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Abstract
We confirm a conjecture of Gartland and Lokshtanov [arXiv:2007.08761]: if for a hereditary graph
class G there exists a constant k such that no member of G contains a k-creature as an induced
subgraph or a k-skinny-ladder as an induced minor, then there exists a polynomial p such that
every G ∈ G contains at most p(|V (G)|) minimal separators. By a result of Fomin, Todinca, and
Villanger [SIAM J. Comput. 2015] the latter entails the existence of polynomial-time algorithms
for Maximum Weight Independent Set, Feedback Vertex Set and many other problems,
when restricted to an input graph from G. Furthermore, as shown by Gartland and Lokshtanov,
our result implies a full dichotomy of hereditary graph classes defined by a finite set of forbidden
induced subgraphs into tame (admitting a polynomial bound of the number of minimal separators)
and feral (containing infinitely many graphs with exponential number of minimal separators).
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1 Introduction

For a graph G, a set S ⊆ V (G) is a minimal separator if there are at least two connected
components A, B of G − S with N(A) = N(B) = S (so that S is an inclusion-wise minimal
set that separates a vertex of A from a vertex of B). Around the year 2000, Bouchitté and
Todinca presented a theory of minimal separators and related objects called potential maximal
cliques and showed their usefulness for providing efficient algorithms [2]. In particular, the
Maximum Weight Independent Set problem (given a vertex-weighted graph, find a subset
of pairwise nonadjacent vertices of maximum total weight) can be solved in time bounded
polynomially in the size and the number of minimal separators in the graph. This result has
been generalized by Fomin, Todinca, and Villanger to a large range of problems that can be
defined as finding an induced subgraph of constant treewidth with some CMSO2-expressible
property [3]; this includes, for example, Longest Induced Path or Max Induced Forest,
which is by complementation equivalent to Feedback Vertex Set.
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When do these metaalgorithmic results give efficient algorithms? In other words, which
restrictions on graphs guarantee a small number of minimal separators? On one hand, it
is easy to see that an n-vertex chordal graph has O(n) minimal separators. On the other
hand, consider the following two negative examples. For k ≥ 3, the (k, 1)-prism consists of
two k-vertex cliques with vertex sets X = {x1, . . . , xk} and Y = {y1, . . . , yk} and a perfect
matching {xiyi | i ∈ [k]}. It is easy to see that the (k, 1)-prism has 2k − 2 minimal separators:
any choice of one endpoint of each edge xiyi gives a minimal separator, except for the choices
X and Y . The (k, 3)-theta consists of k independent edges {xiyi | i ∈ [k]}, a vertex x adjacent
to all vertices xi and a vertex y adjacent to all vertices yi (the intuition behind the notation
is that the graph consists of k paths of length 3, joining x and y). Again, any choice of one
endpoint of each edge xiyi gives a minimal separator. Thus, both the (k, 1)-prism and the
(k, 3)-theta have an exponential (in the number of vertices) number of minimal separators.

In 2019, Milanič and Pivač initiated a systematic study of the question which graph
classes admit a small bound on the number of minimal separators in its members [5, 6]. A
graph class G is tame if there exists a polynomial pG such that for every G ∈ G the number
of minimal separators of G is bounded by pG(|V (G)|). Clearly, if G is tame, then Maximum
Weight Independent Set and all problems captured by the formalism of [3] are solvable in
polynomial time when the input graph comes from G. On the opposite side of the spectrum,
G is feral if there exists c > 1 such that for infinitely many graphs G ∈ G it holds that G has
at least c|V (G)| minimal separators. Following the previous examples, the class of chordal
graphs is tame while the class of all (k, 1)-prisms and/or all (k, 3)-thetas (over all k) is feral.
Milanič and Pivač provided a full tame/feral dichotomy for hereditary graph classes (i.e.,
closed under vertex deletion) defined by minimal forbidden induced subgraphs on at most 4
vertices [5, 6].

A subsequent work of Abrishami, Chudnovsky, Dibek, Thomassé, Trotignon, and
Vuskovič [1] indicated that the main line of distinction between tame and feral graph
classes should lie around the notion of a k-creature. A k-creature in a graph G is a tuple
(A, B, X, Y ) of pairwise disjoint nonempty vertex sets such that (i) A and B are connected,
(ii) A is anti-adjacent to Y ∪ B and B is anti-adjacent to A ∪ X, (iii) every x ∈ X has a
neighbor in A and every y ∈ Y has a neighbor in B; (iv) |X| = |Y | = k and X and Y

can be enumerated as X = {x1, . . . , xk}, Y = {y1, . . . , yk} such that xiyj ∈ E(G) if and
only if i = j. We say that G is k-creature-free if G does not contain a k-creature as an
induced subgraph. Similarly as in the examples of the (k, 1)-prism and the (k, 3)-theta,
any choice of one endpoint of every edge xiyi gives a minimal separator in the subgraph
induced by the creature (which, in turn, can be easily lifted to a minimal separator in G).
Hence, if G contains a k-creature as an induced subgraph, it contains at least 2k minimal
separators. In fact, the notion of a k-creature is a common generalization of the examples
of the (k, 1)-prism and the (k, 3)-theta. Indeed, the (k, 3)-theta contains a k-creature with
A = {x} and B = {y} while the (k, 1)-prism contains a (k − 2)-creature with A = {xk−1},
B = {yk}, X = {x1, . . . , xk−2}, and Y = {y1, . . . , yk−2}. In particular, Abrishami et al.
conjectured that if for a hereditary graph class G there exists k such that no G ∈ G contains
a k-creature as an induced subgraph, then G is tame. (Observe that a presence of arbitrarily
large creatures in a hereditary graph class does not immediately imply that the graph class
is feral, as the sets A and B can be of superpolynomial size in k.)

A counterexample to the conjecture of [1] has been provided by Gartland and Lokshtanov
in the form of a k-twisted ladder [4]. They observed that, despite the fact that the conjecture
of [1] is false, every example they can construct “looks like a twisted ladder”, which indicates
that the tame/feral boundary for hereditary graph classes should not be far from the said
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conjecture. To support this intuition, they introduced the notion of a k-skinny ladder (a
graph consisting of two induced antiadjacent paths P = (p1, . . . , pk), Q = (q1, . . . , qk), and
independent set R = (r1, . . . , rk), and edges {piri, qiri | i ∈ [k]}), noted that a k-skinny-ladder
is an induced minor of every counterexample they constructed, and proved the following.

▶ Theorem 1. For every k there exists a constant ck such that if a graph G is k-creature-free
and does not contain a k-skinny-ladder as an induced minor, then the number of minimal
separators in G is bounded by ck|V (G)|ck log |V (G)|, that is, quasi-polynomially in the size
of G.

Gartland and Lokshtanov conjectured that this dependency should be in fact polynomial.
Our main result of this paper is a proof of this conjecture.

▶ Theorem 2. For every k ∈ N there exists a polynomial q of degree O(k3 · (8k2)k+2) such
that every graph G that is k-creature-free and does not contain k-skinny-ladder as an induced
minor contains at most q(|V (G)|) minimal separators.

That is, every hereditary graph class G for which there exists k such that no member of G

contains a k-creature nor k-skinny-ladder as an induced minor, is tame.
As proven in [4], Theorem 2 implies a dichotomy result into tame and feral graph classes

for all hereditary graph classes defined by a finite list of forbidden induced subgraphs. (For
the exact definitions of graphs in the statement, we refer to [4].)

▶ Theorem 3. Let G be a graph class defined by a finite number of forbidden induced
subgraphs. If there exists a natural number k such that G does not contain all k-theta,
k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, k-claw, and k-paw graphs, then G is
tame. Otherwise G is feral.

Our proof builds upon the proof of Theorem 1 of [4] and provides a new way of analysing
one of the core invariants. For a graph G and a set S, define

ζG(S) = max{|I| : I ⊆S is an independent set and for every v /∈S we have |N(v)∩I| ≤ 1}.

That is, we want a set I ⊆ S of maximum possible size that is not only independent, but no
vertex outside S is adjacent to more than one vertex of I. In the proof of Theorem 1 of [4],
an important step is to prove that a minimal separator S with huge ζG(S) gives rise to a
large skinny ladder as an induced minor. Our main technical contribution is an improved
way of analysing minimal separators S with small ζG(S).

▶ Theorem 4. For every k, L ∈ N there exists a polynomial p of degree O(k3 · L), such that
the following holds. For every k-creature-free graph G, the number of minimal separators S

satisfying ζG(S) ≤ L is at most p(|V (G)|).

After brief preliminaries in Section 2, we prove Theorem 4 in Section 3. We show how
Theorem 4 implies Theorem 2 (with the help of some tools from [4]) in Section 4.

2 Preliminaries

Let G be a graph, v be a vertex of G, and S be a subset of vertices. By NG(v) we denote the
set of neighbors of v. Similarly, by NG(S) we denote the set

⋃
x∈S NG(x) \ S. If the graph

G is clear from the context, we simply write N(v) and N(S).
For sets A, B, C, whenever we write A \ B \ C, the set difference operation associates

from the left, meaning that A \ B \ C is equivalent to (A \ B) \ C (and, alternatively, to
A \ (B ∪ C)).

ESA 2022
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By G − S we denote the graph obtained from G by deleting all vertices from S along with
incident edges, and by G[S] we denote the graph induced by the set S, i.e., G − (V (G) \ S).
By CC(G) we denote the set of connected components of G, given as vertex sets.

A matching in G is a set of pairwise disjoint edges. We say that a matching {xiyi | i ∈
[k]} is a semi-induced matching between {x1, . . . , xk} and {y1, . . . , yk} if for all i, j ∈ [k],
xiyj ∈ E(G) if and only if i = j.

For vertices u, v, a set S ⊆ V (G) \ {u, v} is a u-v-separator if u and v are in different
connected components of G − S. We say that S is a minimal u-v-separator if it is a u-v-
separator and no proper subset of S is a u-v-separator. A set S is a minimal separator if it
is a minimal u-v-separator for some u, v. Equivalently, S is a minimal separator if there are
at least two components A, B ∈ CC(G − S) such that N(A) = N(B) = S. Any component
A ∈ CC(G − S) with N(A) = S is called full to S; a minimal separator has at least two full
components.

We define

Sv
G = {N(v) ∩ S : v /∈ S and S is a minimal separator of G}.

The following result of Gartland and Lokshtanov will be a crucial tool used in our argument.

▶ Lemma 5 (Gartland and Lokshtanov [4]). If G is a k-creature-free graph, then for every
v ∈ V (G) it holds that |Sv

G| ≤ |V (G)|k+1.

Let us also recall the crucial definition. For a set S ⊆ V (G) we define

ζG(S) = max{|I| : I ⊆S is an independent set and for every v /∈S we have |N(v)∩I| ≤ 1}.

3 Proof of Theorem 4

We prove the theorem by induction on L with the exact bound of nL(4+(k2+2)(k+2)) minimal
separators.

Note that if S ̸= ∅, then ζG(S) ≥ 1, since for any u ∈ S, the set I = {u} satisfies the
required properties. Thus, in the base case, when L = 0, the only candidate for S is the
empty set, therefore the claim holds vacuously. Also, the claim is immediate for n = 1, so we
assume n > 1.

Let S be a minimal separator of G, and let A and B be two connected components of
G − S that are full to S. If there is a vertex v ∈ V (G) \ S such that N(v) ⊇ S, then S ∈ Sv

G.
There are at most nk+2 such separators S by Lemma 5; we may therefore assume that no
such vertex exists. Let B̃ be a minimal connected subset of B that still dominates S, i.e.
such that N(B̃) ⊇ S. Let u ∈ B̃ be such that B̃ \ {u} is still connected. Such a vertex u can
be found, for instance, as a leaf of a spanning tree of B̃. We define the following sets that
will be important throughout the proof, see Figure 1.

We let v ∈ S ∩ N(u) \ N(B̃ \ {u}). In words, v is a private neighbor (with respect to B̃)
of u in S. Such a vertex v exists by the minimality of B̃.
Su = N(u) ∩ S.
Sv = (N(v) ∩ S) \ Su.
SA = (S \ Su \ Sv) ∩ N(N(v) \ S \ B). That is, SA contains the vertices of S \ Su \ Sv

that have a common neighbor with v in N(v) \ S \ B.
SB = (S\Su \Sv \SA)∩N(N(v)∩B). Similarly, SB contains the vertices of S\Su \Sv \SA

that have a common neighbor with v in N(v) ∩ B.
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S

A B

B̃
u

v

Su

Sv

SA

SB

Figure 1 Subsets of S defined in the proof of Theorem 4. The full lines indicate adjacencies. The
dotted line inside Su indicates a partition of Su between the private neighbors of u (below) and
other neighbors of u (above). The dashed line indicates there is no edge between the sets.

S

A B

B̃
u

v

SA

ZA

(a) |ZA|-creature obtained in the
proof of Claim 6.

S

A B

B̃
u

v

D

(b) |D|-creature obtained in the
proof of Claim 7.

S

A B

B̃
u

v

D

D

ZD

(c) |ZD|-creature obtained in the
proof of Claim 8.

Figure 2 The creatures of Theorem 4.

Our goal is now to identify a small set that dominates S∗ = Su ∪ Sv ∪ SA ∪ SB . We will
repeatedly use Lemma 5 on the vertices of this set in order to bound the number of choices
for S∗. We then show that we can find a minimal separator S0 in S \ S∗ such that A is a full
component in G − (S∗ ∪ S0) and there is a component containing B̃ \ {u}. We will be able
to show that ζG−S∗(S0) < ζG(S) which allows us to conclude using the induction hypothesis
on G − S∗.

▷ Claim 6. Let ZA ⊆ N(v) \ S \ B be a minimal set such that N(ZA) ⊇ SA. Then G

contains a |ZA|-creature.

Proof. By the minimality of ZA, each vertex of ZA has a private neighbor in SA. Hence, there
is a semi-induced matching between ZA and a size-|ZA| subset of SA, say SA,Z . We obtain
the |ZA|-creature by considering the sets ({v}, B̃ \{u}, ZA, SA,Z), see Figure 2a. Indeed, note
that by our choice of u, we have that G[B̃ \ u] is connected; v has no neighbors in B̃ \ {u},
as it is a private neighbor of u; v has no neighbors in SA,Z since SA,Z ⊆ SA ⊆ S \ Su \ Sv;
clearly there are no edges between B̃ \ {u} and ZA since S is a separator; v dominates ZA

and B̃ \ u dominates SA,Z . ◁

ESA 2022
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S

A B

B̃
u

v

Su

Sv

SA

SB

D

D3

D2

D1

ZD3

ZD2

ZD1

ZA

Figure 3 Illustration of how Q is obtained in the proof of Theorem 4.

▷ Claim 7. Let D ⊆ CC(G[A \ N(v)]) be a minimal set of such components that dominates
S \ Su \ Sv \ SA. Then G contains a |D|-creature.

Proof. By the minimality of D, for each D ∈ D there exists a vertex yD ∈ S \ Su \ Sv \ SA

that is dominated only by vertices of D. Let xD be a vertex of D that is adjacent to yD

and that is closest to N(v) ∩ A in G[A]. Note that the edges {xDyD : D ∈ D} form a
semi-induced matching between {xD : D ∈ D} and {yD : D ∈ D} in G. Let PD be the set
of internal vertices on a shortest path between xD and N(v)∩A via G[A]. Note that PD ⊂ D

and that PD is anti-adjacent to
⋃

D∈D{yD}. Indeed, the vertices of PD are not adjacent to
yD, as this would contradict the minimality of the distance between xD and N(v); and for
any D′ ̸= D, the vertices of PD are not adjacent to yD′ as this vertex is only dominated by
vertices of D′, by our choice of yD′ . Then we obtain a |D|-creature by considering the sets
({v} ∪ (N(v) ∩ A) ∪ (

⋃
D∈D PD), B̃ \ {u},

⋃
D∈D{xD},

⋃
D∈D{yD}), see Figure 2b. Indeed,

note that G[{v} ∪ (N(v) ∩ A) ∪ (
⋃

D∈D PD)] and G[B̃ \ {u}] are connected; there are no
edges between {v} ∪ (N(v) ∩ A) and

⋃
D∈D{yD} since (

⋃
D∈D{yD}) ∩ (SA ∪ Sv ∪ Su) = ∅,

neither edges between
⋃

D∈D PD and
⋃

D∈D{yD} as mentioned above. Note also that
{v} ∪ (N(v) ∩ A) ∪ (

⋃
D∈D PD) ∪ (

⋃
D∈D{xD}) is anti-adjacent to B̃ \ {u} as argued in the

proof of Claim 6. Finally, note that (N(v) ∩ A) ∪ (
⋃

D∈D PD) dominates
⋃

D∈D{xD}, since
every xD either has a neighbor in PD, or in N(v) ∩ A if PD = ∅. Finally, it is easy to see
that B̃ \ {u} dominates

⋃
D∈D{yD}. ◁

▷ Claim 8. Let D be as in Claim 7. For each D ∈ D, let ZD ⊆ N(v) ∩ B be a minimal set
that dominates N(D) ∩ SB . Then G contains a |ZD|-creature.

Proof. By the minimality of ZD, there is a semi-induced matching between ZD and a size-|ZD|
subset SB,Z of N(D) ∩ SB . We obtain a creature by considering the sets ({v}, D, ZD, SB,Z),
see Figure 2c. Indeed, note that D is connected by definition; v is not adjacent to SB,Z

since SB,Z ∩ (Su ∪ Sv) = ∅ and v is not adjacent to D since D is a connected component of
A \ N(v); D is not adjacent to ZD since S is a separator; v dominates ZD by definition of
ZD and SB,Z ⊆ N(D). ◁

Let Z = {u}∪ZA ∪
⋃

D∈D ZD, where ZA, D, and ZD for D ∈ D are as defined in Claims 6,
7 and 8, respectively. For all z ∈ Z, let Qz = N(z) ∩ S. Let Q =

⋃
z∈Z Qz. Note that Q

contains Su since u ∈ Z, that Q contains SA since ZA ⊆ Z, and that Q contains SB. The
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latter is due to the fact that the vertices in D dominate SB by choice, and each ZD where
D ∈ D dominates N(D) ∩ SB. We illustrate this situation in Figure 3. It remains to get a
grip on Sv.

To do so, let S′ = (S \ {v}) ∪ (N(v) ∩ B), and note that S′ separates A ∪ {v} from
B̃ \ {u}. Let S′′ be a minimal subset of S′ that still separates A ∪ {v} from B̃ \ {u}. Note
that there are components A′′ ⊇ A ∪ {v} and B′′ ⊇ B̃ \ {u} that are full to S′′ and S′′ is a
minimal separator. Now let R = N(v) ∩ S′′ ∈ Sv

G, so there are at most nk+2 choices for R,
by Lemma 5. We observe that R ⊇ Sv, which is due to the fact that B̃ \ {u} dominates Sv,
and that S′′ separates {v} from B̃ \ {u}.

▷ Claim 9. There are at most nk2(k+2) choices for Q, and at most nk+2 choices for R.

Proof. We already observed the second statement of the claim above. For the first statement,
by Claims 6, 7 and 8, we know that |Z| < k2, so there are at most nk2 choices for Z. For
each z ∈ Z, Qz ∈ Sz

G, so by Lemma 5, there are at most nk2(k+1) choices for each Qz, and
therefore at most nk2(k+2) choices for Q. ◁

Now, let G0 = G − (Q ∪ R) and S0 = S \ Q \ R. Note that S0 ⊆ S \ Su \ Sv \ SA \ SB.
Moreover, A is a connected component of G0 − S0, and there is a connected component B0
of G0 − S0 that contains B̃ \ {u}. We conclude that S0 is a minimal separator of G0, with A

and B0 being connected components of G0 − S0 that are full to S0. We now show that we
can use the induction hypothesis to bound the number of choices for S0.

▷ Claim 10. ζG0(S0) < ζG(S).

Proof. Let I0 ⊆ S0 be an independent set such that for all y ∈ V (G0) \ S0, |NG0(y) ∩ I0| ≤ 1.
Let I = I0 ∪ {v}; I is still an independent set since S0 ⊆ S \ NG(v). We argue that for all
y ∈ V (G) \ S, |NG(y) ∩ I| ≤ 1. Suppose that y ∈ NG(v). Since S0 ∩ (SA ∪ SB) = ∅, we have
that NG(y) ∩ S0 = ∅ and therefore |NG(y) ∩ I| = 1. We may now assume that y /∈ NG(v).
Suppose that |NG(y) ∩ I| > 1. Since y /∈ NG(v), we conclude that y /∈ V (G0) \ S0, otherwise
y would have at least two neighbors in I0, a contradiction with the choice of I0 in S0 in the
graph G0. This means that y ∈ R \ S, and therefore y ∈ NG(v) ∩ B, which is a contradiction
with our assumption that y /∈ NG(v). ◁

The number of choices for u, v, Q, and R is at most n2+(k2+1)(k+2), see Claim 9. For S0,
there are at most n(L−1)(4+(k2+2)(k+2)) choices by Claim 10 and the induction hypothesis.
Given Q, R, and S0, there are at most n choices for A ∈ CC(G − Q − R − S0) and we
obtain S as N(A). Taking into account also at most nk+2 separators S for which there exists
v ∈ V (G) \ S with S ⊆ N(v), the number of separators of G is bounded by

n2+(k2+1)(k+2) · n(L−1)(4+(k2+2)(k+2)) · n + nk+2

≤ n4+(k2+1)(k+2) · n(L−1)(4+(k2+2)(k+2)) ≤ nL(4+(k2+2)(k+2)).

This completes the proof.

4 Wrapping up the proof of Theorem 2

To conclude the proof of Theorem 2, we observe that the following statement essentially
follows from the combinations of Lemma 9 and the proof of Lemma 15 of [4].

▶ Lemma 11 ([4]). If G is a k-creature-free graph that contains a minimal separator S with
ζG(S) > (8k2)k+2, then G contains a k-skinny-ladder as an induced minor.

ESA 2022
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Proof (sketch). Let G and S be as in the lemma statement. Let I0 ⊆ S be an independent
set of size ζG(S) such that no vertex v ∈ V (G) \ S is adjacent to more than one vertex of I0.

Let L0 and R0 be two full sides of S. Lemma 9 of [4] asserts that there exists an induced
path L in L0, an induced path R in R0, and a set I ⊆ I0 of size at least |I0|/k2 > (8k2)k+1

such that L dominates I and R dominates I.
This is exactly the situation at the end of the first paragraph of the proof of Lemma 15

of [4]. A careful inspection of that proof shows that the remainder of the proof (as well as
the invoked Lemmata 8, 13 and 14) do not use other assumptions of Lemma 15. Hence, we
obtain the conclusion: a k-skinny ladder as an induced minor of G. ◀

By combining Theorem 4 and Lemma 11, we obtain Theorem 2.

5 Conclusion

In Theorem 2 we showed that if a graph class G excludes k-creatures as induced subgraphs
and k-skinny ladders as induced minors, then G is tame. However, note that while k-creatures
have exponential (in k) number of minimal separators, this is not the case for k-skinny
ladders: the class of k-skinny ladders (over all k) is tame. Thus the implication reverse to
the one in Theorem 2 does not hold.

Observe that the full tame/feral dichotomy for arbitrary hereditary graph classes is simply
false due to some very obscure examples. Let Hk be the (k, 2k + 1)-theta graph: k paths of
length 2k + 1 with common endpoints. Note that Hk has 2k2 + 2O(k) minimal separators
(2k2 of them choose one internal vertex on each path) and k2k + 2 vertices, so the number
of minimal separators of Hk is around |V (Hk)|log |V (Hk)|. Hence, the hereditary class of all
induced subgraphs of all graphs Hk for k ∈ N is neither tame nor feral.

However, it is still interesting to try to obtain a tighter classification between tame and
feral graph classes for some more “well-behaved” hereditary graph classes. As discussed in
Conjecture 4 of [4], a good restriction that excludes artificial examples as in the previous
paragraph is to focus on induced-minor-closed graph classes.
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