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Abstract
Against the backdrop of the frequent comparison of theories of truth in the literature on
semantic paradoxes with regard to which inferences and metainferences are deemed
valid, this paper develops a novel approach to defining a binary predicate for represent-
ing the valid inferences and metainferences of a theory within the theory itself under
the assumption that the theory is defined with a classical meta-theory. The aim with
the approach is to obtain a tool which facilitates the comparison between a theory and
its competitors within the theory itself, thereby expressing the disagreement between
the theories within the theories. After discussing what we can and should require of
an object-linguistic representation of a theory for that purpose, this paper proposes to
restrict the representation of valid metainferences to locally valid metainferences, a
requirement which turns out to be ω-consistent and conservative over classical first-
order arithmetic. This approach is then applied to four theories definable on strong
Kleene models using a labelled nested sequent calculus.

Keywords Validity predicate · Validity curry · Curry’s paradox · Logical
disagreement · Non-classical logics · Metainferences · Local metainferential
validity · Global metainferential validity · Deflationism · Substructural logics ·
ω-consistency · Labelled sequent calculus

1 Logical disagreement and comparing alternatives

It seems typical to portray the various formal theories of truth presented to resolve the
liar paradox as competing proposals for which inferential andmetainferential schemas
are valid for the relevant vocabulary. Moreover, it is not uncommon that an advocate of
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one formal theory of truth compares that formal theory of truthwith other candidates in
terms of whether every instance of an inferential or metainferential schema is deemed
valid by it as if validating some particular pattern of inference should be considered
a virtue.1 In that sense, the theories disagree about what is valid and the aim of the
comparison is to highlight this disagreement. One pertinent example is the case of
modus ponens which may hold or fail either as inferential or metainferential schema.2

With regard to modus ponens as inferential schema, a theory T could be such that

• for every formula A and B: A, A ⊃ B �T B, or
• there are formulas A and B such that: A, A ⊃ B �T B

Two theories T1 and T2 can thus be said to disagree over modus ponens as inferential
schema just in case the former is true of T1 and the latter is true of T2.3 With regard to
modus ponens as metainferential schema, a theory T could be such that:

• for every formula A and B, if �T A and �T A ⊃ B then �T B, or
• there are formulas A and B such that �T A and �T A ⊃ B but �T B.

A natural question about such universally and existentially generalised claims is the
extent to which a comparisonwith regard to such claims between T and its competitors
canbe formalisedwithinT usingbinary predicates representingwhat is valid according
to T and its competitors. This paper is concerned with a question very much in the
vicinity of that question. Suppose that T1, . . . , Tn are theories based on a common
languageL that disagree with regard to some inferential or metainferential schema and
which are defined with a classical meta-theory. To which extent can we extend L with
the binary predicates P1, . . . , Pn and define the theories T ′

1 ⊇ T1 . . . , T ′
n ⊇ Tn based

on the obtained language L′ such that each T ′
i now contains inferences involving the

predicates P1, . . . , Pn that express the relevant universally and existentially quantified
claims overwhich T1, . . . , Tn disagree in terms of T ′

1, . . . , T
′
n? In otherwords, towhich

extent canwewithin T ′
1, . . . , T

′
n express the disagreement between the original theories

T1, . . . , Tn as a disagreement between T ′
1, . . . , T

′
n?

Considering how theories are proposals for what is valid, it is natural to think of
the predicate P for a theory T as an internal validity predicate for T .4 Each obtained

1 The discussions in Beall et al. (2017), Hjortland (2021) and Ripley (2015) may serve to illustrate this
approach to evaluating formal theories of truth. For other ways of evaluating and comparing theories of
truth based on various measures of strength, see for example Halbach (2011), Leigh and Rathjen (2010)
and Łełyk and Wcisło (2019).
2 Sentential schemas such as (A ∧ (A ⊃ B)) ⊃ B are treated as zero-premise inferential schemas.
3 But if we agree that modus ponens holds in T1 and fails in T2, where is then the disagreement, a reader
might ask. The disagreement comes into the picturewhenwe assume that T1 and T2 are competing proposals
for what is valid tout court. Of course, if one understands T1 and T2 as presenting merely different non-
competing conceptions of validity along pluralist lines, then there is no disagreement. A reader with such a
perspective is free to ignore the disagreement talk and focus on how this paper presents a proposal for how
to make theories’ validity facts through the introduction of object-linguistic predicates.
4 The formulation of the question thus excludes an approach based on typed predicates in the sense that
the predicates should concern the theories T ′

1, . . . , T
′
n as opposed to the theories T1, . . . , Tn . Of course, one

could reformulate the question and thus the project to rather pursue a typed approach where the validity
predicates only concern the theories T1, . . . , Tn ; I have no objection to that other than that it would be
a different project. The aim here is not to argue against a typed approach, but to develop one particular
untyped approach.
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theory T should thus be ‘self-referential’ and it is reasonable to expect that there will
be some issues arising from Curry- and liar-like formulas as suggested by the recent
literature on validity predicates such as Beall and Murzi (2013) and Murzi (2014).
As it turns out, there is no issue arising from requiring merely that an inference
is represented as valid in T if and only if that inference is valid according to T
as long as we have counterexamples for invalid inferences that are not only invalid
but unsatisfiable. Instead, the main challenge is to ensure that this also holds for
metainferences, i.e. that a metainference is represented as valid in T just in case that
metainference is valid for T . Hlobil (2018) has shown that the obvious way of parsing
that principle trivialises any theory defined with a classical meta-theory. Inspired by
recent research on metainferences such as Barrio et al. (2015), Barrio et al. (2020) and
Dicher and Paoli (2019), this paper proposes and develops an approach according to
which the requirement for metainferences should be restricted from (globally) valid
metainferences to locally valid metainferences; that a metainference is represented as
valid in T if and only if the metainference is locally valid for T .

The rest of the paper is organised into two sections. Section 2 presents the proposal
in more detail and Sect. 3 illustrates how the proposal can be applied on four theories
of transparent truth definable on strong Kleene models.

2 An approach to expressing valid inferences andmetainferences

To give the presentation of the proposal some structure, this section is divided into
four subsections. Section 2.1 elaborates on what it means to represent an inference
and a metainference within a theory using a validity predicate and moreover clarifies
how the expressive nature of the project justifies conservativeness and preservation as
desiderata. The paper proceeds then in Sect. 2.2 to discuss which principles we could
want a validity predicate to satisfy. This includes a presentation of some problems
caused by ‘self-referential’ inferences for the obvious candidate principles. Section
2.3 presents and discusses the merits of the novel proposal before Sect. 2.4 illustrates
how one can expand a sequent calculus for classical logic with a validity predicate
satisfying the novel principle.

2.1 Representing inferences andmetainferences

An inference will in this paper be defined as a pair of finite sets of formulas and
theories will be defined as sets of inferences.5 X , Y and variations thereof will be used
as variables for sets of formulas throughout the paper. An inference from X to Y is
said to be valid according to T just in case 〈X ,Y 〉 ∈ T . This, in turn, is written as
X �T Y .

In addition to comparing theories with regard to which inferences they contain,
theories are also compared with regard to which metainferences they are closed under.

5 Theories represented as pairs of multisets of formulas will thus not be considered in this paper. Examples
of such theories include Zardini (2011) and Rosenblatt (2019) in which there are formulas A such A, A �T
but A �T . This is not a significant restriction since we can in these and other similar cases obtain a theory
T ′ from T based on sets as opposed to multisets with the help of multiplicative connectives.
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In this paper we define a metainference as a pair of finite sets of inferences and say
a theory T is closed under a metainference 〈�,ϒ〉 just in case if X �T Y for each
〈X ,Y 〉 ∈ � then X ′ �T Y ′ for some 〈X ′,Y ′〉 ∈ ϒ . A metainference is valid according
to T just in case T is closed under that metainference.6

The definition of a valid metainference makes it clear that whether a metainference
is valid depends on the meaning of "if..then" in the meta-theory. As mentioned in the
introduction and following contemporary practice with regard to comparing formal
theories of truth, the meta-theory will remain classical throughout this paper.7

With theories being sets of pairs of sets of formulas, it is natural to let the predicates
representing what is valid according to a theory be binary, thus following the recent
literature on validity predicates such as Barrio et al. (2016), Beall and Murzi (2013),
Field (2017), Hlobil (2019), Murzi (2014), Murzi and Rossi (2021), Nicolai and Rossi
(2018), Rosenblatt (2017), Zardini (2013) and Zardini (2014). However, as discussed
by Rosenblatt (2017), the same literature also typically treats the validity predicate
as applying to pairs of formulas in the same way as the truth predicate applies to
formulas even if theories are sets of pairs of sets of formulas. One could for example
be interested in distinguishing between the inferences 〈∅, {A∨B}〉 and 〈∅, {A, B}〉.We
will therefore take such predicates to apply to pairs of sets of formulas rather than pairs
of formulas. To that purpose it will throughout the paper be assumed that the language
contains numerals for the natural numbers and that a Gödel-coding is at disposal which
associates not only each formulawith a unique natural number, but throughwhich each
finite subset of the set of formulas is assigned a unique natural number, including the
empty set ∅. �A� will be used as metalinguistic expression for the natural number
associated with the formula A and �X� will be used as metalinguistic expression for
the natural number associated with the set of formulas X . The same expression will
be used for the corresponding numeral as long as there is no ambiguity. With ValT as a
validity predicate for a theory T , the statement that the inference from X to Y is valid
according to T can now be represented with the formula ValT (s, t) where s and t are
closed terms such that s = �X� and t = �Y� are true arithmetical equations.

In order to also express universal and existential generalisations, it will be assumed
that the language contains ∧, ∨, ¬ and ∀ as primitives and with ⊃ and ∃ defined in the
usual way. In addition, the language is assumed to contain function-symbols for the
primitive recursive functions which are defined accordingly. The language will thus
have function-symbols representing the following primitive recursive functions:

• f{}(�A�) returns the code of the singleton containing the formula A.
• f⊃(�A�, �B�) returns the code of the formula ¬A ∨ B.
• f∪(�X�, �Y�) returns the code of the union of X and Y .

6 Metainferences are thus restricted to finitely many premises and conclusions. Metainferences with
infinitely many premises will be discussed briefly towards the end of Sect. 2.3.
7 Exceptions to this practice include Bacon (2013), Girard and Weber (2019), McAllister (forthcoming),
Zardini (2014) and Rosenblatt (2021). Importantly, the fact that this paper assumes throughout that the
meta-theory is classical does not imply that the author of this paper believes that we should use a classical
meta-theory. Instead, classical meta-theory is assumed because it is the contemporary standard. In fact, I
do not have any reasons to believe that we need to use classical meta-theory for the current project and I
think it would be quite interesting to pursue it from within a non-classical meta-theory.
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ḟ will be used as function-symbol for the function f . The language is also assumed
to contain a predicate Sent that is true of terms that are equal to the code of a sentence
and false of terms that aren’t.

To illustrate the function-symbols in action, consider the formula

ValT (�A,¬A ∨ B�, �B�)

representing the claim that an instance ofmodus ponens as inference for some arbitrary
formulas A and B is valid according to T . The function-symbols are then used to
"access" the formulas in order to quantify over them:

ValT ( ḟ∪( ḟ{}(�A�), ḟ{}( ḟ⊃(�A�, �B�))), ḟ{}(�B�))

This is not very easy to read, and it will thus be simplified in the following way:8

ValT ({�A�} ∪ {�A�⊃̇�B�}, {�B�})

Replacing the closed terms with variables, one can now express the following:

∀xy((Sent(x) ∧ Sent(y)) ⊃ ValT ({x} ∪ {x⊃̇y}, {y}))
∃xy((Sent(x) ∧ Sent(y)) ∧ ¬ValT ({x} ∪ {x⊃̇y}, {y}))

For this formula to adequately represent the meta-theoretic statement,⊃ and¬ should
behave classically with regard to the validity predicate, that is, classical logic (infer-
ences and metainferences) should hold for the fragment based on ⊃,¬ and the
validity predicate. Otherwise that formula could hardly be said to represent the state-
ment made in the classical meta-theory. This is particularly important in the case of
metainferences. Consider for example the following formula intended to represent the
universally generalised statement about modus ponens as metainference:

∀xy((Sent(x) ∧ Sent(y)) ⊃ ((ValT ({∅}, {x}) ∧ ValT ({∅}, {x⊃̇y}))
⊃ ValT ({∅}, {y})))

Again, ⊃ is used to express the classical "if..then" of the meta-theory, and should
therefore also behave classically within T with regard to the validity predicate.

With the goal being to expand a theory with a predicate in order to express univer-
sally and existentially generalised claims about the expanded theory, it is reasonable
to think of this predicate as playing an expressive role inspired by deflationism about
truth as articulated by for example Beall (2009). Nonetheless, one must here distin-
guish between assigning the validity predicate for a theory T an expressive role and
something like ‘deflationism about validity’ as a philosophical thesis along the lines
of Shapiro (2011). The focus in this paper is on expanding theories understood as

8 {�A�} is thus used as a metalinguistic expression for the term ḟ{}(�A�). That { and } are outside �A� as
opposed to inside should not cause any confusion for the observant reader. The notation will anyway only
be used on a few occasions.
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a proposals for what is valid with predicates that express generalisations about the
resulting theories. Even if the validity predicate is thus assigned an expressive role, a
deflationist thesis about validity in analogy to deflationism about truth doesn’t follow.

Moreover, and in that regard, it is also important to stress that the aim is therefore not
to capturewhat is ‘really’ validwith a predicate, but ratherwhat the theory as a proposal
claims is valid. In other words, even if every instance of modus ponens as inference
is valid in some analytic, metaphysical or epistemic sense, maybe because classical
logic is ‘the true logic’, a validity predicate for a theory in which some instances of
modus ponens fail should not express that every instance of modus ponens is valid
according to that theory. Similarly, a validity predicate for first-order PeanoArithmetic
shouldn’t express that the inference 〈∅, {¬ProvPA(�0 = 1�)}〉 is valid where ProvPA

is the standard provability predicate for PA even if ¬ProvPA(�0 = 1�) is true in the
standard model of arithmetic, and it is surely true that Peano Arithmetic doesn’t prove
0 = 1. A theory is a set of inferences, and the only thing that matters is what inferences
that theory contains and what metainferences it is closed under, not what one can say
about the intended model for that theory or what one might think is valid in ‘the true
logic’.

Such considerations suggests that the resulting theory T ′ should be conservative
over the original theory T where T ′ is conservative over T if and only if, if an inference
of L is valid according to T ′ then that inference is also valid according T , where L
is the original language over which T is formulated. Consider the case where modus
ponens as inferential schema fails to hold for T but holds for T ′. Then we cannot
use what is valid in T ′ to say something about what is valid in T . Similarly if T
is Peano Arithmetic and the inference 〈∅, {¬ProvPA(�0 = 1�)}〉 is valid and thus
expressed with a validity predicate in T ′. In fact, it is natural to extend the notion of
conservativeness from inferences to metainferences in the obvious way.

Moreover, it shouldn’t be enough that T ′ is conservative over T . It should also be
inferentially and metainferentially preservative over T , where that is the case if and
only if, if an inferential or a metainferential schema holds for T with regard to L then
it also holds for T ′ with regard to L′. Consider for example the theory of truth STT
explored byRipley (2013a) andRipley (2012) andCobreros et al. (2013). The resulting
theory of truth conservatively extends Peano Arithmetic but this comes at the cost of
modus ponens as metainferential schema. Even if the same approach can be used to
conservatively extend Peano Arithmetic with a validity predicate, the resulting theory
is not metainferentially preservative over Peano Arithmetic since modus ponens as
metainferential schema is valid in Peano Arithmetic but not in the resulting theory.
An advocate of ‘going non-transitive’ could argue that the resulting validity predicate
still expresses that modus ponens as metainferential schema holds, and that one can
thus still proceed with the comparison. However, this requires that the base theory is
itself transitive: the result of expanding the non-transitive theory of truth STT with a
validity predicate defined along the same lines will still tell us that the resulting theory
is transitive even if STT is not transitive according to the classical meta-theory. With
an inferentially and metainferentially preservative theory we avoid this issue.9

9 I should stress that this is not an argument against STT as such, but rather an argument against the use of
such an approach for the current project. There are certainly cases were we are better served with a theory
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2.2 Metainferential problems with validity

To ensure that a validity predicate is fit for purpose, it should satisfy some inferential or
metainferential conditions. One perhaps obvious condition considering the objective,
is that it shouldn’t be the case that �Ti ValTj (�X�, �Y�) when X �Tj Y and vice
versa. How could it facilitate a comparison if each predicate ValT ′

i
was not true to the

theory T ′
i with regard to which inferences are valid? The same goes with regard to

invalid inferences; if an inference schema has an instance which is not valid according
to the theory, then this should be expressible in the theory along the above lines using
an existential quantifier. The guiding idea is thus that the principles for the predicates
should facilitate a comparison with regard to the differences between the theories
that are relevant within the debate where the theories are proposals. We take such a
comparison to be facilitated if the theories contain theorems expressing the relevant
differences between the theories. Considering that the theories may also disagree
over metainferences, it is natural to extend the above requirement from inferences to
metainferences.

Moreover, there could also be further principles that one might find “intuitively
compelling” for a validity predicate. However, if that principle is not needed to achieve
the objective, then it can be discarded. In fact, as long as paradoxes can be formulated
using the available vocabulary, therewill be principles that are “intuitively compelling”
but that we should nonetheless discard. To obtain paradoxes of the relevant kind
we shall in this paper rely on the availability of function-symbols for the primitive
recursive functions. Thanks to the strong diagonal lemma there is for every formula
A(y)with exactly y free a closed term τ such that �T τ = �A(τ )�.10 This generalises
straightforwardly to the singleton containing A(y) and it is thus the case that �T τ =
{�A(τ )�}. It follows that there are certain important limitations on which principles
a validity predicate for a theory T can satisfy within T as long as substitution of
identicals holds.

For example, it follows from the observations made by Beall and Murzi (2013) that
a transitive theory T defined with a classical meta-theory is trivial if it satisfies the
following two principles:11

Validity proof (VP): if A �T B then �T ValT ({�A�}, {�B�})
Validity detachment (VD): ValT ({�A�}, {�B�}), A �T B

Foonote 9 continued
that does not preserve the inferences and metainferences of the theory it expands. For example, STT and
PosFS are both conservative extensions of Peano Arithmetic, but only PosFS preserves its inferences and
metainferences. This comes at a cost for PosFS since STT can prove more things about the liar sentence,
things that one might be interested in saying.
10 See e.g. Jeroslow (1973) and Burgess (1986).
11 As discussed above in footnote 5, this paper ignores the option to reject "structural contraction" by
using sets rather than multisets to define theories. That option can be simulated by formulating (VD) using
conjunction and then add idempotence of conjunction as a third principle. On the other hand, it should be
clear from the discussion in this section that the option to accommodate a validity predicate by rejecting the
idempotence of conjunction is not really on the table for us since the connectives should behave classically
with regard to validity predications as discussed in Sect. 2.1.
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There are variations on this pair obtained by replacing (VD) with alternatives that
are, under the assumption of transitivity and reflexivity, equivalent.12 However, if the
principles required for a validity predicate are incompatible with either a reflexive or
a transitive theory, then the approach itself would be quite limited with regard to the
current project. Indeed, even if a proponent of the pair (VD) and (VP) such as Zardini
(2014) takes their “intuitive plausibility” together with the triviality result to show that
one should revise our conception of validity, such results should not be considered
as arguments for revising a “naive” conception of validity from within the current
perspective. Instead, it follows that (VD) and (VP) taken together are unsuitable for
the task at hand.

The principle (VD) has been criticised from a variety of perspectives, examples
being the points made by Cook (2014), Field (2017), Hlobil (2019), and Zardini
(2013). As I do not intend to express dissatisfaction with their reasons against (VD),
I shall not repeat them here. The focus will instead be directed at how (VD) is not
required for the task at hand and that (VD) can thus be discarded.

In elaborating on the principles (VP) and (VD), Beall and Murzi (2013, p.150)
introduce a further principle

V-Schema (VS): �T ValT ({�A�}, {�B�}) if and only if A �T B

and explain that

“putting VP and VD together yields what, by analogy with truth and exemplifi-
cation, may be called the V-schema. What we now note is that VP and VD -or,
simply, theV-schema- alongwith the standard structural rules, are the ingredients
for v-Curry paradox.”

As suggested above, it seems reasonable to maintain that it is sufficient for a validity
predicate to satisfy (VS) in order to ensure that an inference is expressed as valid
according to T within T just in case it is actually valid according to T . However, as
pointed out by Field (2017, p.9), (VS) is a weaker requirement than (VP) and (VD)
taken together, and is in itself insufficient for triviality. It is not mentioned by Field
(2017, p.9), but it is actually the case that if T is a recursively enumerable theory
extending Robinson Arithmetic, then ValT (�A�, �B�) defined as ProvT (�A ⊃ B�)

where ProvT is its standard provability predicate will satisfy (VS). The consistency
of (VS) with classical logic follows from this observation.

On the other hand, (VD) is arguably useful for representing invalid inferences as
invalid. A natural candidate for a principle to represent invalid inferences would be
the following:

if X �T Y then ValT (�X�, �Y�) �T

As shown by Zardini (2014), this principle and (VP) jointly suffice for triviality if T
is transitive and monotonic as long as the meta-theory is classical. A better candidate

12 Consider for example the principle that if C �T ValT ({�A�}, {�B�}) and C �T A then C �T B. With
this principle rather than (VD) then the assumption that T is reflexive suffices for triviality as shown by
Murzi (2014).
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for a principle to this purpose is the following restricted version implied by (VD) if T
is transitive:

(VI) If �T A and B �T then ValT ({�A�}, {�B�}) �T

With �T A and B �T implying that A �T B when T is not only transitive but also
monotonic, one can with (VI) represent that this particular inference is invalid. Under
the assumption that the connectives behave classical with regard to Sent and ValT , it
can also be used to represent that the inferential schema of which that inference is an
instance has some instance which is invalid as follows:

�T ∃xy(Sent(x) ∧ Sent(y) ∧ ¬ValT ({x}, {y})

From the perspective of this particular usage of (VD) then, (VD) can be replaced by
(VI) as the partner of (VS).

Moreover, the pair (VS) and (VI) is consistent with classical logic. Let T be a
recursively enumerable theory extending RobinsonArithmetic. ThenValT (�A�, �B�)

defined as ProvRT (�A ⊃ B�) where ProvRT is its standard Rosser provability predicate
will satisfy (VS) and (VI) (Cf. Arai (1990)).

So far so good. There are nonetheless two reasons for being dissatisfied with (VS)
and (VI). Firstly, (VI) will overgenerate in the case where T is such that A �T and
�T A for some formula A but nontransitive and thus not trivial. Secondly, neither (VS)
nor (VI) can be used to represent metainferences. Let us focus on the second issue
first since our solution to the second issue will also solve the first issue.

A first stab at a requirement for representing metainferences is presented in the
following form by Hlobil (2018) but the idea of a requirement along these lines is also
suggested by Barrio et al. (2016) and Rosenblatt (2017):13

if X0 �T Y0 and . . . and Xn−1 �T Yn−1 then Xn �T Yn
if and only if

ValT (�X0�, �Y0�), . . . ,ValT (�Xn−1�, �Yn−1�) � ValT (�Xn�, �Yn�)

(GVS)

This requirement, the generalised validity schema, would ensure the representation
of a valid metainference just in case it is valid. Since one direction descends to the
object-theory from the meta-theory and the other direction ascends to the meta-theory
from the object-theory, wewill refer to each direction as the ascending and descending
direction respectively.

However, as anticipated by Hlobil (2018), it turns out that every theory satisfying
this requirement is trivial if the meta-theory is classical. In particular, Hlobil (2018)

13 Whereas Hlobil (2018) presents this principle the same way as here but refer to it as "faithfulness",
Barrio et al. (2016) and Rosenblatt (2017) present the left side as a "metarule" and say that a theory
internalises a metarule if it proves the corresponding sequent with validity predicates. A metarule is here
basically a sequent calculus rule. The focus of Barrio et al. (2016) is on how ST internalises the cut rule,
and Rosenblatt (2017) looks in addition at other substructural logics and observe for example that affine
logic fails to internalise some admissible metarule. That Rosenblatt (2017) includes not only primitive and
derivable but also admissible rules in the discussion, suggest that Hlobil (2018)’s change in notation from
a metarule to the "if...then..." expression involving validity claims is in line with Barrio et al. (2016) and
Rosenblatt (2017).
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shows that a theory T is trivial if it is based on a language containing a binary pred-
icate Adm and closed terms functioning as names for inferences, and T satisfies the
equivalence

If X �T Y then X ′ �T Y ′ if and only if �T Adm(�〈X ,Y 〉�, �〈X ′,Y ′〉�)

Hlobil (2018) notes that the corresponding result “holds for every logic that sat-
isfies” (GVS) if Adm(�〈X ,Y 〉�, �〈X ′,Y ′〉�) is replaced with ValT (�X�, �Y ′�) ⊃
ValT (�X ′�, �Y ′�).

An alternative version of Hlobil (2018)’s result for a validity predicate is obtained
directly with (GVS) by considering a closed term κ such that κ = {�ValT (κ, τ )�}
holds in virtue of the strong diagonal lemma where τ is an abbreviation for
{�ValT (�X�, �Y�)�}. With κ at hand the following is an instance of the ascending
direction of (GVS):

(1) if ValT (κ, τ ) �T ValT (�X�, �Y�) then, if ValT (κ, τ ) �T ValT (�X�, �Y�) then
X �T Y

It follows immediately by contraction for the meta-theoretic conditional used to state
(GVS) that

(2) If ValT (κ, τ ) �T ValT (�X�, �Y�) then X �T Y

Applying the descending direction of (GVS) on (2), it follows that

(3) ValT (κ, τ ) �T ValT (�X�, �Y�)

Assuming furthermore that the meta-theoretic conditional satisfies the rule of modus
ponens as applied to theorems of the meta-theory, (2) and (3) imply X �T Y . Consid-
ering the commitment to a classical meta-theory, (GVS) is not a good candidate for a
principle to ensure representations of valid metainferences of T within T .

2.3 Expressing locally valid metainferences

The aim of this subsection is to present a novel proposal for how to restrict (GVS)
and elaborate on some of its implications. To that purpose, it is useful to first highlight
the extent to which any suitable restriction on (GVS) will have significant limitations
with regard to the task at hand.

Consider the following four principles where the last three are labelled according
to their counterparts in modal logic:

(VS) X �T Y if and only if �T ValT (�X�, �Y�)

(V4) ValT (�X�, �Y�) �T ValT (�∅�, �ValT (�X�, �Y�)�)

(VC4) ValT (�∅�, �ValT (�X�, �Y�)�) �T ValT (�X�, �Y�)

(VK) ValT (�X�, �Y�), {ValT (�∅�, �A�) | A ∈ X} �T ValT (�∅�, �Y�)

Their relationship to (GVS) is as follows. Each instance of (VS) is a premise-free
instance of (GVS). (VK) is obtained by applying the descending direction of (GVS)
on the relevant instance of the metainference that T is transitive. (V4) and (VC4) are
obtained by applying the descending direction of (GVS) on (VS). With inspiration
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from the last contradiction for theories of truth presented by Friedman and Sheard
(1987) one can show that the four principles imply triviality under the assumption that
the meta-theory is classical and T is transitive. With κ as above we have the following
instance of (VK):

ValT (κ, τ ),ValT (�∅�, κ) �T ValT (�∅�, τ )

By transitivity of T , (V4) and (VC4) it follows that

ValT (κ, τ ) �T ValT (�X�, �Y�)

With (VS) it follows that

�T ValT (κ, τ )

Transitivity applied on the latter two claims yields �T ValT (�X�, �Y�)which by (VS)
implies X �T Y .

It follows that a transitive theory cannot contain a validity predicate which satisfies
(VS), inferences representing (VS) with the validity predicate in the form of (V4)
and (VC4), and inferences representing that it is transitive in the form of (VK). Since
transitivity is a property that is up for discussion in the literature on theories of truth,
surely a validity predicate should express that the theory is transitive just in case it
is transitive. Moreover, (VS), (V4) and (VC4) come as a package in the sense that if
(VS) does not hold for T , then neither should (V4) nor (VC4). Under the assumption
that the converse also holds one seems left with the option to reject all three.

However, there is a pragmatic alternative available. Considering the overall aim of
this project, namely to facilitate comparison between theories, and under the assump-
tion that every theory is supposed to satisfy (VS), then a comparison with regard
to whether they satisfy (VS) is not particularly enlightening; it is significantly more
interesting to compare them with regard to some metainference over which they dis-
agree, for example transitivity. From such a perspective it is not much of a loss to
give up on (V4) or (VC4). Uniformity even suggests that one might as well give up
on both. A proposal along these lines is obtained by restricting (GVS) to locally valid
metainferences as opposed to valid metainferences.14

14 An alternative way to restrict (GVS) by Hlobil (2019) is presented as consisting in restricting (GVS) to
derivable metainferences. Before discussing some details with Hlobil (2019)’s proposal, it is worth pointing
out that restricting (GVS) to derivable metainferences only makes sense if one accepts that a theory may
be closed under certain metainferences that must remain underivable come what may in any proof system
for that theory. Instead, the proofs of their admissibility may only be obtained by other means such as for
example proof analysis or completeness with suitable models. With regard to the reasoning presented in
Sect. 2.2, this would mean that the rule Val(κ, τ ) ⇒ Val(�A�, �B�) / A ⇒ B cannot be derivable in
any proof system for the theory but will be admissible about the theory and thus about the proof system.
By using derivability as criterion to distinguish between metainferences that are safe to make explicit and
those that are not, the proposal is in effect to let proof theory be structurally incomplete, that there should
not be an alignment between proof theory and models beyond inferences. For a definition of structural
completeness, see Iemhoff (2015). For those who see proof theory and model theory as complementing
tools, such a necessary and enforced structural incompleteness is certainly undesirable. The same holds
for those who put proof theory first. The proposal presented in this paper, on the other hand, will be

123



120 Page 12 of 33 Synthese (2022) 200 :120

The notion of a locally valid metainference has surfaced in the recent literature on
metainferences such as Dicher and Paoli (2019) and Barrio et al. (2020). It is fruitfully
articulated from a model-theoretic perspective. Suppose that we have defined a theory
T in such a way that we first define the notion of an inference 〈X ,Y 〉 being satisfied
by an interpretation I , here represented with the notation I � [X ⇒T Y ], and then
define X �T Y as that I � [X ⇒T Y ] for every I ∈ I where I is the set of permissible
interpretations. In the case of first-order models for classical logic, I � [X ⇒T Y ]
would mean that I is such that either some formula in X is false or some formula in
Y in true. We can read the notation as saying that I T -satisfies the inference 〈X ,Y 〉,
and furthermore say that the inference is T -valid or valid in T if and only if every
interpretation T -satisfies it.

A (globally) valid and a locally validmetainference can nowbe defined as follows.15

Suppose that T is a theory based on L′, is defined with I in the above manner and that
〈�,ϒ〉 is a L′-metainference. Then 〈�,ϒ〉 is
(i) globally valid of T just in case, if for each 〈X ,Y 〉 ∈ �, ∀I ∈ I, I � [X ⇒T Y ],

then for some 〈X ,Y 〉 ∈ ϒ , ∀I ∈ I, I � [X ⇒T Y ].
(ii) locally valid of T just in case, ∀I ∈ I, if for each 〈X ,Y 〉 ∈ �, I � [X ⇒T Y ],

then for some 〈X ,Y 〉 ∈ ϒ, I � [X ⇒T Y ].
A quick comparison of the definitions yields the following observations:

(a) For every T , every single-conclusion locally valid metainference is globally valid.
(b) For some T , some locally valid multiple-conclusion metainferences are not glob-

ally valid.
(c) For some T , some globally valid single-conclusion metainferences are not locally

valid.

An example of (b) is the metainference 〈∅, {〈∅, {A}〉, 〈∅, {¬A}〉}〉, as this is locally
but not globally valid of classical logic. In the local case it is equivalent to excluded
middle. An example of (c) is the rule for uniform substitution of formulas for propo-
sitional variables in theorems in classical propositional logic. Consider for example

Foonote 14 continued
compatible with the above rule being not only admissible but also derivable because neither will imply
Val(κ, τ ) � Val(�A�, �B�). Instead, the rule comes out as globally and but not locally valid, and we cannot
thus conclude Val(κ, τ ) � Val(�A�, �B�).
That being said, there are also some features with Hlobil (2019)’s proposal in particular that makes

it unsuitable for the current project. Hlobil (2019)’s proposal is illustrated with a "naturalised" sequent
calculus, that is, a sequent calculus with a rule of assumption for sequents together with rules for a validity
predicate that take advantage of the rule of assumption. The rules for a validity predicate (and the rule of
assumption) extend a sequent calculus for the non-transitive theory of truth STT that follows the presentation
by Ripley (2013b), and the resulting theory is also non-transitive. The resulting calculus does not contain
a cut rule. In fact, the calculus cannot be expanded with a cut rule restricted to validity predicates as that
would make the rule Val(κ, τ ) ⇒ Val(�A�, �B�) / A ⇒ B derivable and thus the theory trivial. To see why
this is the case, a curious reader may adapt the derivation in the final paragraph of Sect. 2.4 below to Hlobil
(2019)’s setting. Such a tree would with Hlobil (2019)’s rules for the validity predicate suffice to obtain a
derivation of Val(κ, τ ) ⇒ Val(�A�, �B�) from no assumptions. In other words, the formal details of Hlobil
(2019)’s proposal is not suitable for our purposes because we are also interested in transitive logics, and the
idea of preservation of metainferences is incompatible with the expanded theory becoming non-transitive.
15 We thus adhere to the terminology in the recent literature on metainferences such as Dicher and Paoli
(2019) and Barrio et al. (2020) in which metainferential validity is referred to as ’global’ in order to contrast
it from local metainferential validity. See also Humberstone (1996).
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how classical models are such that 〈{〈∅, {p}〉}, {〈∅, {A}〉}〉 for arbitrary A is globally
valid since there is a model where p is false, but not locally valid because there will
be a model where p is true but A false for some formula A.16

The new proposal then, is to require that a validity predicate for a theory T should
be such that

〈{〈X0,Y0〉, . . . , 〈Xn−1,Yn−1〉}, {〈Xn,Yn〉}〉 is locally valid for T
if and only if

ValT (�X0�, �Y0�), . . . ,ValT (�Xn−1�, �Yn−1�) �T ValT (�Xn�, �Yn�)

(GVS*)

Whereas (GVS) is presented for single-conclusionmetainferences simply because that
is how it was presented by Hlobil (2018), Barrio et al. (2016) and Rosenblatt (2017),
(GVS*) is restricted to single-conclusion metainferences as a consequence of (b)
above. Moreover, it follows from (a) that whenever a single-conclusion metainference
is expressed in the theory with a predicate satisfying (GVS*), that single-conclusion
metainference is going to be globally valid. As expected, however, the approach will
undergenerate since some single-conclusion metainferences will be globally valid but
not locally valid and thus not represented within the theory. In particular, it follows
from (GVS*) that (VS) is globally valid, but this does not make (VS) locally valid,
and (V4) and (VC4) are thus not implied by (GVS*).

In addition to (VS), one can also show that (GVS*) delivers (VI) for a theory T if
transitivity is locally valid for T . Assume that �T A and B �T . Then every I is such
that I � [⇒T A] and I � [B ⇒T ]. It follows by transitivity that I � [A ⇒T B]
for every I . Any metainference with 〈A, B〉 as premise will thus be locally valid. It
follows that ValT (�A�, �B�) �T .

In fact, the approach is consistent with classical logic. A validity predicate which
satisfies (GVS*) can be defined in the (classical) theory of truth PosFS explored by
Horsten et al. (2012) and Fjellstad (2020) by defining ValT (�X�, �Y�) as Tr(�

∧
X ⊃∨

Y�). As opposed to (GVS) then, (GVS*) is consistent not only with a classical
meta-theory, but also with an object-theory closed under classical logic. In addition
to consistency, it also follows from the definability of such a validity predicate within
PosFS that satisfying (GVS*) is compatible with the two features that was considered

16 Dicher and Paoli (2019) take this to illustrate a problem with the global notion: such metainferences
are vacuously valid. I take this feature to be necessary in order for globally valid metainferences to align
with the notion of admissible rules in sequent calculi. Consider for example how the cut rule is admissible
for propositional variables in the sequent calculus for STT presented by Ripley (2013a), and how the same
instances are globally but not locally validwith strict-tolerant entailment onStrongKleenemodels. It actually
follows from this example that global metainferential validity is not closed under uniform substitution of
arbitrary formulas for propositional variables since the cut rule is globally valid for propositional variables
but is not globally valid for the liar sentence. The reader preferring an example that does not involve the
truth predicate may consider the cut-free version of the sequent calculus for the modal logic S5 presented
by Ohnishi and Kazuo (1959) for which the cut rule is not admissible. In that calculus the cut rule will be
admissible for propositional variables but not for the modal formulas. In any sound and complete semantics
for that calculus, the cut rule will be globally valid for propositional variables but not for modal formulas.
Another example can be found in Golan (2021) who also proves that local metainferential validity is closed
under uniform substitution. We will take advantage of this feature with locally valid metainferences in
Sect. 3.4. Now, Golan (2021) treats the failure of uniform substitution for global metainferential validity
as a reason to reject the notion. I do not share this worry for the same reasons as I do not worry about the
vacuously true globally valid metainferences.
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desirable in Sect. 2.1, namely preservation and conservativeness. PosFS is metain-
ferentially and inferentially preservative over Peano Arithmetic; if an inferential or a
metainferential schema holds for Peano Arithmetic, then it also holds for PosFS. This
follows immediately from its axiomatic presentation. Moreover, PosFS is a subtheory
of a theory of truth which is to proven to be conservative over Peano Arithmetic by
Friedman and Sheard (1987); adding the principles to Peano Arithmetic doesn’t prove
any new theorems involving only the arithmetical vocabulary.

Although the above observations are nice, things are not perfect and I will here
mention two significant issues.

The first issue is that a theory T satisfying (GVS*) is such that any two formulas
represented as invalid are equivalent if T is monotonic and transitive. Assume that
ValT (�∅�, �A�) �T andValT (�∅�, �B�) �T . If T is transitive, thenwe have A �T and
B �T fromwhich A �T B and B �T A follows bymonotonicity. This is certainly not a
desirable feature but it is consistent with the requirements set forth in the introduction.
After all, this does not hinder us from proving existential generalisations expressing
that there is a counterexample to the validity of an inferential or a metainferential
schema. However, this does illustrate an awkward consequence of the fact that the
approach will only guarantee �T ¬Val(�A�, �B�) if for every I , I �T [A ⇒ B], i.e.
if the inference 〈{A}, {B}〉 is T -unsatisfiable. The counterexample to an inferential or
a metainferential schema must therefore be an instance which is T -unsatisfiable.

The second issue concerns infinitary metainferences. A validity predicate satisfy-
ing (GVS*) is also definable with the theory of truth shown to be ω-inconsistent by
McGee (1985). However, (GVS*) itself does not imply all the conditions correspond-
ing to those presented by McGee (1985) for a theory of truth to be ω-inconsistent. In
particular, (GVS*) does not imply the Barcan formula as formulated for the validity
predicate:

∀xValT (�∅�, {�Aẋ�}) �T ValT (�∅�, {�∀x Ax�}) (VBF)

This follows from the fact that PosFS is conservative over PeanoArithmetic and results
by Leigh (2015) imply that the theory obtained by expanding PosFS with the Barcan
formula for a truth predicate is not conservative over Peano Arithmetic.

Now, this is also the reasonwhy (GVS*) is restricted to finite inferences andmetain-
ferences. Suppose that (GVS*) holds for infinitary metainferences, theω-rule holds as
a locally valid (infinitary) metainference and infinitary inferences are permitted. Then
the following inference would be valid:

ValT (�∅�, {�A(0)�}),ValT (�∅�, {�A(1)�}) . . . �T ValT (�∅�, {�∀x Ax�})

With ∀ behaving classically with regard to ValT , (VBF) would be an immediate con-
sequence. One could thus make a case for the claim that (VBF) expresses that the
ω-rule is a valid metainference. It follows that certain theories cannot both satisfy the
ω-rule and (VBF) without thereby being inconsistent, and thus moreover that we can-
not generalise the approach from finitary to infinitary metainferences. This is perhaps
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the most significant drawback with the current proposal, as it implies that we cannot,
in general, compare theories with regard to the ω-rule.17

In conclusion, we are left with the following observations about the proposal to
restrict (GVS) from globally to locally valid metainferences through the adoption of
(GVS*). A validity predicate satisfying (GVS*) will not overgenerate with regard to
which metainferences are represented as valid, but it will undergenerate in three ways.
Firstly, therewill be validmetainferences that cannot be represented, namely those that
are not locally valid. This includes in particular (VS). Secondly, it will undergenerate
with regard to invalid inferences in the sense that only inferences are are unsatisfiable
will be represented as invalid. Finally, it cannot be extended to include metainferences
with infinitely many premises.18

2.4 Expressing validity in infinitary Peano arithmetic

The aim of this subsection is three-fold. Firstly, it is useful to illustrate how we can
expand a standard two-sided sequent calculus for classical logic with a validity predi-
cate satisfying (GVS*) and moreover in a way that preserves the admissibility of cut.
Secondly, by doing this for infinitary Peano Arithmetic, we can show that the resulting
theory is ω-consistent. Finally, we can also use the sequent calculus to explain how
the approach blocks the paradoxical result of Sect. 2.2.

The starting pointwill be a standard sequent calculus for infinitary PeanoArithmetic
along the lines of Rathjen and Sieg (2018) that we will expand with certain rules for
the truth predicate typically associated with deontic logic.

Let L be a first-order language based on the connectives ¬, ∧, ∨ and ∀ with
countably many variables, a constant 0, a binary predicate = and function-symbols
for every primitive recursive function. Let LTr be obtained from L by adding a unary
predicate Tr. As usual, A ⊃ B will be treated as a metalinguistic abbreviation for
(¬A) ∨ B.

A standard bilateral sequent is an expression of the form A0, . . . , An ⇒
B0, . . . , Bm that represents a pair of finite sets or multisets of formulas. Sequent(s)
above the line in a rule is referred to as premise-sequent(s) and the sequent below
the line as the conclusion-sequent. Each rule consists of zero or more active formulas
and zero or more principal formulas. The active formulas of a rule are the displayed
formulas in the premise-sequent(s) and the principal formulas are the displayed for-

17 Butwhynot avoid this problemby simply accepting that the expanded theory isω-inconsistent, one reader
might wonder. The literature offers various arguments against ω-inconsistency such as those presented by
Leitgeb (2007), Barrio and Picollo (2013) andBarrio andRé (2018), but the issuewithω-inconsistency from
the perspective of this approach is simply that it is incompatible with preservation. As far as this approach
goes, it only makes sense to include (VBF) in the case where the ω-rule is a locally valid metainference
for a theory T . In fact, (VBF) follows by closing such a T under infinitary (GVS*). Assume now that T
is classical logic expanded with Peano Arithmetic and the ω-rule. If we close it under infinitary (GVS*) to
define T ′, T ′ will be inconsistent. We could accept that consequence by allowing for example transitivity
or explosion (as locally valid metainference) to fail along the lines of ST or LP. However, T ′ would in any
such case no longer preserve the metainferences of T .
18 For the reader in search of expressive limitations with the current proposal that could be understood as
so-called "revenge paradoxes", perhaps along the lines of Scharp (2014), my guess is that the first and third
issue could count as such, depending on how one wishes to understand the idea of a revenge paradox.
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mulas in the conclusion-sequent. � and � are referred to as the context of the rule:
they represent arbitrary permissible expressions. Derivations are trees constructed by
using initial sequents and zero-premise rules as leafs with the root being the sequent
for which the tree is a derivation.

We shall work with the following sequent calculus for infinitary Peano arithmetic
with a deontic truth predicate where sequents are pairs of finite sets of formulas and
sN = tN means that s = t is true in the standard model of arithmetic:

Tr(s), � ⇒ �,Tr(t) if sN = tN

=L
s = t, � ⇒ � if sN �= tN and =R

� ⇒ �, s = t if sN = tN

� ⇒ �, A ¬L¬A, � ⇒ �

A, � ⇒ � ¬R
� ⇒ �,¬A

A, B, � ⇒ � ∧L
A ∧ B, � ⇒ �

� ⇒ �, A � ⇒ �, B ∧R
� ⇒ �, A ∧ B

A, � ⇒ � B, � ⇒ � ∨L
A ∨ B, � ⇒ �

� ⇒ �, A, B ∨R
� ⇒ �, A ∨ B

A(t/x), � ⇒ � ∀L∀x Ax, � ⇒ �

� ⇒ �, A(n/x) for each n < ω ∀R
� ⇒ �,∀x Ax

B0, . . . , Bn ⇒ A
TK

�,Tr(s0), . . . ,Tr(sn) ⇒ Tr(t),� whenever sNi = �Bi�N and tN = �A�N

B0, . . . , Bn ⇒
TD

�,Tr(s0), . . . ,Tr(sn) ⇒ � whenever sNi = �Bi�N

The set of formulas represented by B0, . . . , Bn in TK and TD is possibly empty. The
contexts � and � in TK and TD are added to the conclusion-sequent of each rule to
ensure admissibility of weakening. The rules are inspired by the rules for modal logic
presented by for example Negri (2011).

The cut-rule,

� ⇒ �, A A, �′ ⇒ �′
cut

�,�′ ⇒ �,�′

is admissible in this sequent calculus.
Now, the admissibility of cut cannot be shown through the standard argument going

back to Gentzen (1934) and along the lines of Negri and von Plato (2001), namely
through an induction on the complexity of a formula with a subsidiary induction on
the height of a derivation. This is due to the presence of the rules TK and TD and
is a well-known issue with sequent calculi for semantic predicates; see for example
Kremer (1988). Instead, one can follow Cantini (1990)’s strategy by relying on a
triple induction where the second and third measure are based on the complexity of
a formula and the height of a derivation respectively whereas the first measure tracks
the supremum of the number of applications of truth-rules in a derivation. In fact,
it suffices with only minor modifications to the cut-elimination proof presented by
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Cantini (1990) in order to show that cut is admissible. We thus spare the reader for
those details, but nonetheless provide an explanation for why the strategy works.

The main reason this approach works is that cuts are straightforwardly eliminated
from a derivation in the case where the formula A is not principal in � ⇒ �, A (or
A, �′ ⇒ �′) and the last applied rule is TD or TK . In this case the desired conclusion
�,�′ ⇒ �,�′ is already obtainable directly with an application of TK or TD from the
same sequent as � ⇒ �, A (or A, �′ ⇒ �′) is obtained from. Consider the following
case where XTr contains truth predications obtained from X and A is thus not principal
in the application of TD:

X ⇒ TDXTr ⇒ A A, �′ ⇒ �′

The desired conclusion XTr, �
′ ⇒ �′ is now obtained directly from X ⇒ using TD

itself without thereby increasing the number of times the rule has been applied.19

We concluded in the previous subsection that satisfying (GVS*) is not sufficient
for McGee (1985)’s theorem as formulated for a validity predicate to hold because
(GVS*) doesn’t imply (VBF). This alone does not settle the question whether the
sequent calculus just defined is ω-consistent. As it turns out, ω-consistency is in our
case guaranteed by the admissibility of cut together with the shape of the rules. To
see that, we reason as follows. If the theory defined with the sequent calculus is
ω-inconsistent, then we have derivations ⇒ A(n) for each n ∈ ω but also ∀x A ⇒.
One application of theω-rule yields⇒ ∀x A, which by admissibility of cut implies the
empty sequent⇒. But there is no derivation of the empty sequent because the calculus
does not contain any elimination rules, and the theory can thus not be ω-inconsistent.

Let us now turn our attention to showing that (GVS*) holds and moreover use
the explanation for why that is the case to illustrate how the approach blocks the
paradoxical reasoning involving (GVS) from Sect. 2.2.

Consider a metainference 〈�, 〈X ,Y 〉〉 and the sequent

{
∧

X ′ ⊃
∨

Y ′ | 〈X ′,Y ′〉 ∈ �}, X ⇒ Y (d)

representing that metainference using the connectives. In the case of interpretations
for classical logic, the sequent (d) is valid just in case the corresponding metainference
is locally valid.20

19 This is the crucial difference between this application of Cantini (1990)’s strategy on the one hand, and
the use of it by Fischer and Gratzl (2018) to show that cut is admissible for a sequent calculus defining a
formal theory of transparent truth. The application of the strategy by Fischer and Gratzl (2018) is erroneous
precisely because it allows contexts in the premise-sequents of the relevant rules for the truth predicate.
When contexts � and � are included in the premise-sequent on either side of ⇒ (as opposed to weakening
them into the conclusion-sequent), then the above procedure doesn’t work because the application of cut
must to pushed up through the rule with the implication that the number of times a truth-rule has been
applied could increase.
20 The same also holds for infinitary Peano Arithmetic with deontic truth. To show this, it suffices to define
suitablemodelswith regard towhich the sequent calculus presented in this subsection is sound and complete,
and then prove that the desired equivalence is the case in those models. Suitable models are obtained with
relatively standard neighbourhood models where the modal operator is replaced with a unary predicate
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Since the derivability of the sequent (d) is equivalent to the local validity of the
thereby represented metainference, it should be clear that a validity-predicate defined
as Tr(�

∧
X ⊃ ∨

Y�) will result in a validity-predicate that, in virtue of the rules TK
and TD , immediately satisfies the descending direction of (GVS*).

The ascending direction of (GVS*) is established by showing that the context-free
inverses of TK and TD are admissible, i.e. the following rules:

Tr(s0), . . . ,Tr(sn) ⇒ Tr(t)
TK I

B0, . . . , Bn ⇒ A whenever sNi = �Bi�N and tN = �A�N

Tr(s0), . . . ,Tr(sn) ⇒
TDI

B0, . . . , Bn ⇒ whenever sNi = �Bi�N

This is established by (transfinite) induction on the height of a derivation defined as
the supremum of the height of its subderivations. The inductive argument must include
the limit case because applications of the ω-rule lead to derivations of a transfinite
height. We illustrate the reasoning to establish the admissibility of TK I . For the base
case, it suffices to observe that the premise-sequent is an initial sequent in which one
of si is such that si = t , and the desired result therefore follows from the derivability
of A, � ⇒ �, A. For the successor stage, the premise-sequent can only have been
obtained with TK or TD in which case there is a derivation of a sequent X ⇒ Y where
every formula in X is one of Bi and Y contains at most one formula, A. This follows
by weakening on the premise-sequent. With regard to the limit case, we note that there
is no derivation of the premise-sequent where the height is a limit ordinal (since the
last applied rule will in that case be the ω-rule which introduces a quantified formula),
so the desired conclusion follows trivially.

Now, the derivability of the sequent (d) is also equivalent to the following rule being
admissible:

X ′, � ⇒ �,Y ′ for 〈X ′,Y ′〉 ∈ �

X , � ⇒ �,Y

To show the admissibility of the rule assuming the derivability of the sequent, we
reason as follows using the cut-rule:

X ′, � ⇒ �, Y ′ for 〈X ′, Y ′〉 ∈ �

� ⇒ �,
∧

X ′ ⊃ ∨
Y ′ for 〈X ′, Y ′〉 ∈ � {∧ X ′ ⊃ ∨

Y ′ | 〈X ′, Y ′〉 ∈ �}, X ⇒ Y

X , � ⇒ �, Y

Footnote 20 continued
and where the neighbourhoods of each world contain the unit, is proper, and is closed under supersets and
binary intersections (cf. Pacuit (2017) for an introduction to this terminology). Presenting the models and
the relevant proofs would take us beyond the scope of this paper.
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To derive the sequent using the rule, we apply the rule on sequents that are basically
instances of modus ponens as inference and thus derivable:

{∧ X ′ ⊃ ∨
Y ′ | 〈X ′,Y ′〉 ∈ �}, X ′ ⇒ Y ′ for 〈X ′,Y ′〉 ∈ �

{∧ X ′ ⊃ ∨
Y ′ | 〈X ′,Y ′〉 ∈ �}, X ⇒ Y

Notice that this derivation requires that the rule assumed to be admissible permits
contexts. We must thus distinguish between the following two rules:

X ′, � ⇒ �,Y ′ for 〈X ′,Y ′〉 ∈ �

X , � ⇒ �,Y
X ′ ⇒ Y ′ for 〈X ′,Y ′〉 ∈ �

X ⇒ Y

The left rule implies the right rule, but the right rule does not imply the left rule.Now,
as shown by Humberstone (1996), the notion of an admissible rule corresponds to that
of a globally valid metainference. However, since the sequent (d) represents a locally
valid metainference and the sequent (d) is equivalent to the left rule, it follows that the
left rule also represents a locally valid metainference. This corresponds to proposition
(a) and (c) inSect. 2.3: every (single-conclusion) locally validmetainference is globally
valid, but some globally valid (single-conclusion) metainferences are not locally valid.
The rules TK and TD are examples of the right rule that do not imply the corresponding
left rule since they do not permit contexts. In our setting, the admissibility of the left
rule means that the metainference is not only globally but also locally valid, whereas
the admissibility of only the right rule means that the metainference is only globally
valid.21

It follows that the rulesTK andTD introduceglobally validmetainferences involving
truth-predications. This means that the corresponding metainferences for a validity
predicate Val defined as Tr(�

∧
X ⊃ ∨

Y�) are also globally valid, which in turn does
not guarantee that they are locally valid.

Let us use this wisdom to illustrate how the paradoxical reasoning involving (GVS)
in Sect. 2.2 is blocked in this setting where (GVS) is restricted to locally valid metain-
ferences. First, we note that the following rules are admissible:

X ⇒ Y VP⇒ Val(�X�, �Y�)

⇒ Val(�X�, �Y�)
VPC

X ⇒ Y

Let as before κ be a closed term such that κ = {�Val(κ, τ )�} holds in virtue of the
strong diagonal lemma where τ is an abbreviation for {�Val(�X�, �Y�)�}. We now

21 Note that the proof of the equivalence between (d) and the left rule with contexts uses cut. In fact, the
equivalence may fail for calculi where cut is not admissible, and we can even in that case use cut as an
example. Consider for example how cut is admissible for propositional variables (but not for every formula)
in the sequent calculus for STT presented by Ripley (2013a). This rule, cut for propositional variables, is
globally but not locally valid on models for STT. Note also that the cut rule corresponding to that rule in the
labelled sequent calculus presented in Sect. 3.2, a cut on the sequents � ⇒ �, t : p and s : p, �′ ⇒ �′ to
obtain �,�′ ⇒ �, �′, is not admissible in the labelled sequent calculus.
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observe that the following metarule is admissible:

Val(κ, τ ) ⇒ Val(�X�, �Y�)

X ⇒ Y

This is obtained as follows:

Val(κ, τ ) ⇒ Val(�X�, �Y�)
VP⇒ Val(κ, τ ) Val(κ, τ ) ⇒ Val(�X�, �Y�)

cut⇒ Val(�X�, �Y�)
VPC

X ⇒ Y

Luckily for us, this does not imply the derivability of the sequent

Val(κ, τ ) ⇒ Val(�X�, �Y�)

through (GVS*) because the rule is not admissible with contexts. After all, behind
the scene we will find applications of TK . Without that sequent we cannot use the
admissible rule to show that arbitrary inferences are valid.

3 Validity predicates for theories definable on strong Kleenemodels

3.1 Four theories definable on strong Kleenemodels

The aim of this section is to apply the approach developed in the previous section on
four theories definable on strong Kleene models, four theories that are typically seen
as competing proposals for what is valid.22 This subsection presents the theories in
question.

Using the set {0, 1
2 , 1} with its natural ordering as values, and assuming that every

object in the domain is denoted by a term, strong Kleene models for a first-order
language based on the connectives ∨,∧,¬ and ∀ can be represented as a function I
from the language to {1, 1

2 , 0} such that,
• I (¬A) = 1 − I (A)

• I (A ∨ B) = max(I (A), I (B))

• I (A ∧ B) = min(I (A), I (B))

• I (∀x A) = inf{I (A(t/x)) : t is a term}
Strong Kleene models are popular in the literature on semantic paradoxes because
they are, as shown by Kripke (1975), compatible with a truth predicate Tr satisfying
the condition that I (A) = I (Tr(�A�)).

The models can be used to define a variety of theories by varying the conditions
for being a premise and for being a conclusion in a sound inference. Consider the
following four ways of varying the conditions for a multiple conclusion inference to
be satisfied in a model:

22 An exception to a presentation of them as rivals is the pluralist proposal by Hjortland (2013).
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(i) If every premise is assigned 1 then some conclusion is assigned 1
(ii) If every premise is not assigned 0 then some conclusion is not assigned 0
(iii) If every premise is assigned 1 then some conclusion is not assigned 0
(iv) If every premise is not assigned 0 then some conclusion is assigned 1

The conditions give rise to distinct sets of multiple-conclusion inferences. Theories
based on these proposals have been presented and explored in more historical, recent
and contemporary literature on formal theories of truth such as Priest (1979), Field
(2008), Ripley (2012) and Cobreros et al. (2013). In addition, there is also the variant
according to which an inference is sound in a model if and only if both (i) and (ii)
holds. This can be found for example in the work of Halbach and Horsten (2006).

This paper will focus on the four theories obtained with the conditions (i)-(iv)
respectively, thus ignoring the fifth option. The four theories in question are the para-
complete theory K3, the paraconsistent theory LP, the nonreflexive theory TS and the
nontransitive theory ST.23 We shall in this paper refer to them using the strict-tolerant
schema from Cobreros et al. (2013) as ST, TS, SS (=K3) and TT (=LP).

The four theories disagree for example over whether modus ponens holds as infer-
ence or metainference:

• Modus ponens as inferential schema is valid SS and ST but invalid in TT and TS.
• Modus ponens as metainferential schema is valid in SS and TS but invalid in TT
and ST.

Our objective then, is to express these disagreements within the theories using the
approach developed in the previous section. The rest of the section is therefore organ-
ised as follows. Section 3.2 presents a labelled sequent calculus for the four theories
expanded with transparent truth. The calculus is designed for the purpose of express-
ing locally valid metainferences through labelled internal sequents. Section 3.3 shows
that the material conditional together with transparent truth is not suitable to define
validity predicates for those theories of truth. Section 3.4 employs the labelled internal
sequents to define validity predicates satisfying (GVS*) for the four theories of truth
and finally illustrates that we can express the above disagreements within each theory.

3.2 A labelled sequent calculus for strict and tolerant satisfaction

The strict-tolerant schema is based on the distinction between strict and tolerant sat-
isfaction, where a formula is strictly satisfied if assigned 1 and tolerantly satisfied if
assigned 1 or 1

2 . With I �s A and I �t A representing respectively that A is strictly
and tolerantly satisfied at I , it follows that

23 The main reason for ignoring the fifth option sometimes referred to as PKF is that the relevant sequent
calculus rules wouldn’t be as elegant as for the other options in the current setting. Also, it will keep the
discussion more streamlined. In any case, it should be clear from the discussion in the following subsections
that a validity predicate defined as Tr(�A ⊃ B�) in PKF will have the same issues with regard to satisfying
(GVS*) as a validity predicate defined using thematerial conditional in the four theories under consideration.
In addition, the approach to define validity predicates for the four theories that this paper proposes is also
straightforwardly generalised to PKF.
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if I �s A then I �t A

Moreover, the above clauses imply the following where χ and γ are uniformly sub-
stituted with either s or t:

I �χ A ∧ B iff I �χ A and I �χ B
I �χ A ∨ B iff I �χ A or I �χ B
I �χ ¬A iff I �γ A where χ �= γ

I �χ ∀x A iff I �χ A(t/x) for every term t

With those principles at hand it is easy to see that the following labelled sequent
calculus with {s, t} as labels so that s : A and t : A are labelled formulas based on
the calculus presented by Fjellstad (forthcoming) is sound and complete with regard
to such models:

χ : P, � ⇒ �,χ : P s : P, � ⇒ �, t : P
χ : A, � ⇒ � χ : B, � ⇒ � ∨l

χ : A ∨ B, � ⇒ �

� ⇒ �,χ : A, χ : B ∨r
� ⇒ �,χ : A ∨ B

χ : A, χ : B, � ⇒ � ∧l
χ : A ∧ B, � ⇒ �

� ⇒ �,χ : A � ⇒ �,χ : B ∧r
� ⇒ �,χ : A ∧ B

� ⇒ �,χ : A ¬l(χ �= γ )
γ : ¬A, � ⇒ �

χ : A, � ⇒ � ¬r(χ �= γ )
� ⇒ �, γ : ¬A

χ : A(x/t), � ⇒ � ∀l
χ : ∀x A, � ⇒ �

� ⇒ �,χ : A(x/y) ∀r(y free)
� ⇒ �,χ : ∀x A

In Fjellstad (forthcoming) only the propositional fragment is presented and explored,
but extending the completeness proof to the first-order case is straightforward. It
follows from soundness and completeness that the four logics above are represented
as follows:

A0, . . . , An �χγ B0, . . . , Bm

if and only if

χ : A0, . . . , χ : An ⇒ γ : B0, . . . , γ : Bm is derivable

To obtain the non-classical theories of truth, we assume that the sequent calculus is
defined for the language LTr, add the rules

χ : s = t, � ⇒ � =
� ⇒ � if sN = tN

and �=
χ : s = t, � ⇒ � if sN �= tN

for the arithmetic to obtain self-reference, and the following rules for the predicate
Tr:

χ : A, � ⇒ �
Trl

γ : u = �A�, χ : Tr(u), � ⇒ �

� ⇒ �,χ : A
Trr

γ : u = �A�, � ⇒ �,χ : Tr(u)
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We also include initial sequents of the following forms:

γ : s = t, χ : Tr(s), � ⇒ χ : Tr(t)
γ : s = t, s : Tr(s), � ⇒ t : Tr(t)

The following derivations may serve to illustrate the calculus in action. They involve
the liar sentence obtained with the equality l = �¬Tr(l)� through the strong diagonal
lemma:

s : Tr(l) ⇒ t : Tr(l) ¬ls : ¬Tr(l), s : Tr(l) ⇒
Trls : l = �¬Tr(l)�, s : Tr(l) ⇒ =

s : Tr(l) ⇒

s : Tr(l) ⇒ t : Tr(l) ¬r⇒ t : ¬Tr(l),t : Tr(l)
Trr

t : l = �¬Tr(l)� ⇒ t : Tr(l) =⇒ t : Tr(l)

Notice the difference in label. The sequent to the left says that the liar is never strictly
satisfied and the sequent to the right says that the liar is always tolerantly satisfied.
This is precisely how it ought to be according to the strict-tolerant schema.

Now, adding the arithmetic and the rules for truthmeans thatwe cannot (in a straight-
forward manner that I am aware of at the time of writing) show that the following rule
is admissible:

� ⇒ �,χ : A χ : A, �′ ⇒ �′
cut

�,�′ ⇒ �,�′

Now, this is not because the calculus becomes inconsistent as in the case of an unla-
belled sequent calculus such as that for STT presented by Ripley (2013a). Instead, the
issue is merely that a semantic argument along the lines of Ripley (2012) and Fjellstad
(2017) is not available because of the arithmetical content and Gödel’s incompleteness
theorems. On the other hand, soundness with the models presented in Cobreros et al.
(2013) is sufficient to guarantee that the sequent calculus is consistent with regard to
assignment of labels. We therefore add this cut rule to our system as a primitive rule.

The labelled sequent calculus is quite practical from the perspective of this paper.
In addition to obtaining the valid inferences of each of the four theories of truth, we
can along the lines of Fjellstad (forthcoming) expand the calculus with expressions to
represent that an inference is satisfied according to some standard.

Let an expression of the form χγ : [X ⇒ Y ] be a labelled internal sequent where
X and Y are sets of formulas and χγ is composed from formula labels. They are
governed by the following rules:

� ⇒ �,χ : A for every A ∈ X γ : B, � ⇒ � for every B ∈ Y [⇒]l
χγ : [X ⇒ Y ], � ⇒ �

{χ : A | A ∈ X}, � ⇒ �, {γ : B | B ∈ Y } [⇒]r
� ⇒ �,χγ : [X ⇒ Y ]
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A quick check should convince the reader that these rules are adequate to represent
that an inference is χγ -satisfied where χγ is TT, TS, ST or SS. Moreover, Fjellstad
(forthcoming) establishes that we can use internal sequent expressions to represent
locally valid metainferences of ST, TS, SS and TT. The following derivation illustrates
that the inverse of the right intro rule for ¬ is locally TS-valid:

t : A ⇒ t : A
s : ¬A, t : A ⇒

ts : [ ⇒ ¬A], t : A ⇒
ts : [ ⇒ ¬A] ⇒ ts : [A ⇒ ]

At this point the reader might at first think that contexts are missing from the internal
sequents of the sequent ts : [⇒ ¬A] ⇒ ts : [A ⇒]. After all, in an (unlabelled)
sequent calculus, it is the following rule that is admissible:

� ⇒ �,¬A
A, � ⇒ �

That would however conflate the role of the contexts in such a rule as elaborated on
in Sect. 2.4: A rule presented with contexts corresponds to a metainference which is
not only globally, but also locally valid.

Using the cut rule we can show that to each locally valid metainference there is a
corresponding admissible rule, here illustrated with the same rule:

� ⇒ �, s : ¬A
� ⇒ �, ts : [ ⇒ ¬A] ts : [ ⇒ ¬A] ⇒ ts : [A ⇒ ]

� ⇒ �, ts : [A ⇒ ]
t : A ⇒ t : A

t : A, ts : [A ⇒ ] ⇒
t : A, � ⇒ �

The converse direction for any metainference 〈�, 〈X ,Y 〉〉 is established with the
following derivation:

χγ : [X ′ ⇒ Y ′], χ : X ′ ⇒ γ : Y ′ 〈X ′,Y ′〉 ∈ �

{χγ : [X ′ ⇒ Y ′] | 〈X ′,Y ′〉 ∈ �}, χ : X ⇒ γ : Y
{χγ : [X ′ ⇒ Y ′] | 〈X ′,Y ′〉 ∈ �} ⇒ χγ : [X ⇒ Y ]

Notice how the rule assumed to be admissiblemust permit contexts. After all, we apply
the rule on a set of sequents containing more expressions (i.e. χγ : [X ′ ⇒ Y ′]) than
the active expressions of the rule (i.e. χ : X ′ and γ : Y ′). The following equivalence
thus holds:

�, χ : X ′ ⇒ γ : Y ′,� 〈X ′,Y ′〉 ∈ �

�,χ : X ⇒ γ : Y ,�

if and only if

{χγ : [X ′ ⇒ Y ′] | 〈X ′,Y ′〉 ∈ �} ⇒ χγ : [X ⇒ Y ]
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This shows that we can use both internal sequent expressions and admissible rules
permitting contexts to represent that a metainference is locally valid.

Finally, we can also see with both the derivations as illustrations and their rules
that an internal sequent expression [X ⇒ Y ] behaves in this sequent calculus as the
formula

∧
X ⊃ ∨

Y in the sequent calculus for classical logic from Sect. 2.4 with
regard to representing that an inference is satisfied. Importantly, this does not imply
that we could manage without internal sequents also in this case by using the formula∧

X ⊃ ∨
Y together with the transparent truth-predicate to define a suitable validity

predicate for any of the four theories. The next subsection explains why.

3.3 Issues with validity predicates as strong Kleenematerial conditional

We find in the literature on semantic paradoxes and validity predicates proposals that
amount to defining a validity predicate along the lines of a (possibly modalised) mate-
rial conditional in strong Kleene models or proof-theoretic variants thereof. Examples
include Ripley (2013a), Nicolai and Rossi (2018), Murzi and Rossi (2021) and Golan
(forthcoming). Such an approach is not suitable for our purposes. This subsection
explains why that is the case.

Let Val(�X�, �Y�) be defined as
∧

A∈X Tr(�A�) ⊃ ∨
B∈Y Tr(�B�), and thus that

the special cases of Val(�∅�, �Y�) and Val(�X�, �∅�) are defined as
∨

B∈Y Tr(�B�)

and ¬∧
A∈X Tr(�A�) respectively.

We can now derive the sequent s : Val(�A�, �B�) ⇒ s : Val(�∅�, �A ⊃ B�) as
follows:

t : A, s : ¬A ⇒ s : B ⇒ s : B
s : Val(�A�, �B�), t : A ⇒ s : B

s : Val(�A�, �B�) ⇒ s : ¬A ∨ B
s : Val(�A�, �B�) ⇒ s : Val(�∅�, �A ⊃ B�)

Let us assume that this sequent tells us that that inference representing ametainference
is valid according to SS and that the validity predicate represents SS-validity to the
extent that it satisfies (GVS*). Then the following rule should be admissible:

�, s : A ⇒ s : B,�

� ⇒ s : A ⊃ B,�

However, assuming this will lead to inconsistent labelling:

s : Tr(l) ⇒ s : 0 = 1
⇒ s : ¬Tr(l) ∨ 0 = 1

s : ¬Tr(l) ⇒ s : 0 = 1 ⇒
s : ¬Tr(l) ∨ 0 = 1 ⇒

We obtain with this and similar pieces of reasoning the following four observations,
one for each theory:

(i) The sequent s : Val(�A�, �B�) ⇒ s : Val(�∅�, �A ⊃ B�) is derivable for every
formula A and B but the expressed metainference is not locally valid in SS for
some formulas A and B.
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(ii) The sequent t : Val(�A�, �B�), t : Val(�B�, �C�) ⇒ t : Val(�A�, �C�) is
not derivable for some formulas A, B and C but the expressed metainference is
locally valid in TT for every formula A, B and C .

(iii) The sequent t : Val(�A�, �B�), t : Val(�B�, �C�) ⇒ s : Val(�A�, �C�) is
not derivable for some formulas A, B and C but the expressed metainference is
locally valid in TS for every formula A, B and C .

(iv) The sequent s : Val(�A�, �B�), s : Val(�B�, �C�) ⇒ t : Val(�A�, �C�) is
derivable for every formula A, B and C , but the expressed metainference is not
locally valid for ST for some formulas A, B and C .

In addition, the following observations illustrate the extent to which the validity
predicate occurring in one theory is actually about what is valid according to another
theory. In the previous subsection we concluded that 〈�, 〈X ,Y 〉〉 is locally valid
according to χγ if and only if rule

�, χ : X ′ ⇒ γ : Y ′,� 〈X ′,Y ′〉 ∈ �

�,χ : X ⇒ γ : Y ,�

is admissible. Let now χ : V� be {χ :Val(�X ′�, �Y ′�) | 〈X ′,Y ′〉 ∈ �} and V〈XY 〉 be
Val(�X�, �Y�). It follows that:

(i) 〈�, 〈X ,Y 〉〉 is locally ST-valid if and only if t : V� ⇒ t : V〈XY 〉 is derivable.
(ii) 〈�, 〈X ,Y 〉〉 is locally TS-valid if and only if s : V� ⇒ s : V〈XY 〉 is derivable.
(iii) If 〈�, 〈X ,Y 〉〉 is locally TT-valid or locally SS-valid then s:V� ⇒ t:V〈XY 〉 is

derivable.

For proofs of a proposition similar to (i) but regarding the material conditional, see
Dicher and Paoli (2019) and Barrio et al. (2015).

Even if such observations certainly support the pluralist proposal of Hjortland
(2013) about theories definable on strong Kleene models, it also shows that such a
validity predicate doesn’t have the desired features with regard to the aim here.24 Let’s
move on to another and better proposal.

3.4 Defining validity predicates

We have now reached the finale of this section where the aim is to show how to expand
the labelled sequent calculus with rules for validity predicates that satisfy (GVS*) and
illustrate how we can prove generalisations which express that the theories disagree
over certain inferences and metainferences.

To that purpose we shall introduce four new binary validity predicates into the
language: Valss,Valtt,Valst, Valts. The basic idea is to pair each validity predicate
with its respective labelled internal sequent. In analogy with the rules TK and TD
from Sect. 2.4, we introduce the following rules where X[] is a possibly empty set
containing only labelled internal sequents, and XV and X= are obtained from X[] by
adding ζ :Valχ ′γ ′(ui , vi ) to XV and the equalities ζ ′ : �Xi�=ui and ζ ′′ : �Yi�=vi

24 See for example Barrio et al. (2016), Dicher and Paoli (2019) and Rosenblatt (2017) for more on these
issues with regard to ST.
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to X= for each labelled internal sequent χ ′γ ′ : [Xi ⇒ Yi ] in X[] where the ζ ’s are
arbitrary labels (that may differ for each member of X[]). In the case of VK one also
adds ζ ′ : �X�=u and ζ ′′ : �Y�=v to X=:

X[] ⇒ χγ : [X ⇒ Y ]
VK

�, X=, XV ⇒ ζ : Valχγ (u, v),�

X[] ⇒
VD

�, X=, XV ⇒ �

ζ in VK is also an arbitrary label and may differ from every label in X=, XV . Notice
the generality of these rules. X[] may contain internal sequents of any kind (and not
just of one kind), and χγ : [X ⇒ Y ] may be an internal sequent of any kind. The
following figure illustrates an application of VK in which the equalities are removed
for readability:

ss : [A ⇒ B], tt : [B ⇒ C] ⇒ts : [A ⇒ C]
t : Valss(�A�, �B�), s : Valtt(�B�, �C�) ⇒t : Valts(�A�, �C�)

Even if these rules are straightforward generalisations of the rules TD and TK , we
cannot establish the ascending direction of (GVS*) in the same way as in Sect. 2.4.
The rules as they stand only guarantee the descending direction of (GVS*) because
the labelled calculus has elimination rules, both for removing true equations with the
rule labelled = and the cut rule. The argument for the admissibility of the inverses of
TK and TD (from which the ascending direction of (GVS*) followed) relied on that
the calculus did not have any elimination rules.

We therefore add the following rules where X[], XV and X= are defined as above:

XV ⇒ ζ : Valχγ (u, v)
VK I

�, X=, X[] ⇒ χγ : [X ⇒ Y ],�
XV ⇒

VDI
�, X=, X[] ⇒ �

Considering the relationship between internal sequents and locally valid metainfer-
ences, the four rules VK , VK I , VD and VDI are together clearly sufficient for (GVS*)
to be satisfied by each theory.

Now, in addition to satisfying (GVS*), we would like to prove certain universal
and existential generalisations that we use to express the disagreement between the
theories. While existential generalisations are easily sorted out, complications arise in
the case of universal generalisations because ∀r requires free variables. If the ω-rule
had been admissible for the labelled sequent calculus that we are working with, then
this would not have been a problem. After all, we could in that case simply provide
a derivation of each instance and then apply the ω-rule to obtain the desired result.
However, in order to avoid the complaint that the approach relies on theω-rule, wewill
in this section not rely on the ω-rule. Moreover, we will also not follow the standard
approach for theories of truth as exemplified in Halbach (2011) which would consist in
introducing compositional principles for the validity predicates. Instead, we will here
pursue a slightly non-standard approach to obtain the desired universal generalisations.

First, we expand the language with countably many propositional variables, that is,
zero-place predicates. Now, let’s say that a formula A is accessible in a formula B if
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and only if B contains the term �A�. As applied to the truth-predicate for simplicity,
A is accessible in both Tr(�A�) and Tr( ˙fTr(�A�)) where ˙fTr(u) = �Tr(u)� and
Tr(�A�∨̇�B�) but not in Tr(�Tr(�A�)�) and Tr(�A ∨ B�). This generalises in the
obvious way to numerals denoting sets of formulas.

Consider now the following two restrictions on applications of Trl and Trr:

(i) If a labelled formula χ : A contains a propositional variable p as subformula and
χ : B is the labelled formula replacing χ : A after an application of Trl/Trr, then
p must be accessible in B.

(ii) If a propositional variable p is accessible in a formula A and χ : B is the labelled
formula replacing χ : A after an application of Trl/Trr, then p must be accessible
in B.

And the following two restrictions on applications of VK and VD:

(i) If a formula A in a labelled internal sequentχγ : [X ⇒ Y ] contains a propositional
variable p as subformula and z : B is the labelled formula replacingχγ : [X ⇒ Y ]
after an application of VK /VD , then p must be accessible in B.

(ii) If a propositional variable p is accessible in a formula A occurring in a labelled
internal sequent χγ : [X ⇒ Y ] and z : B is the labelled formula replacing
χγ : [X ⇒ Y ] after an application of VK /VD , then p must be accessible in B.

To illustrate the restrictions as applied to truth-predications, the result of applying a
truth-rule on the labelled formula χ : A∨ p should not be χ : Tr(�A∨ p�) but rather
χ : Tr(�A�∨̇�p�). Correspondingly, applying the rule on χ : Tr(�A�∨̇�p�) should
not result in χ : Tr(�Tr(�A�∨̇�p�)�) but χ : Tr( ˙fTr(�A�∨̇�p�)).

The point of these requirements is to make it safe to uniformly replace Gödel-
codes of propositional variables with variables in order to permit quantification over
the variables. The substitution proceeds through the following rule:

�(x/�p�) ⇒ �(x/�p�)
PS

χ : Sent(x), � ⇒ �

Finally, wemust also expand the sequent calculuswith initial sequents of the following
form where the Gödel-codes for X and Y must be constructed so as to ensure the
accessibility of propositional variables:

ζ :n=n′, ζ :m=m′, ζ :n=�X�, ζ :m=�Y�, ζ : Valχγ (n,m), � ⇒ �, ζ ′ : Valχγ (n′,m′)

ζ and ζ ′ are arbitrary formula labels.
The additional initial sequents are required to ensure that connectives behave clas-

sically with regard to validity predications. That connectives should behave classically
follows from the reliance on a classical meta-theory. Indeed, one virtue with strong
Kleene models with regard to the current project is that the connectives behave clas-
sically on formulas that are assigned 1 or 0. This is captured proof-theoretically by
allowing the label of the validity predication in the initial sequent to differ across ⇒.
This trick makes the labels intersubstitutable for validity predications.

The overall aim of this section has been to expand the four theories definable on
strongKleenemodels with suitable validity predicates in order to express comparisons
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between the theories within the theories themselves, focusing on differences that are
familiar from the literature on semantic paradoxes. Let’s illustrate what has been
achieved.

The four theories disagree over whether modus ponens as inference is valid; modus
ponens as inference is valid in SS and ST but invalid in TT and TS. Consider the
following formula which arguably expresses this fact:

∀xy((Sent(x) ∧ Sent(y)) ⊃ (Valss({x} ∪ {x⊃̇y}, {y})) ∧
∀xy((Sent(x) ∧ Sent(y)) ⊃ (Valst({x} ∪ {x⊃̇y}, {y})) ∧
∃xy((Sent(x) ∧ Sent(y)) ∧ (¬Valtt({x} ∪ {x⊃̇y}, {y})) ∧
∃xy((Sent(x) ∧ Sent(y)) ∧ (¬Valts({x} ∪ {x⊃̇y}, {y}))

Let us call that formula MPi. The sequents ⇒ s : MPi and ⇒ t : MPi are derivable.
In the case of SS and ST, the following sequents are derivable for some propositional
variables p and q:

s : p, s : ¬p ∨ q ⇒ s : q s : p, s : ¬p ∨ q ⇒ t : q
It follows that the sequents

⇒ ss : [p,¬p ∨ q ⇒ q] ⇒ st : [p,¬p ∨ q ⇒ q]
are derivable and thus also that the following sequents are derivable:

⇒ χ : Valss({�p�} ∪ {�p�⊃̇�q�}, {�q�})
⇒ χ : Valst({�p�} ∪ {�p�⊃̇�q�}, {�q�})

The universal generalisations can now be obtained through the PS rule since the propo-
sitional variables are accessible. Correspondingly, we can use the liar sentence to
obtain counterexamples for the existential generalisations. It follows that each of the
four theories can express the fact represented by MPi.

The four theories also disagree over whether modus ponens as metainference is
valid; modus ponens as metainference is valid in SS and TS but invalid in TT and ST.
This is arguably expressed with the

∀xy((Sent(x)∧Sent(y))⊃((Valss({∅}, {x})∧Valss({∅}, {x⊃̇y}))⊃Valss({∅}, {y})) ∧
∀xy((Sent(x)∧Sent(y))⊃((Valts({∅}, {x})∧Valts({∅}, {x⊃̇y}))⊃Valts({∅}, {y})) ∧
∃xy((Sent(x)∧Sent(y))∧((Valtt({∅}, {x})∧Valtt({∅}, {x⊃̇y}))∧¬Valtt({∅}, {y})) ∧
∃xy((Sent(x)∧Sent(y))∧((Valst({∅}, {x})∧Valst({∅}, {x⊃̇y}))∧¬Valst({∅}, {y}))
Let us name that formula MPmi. The sequents ⇒ s : MPmi and ⇒ t : MPmi are

derivable. Theproofs for these sequents are reconstructed verymuch in the samewayas
above, the twist being that we derive e.g. ss : [ ⇒ p], ss : [ ⇒ ¬p∨q] ⇒ ss : [ ⇒ q]
from s : p, s : ¬p ∨ q ⇒ s : q. Each of the four theories can thus express the fact
represented by MPmi.
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4 Concluding remarks

The aim of this paper has been to present an approach which uses validity predicates to
express the kind of comparison between theories that can be found in the literature on
semantic paradoxes within the theories themselves. The approach allows us to prove
formulas that arguably represent the relevant differences between them within each
theory under the assumption that the theories under comparison are definedwith a clas-
sical meta-theory. In line with how the literature on semantic paradoxes has turned its
attention to metainferences, the approach takes into consideration not only inferences
but also metainferences. The main novelty with the approach is that the representation
of metainferences is restricted to finitary locally valid metainferences in order to avoid
the triviality result by Hlobil (2018) regarding the representation of valid metainfer-
ences. Expanding first-order classical arithmetic with a validity predicate satisfying
the new requirement results in a theory which is ω-consistent and conservative over
first-order arithmetic.

To further illustrate the approach, Sect. 3 applied the approach to four theories
definable on strong Kleene models. Even if there is a sense in which we have through
that exercise not learned anything new about the four original theories, it should be
stressed that learning something new about them was not the aim; they were used as
a case study in order to illustrate the approach.

From a metaphysical perspective, it is worth underlining the extent to which the
resulting validity predicates play an expressive role in a clear analogy to claims made
in the debate on deflationism about truth with examples including Horsten (1995),
Beall (2009) and more recently Picollo and Schindler (2019). One could even use
the approach to validity predicates presented in this paper as a springboard towards
an account of a deflationary truth predicate for classical logic. Consider the truth-
predicate as defined with the multiple-conclusion variant of TK and TD . In this case
we can obtain a validity predicate equivalent to that defined in Sect. 2.4 by expanding
the theory with a KD-modality represented by a unary operator �, thus defining the
validity predicate as �Tr(�(A1 ∧ . . . ∧ An) ⊃ (B1 ∨ . . . ∨ Bm)�). If we replace the D
axiom with the T axiom, then we can prove that validity is truth-preserving. This truth
predicate arguably plays an expressive role with regard to the representation of valid
inferences and locally valid metainferences. This role, in turn, could then be used to
justify the requirement that the truth predicate should be conservative over the base
theory.25
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