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Abstract
While intersection graphs play a central role in the algorithmic analysis of hard problems on undirected
graphs, the role of intersection digraphs in algorithms is much less understood. We present several
contributions towards a better understanding of the algorithmic treatment of intersection digraphs.
First, we introduce natural classes of intersection digraphs that generalize several classes studied
in the literature. Second, we define the directed locally checkable vertex (DLCV) problems, which
capture many well-studied problems on digraphs such as (Independent) Dominating Set, Kernel,
and H-Homomorphism. Third, we give a new width measure of digraphs, bi-mim-width, and show
that the DLCV problems are polynomial-time solvable when we are provided a decomposition of
small bi-mim-width. Fourth, we show that several classes of intersection digraphs have bounded
bi-mim-width, implying that we can solve all DLCV problems on these classes in polynomial time
given an intersection representation of the input digraph. We identify reflexivity as a useful condition
to obtain intersection digraph classes of bounded bi-mim-width, and therefore to obtain positive
algorithmic results.
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1 Introduction

The computational intractability of graph problems is often dealt with by restricting the
input graph to be a member of some graph class and exploit the structural properties of
this class to design efficient algorithms. Intersection graph classes are an extensively studied
family of classes of undirected graphs where vertices are represented by sets with two vertices
being adjacent if and only if their corresponding sets intersect. For instance, a graph is
an interval graph if it is an intersection graph of intervals on a line. The literature on
algorithmic aspects of classes of intersection graphs is vast, and we refer to [13] for an
overview. Even though the concept of intersection digraphs has already been introduced
in the early 1980s [9], these classes of directed graphs have not received nearly as much
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38:2 Intersection Digraphs with Good Algorithmic Properties

attention in the algorithmic literature as their undirected counterparts. That is not to say
that they have not been considered before; for instance, interval digraphs [38], circular-arc
digraphs [39], and permutation digraphs [33] have been introduced quite early on.

Formally, a digraph G is an intersection digraph if there exists a family {(Sv, Tv) : v ∈
V (G)} of ordered pairs of sets such that there is an edge from v to w in G if and only if
Sv intersects Tw. Note that we add a loop on a vertex v if Sv and Tv intersect. Even for
interval digraphs, a natural starting point for the investigation of algorithmic properties
of intersection digraphs, no algorithmic applications are known besides a polynomial-time
recognition algorithm of the class [33]. One possible explanation for this is that the class of
interval digraphs appears to be much richer than their undirected counterparts. We observe
that interval digraphs contain, for each integer n, some orientation of the (n × n)-grid (see
Proposition 15); in contrast, interval graphs do not contain an induced subgraph isomorphic
to the 1-subdivision of the claw. This shows that the underlying undirected graphs of interval
digraphs are very different from interval graphs.

The case of interval digraphs suggests that further structural restrictions are necessary
to make classes of intersection digraphs amenable for algorithmic treatment. In this vein,
restrictions of interval digraphs have been considered in the literature [20, 35] with ap-
plications to digraph problems such as Independent Dominating Set, Kernel, and
List Homomorphism. A common feature of the restrictions considered in [20, 35] is that
the digraphs are reflexive, meaning that each vertex has a loop. Note that for a class of
intersection digraphs, reflexivity gives much more additional structure than just added loops.

In this work, we give a host of algorithmic applications of intersection digraph classes, in
the following manner:

We give new and more general classes of intersection digraphs, namely H-digraphs, rooted
directed path digraphs, and H-convex digraphs. (See the discussion below Theorem 3 for
definitions.)
We introduce directed analogues of the locally checkable vertex problems [43], which
include many well-studied digraph problems such as (Independent) Dominating Set,
Kernel, H-Homomorphism, and Oriented k-Coloring, see Tables 1 and 2.
We define a new width measure of digraphs, called bi-mim-width, and prove that the
directed locally checkable vertex problems can be solved in polynomial time when a
decomposition of bounded bi-mim-width of the input graph is given.
We prove that fairly general subclasses of these intersection digraph classes have bounded
bi-mim-width, see Figure 1.

Note in particular that the last item implies that given a representation of the input
digraph, all directed locally checkable problems are solvable in polynomial time on the classes
of intersection digraphs in question. For H-digraphs, we identify reflexivity as the additional
restriction that gives bounded bi-mim-width, and therefore algorithmic applications, while
we prove that the bi-mim-width is unbounded when we drop this requirement. Recently,
Francis, Hell, and Jacob [22] obtained polynomial-time algorithms for Kernel, Dominating
Set, and Absorbing Set on reflexive interval digraphs. Our results are more general in
two ways: we give algorithms for more problems, including the aforementioned ones (see
Tables 1 and 2), and on much broader digraph classes (see Figure 1). Naturally, the specific
algorithms presented in [22] are more efficient than the algorithm following from our general
framework. In the following, we discuss the above items in more detail.

Bi-mim-width. We introduce a new digraph width parameter, called bi-mim-width, which
is a directed analogue of the mim-width of an undirected graph introduced by Vatshelle [44].
Roughly speaking, the bi-mim-width of a digraph G is defined as a branch-width with a cut
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Table 1 Examples of (σ+, σ−, ρ+, ρ−)-sets, represented by finite or co-finite sets. For any row
there is an associated NP-complete problem, usually maximizing or minimizing the cardinality of
a set with the property. Some properties are known under different names; e.g. Efficient Total
Dominating sets are also called Efficient Open Dominating sets, and here even the existence of such
a set in a digraph G is NP-complete, as it corresponds to deciding if V (G) can be partitioned by
the open out-neighborhoods of some S ⊆ V (G). If rows A and B have their in-restrictions and
out-restrictions swapped for both σ and ρ (i.e. σ+ of row A equals σ− of row B and vice-versa, and
same for ρ+ and ρ−), then a row-A set in G is always a row-B set in the digraph with all arcs of G

reversed; this is the case for Dominating set vs in-Dominating set and for Kernel vs Independent
Dominating set.

σ+ σ− ρ+ ρ− Standard name

{0} {0} N \ {0} N Kernel [45]
{0, ..., k − 1} {0} {i : i ≥ l} N (k, l)-out Kernel [36]
N N N N \ {0} Dominating set [24]
{0} {0} N N \ {0} Independent Dominating set [16]
N N N \ {0} N In-Dominating set/Absorbing set [23]
N N N \ {0} N \ {0} Twin Dominating set [17]
N N N {i : i ≥ k} k-Dominating set [34]
N N \ {0} N N \ {0} Total Dominating set [2]
{0} {0} N {1} Efficient (Closed) Dominating set [8]
N {1} N {1} Efficient Total Dominating set [37]
{k} {k} N N k-Regular Induced Subdigraph [15]

function that measures for a vertex partition (A, B) of G, the sum of the sizes of maximum
induced matchings in two bipartite digraphs, one induced by edges from A to B, and the
other induced by edges from B to A. This is similar to how rank-width is generalized to
bi-rank-width for digraphs [29, 30]. We formally define bi-mim-width and linear bi-mim-width
in Section 3. We compare bi-mim-width and other known width parameters. The mim-width
of an undirected graph is exactly the half of the bi-mim-width of the digraph obtained by
replacing each edge with bi-directed edges, and this observation can be used to argue that a
bound on the bi-mim-width of a class of digraphs implies a bound on the mim-width of a
certain class of undirected graphs.

Directed Locally Checkable Vertex (DLCV) Problems. We introduce directed locally
checkable vertex subset (DLCVS) and partitioning (DLCVP) problems, in analogy with [43].
We abbreviate the union of these two families of problems to “DLCV problems”. A DLCVS
problem is represented as a (σ+, σ−, ρ+, ρ−)-problem for some σ+, σ−, ρ+, ρ− ⊆ N, and it
asks to find a maximum or minimum vertex set S in a digraph G such that for every vertex
v in S, the numbers of out/in-neighbors in S are contained in σ+ and σ−, respectively, and
for every vertex v in V (G) \ S, the numbers of out/in-neighbors in S are contained in ρ+

and ρ−, respectively. If each µ ∈ {σ+, σ−, ρ+, ρ−} is either finite or co-finite (i.e., N \ µ is
finite), then we say that the problem is represented by finite or co-finite sets. See Table 1
for several examples of DLCVS problems that appear in the literature and note that they
are all represented by finite or co-finite sets. In particular, it includes the Kernel problem,
which was introduced by von Neumann and Morgenstern [45].

A DLCVP problem is represented by a (q × q)-matrix D for some positive integer q,
where for all i, j ∈ {1, . . . , q}, D[i, j] = (µ+

i,j , µ−
i,j) for some µ+

i,j , µ−
i,j ⊆ N. The problem asks

to find a vertex partition of a given digraph into X1, X2, . . . , Xq such that for all i, j ∈ [q],

STACS 2022
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Table 2 Examples of directed LCVP problems that are represented by finite or co-finite sets.
For every row there are choices of values for which the problems are NP-complete. For Directed
H-Homomorphism let V (H) = {1, . . . , |V (H)|} and denote by H : −→

Kk that H is an orientation of
a complete graph on k vertices, and by H :

−→
K◦

k that H is an orientation of a complete graph on k

vertices, with loops. (*) For Simple k-Coloring, we require two nonempty color classes to avoid
trivial solutions. The general algorithm can easily be modified to take this into account.

Problem name q DLCVP (q × q)-matrix D

Directed H-Homomorphism [25] |V (H)| ∀(i, j) ∈ E(H) : D[i, j] = (N,N)
∀(i, j) /∈ E(H) : D[i, j] = ({0}, {0})

Oriented k-Coloring [18, 42] k
∨

H : −→
Kk

Directed H-Homomorphism
Simple k-Coloring (*) [40] k

∨
H :

−→
K◦

k

Directed H-Homomorphism

∃ (σ+, σ−, ρ+, ρ−)-set [This paper] 2
(

(σ+, σ−) (N,N)
(ρ+, ρ−) (N,N)

)
(δ+ ≥ k1, δ− ≥ k2)-Partition [6] 2

(
({j : j ≥ k1},N) (N,N)

(N,N) (N, {j : j ≥ k2})

)
(δ+ ≥ k1, δ+ ≥ k2)-Partition [5] 2

(
({j : j ≥ k1},N) (N,N)

(N,N) ({j : j ≥ k2},N)

)
(∆+ ≤ k1, ∆+ ≤ k2)-Partition [3] 2

(
({j : j ≤ k1},N) (N,N)

(N,N) ({j : j ≤ k2},N)

)
(δ+ ≥ k1, δ− ≥ k2)-Bipartite-Partition [4] 2

(
(N,N) ({j : j ≥ k1},N)

(N, {j : j ≥ k2}) (N,N)

)
(δ+ ≥ k1, δ+ ≥ k2)-Bipartite-Partition [4] 2

(
(N,N) ({j : j ≥ k1},N)

({j : j ≥ k2},N) (N,N)

)
2-Out-Coloring [1] 2

(
(N \ {0},N) (N \ {0},N)
(N \ {0},N) (N \ {0},N)

)

the numbers of out/in-neighbors of a vertex of Xi in Xj are contained in µ+
i,j and µ−

i,j ,
respectively. In analogy with subset problems, we say that the problem is represented by
finite or co-finite sets if each set appearing in a pair that is an entry of D is either finite
or co-finite. Directed H-Homomorphism is a directed LCVP problem represented by
finite or co-finite sets: For a digraph H on vertices {1, . . . , q}, we can view a homomorphism
from a digraph G to H as a q-partition (X1, . . . , Xq) of V (G) such that we can only have
an edge from Xi to Xj if the edge (i, j) is present in H. See Table 2. The Oriented
k-Coloring problem, introduced by Sopena [41], asks whether there is a homomorphism to
some orientation of a complete graph on at most k vertices, and can therefore be reduced
to a series of directed LCVP problems. Removing the requirement that the color classes
have to be independent sets, Smolíková [40] introduced the notion of a simple k-coloring,
requiring however that the number of colors is at least two, to avoid trivial solutions. Several
works in the literature concern problems of 2-partitioning the vertex sets of digraphs into
parts with degree constraints either inside or between the parts of the partition [1, 3, 4, 5, 6].
All of these problems can be observed to be LCVP problems as well, see Table 2. Note that
in the DLCVP-framework, we can consider q-partitions for any fixed q ≥ 2, for all problems
apart from 2-Out-Coloring. This fails for q-Out-Coloring, since this problem asks for
a q-coloring with no monochromatic out-neighborhood.

▶ Theorem 1. Directed LCVS and LCVP problems represented by finite or co-finite sets can
be solved in time XP parameterized by bi-mim-width, when a branch decomposition is given.
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Furthermore, we show that the distance variants of DLCVS problems, for instance
Distance-r Dominating Set can be solved in polynomial time on digraphs of bounded
bi-mim-width. Another natural variant is the k-Kernel problem (see [7, Section 8.6.2]),
which asks for a kernel in the (k −1)-th power of a given digraph. To show this, we prove that
the r-th power of a digraph of bi-mim-width w has bi-mim-width at most rw (Lemma 12).
For undirected graphs, there is a bound that does not depend on r [26], but we were not
able to obtain such a bound for the directed case.

▶ Theorem 2. Distance variants of directed LCVS problems represented by finite or co-finite
sets can be solved in time XP parameterized by bi-mim-width, when a branch decomposition
is given.

Classes of intersection digraphs and their bi-mim-width. We provide various classes of
digraphs of bounded bi-mim-width. We first summarize our results in the following theorem
and give the background below. We illustrate the bounds in Figure 1.

▶ Theorem 3.
1. Given a reflexive interval digraph, one can output a linear branch decomposition of

bi-mim-width at most 2 in polynomial time. On the other hand, interval digraphs have
unbounded bi-mim-width.

2. Given a representation of an adjusted permutation digraph G, one can construct in poly-
nomial time a linear branch decomposition of G of bi-mim-width at most 4. Permutation
digraphs have unbounded bi-mim-width.

3. Given a representation of an adjusted rooted directed path digraph G, one can construct in
polynomial time a branch decomposition of G of bi-mim-width at most 2. Rooted directed
path digraphs have unbounded bi-mim-width and adjusted rooted directed path digraphs
have unbounded linear bi-mim-width.

4. Let H be an undirected graph. Given a representation of a reflexive H-digraph G, one
can construct in polynomial time a linear branch decomposition of G of bi-mim-width at
most 12|E(H)|. P2-digraphs, which are interval digraphs, have unbounded bi-mim-width.

5. Let H be an undirected graph. Given a nice H-convex digraph G with its bipartition
(A, B), one can construct in polynomial time a linear branch decomposition of G of
bi-mim-width at most 12|E(H)|. P2-convex digraphs have unbounded bi-mim-width.

6. Tournaments and directed acyclic graphs have unbounded bi-mim-width.

(1. Interval digraphs) Recall that Müller [33] devised a recognition algorithm for interval
digraphs, which also outputs a representation. By testing the reflexivity of a digraph,
we can recognize reflexive interval digraphs, and output its representation. We convert
it into a linear branch decomposition of bi-mim-width at most 2. On the other hand,
interval digraphs generally have unbounded bi-mim-width. By Theorem 1, we can solve
all DLCV problems on reflexive interval digraphs in polynomial time. This extends
the polynomial-time algorithms for Independent Dominating Set and Kernel on
interval nest digraphs given by Prisner [35], and includes polynomial-time algorithms for
Absorbing Set, Dominating Set, and Kernel by Francis, Hell, and Jacob [22].

(2. Permutation digraphs) A permutation digraph is an intersection digraph of pairs of line
segments whose endpoints lie on two parallel lines. Müller [33] considered permutation
digraphs under the name “matching diagram digraph”, and observed that every interval
digraph is a permutation digraph. Therefore, permutation digraphs have unbounded
bi-mim-width. We say that a permutation digraph is adjusted if there exists one of the
parallel lines, say Λ, such that for all v ∈ V (G), Sv and Tv have the same endpoint in Λ.
We show that every adjusted permutation digraph has linear mim-width at most 4.

STACS 2022
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Adjusted Interval?

Reflexive Interval?

Interval?

Reflexive H-digraph

H-digraph

TournamentDAG

Reflexive Circular Arc

Rooted Directed Path

Convex

Nice H-Convex

H-Convex

Permutation bimimw = ω(1)

Reflexive Rooted
Directed Path

Adjusted
Permutation

Reflexive
Permutation

Adjusted Rooted
Directed PathNice Convex

?

lbimimw = O(1)
bimimw = O(1)

Figure 1 Digraph classes with bounds on their (linear) bi-mim-width. For graph classes marked
with ⋆ there are polynomial-time algorithms to compute representations of their members. If digraph
class A is depicted above B and there is an edge between A and B then B ⊆ A.

(3. Rooted directed path digraphs) It is known that chordal graphs have unbounded mim-
width [28, 32]. As restrictions of chordal graphs, it has been shown that rooted directed
path graphs, and more generally, leaf power graphs have mim-width at most 1 [26], while
they have unbounded linear mim-width. A rooted directed path digraph is an intersection
digraph of pairs of directed paths in a rooted directed tree (every node is reachable from
the root), and it is adjusted if for every vertex v, the endpoint of Sv that is farther from
the root is the same as the endpoint of Tv that is farther from the root. We show that
every adjusted rooted directed path digraph has bi-mim-width at most 2. Since this class
includes the biorientations of trees, it has unbounded linear bi-mim-width.

(4. H-digraphs) For an undirected graph H, an H-graph is an undirected intersection
graph of connected subgraphs in an H-subdivision, introduced by Bíró, Hujter, and
Tuza [11]. For example, interval graphs and circular-arc graphs are P2-graphs and
C3-graphs, respectively. Fomin, Golovach, and Raymond [21] showed that H-graphs
have linear mim-width at most 2|E(H)| + 1. Motivated by H-graphs, we introduce
an H-digraph that is the intersection digraph of pairs of connected subgraphs in an
H-subdivision (where H and its subdivision are undirected). We prove that reflexive
H-digraphs have linear bi-mim-width at most 12|E(H)|. This extends the linear bound
of Fomin et al. [21] for H-graphs.

(5. H-convex digraphs) For an undirected graph H, a bipartite digraph G with bipartition
(A, B) is an H-convex digraph, if there exists a subdivision F of H with V (F ) = A such
that for every vertex b of B, each of the set of out-neighbors and the set of in-neighbors
of v induces a connected subgraph in F . We say that an H-convex digraph is nice if for
every vertex b of B, there is a bi-directed edge between b and some vertex of A. Note
that H-convex graphs, introduced by Bonomo-Braberman et al. [12], can be seen as
nice H-convex digraphs, by replacing every edge with bi-directed edges. We prove that
nice H-convex digraphs have linear bi-mim-width at most 12|E(H)|. This implies that
H-convex graphs have linear mim-width at most 6|E(H)|. For the special case when T is
a tree with maximum degree ∆ and t branching nodes, Bonomo-Braberman et al. [12]
showed an improved bound of 2 + t(∆ − 2) on the mim-width of T -convex graphs.
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(6. Directed acyclic graphs and tournaments) We show that if H is the underlying undir-
ected graph of a digraph G, then the bi-mim-width of G is at least the mim-width of H.
Using this, we can show that acyclic orientations of grids have unbounded bi-mim-width.
We also prove that tournaments have unbounded bi-mim-width. This refines an argument
that they have unbounded bi-rank-width [7, Lemma 9.9.11].

We can summarize our algorithmic results as follows.

▶ Corollary 4. Given a reflexive interval digraph, or a representation of either an adjusted
permutation digraph, or an adjusted rooted directed path digraph, or a reflexive H-digraph, or
a nice H-convex digraph, we can solve all DLCV problems represented by finite or co-finite
sets, and their distance variants, in polynomial time.

Related work. Intersection digraphs have first been considered by Beineke and Zamfirescu
in 1982 [9]. Sen et al. [38] introduced the class of interval digraphs and Sen et al. [39] the class
of circular-arc digraphs. Permutation digraphs were first studied under the name “matching
diagram digraphs” by Müller [33]. Prisner [35] showed that the problems Clique, Chromatic
Number, Independent Set, Partition into Cliques, Kernel, and Independent
Dominating Set are polynomial-time solvable on interval nest digraphs, a subclass of
interval digraphs G having a representation {(Sv, Tv) : v ∈ V (G)} where for each vertex
v ∈ V (G), either Sv ⊆ Tv or Tv ⊆ Sv. Very recently, and independently of this work,
Francis, Hell, and Jacob [22] showed that Absorbing Set, Dominating Set, and Kernel
are polynomial-time solvable on reflexive interval digraphs, a superclass of interval nest
digraphs. They also showed that these problems remain hard on interval digraphs, even
when all intervals are single points. Feder et al. [20] considered the List H-Homomorphism
problem, but posing a structural restriction on H rather than the input graph. They showed
that if H is an adjusted interval digraph, i.e. an interval digraph with a representation
where both intervals associated with each vertex have the same left endpoint, then List
H-Homomorphism is polynomial-time solvable.

The algorithmic result for undirected graphs analogous to ours is that all (undirected)
locally checkable vertex problems are polynomial-time solvable if the input graph is given
together with a decomposition of constant mim-width. This has been shown by Bui-Xuan,
Telle, and Vatshelle [14]. In their work, the runtime of the algorithms is stated in terms of the
number of equivalence classes of the d-neighborhood equivalence relation, and the connection
between this notion and mim-width was made explicit by Belmonte and Vatshelle [10].

Organization of the paper. The paper is organized as follows. In Section 2, we introduce
basic notations. In Section 3, we formally introduce bi-mim-width and compare with other
known width parameters. In Section 4, we prove Theorem 3, and in Section 5, we prove
Theorems 1 and 2. Proofs of statements marked with “⋆” are deferred to the full version.

2 Preliminaries

For a positive integer n, we use the shorthand [n] := {1, . . . , n}.

Undirected Graphs. We use standard notions of graph theory and refer to [19] for an
overview. All undirected graphs considered in this work are finite and simple. For a graph
G, we denote by V (G) the vertex set of G and E(G) the edge set of G. For an edge
{u, v} ∈ E(G), we may use the shorthand “uv”.

STACS 2022



38:8 Intersection Digraphs with Good Algorithmic Properties

For two vertices u, v ∈ V (G), the distance between u and v, denoted by distG(u, v) or
simply dist(u, v), is the length of the shortest path between u and v. For u ∈ V (G) and
A ⊆ V (G), we let distG(u, A) = minv∈A distG(u, v).

Let G be a graph and e = uv ∈ E(G). The (edge) subdivision of e is the operation of
removing the edge e and adding a new vertex x and the edges ux and xv to G. A graph H

is a subdivision of G if H can be obtained from G by a series of edge subdivisions. If H is a
subdivision of G, then each vertex in V (G) is called a branching vertex in H. A path P in
H is called a branching path if its endpoints are branching vertices and no other vertices in
P are branching vertices.

Digraphs. All digraphs considered in this work are finite and have no multiple edges, but may
have loops. For a digraph G, we denote by V (G) its vertex set and by E(G) ⊆ V (G) × V (G)
its edge set. We say that an edge (u, v) ∈ E(G) is directed from u to v. For a vertex v of G,
we denote by N+

G (v) the set of out-neighbors of v, and by N−
G (v) the set of in-neighbors of v.

If G is clear from the context, then we allow to remove G from the subscript.
A rooted directed tree is a digraph obtained from an undirected tree by selecting a root

and directing all edges away from the root.
For a digraph G and two disjoint vertex sets A, B ⊆ V (G), we denote by G[A → B]

the bipartite digraph on bipartition (A, B) with edge set E(G[A, B]) = E(G) ∩ (A × B),
and denote by G[A, B] the bipartite digraph on bipartition (A, B) with edge set E(G[A →
B]) ∪ E(G[B → A]). A set M of edges in a digraph G is a matching if no two edges share an
endpoint, and it is an induced matching if there are no edges in G meeting two distinct edges
in M . We denote by ν(G) the maximum size of an induced matching of G. For a vertex set
A of G, we denote by A := V (G) \ A. A vertex bipartition (A, A) of G for some vertex set A

of G is called a cut.
For two vertices u, v ∈ V (G), the distance between u and v, denoted by distG(u, v) or

simply dist(u, v), is the length of the shortest directed path from u to v. For a positive
integer d, we denote by Gd the graph obtained from G by, for every pair (x, y) of vertices in
G, adding an edge from x to y if there is a path of length at most d from x to y in G. We
call it the d-th power of G.

3 Bi-mim-width

Throughout this section, definitions of concepts that are only touched on briefly can be found
in Appendix A.

▶ Definition 5 (Branch Decomposition). Let Ω be a set. A branch decomposition over Ω
is a pair (T, L) of a subcubic tree T and a bijection L from Ω to the leaves of T . If T is
a caterpillar, then (T, L) is called a linear branch decomposition of G. For e ∈ E(T ), let
TA, TB be the components of T − e. Let (Ae, Be) be the cut of Ω where Ae is the set of
elements that L maps to the leaves in TA and Be is the set of elements that L maps to the
leaves in TB.

We introduce the bi-mim-width of a digraph. For a digraph G and A ⊆ V (G), let
mim+

G(A) := ν(G[A → A]), mim−
G(A) := ν(G[A → A]), and bimimG(A) := mim+

G(A) +
mim−

G(A). A branch decomposition of a digraph G is a branch decomposition over V (G).

▶ Definition 6 (Bi-mim-width). Let G be a digraph and (T, L) be a branch decomposition
of G. The bi-mim-width of (T, L) is bimimw(T, L) := maxe∈E(T ) (bimimG(Ae)) . The bi-
mim-width of G, denoted by bimimw(G), is the minimum bi-mim-width of any branch
decomposition of G. The linear bi-mim-width of G, denoted by lbimimw(G), is the minimum
bi-mim-width of any linear branch decomposition of G.
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For an undirected graph G, we denote by mimw(G) its mim-width and by lmimw(G) its
linear mim-width. The following two lemmas are clear by definition.

▶ Lemma 7. Let G be a digraph and let H be an induced subdigraph of G. Then bimimw(H) ≤
bimimw(G) and lbimimw(H) ≤ lbimimw(G).

▶ Lemma 8. Let G be an undirected graph and let H be the biorientation of G. Then
mimw(G) = bimimw(H)

2 .

We show that if a digraph G has small bi-mim-width, then its underlying undirected
graph has small mim-width. But the other direction does not hold; the class of tournaments
has unbounded bi-mim-width. We also argue that directed tree-width [27] and bi-mim-width
are incomparable.

▶ Lemma 9 (⋆). Let G be a digraph and let H be the underlying undirected graph of G.
Then mimw(H) ≤ bimimw(G) and lmimw(H) ≤ lbimimw(G). On the other hand, the class
of tournaments has unbounded bi-mim-width, while their underlying undirected graphs have
linear mim-width 1.

▶ Lemma 10 (⋆). Directed tree-width and bi-mim-width are incomparable.

We compare the bi-mim-width with the bi-rank-width of a digraph, introduced by
Kanté [29]. Kanté and Rao [30] later generalized this notion to edge-colored graphs. For a
digraph G, we denote by birw(G) its bi-rank-width and by lbirw(G) its linear bi-rank-width.
We can verify that for every digraph G, bimimw(G) ≤ birw(G). Interestingly, we can further
show that for every positive integer r, the bi-mim-width of the r-th power of G is at most
the bi-rank-width of G. This does not depend on the value of r.

▶ Lemma 11 (⋆). Let r and w be positive integers. If (T, L) is a branch-decomposition of a
digraph G of bi-rank-width w, then it is a branch-decomposition of Gr of bi-mim-width at
most w.

Next, we show that the r-th power of a digraph of bi-mim-width w has bi-mim-width at
most rw. This will be used to prove Theorem 2.

▶ Lemma 12. Let r and w be positive integers. If (T, L) is branch-decomposition of a digraph
G of bi-mim-width w, then it is a branch-decomposition of Gr of bi-mim-width at most rw.

Proof. It is sufficient to prove that for every ordered vertex partition (A, B) of G, we have
ν(Gr[A → B]) ≤ rν(G[A → B]). Assume ν(G[A → B]) = t and suppose for contradiction
that ν(Gr[A → B]) ≥ rt + 1.

Let {(ai, bi) : i ∈ [rt+1]} be an induced matching of Gr[A → B] with {ai : i ∈ [rt+1]} ⊆ A.
For each i ∈ [rt + 1], let Pi be a directed path of length at most r from ai to bi in G. We
choose an edge (ci, di) in each Pi where ci ∈ A and di ∈ B. For each i ∈ [rt + 1], let ℓi be
the length of the subpath of Pi from ai to ci. Observe that 0 ≤ ℓi ≤ r − 1.

By the pigeonhole principle, there exists a subset I of [rt + 1] of size at least t + 1 such
that for all i1, i2 ∈ I, ℓi1 = ℓi2 . Since ν(G[A → B]) = t, there exist distinct integers i1, i2 ∈ I

such that there is an edge from ci1 to di2 . Then there is a path of length at most d from ai1

to bi2 , contradicting the assumption that there is no edge from ai1 to bi2 in Gr. ◀

4 Classes of digraphs of bounded bi-mim-width

In this section we present several digraph classes of bounded bi-mim-width. Recall that a
digraph G is an intersection digraph if there is a family of ordered pairs of sets {(Sv, Tv) : v ∈
V (G)}, called a representation of G, such that (u, v) ∈ E(G) if and only if Su ∩ Tv ̸= ∅. G
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Figure 2 An example of a reflexive interval digraph. On the top left is its representation, on the
top right one of its drawings, on the bottom left a linear branch decomposition and the bottom right
shows that the cut associated with the “middle” edge of the branch decomposition has bi-mim-width
value 2.

is called reflexive if for each v ∈ V (G), Sv ∩ Tv ̸= ∅. Let H be a fixed undirected graph. A
digraph G is an H-digraph if there is a subdivision F of H such that G is an intersection
digraph of pairs of vertex sets inducing connected components in F .

▶ Proposition 13. Let H be an undirected graph. Given a representation of a reflexive
H-digraph G, one can construct in polynomial time a linear branch decomposition of G of
bi-mim-width at most 12|E(H)|.

Proof. Let m := |E(H)|. We may assume that H is connected. If H has no edge, then
it is trivial. Thus, we may assume that m ≥ 1. Let G be a reflexive H-digraph, let F be
a subdivision of H, and let M := {(Sv, Tv) : v ∈ V (G)} be a given reflexive H-digraph
representation of G with underlying graph F . For each v ∈ V (G), choose a vertex αv in
Sv ∩ Tv. We may assume that vertices in (αv : v ∈ V (G)) are pairwise distinct and they are
not branching vertices, by subdividing F more and changing M accordingly, if necessary.

We may assume that F has a branching vertex r, and we obtain a BFS ordering of F

starting from r. We denote by v <B w if v appears before w in the BFS ordering. We give a
linear ordering L of G such that for all v, w ∈ V (G), if αv <B αw, then v appears before w

in L. This can be done in linear time. We claim that L has width at most 12m. We choose a
vertex v of G arbitrarily, and let A be the set of vertices in G that are v or a vertex appearing
before v in L, and let B := V (G) \ A. It suffices to show bimimG(A) ≤ 12m. Let A∗ be the
set of vertices of F that are αv or a vertex appearing before αv, and let B∗ := V (F ) \ A∗.
Let P be the set of paths in F such that

for every P ∈ P, P is a subpath of some branching path of F and it is a maximal path
contained in one of A∗ and B∗,⋃

P ∈P V (P ) = V (F ).
Because of the property of a BFS ordering, it is easy to see that each branching path of F is
partitioned into at most 3 vertex-disjoint paths in P. Thus, we have |P| ≤ 3m. Note that
two paths in P from two distinct branching paths may share an endpoint.
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We first show that mim+
G(A) ≤ 6m. Suppose for contradiction that G[A → B] contains

an induced matching M of size 6m + 1. By the pigeonhole principle, there is a subset
M1 = {(xi, yi) : i ∈ [3]} of M of size 3 and a path P in P such that for every (x, y) ∈ M1,
Sx and Ty meet on P . Let p1, p2 be the endpoints of P .

Observe that V (P ) ⊆ A∗ or V (P ) ⊆ B∗. So, for each i ∈ [3], it is not possible that
αxi

and αyi
are both contained in V (P ). It implies that each connected component of

(Sxi
∪ Tyi

) ∩ P contains an endpoint of P , as Sxi
∪ Tyi

is connected. Therefore, there are
at least two integers j1, j2 ∈ [3] and a connected component C1 of (Sxj1

∪ Tyj1
) ∩ P and

a connected component C2 of (Sxj2
∪ Tyj2

) ∩ P so that (1) C1 and C2 contain the same
endpoint of P , and (2) for each i ∈ [2], Ci contains a vertex of Sxji

and a vertex of Tyji
.

However, it implies that (xj1 , yj2) or (xj2 , yj1) is an edge, a contradiction.
We deduce that mim+

G(A) ≤ 6m. By a symmetric argument, we get mim−
G(A) ≤ 6m.

Therefore, we have bimimG(A) ≤ 12m, as required. ◀

Interval digraphs are intersection digraphs of pairs of intervals over the real line, or,
equivalently, P2-digraphs. We first obtain a bound on the bi-mim-width of reflexive interval
digraphs that improves the bound due to Proposition 13.

▶ Proposition 14 (⋆). Given a reflexive interval digraph, one can output a linear branch
decomposition of bi-mim-width at most 2 in polynomial time.

▶ Proposition 15 (⋆). Interval digraphs have unbounded bi-mim-width.

A permutation digraph is an intersection digraph of pairs of line segments whose endpoints
lie on two parallel lines. A permutation digraph G with representation {(Sv, Tv) : v ∈ V (G)}
is adjusted if for one of the two parallel lines, say Λ, it holds that all for all v ∈ V (G), Sv

and Tv have the same endpoint on Λ. We show that adjusted permutation digraphs have
linear bi-mim-width at most 4.

▶ Proposition 16 (⋆). Given a representation of an adjusted permutation digraph G, one can
construct in polynomial time a linear branch decomposition of G of bi-mim-width at most 4.

Proof Sketch. Let Λ1 := {(x, 0) : x ∈ R} and Λ2 := {(x, 1) : x ∈ R} be two lines. Let G be
a given adjusted permutation digraph with its representation {(Sv, Tv) : v ∈ V (G)} where
Sv and Tv are line segments whose endpoints lie on Λ1 and Λ2 and they have a common
endpoint in Λ1, say (αv, 0). For each v ∈ V (G), let (βv, 1) be the endpoint of Sv in Λ2
and (γv, 1) be the endpoint of Tv in Λ2. We give a linear ordering L of G such that for all
v, w ∈ V (G), if αv < αw, then v appears before w in L.

We claim that L has bi-mim-width at most 4. We choose a vertex v of G arbitrarily, and
let A be the set of vertices in G that are v or a vertex appearing before v in L, and let B :=
V (G) \ A. We verify that mim+

G(A) ≤ 2. By a symmetric argument, we have mim−
G(A) ≤ 2.

Suppose for contradiction that G[A → B] has an induced matching {(vi, wi) : i ∈ [3]} with
v1, v2, v3 ∈ A. Without loss of generality, we assume that αv1 ≤ αv2 ≤ αv3 . Observe that
αw1 , αw2 > αv3 and αw3 ≥ αv3 . Let w ∈ {wi : i ∈ [3]} such that |αw − αv3 | is minimum.

If αw = αv3 and γw3 > βv3 , then it is not difficult to verify that βv3 < βv1 , βv2 , γw1 , γw2 <

γw3 , as {(vi, wi) : i ∈ [3]} is an induced matching. If βv1 ≤ βv2 , then Tw1 has to meet Sv2 , a
contradiction. We can deal with other cases similarly. ◀

A rooted directed path digraph is an intersection digraph of pairs of directed paths in a
rooted directed tree, and it is adjusted if for every vertex v, the endpoint of Sv that is farther
from the root is the same as the endpoint of Tv that is farther from the root. We prove that
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adjusted rooted directed path digraphs have bounded bi-mim-width. We obtain a desired
branch decomposition by attaching a leaf node corresponding to a vertex v to the common
endpoint of Sv and Tv that is farther from the root, after finding an equivalent representation
where the underlying directed tree has out-degree at most 2 and there are no two vertices v

and w for which Sv and Sw share the endpoint farther from the root.

▶ Proposition 17 (⋆). Given a representation of an adjusted rooted directed path digraph G,
one can construct in polynomial time a branch decomposition of G of bi-mim-width at most
2. Adjusted rooted directed path digraphs have unbounded linear bi-mim-width.

For an undirected graph H, a bipartite digraph G with bipartition (A, B) is an H-convex
digraph if there is a subdivision F of H with V (F ) = A such that for every b ∈ B, both the
set of out-neighbors of b and the set of in-neighbors of b induce a connected subgraph in F .
An H-convex digraph is nice if every vertex of B is incident to some bi-directed edge. We
prove that nice H-convex digraphs have linear bi-mim-width at most 12|E(H)|. This proof
resembles the proof of Proposition 13.

▶ Proposition 18 (⋆). Let H be an undirected graph. Given a nice H-convex digraph G with
its bipartition (A, B), one can construct in polynomial time a linear branch decomposition of
G of bi-mim-width at most 12|E(H)|.

▶ Proposition 19 (⋆). P2-convex digraphs have unbounded bi-mim-width.

5 Algorithmic applications

In this section we give the algorithmic applications of bi-mim-width. We show that all directed
locally checkable vertex subset and all directed locally checkable vertex partitioning problems
can be solved in XP time parameterized by the bi-mim-width of a given branch decomposition
of the input digraph. We do so by adapting the framework of the d-neighborhood equivalence
relation introduced by Bui-Xuan et al. [14] to digraphs.

d-Bi-neighhorhood-equivalence. The subsets of natural numbers that characterize locally
checkable vertex subset/partitioning problems can be fully characterized when counting
in- and out-neighbors up to some constant d. Therefore, if a vertex v has more than d for
instance out-neighbors in two sets X and Y , then these two sets look the same to v in terms
of its out-neighborhood. This is the main motivation for the following definition.

▶ Definition 20. Let d ∈ N. Let G be a digraph and A ⊆ V (G). For two sets X, Y ⊆ A, we
say that X and Y are d-bi-neighbor equivalent, written X ≡±

d,A Y , if 1

∀u ∈ V (G) \ A : min{d, |N−(u) ∩ X|} = min{d, |N−(u) ∩ Y |} and
min{d, |N+(u) ∩ X|} = min{d, |N+(u) ∩ Y |}.

We denote the number of equivalence classes of ≡±
d,A by nec(≡±

d,A). If (T, L) is a branch
decomposition of G, we let necd(T, L) = maxt∈V (T ) max{nec(≡±

d,Vt
), nec(≡±

d,Vt
)}.

The enumeration of equivalence classes is based on pairs of vectors called d-bi-
neighborhoods of a subset X of A.

1 Since the definition is given in terms of vertices from A, we consider the directions of the edges in
reverse, i.e., we consider N−(v) for v ∈ A when defining ≡+.
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▶ Definition 21. Let G be a digraph, X ⊆ A ⊆ V (G), and d ∈ N. The d-out-neighborhood
of X, denoted by U+

d,A(X), and the d-in-neighborhood of X, denoted by U−
d,A(X) are the

following vectors in {0, 1, . . . , d}A:

U+
d,A(X) = (min{d, |N−(v) ∩ X|})v∈A U−

d,A(X) = (min{d, |N+(v) ∩ X|})v∈A

We refer to the pair (U+
d,A(X), U−

d,A(X)) as the d-bi-neighborhood U±
d,A(X); and we denote

the set of all d-bi-neighborhoods as U±
d,A.

There is a natural bijection between the d-bi-neighborhoods and the equivalence classes
of ≡±

d,A.

▶ Observation 22. Let G be a digraph and X, Y ⊆ A ⊆ V (G). Then, X ≡±
d,A Y if and only

if U±
d,A(X) = U±

d,A(Y ).

▶ Lemma 23 (⋆). Let G be a digraph on n vertices, A ⊆ V (G), and d ∈ N. There is an
algorithm that enumerates all members of U±

d,A in time O(nec(≡±
d,A) log nec(≡±

d,A) · dn2).
Furthermore, for each Y ∈ U±

d,A, the algorithm can provide some X ⊆ A with U±
d,A(X) = Y .

5.1 Generalized Directed Domination Problems
The algorithm in this section is bottom-up dynamic programming along the given branch
decomposition (T, L) of the input digraph G, which we assume to be rooted in an arbitrary
degree two node. For a node t ∈ V (T ), we let Vt be the vertices of G that are mapped to a
leaf in the subtree of T rooted at t. We recall the formal definition of (σ+, σ−, ρ+, ρ−)-sets.

▶ Definition 24. Let σ+, σ−, ρ+, ρ− ⊆ N, and let Σ = (σ+, σ−) and R = (ρ+, ρ−). Let G

be a digraph and S ⊆ V (G). We say that S (σ+, σ−, ρ+, ρ−)-dominates G, or simply that S

(Σ, R)-dominates G, if:

∀v ∈ V (G) : |N+(v) ∩ S| ∈
{

σ+, if v ∈ S

ρ+, if v /∈ S
and |N−(v) ∩ S| ∈

{
σ−, if v ∈ S

ρ−, if v /∈ S

▶ Definition 25. Let d(N) = 0. For a finite or co-finite set µ ⊆ N, let d(µ) = 1 +
min{maxx∈N x ∈ µ, maxx∈N x /∈ µ}. For finite or co-finite σ+, σ−, ρ+, ρ− ⊆ N, Σ = (σ+, σ−)
and R = (ρ+, ρ−): d(σ+, σ−, ρ+, ρ−) = d(Σ, R) = max{d(σ+), d(σ−), d(ρ+), d(ρ−)}.

As our algorithm progresses, it keeps track of partial solutions that may become a (Σ, R)-
set once the computation has finished. This does not necessarily mean that at each node
t ∈ V (T ), such a partial solution X ⊆ Vt has to be a (Σ, R)-dominating set of G[Vt]. Instead,
we additionally consider what is usually referred to as the “expectation from the outside” [14]
in form of a subset Y of Vt such that X ∪ Y is a (Σ, R)-dominating set of G[Vt].

▶ Definition 26. Let µ+, µ− ⊆ N and let M = (µ+, µ−). Let G be a digraph, A ⊆ V (G) and
X ⊆ V (G). We say that X M-dominates A if for all v ∈ A, we have that |N+(v) ∩ X| ∈ µ+

and |N−(v) ∩ X| ∈ µ−. Let Σ and R be as above. For X ⊆ A and Y ⊆ A, we say that (X, Y )
(Σ, R)-dominates A, if X ∪ Y Σ-dominates X and X ∪ Y R-dominates A \ X.

To describe an equivalence class Q of ≡±
d,A we use the d-bi-neighbohoods of its members,

which we denote by desc(Q). Note that by Observation 22, this is well-defined.
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▶ Definition 27. Let σ+, σ−, ρ+, ρ− ⊆ N be finite or co-finite, let Σ = (σ+, σ−), R = (ρ+, ρ−),
and d = d(Σ, R). Let opt stand for min if we consider a minimization problem and for max
if we consider a maximization problem. Let G be a digraph with branch decomposition (T, L)
and let t ∈ V (T ). For an equivalence class Qt of ≡±

d,Vt
, and an equivalence class Qt of ≡±

d,Vt
,

we let:

Tabt[desc(Qt), desc(Qt)] =


optS⊆Vt

|S| : S ∈ Qt and for any St ∈ Qt :
(S, St) (Σ, R)-dominates Vt

∞ if opt = min and no such S exists
−∞ if opt = max and no such S exists

We use the shorthand “Tabt[Qt, Qt]” for “Tabt[desc(Qt), desc(Qt)]”. For all such t, Qt,
and Qt, we initialize Tabt[Qt, Qt] to be −∞ if opt = max and ∞ if opt = min.

Leaves of T . For a leaf ℓ ∈ V (T ), let v ∈ V (G) be such that L(v) = ℓ. Clearly, ≡d,{v}
has only two equivalence classes, namely the one containing ∅ and the one containing {v}.
For each equivalence class Q of ≡d,V (G)\{v}, let R ∈ Q which we can assume is given to us
by Lemma 23. If |N+(v) ∩ R| ∈ σ+ and |N−(v) ∩ R| ∈ σ−, then Tabℓ[{{v}}, Q] = 1. If
|N+(v) ∩ R| ∈ ρ+ and |N−(v) ∩ R| ∈ ρ−, then Tabℓ[{∅}, Q] = 0.

Internal nodes of T . Let t ∈ V (T ) be an internal node with children a and b.
1. Consider each triple Qa, Qb, Qt of equivalence classes of ≡±

d,Va
, ≡±

d,Vb
, and ≡±

d,Vt
, respect-

ively.
2. Let Ra ∈ Qa, Rb ∈ Qb, and Rt ∈ Qt. Determine:

Qa, the equivalence class of ≡±
d,Va

containing Rb ∪ Rt.
Qb, the equivalence class of ≡±

d,Vb
containing Ra ∪ Rt.

Qt, the equivalence class of ≡±
d,Vt

containing Ra ∪ Rb.
3. Update Tabt[Qt, Qt] = opt{Tabt[Qt, Qt], Taba[Qa, Qa] + Tabb[Qb, Qb]}.

▶ Theorem 28 (⋆). Let σ+, σ−, ρ+, ρ− ⊆ N be finite or co-finite, Σ = (σ+, σ−), R = (ρ+, ρ−),
and d = d(Σ, R). There is an algorithm that given a digraph G on n vertices together with one
of its branch decompositions (T, L), computes and optimum-size (Σ, R)-dominating set in time
O(necd(T, L)3 · n3 log n). For n ≤ necd(T, L), the algorithm runs in time O(necd(T, L)3 · n2).

▶ Observation 29 (⋆). For d ∈ N, a digraph G, and A ⊆ V (G): nec(≡±
d,A) ≤ nd·bimimG(A).

▶ Corollary 30. Let σ+, σ−, ρ+, ρ− ⊆ N be finite or co-finite, Σ = (σ+, σ−), R = (ρ+, ρ−),
and d = d(Σ, R). Let G be a digraph on n vertices with branch decomposition (T, L) of
bi-mim-width w ≥ 1. There is an algorithm that given any such G and (T, L) computes an
optimum-size (Σ, R)-dominating set in time O(n3dw+2).

5.2 Directed Vertex Partitioning Problems
We now show that the locally checkable vertex partitioning problems can be solved in XP time
parameterized by the bi-mim-width of a given branch decomposition. In analogy with [14], we
lift the d-bi-neighborhood equivalence to q-tuples over vertex sets, which allows for devising
the desired dynamic programming algorithm. The resulting algorithm follows a very similar
strategy to the one for (Σ, R)-problems; the details are deferred to the full version (⋆).
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▶ Definition 31. A bi-neighborhood-constraint matrix is a (q × q)-matrix Dq over pairs
of finite or co-finite sets of natural numbers. Let G be a digraph, and X = (X1, . . . , Xq)
be a q-partition of V (G). We say that X is a D-partition if for all i, j ∈ {1, . . . , q} with
Dq[i, j] = (µ+

i,j , µ−
i,j), we have that for all v ∈ Xi, |N+(v)∩Xj | ∈ µ+

i,j and |N−(v)∩Xj | ∈ µ−
i,j .

The d-value of Dq is d(Dq) = maxi,j{d(µ+
i,j), d(µ−

i,j)}.

▶ Theorem 32 (⋆). Let Dq be a bi-neighborhood constraint matrix with d = d(Dq). There is an
algorithm that given a digraph G on n vertices together with one of its branch decompositions
(T, L), determines whether G has a Dq-partition in time O(necd(T, L)3q · q · n3 log n). For
n ≤ necd(T, L), the algorithm runs in time O(necd(T, L)3q · q · n2).

▶ Corollary 33. Let Dq be a bi-neighborhood constraint matrix with d = d(Dq). Let G be a
digraph on n vertices with branch decomposition (T, L) of bi-mim-width w ≥ 1. There is an
algorithm that given any such G and (T, L) decides whether G has a Dq-partition in time
O(q · n3qdw+2).

6 Conclusion

We introduced the digraph width measure bi-mim-width, and showed that (finitely represen-
ted) directed locally checkable vertex problems and their distance-r versions can be solved
in polynomial time if the input digraph is given together with a branch decomposition of
constant bi-mim-width. A natural next step in the understanding of this new parameter
would be to determine the complexity of the Directed Feedback Vertex Set problem on
digraphs of bounded bi-mim-width. We showed that several classes of intersection digraphs
have constant bi-mim-width which adds a large number of polynomial-time algorithms for
locally checkable problems related to domination and independence (given a representation)
to the relatively sparse literature on the subject.

Intersection digraph classes such as interval digraphs seem too complex to give polynomial-
time algorithms for optimization problems. Our work points to reflexivity as a reasonable
additional restriction to give successful algorithmic applications of intersection digraphs,
while maintaining a high degree of generality. This was observed independently for interval
digraphs by Francis, Hell, and Jacob [22] who studied the Kernel, Absorbing Set,
and Dominating Set problems. Apart from giving polynomial-time algorithms for these
problems on reflexive interval digraphs, they showed that even for the severely restricted
case when the intervals associated with the vertices are single points, the aforementioned
problems remain hard.

Reflexivity presents a natural tractability barrier in the case of interval digraphs, or,
more generally, H-digraphs for fixed H. The situation is not as clear yet when considering
permutation digraphs or rooted directed path digraphs. Both digraph classes contain interval
digraphs, therefore the hardness results from [22] apply as well. However, there are no
matching polynomial-time algorithms for directed locally checkable vertex problems on
reflexive permutation digraphs or reflexive rooted directed path digraphs; in particular, it
is not known whether their bi-mim-width is bounded or not. We did show bounds on the
bi-mim-width of their adjusted subclasses where we additionally require that every pair of
objects representing a vertex share a common “endpoint” (where the concrete notion of
endpoint depends on the considered type of representation). Arguably, reflexivity is the more
natural restriction and one would hope that also in the case of these two digraph classes, it
is the right barrier separating the tractable cases from the intractable ones. However, this
question remains open for the time being.
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A Additional Definitions

For an undirected graph G and two disjoint vertex sets A, B ⊆ V (G), we denote by G[A, B]
the bipartite graph on bipartition (A, B) such that E(G[A, B]) is exactly the set of edges of
G incident with both A and B.

For a graph G and a set A ⊆ V (G), we let mimG(A) := ν(G[A, A]). A branch decomposi-
tion of G is a branch decomposition over V (G) (recall Definition 5).

▶ Definition 34 (Mim-width). Let G be a graph and (T, L) be a branch decomposition of
G. The mim-width of (T, L) is mimw(T, L) := maxe∈E(T ) mimG(Ae). The mim-width of G,
denoted by mimw(G), is the minimum mim-width over all branch decompositions of G. The
linear mim-width of G, denoted by lmimw(G), is the minimum mim-width over all linear
branch decompositions of G.

Let G be a digraph, and A, B ⊆ V (G) be two disjoint vertex sets. We let MG[A → B] the
matrix whose columns are indexed by A and whose rows are indexed by B such that for a ∈ A

and b ∈ B, MG[A → B](a, b) = 1 if (a, b) ∈ E(G) and MG[A → B](a, b) = 0 otherwise. For
each A ⊆ V (G),we let cutrk+

G(A) := rank(MG[A → A]) and cutrk−
G(A) := rank(MG[A → A]).

We let bicutrkG(A) := cutrk+
G(A) + cutrk−

G(A).

▶ Definition 35 (Bi-rank-width). Let G be a digraph, and (T, L) be a branch decomposition
of G. The bi-rank-width of (T, L) is maxe∈E(T ) bicutrkG(Ae). The (linear) bi-rank-width
of G is the minimum bi-rank-width of any (linear) branch decomposition of G.

Let T be a rooted directed tree. For a vertex t ∈ V (T ), we denote by Tt the subtree of T

containing all vertices v such that there is a directed path from t to v in T .

▶ Definition 36 (Strong guard). Let G be a digraph and X, Y ⊆ V (G). We say that Y is a
strong guard for X if every walk starting and ending in X, and containing a vertex from
V (G) \ X, contains a vertex from Y .

▶ Definition 37 (Directed treewidth). Let G be a digraph. A directed tree decomposition is
a triple (T, β, γ) of a rooted directed tree T and two maps β : V (T ) → 2V (G) and γ : E(T ) →
2V (G),
1. The set {β(t) : t ∈ V (T )} is a partition of V (G).
2. For each e = (u, v) ∈ E(T ), γ(e) is a strong guard for

⋃
t∈V (Tv) β(t).

For each t ∈ V (T ), we let Γ(t) := β(t) ∪
⋃

e∼t γ(e), where e ∼ t means that e is incident
with t. The width of (T, β, γ) is maxt∈V (T )|Γ(t)| − 1, and the directed treewidth of a digraph
G is the minimum width over all its directed tree decompositions.

We refer to [31] for an introduction to the width measures bi-rank-width and directed
treewidth.
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