right)=C_{1}$.

Case $1\left(\operatorname{bd}\left(C_{1}, C_{2}\right)=C_{1}\right)$. Note that no vertex in $G-v$ crosses $\operatorname{bd}\left(C_{1}, C_{2}\right)$. If no vertex in $G-v$ crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$, then we can obtain a partition tree of G from \mathcal{T} by Lemma 4.4. We may assume that there is a bag C_{3} containing a vertex a that crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$.

Claim 4.10.1. One can in polynomial time output an obstruction or verify that $C_{3} C_{2} C_{1}$ is good.
Proof. As a crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$, a has a neighbor both in $C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$ and in $\operatorname{bd}\left(C_{2}, C_{1}\right)$. Let b_{1} and b_{2} be neighbors of a in $C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$ and $\operatorname{bd}\left(C_{2}, C_{1}\right)$, respectively.

Assume that a and v have no common neighbors. Then b_{2} is not adjacent to v and z_{2} is not adjacent to a. So, $G\left[\left\{a, b_{1}, b_{2}, z_{2}, z_{1}, v\right\}\right]$ is isomorphic to O_{1}, see Fig. 7(a). Thus, we may assume that a and v have the common neighbor in $\operatorname{bd}\left(C_{2}, C_{1}\right)$. We assume that z_{2} is a common neighbor.

Now suppose that there is a vertex $w \in C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$ that is not adjacent to a. Recall that since $N_{G}(v) \cap C_{2} \subseteq \operatorname{bd}\left(C_{2}, C_{1}\right)$, we have that v is not adjacent to w. Thus, we can output a $W_{1,0}$ on $\left\{v, x, z_{1}, z_{2}, a, b_{1}, w\right\}$, see Fig. $7(\mathrm{~b})$. So, we may assume that a is complete to $C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$.

Assume that there is a vertex $w \in \operatorname{bd}\left(C_{2}, C_{1}\right)$ that is not adjacent to a. Note that v may or may not be adjacent to w. If v is adjacent to w, then G contains O_{3} as an induced subgraph, and if v is not adjacent to w, then G contains O_{2} as an induced subgraph; both these cases are illustrated in Fig. 8. Otherwise, we conclude that a is complete to C_{2}.

To check whether $C_{3} C_{2} C_{1}$ is exclusive, we find a bag $D \neq C_{3}$ containing a vertex w crossing $\operatorname{bd}\left(C_{2}, C_{1}\right)$. If there is no such a vertex, then it is exclusive. Assume that such a vertex w exists. By repeating the above argument, we may assume that w is complete to C_{2}. Then, $G\left[\left\{v, z_{1}, z_{2}, x, a, b_{1}, w\right\}\right]$ is isomorphic to $W_{1,0}$ (see Fig. 7(b), but note that in this case $\left.w \notin C_{2}\right)$. 」

By Claim 4.10.1, we may assume that $C_{3} C_{2} C_{1}$ is good. Let $a \in C_{2} \backslash \operatorname{bd}\left(C_{2}, C_{1}\right)$. If no bag contains a vertex crossing $\operatorname{bd}\left(C_{3}, C_{2}\right)$, then $C_{3} C_{2} C_{1}$ is a maximal good boundary-crossing path. So, we may assume that there is a bag C_{4} containing a vertex crossing $\operatorname{bd}\left(C_{3}, C_{2}\right)$.

Fig. 8. Illustration of some more obstructions appearing in the proof of Claim 4.10.1. Note that the edge between v and w may or may not be present, depending on which we either have an O_{3} or an O_{2} as an induced subgraph in G.

To apply Lemma 4.7, let $G_{1}=G\left[\left\{v, x, z_{1}, z_{2}, a\right\}\right]$ and G_{2} be the component of $G-V\left(C_{2}\right)$ containing C_{3} and $G^{\prime}=$ $G\left[V\left(G_{1}\right) \cup V\left(G_{2}\right)\right]$. It is clear that G^{\prime} can be obtained from the disjoint union of G_{1} and G_{2} by adding edges between $\operatorname{bd}\left(C_{3}, C_{2}\right)$ and $\left\{a, z_{2}\right\}$. Observe that for each vertex $p \in \operatorname{bd}\left(C_{3}, C_{2}\right), G\left[\left\{p, a, v, z_{1}, z_{2}, z\right\}\right]$ is isomorphic to $W_{1,1}^{-}$with terminal p.

By (2) of Lemma 4.7, we can in polynomial time either output an obstruction, or find a maximal good boundary-crossing path ending in $C_{4} C_{3}$ in G_{2} such that $\operatorname{bd}\left(C_{4}, C_{3}\right)$ is complete to C_{3} and no other bag contains a vertex crossing C_{3}. Thus, in the latter case, we obtain a maximal boundary-crossing path ending in $C_{2} C_{1}$ in $G-v$. We can now repeatedly apply Lemma 4.3 to modify \mathcal{T} along this path and obtain a partition tree \mathcal{T}^{\prime} for $G-v$ such that no vertex crosses bd $\left(C_{2}, C_{1}\right)$. Note that, for simplicity, we call again C_{1} and C_{2} the bags of \mathcal{T}^{\prime} containing the neighbors of v. We can now apply Lemma 4.4 to obtain a partition tree for the entire graph G in polynomial time.

Case $2\left(C_{1} \backslash \operatorname{bd}\left(C_{1}, C_{2}\right) \neq \emptyset\right)$. If there is no vertex crossing $\operatorname{bd}\left(C_{1}, C_{2}\right)$ and no vertex $\operatorname{crossing} \operatorname{bd}\left(C_{2}, C_{1}\right)$ in $G-v$, then by Lemma 4.4, one can output a partition tree of G from \mathcal{T} in polynomial time. Recall that we have neighbors of v, namely $z_{1} \in \operatorname{bd}\left(C_{1}, C_{2}\right)$ and $z_{2} \in \operatorname{bd}\left(C_{2}, C_{1}\right)$, and a non-neighbor of v, namely $x \in \operatorname{bd}\left(C_{1}, C_{2}\right)$.

Claim 4.10.2. If there is a vertex crossing $\operatorname{bd}\left(C_{1}, C_{2}\right)$ or $\operatorname{bd}\left(C_{2}, C_{1}\right)$, then one can in polynomial time output an obstruction or output a partition tree of G from \mathcal{T} confirming that G is a well-partitioned chordal graph.

Proof. First we consider the case in which only $\operatorname{bd}\left(C_{1}, C_{2}\right)$ has a crossing vertex. Let a be a vertex in a bag $C_{3} \in V(\mathcal{T}) \backslash$ $\left\{C_{1}, C_{2}\right\}$ that crosses $\operatorname{bd}\left(C_{1}, C_{2}\right)$. Let $b \in C_{1} \backslash \operatorname{bd}\left(C_{1}, C_{2}\right)$ be a neighbor of a. Note that a neighbor of a in $\operatorname{bd}\left(C_{1}, C_{2}\right)$ is either adjacent to v, as z_{1}, or non-adjacent to v, as x. As in Claim 4.9.1, we can restrict the way $N_{G}(a)$ intersects $\left\{x, b, z_{1}\right\}$, and as we did in Claim 4.9.2, we can deduce that $\operatorname{bd}\left(C_{3}, C_{1}\right)$ is complete to C_{1} and that there is no bag other than C_{3} containing a vertex that crosses $\mathrm{bd}\left(C_{1}, C_{2}\right)$.

Observe that $\left\{v, z_{1}, z_{2}, x, a, b\right\}$ induces a $W_{2,0}^{-}$with terminal vertex a. By applying Lemma 4.7 similarly to Case 1 , one can in polynomial time find an obstruction or find a maximal good boundary-crossing path ending in $C_{3} C_{1} C_{2}$. In the latter case, we apply Lemma 4.3 to modify \mathcal{T} along this path and obtain a partition tree \mathcal{T}^{\prime} of $G-v$ such that no vertex crosses $\operatorname{bd}\left(C_{1}, C_{2}\right)$. Then, since both $\operatorname{bd}\left(C_{1}, C_{2}\right)$ and $\operatorname{bd}\left(C_{2}, C_{1}\right)$ have no crossing vertices, we can apply Lemma 4.4 to obtain a partition tree of G.

Now we consider the case in which only $\mathrm{bd}\left(C_{2}, C_{1}\right)$ has a crossing vertex. Let a be a vertex in a bag C_{3} that crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$. Note that $\left\{v, z_{1}, z_{2}, x\right\}$ is a wing of $W_{1,0}$ with terminal z_{2}, as in Case 1 (see (b) of Fig. 7). As in Claim 4.10.1 and Lemma 4.7, we can find a maximal good boundary-crossing path ending in $C_{2} C_{1}$. We apply Lemma 4.3 to modify \mathcal{T} along this path and obtain a partition tree \mathcal{T}^{\prime} of $G-v$ such that no vertex crosses $\operatorname{bd}\left(C_{2}, C_{1}\right)$. Then, since both $\operatorname{bd}\left(C_{1}, C_{2}\right)$ and $\operatorname{bd}\left(C_{2}, C_{1}\right)$ have no crossing vertices, we can apply Lemma 4.4 to obtain a partition tree of G.

To conclude, in the case in which both $\operatorname{bd}\left(C_{1}, C_{2}\right)$ and $\operatorname{bd}\left(C_{2}, C_{1}\right)$ have crossing vertices, we can first modify \mathcal{T} along a maximal boundary-crossing path ending in $C_{2} C_{1}$, then along a maximal boundary-crossing path ending in $C_{1} C_{2}$. In this way we obtain a partition tree of $G-v$ in which, again, both $\operatorname{bd}\left(C_{1}, C_{2}\right)$ and $\operatorname{bd}\left(C_{2}, C_{1}\right)$ have no crossing vertices and we proceed with Lemma 4.4.

This concludes the lemma.
Lemma 4.11. If $C_{1} \backslash N_{G}(v) \neq \emptyset, C_{2} \backslash N_{G}(v) \neq \emptyset$ and $N_{G}(v)=\operatorname{bd}\left(C_{1}, C_{2}\right) \cup \mathrm{bd}\left(C_{2}, C_{1}\right)$, then one can in polynomial time either output an obstruction in G or output a partition tree of G confirming that G is a well-partitioned chordal graph.

Proof. We first show that if at least one of $\operatorname{bd}\left(C_{1}, C_{2}\right)$ and $\operatorname{bd}\left(C_{2}, C_{1}\right)$ has no crossing vertex, then we can obtain a partition tree of G.

Claim 4.11.1. If there is no vertex crossing $\operatorname{bd}\left(C_{1}, C_{2}\right)$, then one can obtain a partition tree of G from \mathcal{T} in polynomial time. The same holds for $\mathrm{bd}\left(C_{2}, C_{1}\right)$.

Proof. We prove the claim for $\operatorname{bd}\left(C_{1}, C_{2}\right)$ and note that the argument for $\operatorname{bd}\left(C_{2}, C_{1}\right)$ is symmetric. Let $C_{1}^{\prime}:=C_{1} \backslash \operatorname{bd}\left(C_{1}, C_{2}\right)$, and $C_{12}^{\prime}:=\operatorname{bd}\left(C_{1}, C_{2}\right) \cup\{v\}$. Let $\mathcal{S}_{1} \subseteq N_{\mathcal{T}}\left(C_{1}\right)$ be such that for all $S_{1} \in \mathcal{S}_{1}, \operatorname{bd}\left(C_{1}, S_{1}\right) \subseteq C_{1} \backslash \operatorname{bd}\left(C_{1}, C_{2}\right)$, and let $\mathcal{S}_{2} \subseteq N_{\mathcal{T}}\left(C_{1}\right)$ be such that for all $S_{2} \in \mathcal{S}_{2}$, $\operatorname{bd}\left(C_{1}, S_{2}\right) \subseteq \operatorname{bd}\left(C_{1}, C_{2}\right)$. We obtain a partition tree \mathcal{T}^{\prime} of G from \mathcal{T} as follows.

- Remove C_{1}; add C_{1}^{\prime} and C_{12}^{\prime}; make C_{1}^{\prime} adjacent to C_{12}^{\prime}, and C_{12}^{\prime} adjacent to C_{2}.
- Make each bag in \mathcal{S}_{1} adjacent to C_{1}^{\prime}, and each bag in \mathcal{S}_{2} adjacent to C_{12}^{\prime}.

This yields a partition tree of G. \lrcorner

From now on, we assume that both $\operatorname{bd}\left(C_{1}, C_{2}\right)$ and $\operatorname{bd}\left(C_{2}, C_{1}\right)$ have crossing vertices. Let C_{2}^{\prime} be a bag containing a vertex crossing $\operatorname{bd}\left(C_{1}, C_{2}\right)$, and let C_{3} be a bag containing a vertex crossing $\operatorname{bd}\left(C_{2}, C_{1}\right)$. For convenience, let $C_{1}^{\prime}:=C_{1}$.

Using Lemma 4.6 with $B=\operatorname{bd}\left(C_{1}^{\prime}, C_{2}\right)$, we recursively find a longer good boundary-crossing path or a partial obstruction. Starting from $C_{2}^{\prime} C_{1}^{\prime}$, for a path $C_{i}^{\prime} C_{i-1}^{\prime} \cdots C_{1}^{\prime}$, we find a neighbor bag C_{i+1}^{\prime} of C_{i}^{\prime} that contains a vertex crossing bd $\left(C_{i}^{\prime}, C_{i-1}^{\prime}\right)$. At the end, either we can find one of first two outcomes in Lemma 4.6, or we can find a maximal good boundary-crossing path ending in $C_{2}^{\prime} C_{1}^{\prime} C_{2}$. In the latter case, we can repeatedly apply Lemma 4.3 to modify \mathcal{T} along this path and obtain a partition tree \mathcal{T}^{\prime} of $G-v$ such that no vertex crosses $\operatorname{bd}\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$. We can now apply Claim 4.11 .1 to obtain a partition tree of the entire graph G. Thus, we may assume that we have an induced subgraph H_{1} which is one of two outcomes in Lemma 4.6. Let v_{1} be the terminal of H_{1} in $\operatorname{bd}\left(C_{1}^{\prime}, C_{2}\right)$.

By applying the same argument for $C_{2} C_{3}$, we may assume that we have an induced subgraph H_{2} which is one of two outcomes in Lemma 4.6. Let v_{2} be the terminal of H_{2} in $\operatorname{bd}\left(C_{2}, C_{1}\right)$.

If both H_{1} and H_{2} are the first outcome in Lemma 4.6, then $G\left[V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup\{v\}\right]$ is isomorphic to $W_{s, t}$ for some $s \in[3]$ and $t \geq 0$. If H_{1} is the first outcome and H_{2} is the second outcome of Lemma 4.6, then $G\left[V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup\{v\}\right]$ is isomorphic to $W_{s, t}$ for some $s \in\{2,3\}$ and $t \geq 0$, where $G\left[V\left(H_{2}\right) \cup\left\{v, v_{1}\right\}\right]$ is isomorphic to $W_{2,0}^{-}$. If both are the second outcomes in Lemma 4.6, then $G\left[V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup\{v\}\right]$ is isomorphic to O_{4}, and this concludes the lemma.

5. Geodetic sets

For two vertices v and w in a graph G, we denote by $I[v, w]$ the set of all vertices lying on a shortest path between v and w. For a vertex set $S \subseteq V(G)$, we denote by $I[S]:=\bigcup_{v, w \in S} I[v, w]$. The set $I[S]$ is called a geodetic closure of S [36]. Such a set S is called a geodetic set if $I[S]=V(G)$. The Geodetic Set problem asks, given a graph G, for the smallest size of any geodetic set in G.

The study of geodetic sets was initiated by Harary et al. [36] in 1986, and is related to convexity measures in graphs; we refer to [51] for an overview. Harary et al. [36] showed that the Geodetic Set problem is NP-hard on general graphs, see also [4]. Dourado et al. [22] showed that Geodetic Set remains NP-hard on chordal graphs, and that it is polynomial-time solvable on split graphs. We extend their ideas to give a polynomial-time algorithm for well-partitioned chordal graphs, the main result of this section.

Theorem 5.1. There is a polynomial-time algorithm that given a well-partitioned chordal graph G, computes a minimum-size geodetic set of G.

Before we proceed to the proof of Theorem 5.1, it is worth mentioning that the complexity of Geodetic Set has also been deeply studied on other graph classes. Besides the above mentioned results, it was shown to be NP-hard on chordal bipartite [22] and bipartite [23] graphs, as well as co-bipartite [25], subcubic [11], and planar graphs [17]. Very recently, Chakraborty et al. [16] showed NP-hardness on subcubic partial grids, which unifies hardness on subcubic, planar, and bipartite graphs. Interestingly, they showed that Geodetic Set is NP-hard even on interval graphs, while a polynomialtime algorithm for proper interval graphs is known due to Ekim et al. [25]. Other graph classes that are known to admit polynomial-time algorithms are cographs [22], outerplanar graphs [47], block-cactus graphs [25], and solid grid graphs [16]. Kellerhals and Koana [41] recently assessed the parameterized complexity of Geodetic Set, and proved it to be W[1]-hard parameterized by solution size plus pathwidth plus feedback vertex set, while devising FPT-algorithms for the parameter feedback edge set as well as for tree-depth.

We first observe that any geodetic set of a graph contains all its simplicial vertices. Since the neighborhood of a simplicial vertex v is a clique, v is never an internal vertex of any shortest path: Suppose v is an internal vertex of a path P, and let u_{1} and u_{2} be the two neighbors of v in P. Since u_{1} and u_{2} are adjacent, we can obtain a shorter path P^{\prime} from P by replacing $u_{1} v u_{2}$ with $u_{1} u_{2}$ such that P^{\prime} has the same endpoints as P.

Observation 5.2. Let G be a graph and let $v \in V(G)$ be a simplicial vertex in G. Then, every geodetic set of G contains v.

Fig. 9. Illustration of the proof of Lemma 5.4. The top drawing shows item 1 and the bottom one item 2.

From now on we assume that we are given a connected well-partitioned chordal graph G with partition tree \mathcal{T}, such that \mathcal{T} has at least two nodes (otherwise, G is simply a complete graph). If G is not connected, we can apply the procedure described below to each of its connected components. As a consequence of Observation 5.2 , we have that each leaf bag of \mathcal{T} has a vertex that is contained in every geodetic set of G. Let $B \in V(\mathcal{T})$ be a leaf bag with neighbor C. If $b d(B, C) \neq B$, then each vertex in $B \backslash \operatorname{bd}(B, C)$ is simplicial. If $\operatorname{bd}(B, C)=B$, then each vertex in B is simplicial. This also immediately implies that each non-simplicial vertex in a leaf bag is on some shortest path between two simplicial vertices: if we have a non-simplicial vertex in B, then $\operatorname{bd}(B, C) \neq B$ and the non-simplicial vertices are precisely the ones in $b d(B, C)$. Since \mathcal{T} has at least two nodes, there is some other leaf bag in \mathcal{T} which again has some simplicial vertex, say x. Now, each shortest path from a simplicial vertex in B to x uses some vertex from $\operatorname{bd}(B, C)$, and since the vertices in $\operatorname{bd}(B, C)$ are twins in $G[B \cup C]$, each of them is on such a shortest path.

Observation 5.3. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}, and let S be the set of simplicial vertices of G. Each leaf bag B of \mathcal{T} contains a simplicial vertex, and $B \subseteq I[S]$.

In the following, we adapt the idea of Dourado et al. [22] about split graphs to the case of internal bags in a partition tree of a well-partitioned chordal graph. First, we prove a small auxiliary lemma; for an illustration of its arguments see Fig. 9.

Lemma 5.4. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}, let S denote the set of simplicial vertices of G, and let $B \in V(\mathcal{T})$ be an internal bag.

1. For distinct $C_{1}, C_{2} \in N_{\mathcal{T}}(B), \operatorname{bd}\left(B, C_{1}\right) \cap \operatorname{bd}\left(B, C_{2}\right) \subseteq I[S]$.
2. For all $C_{1}, C_{2} \in N_{\mathcal{T}}(B)$ with $\operatorname{bd}\left(B, C_{1}\right) \cap \operatorname{bd}\left(B, C_{2}\right)=\emptyset$, we have that $\operatorname{bd}\left(B, C_{1}\right) \cup \operatorname{bd}\left(B, C_{2}\right) \subseteq I[S]$.

Proof. 1. Let $u \in \operatorname{bd}\left(B, C_{1}\right) \cap \operatorname{bd}\left(B, C_{2}\right)$. There are leaves D_{1}, D_{2} in \mathcal{T} such that $C_{1} B C_{2}$ is on the path from D_{1} to D_{2} in \mathcal{T}. By Observation 5.3, for all $i \in[2], D_{i}$ contains a simplicial vertex, say x_{i}. Each shortest path from x_{1} to x_{2} is of the form $x_{1} \cdots y_{1} z y_{2} \cdots x_{2}$, where $y_{1} \in C_{1}, y_{2} \in C_{2}$, and $z \in \operatorname{bd}\left(B, C_{1}\right) \cap \mathrm{bd}\left(B, C_{2}\right)$. Since the vertices in $\operatorname{bd}\left(B, C_{1}\right) \cap \operatorname{bd}\left(B, C_{2}\right)$ are twins in $G\left[B \cup C_{1} \cup C_{2}\right], x_{1} \cdots y_{1} u y_{2} \cdots x_{2}$ is also a shortest path from x_{1} to x_{2}, and therefore $u \in I\left[x_{1}, x_{2}\right] \subseteq I[S]$.
2. The proof is similar to (i), with the difference that each shortest path between the (corresponding) vertices x_{1} and x_{2} uses both a vertex from $\operatorname{bd}\left(B, C_{1}\right)$ and one from $\operatorname{bd}\left(B, C_{2}\right)$.

Lemma 5.5. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}, let S denote the set of simplicial vertices of G, and let $B \in V(\mathcal{T})$ be an internal bag. If B contains a simplicial vertex, then $B \subseteq I[S]$.

Proof. Let X be the set of vertices in B that are not contained in any boundary. Note that $X \subseteq S$. Then, we obtain \mathcal{T}^{\prime} from \mathcal{T} by removing B, adding a bag $B^{\prime}:=B \backslash X$ and a bag X. We make all bags in $N_{\mathcal{T}}(B) \cup\{X\}$ adjacent to B^{\prime} in \mathcal{T}^{\prime}. Since B is a clique, X is a clique and complete to B^{\prime}, satisfying the requirements of the definition of a partition tree. Since no vertex in X was in any boundary, the boundaries from the other neighbors of B^{\prime} in \mathcal{T}^{\prime} remain the same as the ones in \mathcal{T} to B. We can conclude that \mathcal{T}^{\prime} is a partition tree of G. Moreover, each vertex $v \in B^{\prime}$ is in $\mathrm{bd}\left(B^{\prime}, X\right)$ and at least one more boundary, since $v \notin X$. By Lemma $5.4(1), B^{\prime} \subseteq I[S]$, so $B^{\prime} \cup X=B \subseteq I[S]$.

We may thus assume that each simplicial vertex v of B is contained in a boundary. Clearly, a simplicial vertex can be contained in at most one boundary; let $C \in N_{\mathcal{T}}(B)$ be such that $v \in \operatorname{bd}(B, C)$. Since v is simplicial, we have that $\operatorname{bd}(B, C)=B$. Therefore, for each vertex $u \in B$ such that there is some neighbor $C^{\prime} \neq C$ of B with $u \in \operatorname{bd}\left(B, C^{\prime}\right)$, we have by Lemma 5.4(1) that $u \in I[S]$. On the other hand, each vertex in $B \backslash \bigcup_{C^{\prime} \in N_{\mathcal{T}}(B) \backslash\{C\}} \operatorname{bd}\left(B, C^{\prime}\right)$ is simplicial as well, so we can conclude that $B \subseteq I[S]$.

(a) Illustration of a problematic vertex v. The only boundary v is contained in is $\operatorname{bd}(B, C)$, and every other boundary in B intersects $\mathrm{bd}(B, C)$.

(b) Illustration of a problem solver v. Note that v may be in $I[S]$, and that x is a problem solver as well.

Fig. 10. Problematic vertices and problem solvers.

In the remainder, we show how to deal with vertices that are not on shortest paths between simplicial vertices. We call such vertices problematic, and they are the ones that are contained in internal bags without simplicial vertices and do not fall under one of the cases of Lemma 5.4. For an illustration of a problematic vertex, see Fig. 10a.

Definition 5.6. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}, and let $B \in V(\mathcal{T})$ be an internal bag that does not contain any simplicial vertex. A vertex $v \in B$ is called problematic if

1. there is a unique $C \in N_{\mathcal{T}}(B)$ such that $v \in \operatorname{bd}(B, C)$, and
2. for each $C^{\prime} \in N_{\mathcal{T}}(B) \backslash\{C\}, \operatorname{bd}(B, C) \cap \operatorname{bd}\left(B, C^{\prime}\right) \neq \emptyset$.

In this case we call C a problematic neighbor bag.
Suppose that some bag B has no simplicial vertex. Then each shortest path in G between two simplicial vertices that uses a vertex from B passes through two neighbors of B. If a vertex is problematic, then it cannot be on any such shortest path, and if it is not problematic, then it falls under one of the cases of Lemma 5.4, which leads to the following observation.

Observation 5.7. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}, let S denote the set of simplicial vertices of G, and let $B \in V(\mathcal{T})$ be an internal bag with $B \cap S=\emptyset$. Let P be the set of problematic vertices of B, then $P=B \backslash I[S]$.

By similar reasoning, we observe that if a problematic vertex in B is on some shortest path, then this shortest path has to have an endpoint in B.

Observation 5.8. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}, and let $B \in V(\mathcal{T})$ be an internal bag. Let $v \in B$ be a problematic vertex. Any shortest path that has v as an internal vertex has one endpoint in B.

By Observations 5.7 and 5.8, we know that if a bag B has no simplicial vertex and it has at least one problematic vertex, then we need at least one more vertex from B in any geodetic set. The following notion captures in which situation a single additional vertex suffices. We illustrate the following definition in Fig. 10b.

Definition 5.9. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T} and let $B \in V(\mathcal{T})$. Let $P \subseteq B$ denote the set of problematic vertices in B and C_{1}, \ldots, C_{ℓ} the problematic neighbor bags. A vertex $v \in B$ is called a problem solver if for each $i \in[\ell]$, either $v \notin \operatorname{bd}\left(B, C_{i}\right)$ or $\operatorname{bd}\left(B, C_{i}\right) \cap P=\{v\}$.

Lemma 5.10. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T} and let S denote the set of simplicial vertices of G. Let $B \in V(\mathcal{T})$ be an internal bag containing a problematic vertex and let $W \subseteq V(G)$ with $S \subseteq W \subseteq V(G) \backslash B$. For each $v \in B$, $B \subseteq I[W \cup\{v\}]$ if and only if v is a problem solver.

Proof. Throughout the proof, we denote by P the set of problematic vertices of B and by C_{1}, \ldots, C_{ℓ} the problematic neighbor bags. Let $v \in B$.

Suppose that v is a problem solver. By Observation 5.7, each vertex in $B \backslash I[S]$ is problematic, so we have to argue that each problematic vertex is on a shortest path from v to a vertex in W. Let $u \in P$ with problematic neighbor bag C. If $\operatorname{bd}(B, C) \cap P=\{u\}$ and $u=v$, then clearly $u \in I[W \cup\{v\}]$. Otherwise we have that $v \notin \operatorname{bd}(B, C)$, so each shortest path from v that goes through C contains a vertex from $\operatorname{bd}(B, C)$. Moreover, there is a leaf $D \in V(\mathcal{T})$ such that C is on the path from D to B in \mathcal{T}. By Observation 5.3, D has a simplicial vertex so the first direction follows.

For the other direction, suppose for a contradiction that $B \subseteq I[W \cup\{v\}]$, while v is not a problem solver. Since v is not a problem solver, for some $i \in[\ell], v \in \operatorname{bd}\left(B, C_{i}\right)$ and there is some $u \in\left(\operatorname{bd}\left(B, C_{i}\right) \cap P\right) \backslash\{v\}$. Since $u \in I[W \cup\{v\}]$, u is on a shortest path between v and some vertex in W, denote that path by Q. Since u is problematic, it is not on a shortest path between two vertices in W. Moreover, by Observation 5.8 , one of the endpoints of Q has to be in B. Since $B \cap W=\emptyset$, we know that one of the endpoints of the path is v.

If Q uses a vertex from C_{i}, in particular from $\operatorname{bd}\left(C_{i}, B\right)$, then we can remove u from Q and go from the vertex in $\operatorname{bd}\left(C_{i}, B\right)$ directly to v and obtain a shorter path, a contradiction. If Q does not use a vertex from C_{i}, then it must use a vertex from some other neighbor of B, say $D \in N_{\mathcal{T}}(B) \backslash\left\{C_{i}\right\}$. This is because the other endpoint of Q, distinct than v, is not contained in B. Now, since u is problematic, we have that $u \notin \operatorname{bd}(B, D)$. However, Q contains a vertex in $\operatorname{bd}(B, D)$, so we can remove u from Q and obtain a shorter path with the same endpoints, again a contradiction.

Next we show that if there are at least two distinct problematic neighbor bags, then two additional vertices always suffice.

Lemma 5.11. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}, let S denote the set of simplicial vertices of G, let $B \in V(\mathcal{T})$ be an internal bag containing a problematic vertex and let $W \subseteq V(G)$ with $S \subseteq W \subseteq V(G) \backslash B$. If there are two distinct problematic neighbor bags of B, then there are two vertices $v_{1}, v_{2} \in B$ such that $B \subseteq I\left[W \cup\left\{v_{1}, v_{2}\right\}\right]$.

Proof. Let $C_{1}, C_{2} \in N_{\mathcal{T}}(B)$ be two distinct problematic neighbor bags of B, and for all $i \in[2]$, let v_{i} be a problematic vertex in $\operatorname{bd}\left(B, C_{i}\right)$.

We claim that $B \subseteq I\left[W \cup\left\{v_{1}, v_{2}\right\}\right]$. By Observation 5.7, we have to argue that each problematic vertex in B except v_{1}, v_{2} is on a shortest path from v_{1} or v_{2} to a vertex in W.

Let u be a problematic vertex other than v_{1}, v_{2} and let $C \in N_{\mathcal{T}}(B)$ be the corresponding problematic neighbor bag. Suppose $C=C_{1}$. There is a leaf bag D (containing a simplicial vertex by Observation 5.3) such that C is on the path from D to B in \mathcal{T}, and each shortest path from a vertex in D to a vertex in $B \backslash \operatorname{bd}(B, C)$ uses a vertex from $\operatorname{bd}(B, C)$. Since $v_{2} \notin \operatorname{bd}(B, C)$ by the definition of a problematic vertex, it follows that $u \in I\left[W \cup\left\{v_{2}\right\}\right]$. On the other hand, if $C \neq C_{1}$, then we have that $u \in I\left[W \cup\left\{v_{1}\right\}\right]$. We can conclude that $B \subseteq I\left[W \cup\left\{v_{1}, v_{2}\right\}\right]$.

Finally we show that in the remaining case when there is only one problematic neighbor bag and no problem solver, then any geodetic set of G has to include all problematic vertices.

Lemma 5.12. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}, let S denote the set of simplicial vertices of G, let $B \in V(\mathcal{T})$ be an internal bag containing a problematic vertex and let $W \subseteq V(G)$ with $S \subseteq W \subseteq V(G) \backslash B$. Let $P \subseteq B$ be the set of problematic vertices of B. If there is a neighbor $C \in N_{\mathcal{T}}(B)$ such that $P \subseteq \operatorname{bd}(B, C)$ and there is no problem solver, then every geodetic set of G contains P.

Proof. Note that the condition that there is no problem solver is equivalent to the condition that $b d(B, C)=B$; any vertex outside of $\operatorname{bd}(B, C)$ would be a problem solver. Suppose that some $v \in P$ is on a shortest path between two vertices x_{1} and x_{2}. Since v is a problematic vertex, we may assume by Observation 5.8 that $x_{1} \in B$ and $x_{2} \notin B$. Let $D \in V(\mathcal{T})$ denote the bag containing x_{2}. Let $C^{*} \in N_{\mathcal{T}}(B)$ denote the neighbor of B that is on the path from D to B in \mathcal{T}. If $C^{*} \neq C$, then v cannot be in an internal vertex of a shortest path from x_{1} to x_{2} : since v is problematic, $v \notin \operatorname{bd}\left(B, C^{*}\right)$. We may assume that $C^{*}=C$. Since $x_{1} \in B=\operatorname{bd}(B, C), v$ cannot be an internal vertex on a shortest path from x_{1} to x_{2}. We can conclude that every geodetic set of G must contain v.

Now that we have covered all the cases, we can derive the algorithm to compute a minimum geodetic set of a wellpartitioned chordal graph by properly prioritizing the cases. We describe the procedure in Algorithm 1.

We now argue the correctness of the algorithm. In line 1, it adds all simplicial vertices to the set it produces. This is safe by Observation 5.2. By Observation 5.3, any vertex contained in any leaf bag of the partition tree is contained in the geodetic closure of the simplicial vertices.

Let \bar{S} be the set S obtained in the final loop. Let B be an internal bag. In line 3, the algorithm asserts that if B contains a simplicial vertex, then no additional vertex of B has to be added. Correctness of this decision is argued in Lemma 5.5. Also, if B has no problematic vertex, then no additional vertex of B has to be added. Now, we can assume that B has no simplicial vertex but has a problematic vertex. Then based on Lemmas 5.10 to 5.12 , we add a vertex set in the algorithm so that the geodetic closure of the resulting set contains B. Thus, \bar{S} is a geodetic set.

We claim that \bar{S} is a minimum geodetic set. Suppose that this is not a minimum geodetic set, and let \widehat{S} be a minimum geodetic set. For every leaf bag $B, B \cap \bar{S}=B \cap \widehat{S}=B \cap S$, which implies that there is an internal bag B such that $|\widehat{S} \cap B|<$ $|\bar{S} \cap B|$. As $|\bar{S} \cap B|>0$, by lines 3 and 4 of Algorithm $1, B$ contains no simplicial vertices and contains a problematic vertex. We consider three cases corresponding to Lemmas 5.10 to 5.12 .

```
Input : A connected well-partitioned chordal graph \(G\) with partition tree \(\mathcal{T}\).
Output: A minimum-size geodetic set of \(G\).
Find the set \(S\) of simplicial vertices of \(G\);
foreach internal bag \(B \in V(\mathcal{T})\) do
    if \(B\) contains a simplicial vertex then do nothing;
    else if \(B\) contains no problematic vertex then do nothing ;
    else if there is a problem solver \(v \in B\) then \(S \leftarrow S \cup\{v\}\);
    else if \(B\) has two distinct problematic neighbor bags \(C_{1}\) and \(C_{2}\) then
        Let \(v_{1} \in \operatorname{bd}\left(B, C_{1}\right)\) and \(v_{2} \in \operatorname{bd}\left(B, C_{2}\right)\) be problematic;
        \(S \leftarrow S \cup\left\{v_{1}, v_{2}\right\} ;\)
    else \(S \leftarrow S \cup P\), where \(P\) is the set of problematic vertices in \(B\);
return \(S\);
```

Algorithm 1: A polynomial-time algorithm for finding a minimum-size geodetic set of a well-partitioned chordal graph.

- (Case 1. B has a problem solver.) In this case, $|\bar{S} \cap B|=1$ by line 5 , and by our assumption, $|\widehat{S} \cap B|=0$. However, since B contains a problematic vertex, by Lemma $5.10, \widehat{S}$ is not a geodetic set, a contradiction. Thus, we may assume that B has no problem solver.
- (Case 2. There are at least two distinct problematic neighbor bags.) By line $6,|\bar{S} \cap B|=2$ and by our assumption, $|\widehat{S} \cap B|<2$. However, Lemma 5.10 says that if B has no problem solver, then at least two vertices are necessary to contain B as a geodetic closure, and we deduce that \widehat{S} is not a geodetic set, a contradiction. Finally, we may assume that there are no two distinct problematic neighbor bags.
- (Case 3. There is only one problematic neighbor bag.) In this case, all the problematic vertices in B are contained in any geodetic set by Lemma 5.12 and $\bar{S} \cap B$ is exactly the set of such vertices by line 9 . So, it is not possible that $|\widehat{S} \cap B|<|\bar{S} \cap B|$ and we have a contradiction.

We conclude that \bar{S} is a minimum geodetic set.
It is easy to verify that each line in Algorithm 1 takes polynomial time, and that the main loop has a polynomial number of iterations. Since well-partitioned chordal graphs can be recognized in polynomial time by an algorithm that produces a partition tree if one exists, see Proposition 4.8, this proves Theorem 5.1.

6. Transversals of longest paths and cycles

It is well-known that in a connected graph, every two longest paths always share a common vertex. In 1966, Gallai [30] asked whether every graph contains a vertex that belongs to all of its longest paths. This question, whose answer is already known to be negative in general [60,62], was shown to have a positive answer on several well-known graph classes. It is not difficult to see that it holds for trees, and it has been shown for outerplanar graphs and 2-trees [53], which has later been generalized to series-parallel graphs, or equivalently, graphs of treewidth at most 2 [19]. (Interestingly, the couterexample for general graphs [60] has treewidth 3.) Besides that, Gallai's question has a positive answer on circular arc graphs [5, 40], P_{4}-sparse (which includes cographs) and ($P_{5}, K_{1,3}$)-free graphs [15], dually chordal graphs [38], bipartite permutation graphs [14] and $2 K_{2}$-free graphs [33]. As alluded to above, it has a positive answer on split graphs [42], and this result has been generalized to starlike graphs [15].

Both split graphs and starlike graphs are subclasses of well-partitioned chordal graphs. It remains a challenging open problem to determine whether all chordal graphs admit a longest path transversal of size one. As a step towards answering this question for chordal graphs, we show that well-partitioned chordal graphs admit such a transversal.

A closely related question is whether a 2-connected graph has a vertex that intersects all its longest cycles. This question has also been studied extensively on various graph classes, and several of the above mentioned references contain positive answers to this question on the corresponding graph classes. In some cases the results are not stated explicitly, but it is not too difficult to adapt the proofs for the case of longest paths to the case of longest cycles. In this section, we answer this question positively on 2-connected well-partitioned chordal graphs as well.

We start with the following lemma, the proof of which exploits the Helly property ${ }^{1}$ of subtrees of a tree to show the existence of a bag of the partition tree that intersects all longest paths of a well-partitioned chordal graph. The same proof strategy has been used by Rautenbach and Sereni [52] to show that for any graph G, there exists a set of size $\mathbf{t w}(G)+1$ that intersects all the longest paths of G.

Lemma 6.1. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}. Then there exists $X \in V(\mathcal{T})$ such that every longest path of G contains a vertex of X.

[^1]Proof. Let P_{1}, \ldots, P_{ℓ} be the longest paths of G. For each $i \in[\ell]$, the set of bags of \mathcal{T} containing at least one vertex from P_{i} forms a subtree of \mathcal{T}. Let T_{i} be such a subtree. Since in any connected graph every two longest paths have a vertex in common, we have that $V\left(T_{i}\right) \cap V\left(T_{j}\right) \neq \emptyset$ for every $i \neq j$. By the Helly property of subtrees of a tree, there exists $X \in V(\mathcal{T})$ such that $X \in V\left(T_{i}\right)$ for every $i \in[\ell]$. That is, X is a bag of \mathcal{T} that intersects every longest path of G.

We prove a similar lemma for longest cycles of 2-connected well-partitioned chordal graphs. The proof of this lemma follows the same lines as the one presented above, hence we omit it here.

Lemma 6.2. Let G be a 2-connected well-partitioned chordal graph with partition tree \mathcal{T}. Then there exists $X \in V(\mathcal{T})$ such that every longest cycle of G contains a vertex of X.

We now proceed to prove the main results of this section.
Theorem 6.3. Every connected well-partitioned chordal graph contains a vertex that intersects all its longest paths.
Proof. Let G be a connected well-partitioned chordal graph. If G is a complete graph, then the result is trivial. Thus, we may assume that G is not a complete graph, and it implies that any partition tree of G consists of at least two bags.

By Lemma 6.1, there exists a bag $B \in V(\mathcal{T})$ such that every longest path of G contains a vertex of B. Let B_{1}, \ldots, B_{k} be the neighbors of B in \mathcal{T}. We define \mathcal{T}_{i} to be the connected component of $\mathcal{T}-B$ containing B_{i} and G_{i} to be the subgraph of G induced by the vertices contained in the bags of \mathcal{T}_{i}. Let p_{i} be the length of a longest path in G_{i} with one endpoint in $\operatorname{bd}\left(B_{i}, B\right)$. We may assume without loss of generality that $p_{1} \geq p_{i}$ for every $i>1$.

We will now show that every longest path of G contains all the vertices of $\operatorname{bd}\left(B, B_{1}\right)$. Let P be a longest path of G and suppose for a contradiction that there exists $v \in \operatorname{bd}\left(B, B_{1}\right)$ such that $v \notin V(P)$. Recall that $V(P) \cap B \neq \emptyset$. If there exist $x, y \in B$ such that $x y \in E(P)$, then we can obtain a path longer than P by inserting v between x and y in P, a contradiction with the fact that P is a longest path of G. Similarly, no endpoint of P belongs to B, otherwise we would also find a path longer than P in G. The same holds also if there exists $x \in \operatorname{bd}\left(B, B_{1}\right)$ and $y \in \operatorname{bd}\left(B_{1}, B\right)$ such that $x y \in E(P)$. Indeed, since $\operatorname{bd}\left(B, B_{1}\right) \cup \operatorname{bd}\left(B_{1}, B\right)$ is a clique, we would again find a path longer than P by inserting v between x and y in P. Therefore P contains no edge crossing from B to B_{1}, which implies that $V(P) \cap V\left(G_{1}\right)=\emptyset$. Let $P=x_{1} x_{2} \cdots x_{t}$ and let x_{j} be a vertex of $V(P) \cap B$ such that for every $i \geq 1$ we have $x_{j+i} \notin B$. Such a vertex exists since $x_{t} \notin B$.

Assume that $x_{j+1} \in \operatorname{bd}\left(B_{a}, B\right)$ for some $a \in[k]$. Note that $x_{j+1} x_{j+2} \cdots x_{t}$ is a path in G_{a} with an endpoint in $\operatorname{bd}\left(B_{a}, B\right)$. Hence the length of this path is at most p_{1}. Let $y_{1} y_{2} \cdots y_{p_{1}+1}$ be a longest path in G_{1} with an endpoint $y_{1} \in \operatorname{bd}\left(B_{1}, B\right)$. Then $x_{1} x_{2} \cdots x_{j} v y_{1} y_{2} \cdots y_{p_{1+1}}$ is a path in G that is longer than P, a contradiction.

With a more careful argument, we can prove the analogous result for longest cycles.
Theorem 6.4. Every 2-connected well-partitioned chordal graph contains a vertex that intersects all its longest cycles.
Proof. Let G be a 2-connected well-partitioned chordal graph. If G is a complete graph, then the result is trivial. Thus, we may assume that G is not a complete graph, and it implies that any partition tree of G consists of at least two bags.

We start as in the proof of Theorem 6.3. By Lemma 6.2, there exists a bag $B \in V(\mathcal{T})$ such that every longest cycle of G contains a vertex of B. Note that we can assume B is not a leaf of \mathcal{T}, since if all the longest cycles intersect a bag that is a leaf, they also intersect the bag that is the neighbor of such a leaf. Let B_{1}, \ldots, B_{k} be the neighbors of B in \mathcal{T}. We define \mathcal{T}_{i} to be the connected component of $\mathcal{T}-B$ containing B_{i} and let G_{i} to be the subgraph of G induced by the vertices contained in the bags of \mathcal{T}_{i}.

Now, let p_{i} be the length of a longest path in G_{i} with both endpoints in $\operatorname{bd}\left(B_{i}, B\right)$. Note that this is well-defined, since $\left|\operatorname{bd}\left(B_{i}, B\right)\right| \geq 2$ for every i, as G is a 2-connected graph. We may assume without loss of generality that $p_{1} \geq p_{i}$ for every $i>1$.

We will now show that every longest cycle of G contains all the vertices of $\operatorname{bd}\left(B, B_{1}\right)$. Let C be a longest cycle of G and suppose for a contradiction that there exists $v \in \operatorname{bd}\left(B, B_{1}\right)$ such that $v \notin V(C)$. We first point out the following.

Claim 6.4.1. $|V(C) \cap B| \geq 2$.
Proof. We already know that $|V(C) \cap B| \geq 1$. Suppose for a contradiction that $|V(C) \cap B|=1$. Then there exist $x_{1}, x_{2}, x_{3} \in$ $V(C)$ such that x_{1}, x_{2}, and x_{3} appear consecutively in the cycle, and $x_{2} \in B$ and $x_{1}, x_{3} \notin B$. In particular, x_{2} belongs to the boundary between B and some neighboring bag B_{i}, and $x_{1}, x_{3} \in \operatorname{bd}\left(B_{i}, B\right)$. Since G is 2-connected, there exists $u \in$ $\operatorname{bd}\left(B, B_{i}\right)$, with $u \neq x_{2}$, such that $u \notin V(C)$. Thus, we can add u between x_{2} and x_{3} in C and obtain a cycle longer than C, a contradiction.

If there exist $x, y \in B$ such that $x y \in E(C)$, then we can obtain a cycle longer than C by inserting v between x and y in C, a contradiction with the fact that C is a longest cycle of G. The same holds if there exist $x \in \operatorname{bd}\left(B, B_{1}\right)$ and $y \in \operatorname{bd}\left(B_{1}, B\right)$
such that $x y \in E(C)$. Indeed, since $\operatorname{bd}\left(B, B_{1}\right) \cup \mathrm{bd}\left(B_{1}, B\right)$ is a clique, we would again find a cycle longer than C by inserting v between x and y in C. Therefore C contains no edge crossing from B to B_{1}, which implies that $V(C) \cap V\left(G_{1}\right)=\emptyset$. Consider $u \in \operatorname{bd}\left(B, B_{1}\right)$ such that $u \neq v$. We consider two cases.

First assume that $u \in V(C)$. Since C cannot have two consecutive vertices in B, there exists $i \neq 1$ such that $u \in \operatorname{bd}\left(B, B_{i}\right)$, and there exists $u^{\prime} \in \operatorname{bd}\left(B_{i}, B\right)$ such that $u u^{\prime} \in E(C)$. Moreover, by the above claim, there exists $u^{\prime \prime} \in V(C) \cap \operatorname{bd}\left(B, B_{i}\right)$ such that if P is the subpath of C starting in u, ending in $u^{\prime \prime}$, and containing u^{\prime}, then $\left(V(P) \backslash\left\{u, u^{\prime \prime}\right\}\right) \subseteq V\left(G_{i}\right)$. Note also that $|E(P)| \leq p_{i}+2$, since the neighbors of u and $u^{\prime \prime}$ in P belong to $\operatorname{bd}\left(B_{i}, B\right)$. Let $y_{1} y_{2} \cdots y_{q}$ be a longest path of G_{1} with both endpoints in $\operatorname{bd}\left(B_{1}, B\right)$ and let $P^{\prime}=u y_{1} y_{2} \cdots y_{q} v u^{\prime \prime}$. Let C^{\prime} be the cycle obtained from C by replacing P by P^{\prime}. Since $\left|E\left(P^{\prime}\right)\right|=p_{1}+3$ and $p_{1} \geq p_{i}$, we have that C^{\prime} is a cycle longer than C, a contradiction.

Now we consider the case in which $u \notin V(C)$. Recall that C cannot have two consecutive vertices in B. By Claim 6.4.1, there exists $i \neq 1$ such that $V(C) \cap V\left(G_{i}\right) \neq \emptyset$. Let $x, x^{\prime}, y, y^{\prime} \in V(C)$ be such that $x, y \in \operatorname{bd}\left(B, B_{i}\right), x^{\prime}, y^{\prime} \in \operatorname{bd}\left(B_{i}, B\right), x x^{\prime}, y y^{\prime} \in$ $E(C)$ and the subpath P of C starting in x, ending in y, and containing x^{\prime} and y^{\prime} is such that $(V(P) \backslash\{x, y\}) \subseteq V\left(G_{i}\right)$. Note that it can be the case that $x^{\prime}=y^{\prime}$. Moreover, $|E(P)| \leq p_{i}+2$. Let $y_{1} y_{2} \cdots y_{q}$ be a longest path of G_{1} with both endpoints in $\operatorname{bd}\left(B_{1}, B\right)$ and let $P^{\prime}=x u y_{1} y_{2} \cdots y_{q} v y$. Let C^{\prime} be the cycle obtained from C by replacing P by P^{\prime}. Since $\left|E\left(P^{\prime}\right)\right|=p_{1}+4$ and $p_{1} \geq p_{i}$, we have that C^{\prime} is a cycle longer than C, a contradiction. This concludes the proof that all the vertices of $\operatorname{bd}\left(B, B_{1}\right)$ are contained in all longest cycles of G.

7. Tree 3-spanners

For a connected graph G and a positive integer t, a spanning tree T of G is a tree t-spanner of G if for every pair (v, w) of vertices in $G, \operatorname{dist}_{T}(v, w) \leq t \cdot \operatorname{dist}_{G}(v, w)$, where $\operatorname{dist}_{G}(v, w)$ (resp., $\left.\operatorname{dist}_{T}(v, w)\right)$ denotes the length of shortest path in G (resp., T) from v to w. The Tree t-Spanner problem asks whether a given graph G has a tree t-spanner. Tree t-spanners are motivated from applications including network research and computational geometry [3,43]. Cai and Corneil [13] showed that Tree t-Spanner is linear-time solvable if $t \leq 2$, and is NP-complete if $t \geq 4$. For $t=3$, the complexity of Tree 3-Spanner is not yet unveiled. Brandstädt et al. [9] investigated the complexity of Tree t-Spanner on chordal graphs of small diameter. They showed that for even $t \geq 4$ (resp., odd $t \geq 5$) it is NP-complete to decide if a chordal graph of diameter at most $t+1$ (resp., $t+2$) has a tree t-spanner. On the other hand, for any even t (resp., odd t), every chordal graph of diameter at most $t-1$ (resp., $t-2$) admits a tree t-spanner which can be found in linear time. Brandstädt et al. [9] also showed that Tree 3-Spanner is polynomial-time solvable on chordal graphs of diameter at most 2 . On general chordal graphs, the complexity of Tree 3-Spanner is still open. Several subclasses of chordal graphs, such as split [59], very strongly chordal [9], and interval [44] graphs were shown to be tree 3-spanner admissible, meaning that each of its members admits a tree 3spanner. In the above mentioned cases, such tree 3 -spanners can always be computed in polynomial time. We show that the same holds for well-partitioned chordal graphs, generalizing the result for split graphs [59].

Before we proceed to the proof of this result, we point out that a subclass of chordal graphs that is not tree 3-spanner admissible and yet has a polynomial-time algorithm for Tree 3-Spanner is that of 2-sep chordal graphs, as shown by Das and Panda [50]. Other (non-chordal) graph classes that are known to be tree 3-spanner admissible are bipartite ATE-free graphs [8] (which include convex graphs) and permutation graphs [44]; and there are polynomial-time algorithms for Tree 3-SPANNER on cographs and co-bipartite graphs [12], as well as planar graphs [26].

We now proceed to the proof of the main result of this section. More specifically, we show that given a connected well-partitioned chordal graph, one can always find a tree 3 -spanner in polynomial time.

Theorem 7.1. Every connected well-partitioned chordal graph admits a tree 3-spanner, which one can find in polynomial time.

Proof. Let G be a connected well-partitioned chordal graph with partition tree \mathcal{T}. We choose a bag R of \mathcal{T} and consider it as a root bag. For each non-root bag B, let $P(B)$ denote the parent bag of B. For each non-root bag B,

- let S_{B}^{*} be a star whose center is in $\operatorname{bd}(B, P(B))$ and all leaves are exactly the vertices in $V(B) \backslash \operatorname{bd}(B, P(B))$,
- let $S_{B}^{* *}$ be a star whose center is in $\operatorname{bd}(P(B), B)$ and all leaves are exactly the vertices in $\operatorname{bd}(B, P(B))$, and
- let $S_{B}:=S_{B}^{*} \cup S_{B}^{* *}$.

Observe that the vertex set of S_{B} consists of all vertices of B and one vertex in $\operatorname{bd}(P(B), B)$. Moreover, S_{B} is a tree. For the root bag R, let S_{R} be a star in $G[R]$. We claim that $U:=\bigcup_{B \in V(\mathcal{T})} S_{B}$ is a tree 3 -spanner of G. It is sufficient to show that U is a spanning tree, and for every edge $v w$ in G, $\operatorname{dist}_{U}(v, w) \leq 3$.

We first verify that U is a spanning tree. Note that for each non-root bag B, S_{B} is a tree containing all vertices of B and at least one edge between B and $P(B)$, and furthermore, S_{R} is a spanning tree of $G[R]$. Therefore, U is a connected subgraph containing all vertices of G. Suppose that U contains a cycle C.

Observe that for each non-root bag B of \mathcal{T}, the center of $S_{B}^{* *}$ separates $V(B)$ and $V(P(B))$ in U. Let B^{\prime} be the bag containing a vertex of C such that $\operatorname{dist}_{\mathcal{T}}\left(R, B^{\prime}\right)$ is minimum. Since $U\left[V\left(B^{\prime}\right)\right]$ has no cycle, there is a child bag $B^{\prime \prime}$ of B^{\prime} containing a vertex of C. By the above observation, $V\left(B^{\prime}\right) \cap V(C)$ has only one vertex that is the center of $S_{B^{\prime \prime}}^{* *}$. As $\left|V\left(B^{\prime}\right) \cap V(C)\right|=1$, there is no other child bag of B^{\prime} containing a vertex of C.

We can observe that there is no child bag of $B^{\prime \prime}$ containing a vertex of C. If such a bag exists, then by the same argument, we derive that $\left|V\left(B^{\prime \prime}\right) \cap V(C)\right|=1$, a contradiction. Therefore, C is contained in $S_{B^{\prime \prime}}$, but by the construction, $S_{B^{\prime \prime}}$ has no cycle. We conclude that U is a spanning tree.

Now, we claim that for every edge $v w$ in G, $\operatorname{dist}_{U}(v, w) \leq 3$. Choose an edge $v w$ of G. If $v w$ is an edge in a bag B, then $\operatorname{dist}_{U}(v, w)=\operatorname{dist}_{S_{B}}(v, w) \leq 3$. Assume that $v w$ is an edge between a bag B and its parent $P(B)$ so that $v \in V(B)$ and $w \in V(P(B))$. If $v w \in E\left(S_{B}\right)$, then it is trivial. Assume that $w \notin V\left(S_{B}\right)$. Let z be the vertex of S_{B} contained in $P(B)$. Then $\operatorname{dist}_{U}(v, w)=\operatorname{dist}_{S_{B}}(v, z)+\operatorname{dist}_{S_{P(B)}}(z, w) \leq 3$.

Our construction of a tree 3 -spanner for G immediately follows the partition tree \mathcal{T} of G. By Proposition 4.8, a partition tree of a well-partitioned chordal graph can be obtained in polynomial time, and therefore one can find a tree 3-spanner for G in polynomial time.

8. Conclusions

In this paper, we introduced the class of well-partitioned chordal graphs, a subclass of chordal graphs that generalizes the class of split graphs. We provided a characterization by a set of forbidden induced subgraphs which also gave a polynomialtime recognition algorithm. We showed that well-partitioned chordal graphs can be used to narrow down complexity gaps for problems that are NP-hard on chordal graphs and polynomial-time solvable on split graphs. In particular, we showed that Geodesic Set is an example of such a problem that becomes polynomial-time solvable on well-partitioned chordal graphs. On the other hand, we observed that there are problems that are NP-hard on chordal graphs and remain NP-hard on well-partitioned chordal graphs, even though they are polynomial-time solvable on split graphs. It would be interesting to see other problems for which well-partitioned chordal graphs can be used to better understand the complexity difference between split graphs and chordal graphs.

Another typical characterization of (subclasses of) chordal graphs is via vertex orderings. For instance, chordal graphs are famously characterized as the graphs admitting perfect elimination orderings [29]. It would be interesting to see if wellpartitioned chordal graphs admit a concise characterization in terms of vertex orderings as well. While the degree of the polynomial in the runtime of our recognition algorithm is moderate, our algorithm does not run in linear time. We therefore ask if it is possible to recognize well-partitioned chordal graphs in linear time; and note that a characterization in terms of vertex orderings can be a promising step in this direction.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] J. Ahn, L. Jaffke, O. Kwon, P.T. Lima, Well-partitioned chordal graphs: obstruction set and disjoint paths, in: I. Adler, H. Müller (Eds.), Proceedings of the 46th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2020, Springer, Cham, 2020, pp. 148-160.
[2] J. Ahn, L. Jaffke, O. Kwon, P.T. Lima, Three problems on well-partitioned chordal graphs, in: T. Calamoneri, F. Corò (Eds.), Proceedings of the 12th International Conference on Algorithms and Complexity, CIAC 2021, Springer, 2021, pp. 23-36.
[3] I. Althöfer, G. Das, D. Dobkin, D. Joseph, J. Soares, On sparse spanners of weighted graphs, Discrete Comput. Geom. 9 (1993) 81-100, https://doi.org/ 10.1007/BF02189308.
[4] M. Atici, Computational complexity of geodetic set, Int. J. Comput. Math. 79 (2002) 587-591, https://doi.org/10.1080/00207160210954.
[5] P.N. Balister, E. Györi, J. Lehel, R.H. Schelp, Longest paths in circular arc graphs, Comb. Probab. Comput. 13 (2004) 311-317, https://doi.org/10.1017/ S0963548304006145.
[6] A.A. Bertossi, Dominating sets for split and bipartite graphs, Inf. Process. Lett. 19 (1984) 37-40.
[7] H.L. Bodlaender, K. Jansen, On the complexity of the maximum cut problem, Nord. J. Comput. 7 (2000) 14-31.
[8] A. Brandstädt, F.F. Dragan, H. Le, V.B. Le, R. Uehara, Tree spanners for bipartite graphs and probe interval graphs, Algorithmica 47 (2007) 27-51, https:// doi.org/10.1007/s00453-006-1209-y.
[9] A. Brandstädt, F.F. Dragan, H.O. Le, V.B. Le, Tree spanners on chordal graphs: complexity and algorithms, Theor. Comput. Sci. 310 (2004) 329-354, https://doi.org/10.1016/S0304-3975(03)00424-9.
[10] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs in Discrete Mathematics and Applications, 1999.
[11] L.R. Bueno, L.D. Penso, F. Protti, V.R. Ramos, D. Rautenbach, U.S. Souza, On the hardness of finding the geodetic number of a subcubic graph, Inf. Process. Lett. 135 (2018) 22-27, https://doi.org/10.1016/j.ipl.2018.02.012.
[12] L. Cai, Tree spanners: spanning trees that approximate distances, Ph.D. thesis, University of Toronto, 1992.
[13] L. Cai, D.G. Corneil, Tree spanners, SIAM J. Discrete Math. 8 (1995) 359-387, https://doi.org/10.1137/S0895480192237403.
[14] M.R. Cerioli, C.G. Fernandes, R. Gómez, J. Gutiérrez, P.T. Lima, Transversals of longest paths, Discrete Math. 343 (2020) 111717.
[15] M.R. Cerioli, P.T. Lima, Intersection of longest paths in graph classes, Discrete Appl. Math. 281 (2020) 96-105, https://doi.org/10.1016/j.dam.2019.03.022.
[16] D. Chakraborty, S. Das, F. Foucaud, H. Gahlawat, D. Lajou, B. Roy, Algorithms and complexity for geodetic sets on planar and chordal graphs, https:// doi.org/10.4230/LIPIcs.ISAAC.2020.7, 2020.
[17] D. Chakraborty, F. Foucaud, H. Gahlawat, S.K. Ghosh, B. Roy, Hardness and approximation for the geodetic set problem in some graph classes, in: M. Changat, S. Das (Eds.), Proceedings of the 6th International Conference on Algorithms and Discrete Applied Mathematics, CALDAM 2020, Springer, 2020, pp. 102-115.
[18] Y.W. Chang, M.S. Jacobson, C.L. Monma, D.B. West, Subtree and substar intersection numbers, Discrete Appl. Math. 44 (1993) 205-220, https://doi.org/ 10.1016/0166-218X(93)90232-D.
[19] G. Chen, J. Ehrenmüller, C.G. Fernandes, C.G. Heise, S. Shan, P. Yang, A.N. Yates, Nonempty intersection of longest paths in series-parallel graphs, Discrete Math. 340 (2017) 287-304, https://doi.org/10.1016/j.disc.2016.07.023.
[20] D.G. Corneil, Y. Perl, Clustering and domination in perfect graphs, Discrete Appl. Math. 9 (1984) 27-39, https://doi.org/10.1016/0166-218X(84)90088-X.
[21] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
[22] M.C. Dourado, F. Protti, D. Rautenbach, J.L. Szwarcfiter, Some remarks on the geodetic number of a graph, Discrete Math. 310 (2010) $832-837$.
[23] M.C. Dourado, F. Protti, J.L. Szwarcfiter, On the complexity of the geodetic and convexity numbers of a graph, in: Lecture Notes of the Ramanujan Mathematical Society, vol. 7, 2006, pp. 497-500.
[24] R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer, 2013.
[25] T. Ekim, A. Erey, P. Heggernes, P. van 't Hof, D. Meister, Computing minimum geodetic sets of proper interval graphs, in: D. Fernández-Baca (Ed.), Proceedings of the 10th Latin American Symposium on Theoretical Informatics, LATIN 2012, Springer, 2012, pp. 279-290.
[26] S.P. Fekete, J. Kremer, Tree spanners in planar graphs, Discrete Appl. Math. 108 (2001) 85-103, https://doi.org/10.1016/S0166-218X(00)00226-2.
[27] P. Festa, P.M. Pardalos, M.G.C. Resende, Feedback set problems, in: Handbook of Combinatorial Optimization, Supplement Vol. A, Kluwer Acad. Publ., Dordrecht, 1999, pp. 209-258.
[28] F.V. Fomin, D. Lokshtanov, S. Saurabh, M. Zehavi, Kernelization, Cambridge University Press, 2019.
[29] D. Fulkerson, O. Gross, Incidence matrices and interval graphs, Pac. J. Math. 15 (1965) 835-855.
[30] T. Gallai, Problem 4, in: P. Erdős, G.O.H. Katona (Eds.), Proceedings of the Colloquium on Theory of Graphs Held in Tihany, Hungary, 1966,1968, p. 362.
[31] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Comb. Theory, Ser. B 16 (1974) 47-56, https://doi.org/10.1016/ 0095-8956(74)90094-х.
[32] A. George, J.R. Gilbert, J.W. Liu, Graph Theory and Sparse Matrix Computation, vol. 56, Springer Science \& Business Media, 2012.
[33] G. Golan, S. Shan, Nonempty intersection of longest paths in $2 K_{2}$-free graphs, Electron. J. Comb. 25 (2018) P2.37.
[34] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, vol. 57, North-Holland Publishing Co., 2004.
[35] J. Gustedt, On the pathwidth of chordal graphs, Discrete Appl. Math. 45 (1993) 233-248.
[36] F. Harary, E. Loukakis, C. Tsouros, The geodetic number of a graph, Math. Comput. Model. 17 (1993) 89-95.
[37] F. Havet, C.L. Sales, L. Sampaio, b-Coloring of tight graphs, Discrete Appl. Math. 160 (2012) 2709-2715.
[38] A.S. Jobson, A.E. Kézdy, J. Lehel, S.C. White, Detour trees, Discrete Appl. Math. 206 (2016) 73-80, https://doi.org/10.1016/j.dam.2016.02.002.
[39] F. Joos, A characterization of substar graphs, Discrete Appl. Math. 175 (2014) 115-118, https://doi.org/10.1016/j.dam.2014.05.033.
[40] F. Joos, A note on longest paths in circular arc graphs, Discuss. Math., Graph Theory 35 (2015) 419-426.
[41] L. Kellerhals, T. Koana, Parameterized complexity of geodetic set, https://doi.org/10.4230/LIPIcs.IPEC.2020.20, 2020.
[42] S. Klavžar, M. Petkovšek, Graphs with nonempty intersection of longest paths, Ars Comb. 29 (1990) 43-52.
[43] M.C. Loui, D.R. Luginbuhl, Optimal on-line simulations of tree machines by random access machines, SIAM J. Comput. 21 (1992) 959-971, https:// doi.org/10.1137/0221056.
[44] M.S. Madanlal, G. Venkatesan, C.P. Rangan, Tree 3-spanners on interval, permutation and regular bipartite graphs, Inf. Process. Lett. 59 (1996) 97-102, https://doi.org/10.1016/0020-0190(96)00078-6.
[45] R.M. McConnell, K. Mehlhorn, S. Näher, P. Schweitzer, Certifying algorithms, Comput. Sci. Rev. 5 (2011) 119-161, https://doi.org/10.1016/j.cosrev.2010. 09.009.
[46] S. Mengel, Lower bounds on the mim-width of some graph classes, Discrete Appl. Math. 248 (2018) 28-32.
[47] M. Mezzini, Polynomial time algorithm for computing a minimum geodetic set in outerplanar graphs, Theor. Comput. Sci. 745 (2018) 63-74, https:// doi.org/10.1016/j.tcs.2018.05.032.
[48] H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math. 156 (1996) 291-298.
[49] S.D. Nikolopoulos, L. Palios, Detecting holes and antiholes in graphs, Algorithmica 47 (2007) 119-138, https://doi.org/10.1007/s00453-006-1225-y.
[50] B.S. Panda, A. Das, Tree 3-spanners in 2-sep chordal graphs: characterization and algorithms, Discrete Appl. Math. 158 (2010) 1913-1935, https:// doi.org/10.1016/j.dam.2010.08.015.
[51] I.M. Pelayo, Geodesic Convexity in Graphs, Springer, 2013.
[52] D. Rautenbach, J. Sereni, Transversals of longest paths and cycles, SIAM J. Discrete Math. 28 (2014) 335-341, https://doi.org/10.1137/130910658.
[53] S.F. de Rezende, C.G. Fernandes, D.M. Martin, Y. Wakabayashi, Intersecting longest paths, Discrete Math. 313 (2013) 1401-1408, https://doi.org/10.1016/ j.disc.2013.02.016
[54] D.J. Rose, R.E. Tarjan, G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (1976) 266-283, https://doi.org/10.1137/ 0205021.
[55] C. Semple, M. Steel, Phylogenetics, Oxford Lecture Series in Mathematics and Its Applications, vol. 24, Oxford University Press, Oxford, 2003.
[56] A. Silva, Graphs with small fall-spectrum, Discrete Appl. Math. 254 (2019) 183-188.
[57] L. Vandenberghe, M.S. Andersen, Chordal graphs and semidefinite optimization, Found. Trends Optim. 1 (2015) 241-433, https://doi.org/10.1561/ 2400000006.
[58] M. Vatshelle, New width parameters of graphs, Ph.D. thesis, University of Bergen, Norway, 2012.
[59] G. Venkatesan, U. Rotics, M.S. Madanlal, J.A. Makowsky, C.P. Rangan, Restrictions of minimum spanner problems, Inf. Comput. 136 (1997) 143-164, https://doi.org/10.1006/inco.1997.2641.
[60] H. Walther, H.J. Voss, Über Kreise in Graphen, Deutscher Verlag der Wissenschaften, 1974.
[61] R. Watrigant, M. Bougeret, R. Giroudeau, Approximating the sparsest k-subgraph in chordal graphs, Theory Comput. Syst. 58 (2016) 111-132, https:/| doi.org/10.1007/s00224-014-9568-2.
[62] T. Zamfirescu, On longest paths and circuits in graphs, Math. Scand. 38 (1976) 211-239.

[^0]: ${ }^{\text {is }}$ Extended abstracts of different parts of this work appeared in the proceedings of WG 2020 [1] and CIAC 2021 [2]. J.A. and O.K. are supported by the Institute for Basic Science (IBS-R029-C1). O.K. is also supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. NRF-2018R1D1A1B07050294). L.J. acknowledges support from the Norwegian Research Council (No. 274526).

 * Corresponding author.

 E-mail addresses: junghoahn@kaist.ac.kr (J. Ahn), lars.jaffke@uib.no (L. Jaffke), ojoungkwon@hanyang.ac.kr (O. Kwon), palt@itu.dk (P.T. Lima).

[^1]: 1 The Helly property of trees states that in every tree, every collection of pairwise intersecting subtrees has a common nonempty intersection.

