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a b s t r a c t

A subset T ⊆ V (G) of vertices of a graph G is said to be cyclable if G has a cycle C
containing every vertex of T , and for a positive integer k, a graph G is k-cyclable if every
set of vertices of size at most k is cyclable. The Terminal Cyclability problem asks, given
a graph G and a set T of vertices, whether T is cyclable, and the k-Cyclability problem
asks, given a graph G and a positive integer k, whether G is k-cyclable. These problems
are generalizations of the classical Hamiltonian Cycle problem. We initiate the study
of these problems for graph classes that admit polynomial algorithms for Hamiltonian
Cycle. We show that Terminal Cyclability can be solved in linear time for interval
graphs, bipartite permutation graphs and cographs. Moreover, we construct certifying
algorithms that either produce a solution, that is a cycle, or output a graph separator
that certifies a no-answer. We use these results to show that k-Cyclability can be solved
in polynomial time when restricted to the aforementioned graph classes.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A subset T ⊆ V (G) of vertices of a graph G is said to be cyclable if G has a (simple) cycle C containing every vertex
f T . In this case, C is said to cover T . It is assumed that a single-element set is cyclable. For a positive integer k, a
raph G is k-cyclable if every set T of size at most k is cyclable. The cyclability of G, denoted cyc(G) (see Fig. 1 for a table

summarizing the main notations we use), is the maximum k ≤ |V (G)| such that G is k-cyclable. We consider the following
generalizations of the classical Hamiltonian Cycle problem.

Input: A graph G and a nonempty set T ⊆ V (G) of terminals.
Task: Decide whether T is cyclable.

Terminal Cyclability
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Fig. 1. Nomenclature of the main notations we use throughout the paper.

Input: A graph G and a positive integer k.
Task: Decide whether G is k-cyclable.

k-Cyclability

The rational behind the definitions of Terminal Cyclability and k-Cyclability is to address the question of what can
e done when the answer to the Hamiltonian Cycle problem is negative. Which subsets of vertices can one include in a
ingle cycle? Is it possible to do so for all subsets of size k? The investigation of these two problems started in the 1960s
ith the pioneer work of Dirac [18] who proved that for each k ≥ 2, every k-connected graph is k-cyclable. A number of
elated results followed, with the majority of them following the line of research initiated by Dirac [18], giving sufficient
onditions for the existence of a cycle through a given set or number of vertices; we refer the reader to the survey paper
f Gould [23] for results of this type.
From the computational complexity viewpoint, Terminal Cyclability and k-Cyclability are at least as hard as the

amiltonian Cycle problem, which is well known to be NP-complete [19] (and remains so for several very restricted graph
lasses such as, for example, bipartite planar cubic graphs and split graphs [1,20]). Positive results can be found in the
arameterized Complexity framework (we refer to the recent book of Cygan et al. [12] for an introduction to the field). For
nstance, by the celebrated results of Robertson and Seymour [34] about the Disjoint Paths problem, Terminal Cyclability
s fixed-parameter tractable (FPT) when parameterized by |T |. So far, the best known FPT (randomized) algorithm is due
o Björklund, Husfeldt and Taslaman [3]. Golovach et al. [21] also proved that deciding if G is k-cyclable is co-W[1]-hard
or split graphs and that k-Cyclability is FPT on planar graphs when parameterized by k.

There is also a long history of research on Hamiltonian Cycle and related problems for the classes of cographs, bipartite
ermutation graphs and interval graphs and some of their superclasses [5,7,8,11,13–16,25–27,29–31,33].
Let c(G) denote the number of connected components of a graph G. Chvátal [9] observed that if there exists a

ertex separator S of a graph G such that c(G − S) > |S|, then G has no Hamiltonian cycle. Hence, the condition that
(G− S) ≤ |S| holds for every separator of a graph G is a necessary Hamiltonicity condition. For interval graphs, bipartite

permutation graphs and cographs that are connected and have at least three vertices, this condition turns out to be
also sufficient [11,13,15]. Moreover, motivated by this necessary condition, Jung [28] defined the scattering number of a
noncomplete graph G as

sc(G) = max{c(G− S)− |S| | S is a separator of G}, (1)

and a set S∗ for which the maximum in (1) is achieved is called a scattering set. For a complete graph G, sc(G) = −∞.
For the class of cocomparability graphs G with at least three vertices (that is a superclass of the classes of interval graphs
and permutation graphs), the following duality was established in [15]. Firstly, the set of vertices of G can be covered by
at most k vertex-disjoint paths if and only if sc(G) ≤ k. Secondly, G has a Hamiltonian cycle if and only if sc(G) ≤ 0.

From these equivalences, one can construct certifying polynomial time algorithms for Hamiltonian Path and Hamil-
tonian Cycle problems. We refer to the survey papers [2,32] for an introduction to certifying algorithms. A certifying
algorithm for a decision problem is an algorithm that provides, together with each answer, a certificate (or witness)
that demonstrates the correctness of the answer and that can be verified independently by another algorithm. Such an
algorithm, called an authentication algorithm (or checker), takes as its input an instance of the considered problem as well
as the output and the certificate provided by the certifying algorithm for this instance. It then verifies (independently of
the original algorithm) whether the output is correct. The authentication should not involve solving the original problem
and should be ‘‘simple’’ in some sense meaning that either it should be faster than algorithms solving the problem or it
should be possible to apply the formal verification approach to check its correctness. The main advantage of certifying
algorithms over standard ones is that their implementations are much more reliable and can be used without knowing
the code, because one recognizes whether their outputs are correct even if the implementation is faulty, provided that
the authentication algorithm is correct. Certifying algorithms for Hamiltonian Path and Hamiltonian Cycle that either
output a Hamiltonian path or a Hamiltonian cycle certifying a yes-answer or produce a separator that certifies a no-answer
have been given in [7,10,11,15].
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We continue the study of Terminal Cyclability and k-Cyclability from a computational complexity viewpoint by first
howing that analogous dualities hold for these problems on interval graphs, bipartite permutation graphs and cographs
see Section 2 for the formal definitions of these graph classes). We will then show how to construct from these dualities
olynomial time certifying algorithms for Terminal Cyclability on these graph classes. Further, we construct polynomial
ime algorithms for k-Cyclability.

In fact, for Terminal Cyclability we will consider a slightly more general problem called Cycle Segment Cover, which
s defined as follows. Let G be a graph and let T ⊆ V (G). A cycle or a family of paths containing the vertices of T is said to
e a T -cycle-segment cover. The size of such a T -cycle-segment cover is defined to be zero if it is a cycle and the number
f paths of the family otherwise. The T -cycle-segment-cover number segT (G) is the minimum size of a T -cycle-segment
over.

Input: A graph G, a nonempty set T ⊆ V (G) of terminals and an integer r ≥ 0.
Task: Decide whether segT (G) ≤ r .

Cycle Segment Cover

In particular, Terminal Cyclability is the restriction of Cycle Segment Cover with r = 0. Denote by cT (G) the number
of components of G containing a vertex of T and say that S ⊆ V (G) is a T -separator if cT (G−S) ≥ 2. It is easy to show (see
bservation 3) that if G has a T -separator S with cT (G− S)− |S| > r (i.e. scT (G) > r from Definition 1), then segT (G) > r ,
hich allows us to use such a separator as a certificate of a no-answer for an instance of Cycle Segment Cover. In our

irst theorem, we show that we can solve in polynomial (and even linear) time Cycle Segment Cover on interval graphs,
ipartite permutation graphs and cographs.

heorem 1. There is an algorithm that, given an instance (G, T , r) of Cycle Segment Cover, where G is either an interval
graph, a bipartite permutation graph or a cograph and T is not a 2-clique, outputs in O(|V (G)| + |E(G)|) time either a T-cycle
egment cover of size at most r or a T-separator S∗ with cT (G− S∗)− |S∗| > r that certifies a no-answer.

Notice that if T is a 2-clique, then this is a special case which is not covered by Theorem 1, because of no-instances
G, T , r) of Cycle Segment Cover that cannot be certified by any T -separator. Nevertheless, such a situation occurs only
f r = 0 and the vertices of T are the end-vertices of a bridge, which can be recognized in linear time. In all other cases,
G, T , r) is a yes-instance whenever T is a clique.

We then use Theorem 1 to solve k-Cyclability for interval graphs, bipartite permutation graphs and cographs.

heorem 2. For an interval graph, a bipartite permutation graph or a cograph G, k-Cyclability can be solved in time
(|V (G)|3).

The paper is organized as follows. In Section 2, we present some auxiliary results. In Sections 3–5, we construct our
lgorithms for Cycle Segment Cover and k-Cyclability on, respectively, interval graphs, bipartite permutation graphs and
ographs. We conclude the paper in Section 6 with some open problems.

. Preliminaries

We consider only finite undirected simple graphs. We use n to denote the number of vertices and m the number of
dges of the considered graphs unless it creates confusion. For U ⊆ V (G), we write G[U] to denote the subgraph of G
nduced by U . We write G− U to denote the graph G[V (G) \ U]; for a single-element U = {u}, we write G− u. Similarly,
or a set of edges S, G− S denotes the graph obtained from G by the deletion of the edges of S; we write G− e instead of
− {e} for a single-element set. A set of vertices U ⊆ V (G) is connected if G[U] is a connected graph. For a vertex v, we
enote by NG(v) the (open) neighborhood of v in G, i.e., the set of vertices that are adjacent to v in G. For a set U ⊆ V (G),
G(U) = (

⋃
v∈U NG(v)) \ U . We denote by NG[v] = NG(v) ∪ {v} the closed neighborhood of v and NG[U] =

⋃
v∈U NG[v] for

set of vertices U . A vertex v is universal if NG[v] = V (G). The degree of a vertex v is dG(v) = |NG(v)|. We say that a set
f vertices X ⊂ V (G) is a separator or cut-set of a graph G if G− X has more components than G. It is also convenient for
s to assume that the empty set is a separator of a disconnected graph. A vertex u is a cut-vertex if {u} is a separator. A
onnected graph G is 2-connected if it has no cut-vertex. A block B of a graph G is an inclusion maximal connected subgraph
hich does not contain a cut-vertex. Clearly, a block of a connected graph with at least one edge is either a single edge
alled a bridge of G, or is a 2-connected subgraph with at least three vertices, and we say that the block is nontrivial in
his case. A clique of a graph G is a set of pairwise adjacent vertices. Recall that a path P in a graph G is a connected
ubgraph whose vertices except at most two of them, called the end-vertices, have degree two and the end-vertices have
egree one or zero if P is a single-vertex path (called trivial). We refer to the vertices of degree two of a path as internal.
e write P = v1 · · · vs to denote the path with the vertices v1, . . . , vs such that vi−1vi ∈ E(P) for i ∈ {2, . . . , s}. Note that

his notation defines an ordering of vertices and we say that ⟨v1, . . . , vs⟩ is the path ordering of V (P). We denote by P1P2
he concatenation of two vertex-disjoint paths P1 and P2. A subpath is a connected subgraph of a path P . A cycle C in a

raph G is a connected subgraph where each vertex has degree two. We write C = v0 · · · vs to denote that C is the cycle
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c
onsisting of distinct vertices v1, . . . , vs such that v0 = vs and vi−1vi ∈ E(C) for i ∈ {1, . . . , s}. A path P = v1 · · · vs (a cycle
C = v0 · · · vs) in G is Hamiltonian if {v1, . . . , vs} = V (G).

A graph G is an interval graph if there is a family I of closed intervals of the line (called interval model or representation)
such that G is isomorphic to the intersection graph of I. A graph G is a permutation graph if it has an intersection model
consisting of straight segments between two parallel lines. Equivalently, G is a permutation graph if there is an ordering
⟨v1, . . . , vn⟩ of its vertices and a permutation π : {1, . . . , n} → {1, . . . , n} such that for 1 ≤ i < j ≤ n, vi and vj are adjacent
in G if and only of π (i) > π (j). A graph is a bipartite permutation graph if it is both a bipartite graph and a permutation
graph. A graph G is a cograph if it has no induced subgraph isomorphic to the path on four vertices. We refer to [6,22] for
detailed introductions to these graph classes.

For the proof of Theorem 1, we need the following definition.

Definition 1. For T ⊆ V (G) that is not a clique, the T -scattering number of G is given by

scT (G) = max{cT (G− S)− |S| | S is a T -separator}, (2)

and a set S∗ for which the maximum in (2) is achieved is called a T -scattering set.

Note that if T is a clique, then G has no T -separator.
We use the following observation.

Observation 3. Let T ⊆ V (G) be a set of vertices that is not a clique, Then scT (G) ≤ segT (G).

Proof. Let r = segT (G) and let S∗ be a T -scattering set. By definition, G − S∗ has p = |S∗| + scT (G) ≥ 2 connected
components G1, . . . ,Gp containing vertices of T .

Assume first that r = 0, that is, G has a cycle C that contains the vertices of T . Clearly, every cycle visiting G1, . . . ,Gp
has at least p vertices in S∗, since S∗ separates these connected components of G − S∗. Hence, |S∗| ≥ |S∗ ∩ V (C)| ≥ p =
|S∗| + scT (G) and scT (G) ≤ 0 = segT (G).

Now, if r ≥ 1, there exist r vertex-disjoint paths P1, . . . , Pr covering T in G. One can then add r edges to graph G in
order to link the end-vertices of these r paths and form a cycle. The resulting graph G′ therefore satisfies segT (G′) = 0
and from what precedes, we get scT (G′) ≤ 0. Finally, observe that adding an edge in a graph can decrease its T -scattering
number by at most one. This implies that scT (G) ≤ r = segT (G). □

To prove Theorem 2, we also need the following definition.

Definition 2. For a positive integer k, define the k-scattering number of a graph G as

sck(G) = max{c(G− S)− |S| | S is a separator of G s.t. |S| ≤ k− 1}, (3)

and sck(G) = −∞ if it has no separator of size at most k−1 (we assume that the empty set is a separator of a disconnected
graph).

We have the following observation that generalizes the necessary Hamiltonicity condition of Chvátal [9].

Observation 4. If G is a graph with at least 3 vertices that is k-cyclable for some k ≥ 3, then sck(G) ≤ 0.

Proof. By contrapose, let G be a graph such that sck(G) > 0. From Definition 2, G contains some separator of size at
most k − 1, since otherwise sck(G) = −∞ < 0. Consequently, from Definition 2 again, G contains a separator S of size
at most k − 1 such that c(G − S) > |S|. Form a set T ⊆ V (G) by picking exactly |S| + 1 vertices, each of them being
chosen from a different component of G− S. We have that T is not a clique, S is a T -separator of G, and cT (G− S) > |S|.
This gives scT (G) > 0 and so segT (G) > 0, from Observation 3, implying that T is not cyclable in G. Consequently, since
|T | = |S| + 1 ≤ k, G is not k-cyclable. □

We establish a number of auxiliary results that will allow us to dispense with easy instances of our problems. We start
with the case |T | ≤ 2 for Cycle Segment Cover.

Proposition 5. There is an algorithm for Cycle Segment Cover for |T | ≤ 2 that in linear time1 does the following:

• if |T | = 1, it returns a trivial solution that is the single vertex of T ;
• if r ≥ 2 and |T | = 2, it returns a trivial solution made of two trivial paths, each of them containing one single vertex that

belongs to T ;
• if r = 1 and |T | = 2, it either returns a path containing both elements of T or reports that the elements of T are in

distinct components of G;

1 Throughout the paper, linear time means O(n+m) time, i.e. linear in the size of the adjacency lists of the input graph.
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• if r = 0 and |T | = 2, it either returns a cycle containing T , or a set S ⊆ V (G) with |S| ≤ 1 such that the vertices of T are
in distinct components of G− S, or a trivial block of G containing the elements of T .

roof. The first three items are obvious. The last claim follows from the fact that a graph has a cycle containing two
istinct vertices u and v if and only if u and v are in the same nontrivial block (see, e.g., [17]). Recall that all the cut-
ertices and blocks of a graph can be found in linear time by the algorithm of Hopcroft and Tarjan [24]. Hence, it can be
ecided in linear time whether u and v are on a same cycle. Note that the algorithm of Hopcroft and Tarjan can be easily
odified to find such a cycle in linear time if it exists. Otherwise, if u and v are not in the same nontrivial block, they
re either end-vertices of the edge composing a trivial block or there is a cut-vertex x such that u and v are in distinct
omponents of G− x. □

roposition 6. k-Cyclability can be solved in linear time if k ≤ 2.

roof. Every graph is, by definition, 1-cyclable and from Menger’s theorem (see, e.g. [17]), it follows that a graph G is
-cyclable if and only if G is a 2-connected graph with at least three vertices. Since 2-connectedness can be checked in
inear time [24], the result follows. □

Similarly, Cycle Segment Cover is trivial for the special case when T is a clique.

bservation 7. An instance (G, T , r) of Cycle Segment Cover, where T is a clique and |T | ̸= 2, is a yes-instance with a
solution that is an arbitrary Hamiltonian cycle of the complete graph G[T ] (or a trivial solution if |T | = 1).

If G is a complete graph, then k-Cyclability is also trivial.

Observation 8. An instance (G, k) of k-Cyclability, where G is a complete graph distinct from K2 is a yes-instance with a
solution that is an arbitrary Hamiltonian cycle of the complete graph G (or a trivial solution if |V (G)| = 1).

We conclude this section with a lemma (Lemma 9) that will be useful in solving k-Cyclability for the considered graph
classes. We say that a graph class C is cycle-scattering dual if the duality theorem between the T -cycle-segment-cover
number and the T -scattering number holds on class C, as expressed formally in the following definition.

Definition 3. C is cycle-scattering dual if for every G ∈ C and nonempty T ⊆ V (G) that is not a clique, segT (G) =
max{scT (G), 0}.

Lemma 9. Let C be a cycle-scattering dual graph class. For each k ≥ 3, a graph G ∈ C with at least three vertices is k-cyclable
if and only if sck(G) ≤ 0.

Proof. If G is k-cyclable, then sck(G) ≤ 0 by Observation 4. Conversely, suppose that sck(G) ≤ 0. Assume, without loss of
generality, that G contains at least k vertices. Let T ⊆ V (G) have size k. If T is a clique, then T is cyclable by Observation 8.
Suppose that T is not a clique. Then there is a T -separator S in G. If |S| ≥ k, then cT (G− S) ≤ k ≤ |S|. If |S| ≤ k− 1, then
cT (G− S) ≤ c(G− S) ≤ |S|, because sck(G) ≤ 0. Therefore, scT (G) ≤ 0. Moreover, since C is a cycle-scattering dual graph
class, segT (G) = max{scT (G), 0} = 0 and so T is cyclable. But as T was an arbitrary set of k vertices, G is k-cyclable. □

3. Interval graphs

In this section, we prove Theorems 1 and 2 for interval graphs.
Our algorithms use a specific interval representation of the input graph. A clique path of a graph G is a sequence of

cliques C1, . . . , Cs of G such that

(i) C1 ∪ · · · ∪ Cs = V (G),
(ii) for every uv ∈ E(G), there is i ∈ {1, . . . , s} such that u, v ∈ Ci,
(iii) for every v ∈ V (G), if v ∈ Ci ∩ Cj for some 1 ≤ i < j ≤ s, then v ∈ Ch for h ∈ {i, . . . , j}.

It is usually assumed in the definition of a clique path (see, e.g., [6,22]) that C1, . . . , Cs are maximal cliques of G. Here,
we relax the standard definition and do not require the cliques to be inclusion-wise maximal. In particular, some cliques
may be identical or empty. It is well-known [6,22] that a graph is an interval graph if and only if it has a clique path. The
classical recognition algorithm for interval graphs of Booth and Lueker [4] constructs a clique path in time O(n+m). So
we can assume from now on that the input graph is given with its clique path.

For a vertex v ∈ V (G), we let ℓv = min{i ∈ {1, . . . , s} | v ∈ Ci} and rv = max{i ∈ {1, . . . , s} | v ∈ Ci}. We say that ℓv

and rv are the left bound and right bound of v respectively. Notice that the intervals [ℓv, rv] of the real line for v ∈ V (G)
form an interval representation of G. For 1 ≤ i ≤ j ≤ s, we denote Ci,j =

⋃j
h=i Ch.

We use the following well-known observation about separators of interval graphs that results from the definition of

a clique path (see, e.g., [6,22]).
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bservation 10. Let G be a connected interval graph with a clique path C1, . . . , Cs. If X = C1,i \ Ci+1 ̸= ∅ and
Y = Ci+1,s \ Ci ̸= ∅ for some i ∈ {1, . . . , s − 1}, then Ci ∩ Ci+1 is a separator of G such that X and Y are in distinct
omponents of G− (Ci ∩ Ci+1).

For clique paths composed of maximal cliques, we have a stronger property.

roposition 11 ([6,22]). Let G be an interval graph with a clique path C1, . . . , Cs where C1, . . . , Cs are pairwise distinct maximal
liques of G. Let also u ∈ Ci and v ∈ Cj be nonadjacent vertices for 1 ≤ i < j ≤ s. Then X ⊆ V (G) is an inclusion minimal
u, v}-separator if and only if X = Ch ∩ Ch+1 for some h such that ru ≤ h < lv .

In Section 3.1 we solve Cycle Segment Cover for interval graphs. In Section 3.2, we show how to compute the
-scattering number for interval graphs and use this result to solve k-Cyclability.

.1. Certifying algorithm for Terminal Cyclability and Cycle Segment Cover

In this subsection we construct an algorithm for Terminal Cyclability and then explain how to obtain an algorithm for
ycle Segment Cover as a corollary. By Observation 7, it is sufficient to solve Terminal Cyclability for a set of terminals
that is not a clique.

heorem 12. There is an algorithm that, given an instance (G, T ) of Terminal Cyclability where G is an interval graph and
is not a clique, in time O(n+m) returns either a cycle of G covering T or a T-separator S∗ with cT (G− S∗)− |S∗| > 0 that

ertifies a no-answer.

The next part of the subsection contains the proof of Theorem 12. We construct an algorithm that tries to finds a cycle
f a graph G that covers T . If it fails to do it, we use the information obtained by the algorithm to construct a T -separator.
he algorithm is inspired by the algorithm for finding a Hamiltonian cycle in interval graphs of Keil [29]. For us, it is more
onvenient to use a specially tailored variant of Algorithm 1 in [7] for a more general problem as this allows us to use
ome results of [7] as black boxes. For this, we need some auxiliary results.
Let G be an interval graph given together with its clique path C1, . . . , Cs, and let T ⊆ V (G) such that T is not a clique. If
has at least two distinct components containing vertices of T , then G has no cycle covering T and the algorithm returns
∗
= ∅. We can thus assume that the vertices of T are in the same component, so we can discard the other components

f they exist. Clearly, all this can be done in linear time. So we can safely assume from now on that G is connected. Our
lgorithm (Algorithm 1) scans the clique path of G and selects vertices depending on their bounds. In order to break ties
etween vertices having the same right bound (Lines 4 and 9) or the same left bound (Line 14), we use a pre-decided
rbitrary total order π on the vertices of G and always select the least possible vertex in π ; in the first iteration, when
1 = P2, the algorithm chooses P1. We define p = min{rv | v ∈ T } and q = max{ℓv | v ∈ T }. Let wb be the minimum
ertex of T with respect to π such that rwb = p and analogously, let we be the maximum vertex of T with respect to π
uch that ℓwe = q. Since T is not a clique, it follows that p < q, wb ̸= we and wbwe ̸∈ E(G).
Algorithm 1 tries to construct two (wb, we)-paths P1 and P2 that are internally vertex-disjoint such that T ⊆ V (P1) ∪

(P2). If the algorithm succeeds, then the concatenation of P1 and P2 is a cycle covering T . Initially, P1 = P2 = wb. Along
he algorithm, new vertices are attached to the two paths. Each of these new vertices is attached to the end-vertex of only
ne of the two paths, which we call the extremity of the path. For each Pi, the initial extremity of Pi is wb and whenever
e append a new vertex to the path, this vertex becomes the new extremity.

emma 13. If Algorithm 1 returns P1 and P2, then P1 and P2 are internally vertex-disjoint (wb, we)-paths that contain all the
ertices of T .

roof. Assume that Algorithm 1 returned P1 and P2. Since P1 and P2 are constructed by attaching vertices that have
ot been included in P1 and P2 in previous steps, P1 and P2 are paths. Notice that both P1 and P2 initially contain one
ingle vertex which is wb (Line 2) and that we is attached to both paths at Line 14 of the algorithm. Hence, P1 and P2 are
wb, we)-paths. Because for each t ∈ {p, . . . , q}, the vertices x ∈ T such that rx = t that have not been previously attached
o some path are attached to a path at Line 5, T ⊆ V (P1) ∪ V (P2). □

Our next aim is to show that if Algorithm 1 reports that T is not cyclable, then there is a T -separator S∗ such that
T (G − S∗) > |S∗|. The main observation that we shall use to construct the set S∗ is that for T = V (G), Algorithm 1
s precisely an algorithm for finding a Hamiltonian cycle in an interval graph. Our algorithm can be interpreted, to a
arge extent, as a variant of Keil’s algorithm [29] or of Algorithm 1 of Broersma et al. [7] (the main difference between our
lgorithm and theirs is that our algorithm does not try to include, in the constructed paths, all vertices that it encounters).
n particular, in [7] an explicit construction is given of a separator S of G such that c(G− S) > |S| for the case when G has
o Hamiltonian cycle. We adapt their approach by first altering our graph so as to allow the use of some of their results.
he rest of our argument is connected to the one in [7] but has its own features and is more than just a variation.
Assume that Algorithm 1 stops at Line 10 for t = t∗. Note that from the range of variation of t in the main loop (Line 3),

e have t∗ < q. Denote by P∗1 and P∗2 the paths constructed by the algorithm before it quits. Before we can proceed, we

eed some further notation from [7].
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Algorithm 1: An algorithm for interval graphs that finds two internally vertex-disjoint (wb, we)-paths P1 and P2
uch that T ⊆ V (P1) ∪ V (P2).
1 begin
2 let P1 = P2 = wb;
3 for t = p to q− 1 do
4 choose Pi ∈ {P1, P2} such that the extremity of Pi has the leftmost right bound;
5 attach the vertices x ∈ T \ (V (P1) ∪ V (P2)) s.t. rx = t to Pi;
6 for i = 1, 2 do
7 if the extremity of Pi has right bound at most t then
8 if the subset of vertices y ∈ (Ct ∩ Ct+1) \ (V (P1) ∪ V (P2)) is not empty
9 then extend Pi by attaching such a y having the leftmost right bound;

10 else report that T is not cyclable and quit;
11 end
12 end
13 end
14 attach the vertices x ∈ T \ {we} s.t. lx = q to P1, then attach we to both P1 and P2;
15 return P1 and P2;
16 end

For real numbers a ≤ b, [a, b] = {x ∈ R | a ≤ x ≤ b}, [a, b) = {x ∈ R | a ≤ x < b}, and (a, b) = {x ∈ R | a < x < b}. If
vertex u has been processed by the algorithm and attached to a path at some step t of the for loop at Lines 3–13, we say
that u has been activated at time au = t . We define awb = p. If u is activated and a vertex v has been attached to u at some
step t ′ ≥ t of the for loop, we say that u has been deactivated at time du = t ′. Thus, ℓu ≤ au ≤ du ≤ ru and u is said to be
ree, active or depleted on, respectively, the intervals [ℓu, au), [au, du) and [du, ru]. Note that some of these intervals may
e empty. Whenever we say that u is free (respectively, active or depleted) on an interval I of the real line, this means
hat I ⊆ [ℓu, au) (respectively, I ⊆ [au, du) or I ⊆ [du, ru]). We also say that v ∈ V (P∗i ) for i ∈ {1, 2} is a descendant of
u ∈ V (P∗i ) if v was attached to P∗i after u and that v is the last descendant on an interval I if v is the last vertex attached
to P∗i at steps t ∈ I of the for loop at Lines 3–13. A vertex v is said to be renounced if it is missed by the algorithm, that
is, ℓv ≤ t∗ and v /∈ V (P∗1 ) ∪ V (P∗2 ). The set of renounced vertices is denoted by R.

Let G∗ = G− R, and let T ∗ = V (G) \ R. For i ∈ {1, . . . , s}, denote C∗i = Ci \ R. Clearly, C∗1 , . . . , C∗s is a clique path of G∗.
Recall that for 1 ≤ i ≤ j ≤ s, C∗i,j =

⋃j
h=i C

∗

h .
The description of Algorithm 1, with tie-breaking order 1 π , implies the following property.

Lemma 14. Algorithm 1 for the instance (G∗, T ∗) of Terminal Cyclability, with tie-breaking order π , quits at Line 10 and
constructs the paths P∗1 and P∗2 .

As mentioned above, the fact that our Algorithm 1 for (G∗, T ∗) works along the same lines as Algorithm 1 of [7] will
allow us to use the following Lemma 2.2 of [7]. We provide the proof for completeness.

Lemma 15 ([7]). Let t ∈ {p, . . . , q− 1} such that Algorithm 1 with input (G∗, T ∗) either finishes iteration t of the for loop at
Lines 3–13 or terminates at Line 10 within iteration t. If there is at least one depleted vertex on the interval (t, t + 1), then
there exists an integer t ′ with p ≤ t ′ < t and with the following properties:

(i) C∗t ′+1,t \ (C
∗

t ′ ∪ C∗t+1) ̸= ∅,
(ii) there exists a unique vertex u ∈ C∗t ′ ∩ C∗t+1 such that u is active on (t ′, t ′ + 1) and u is depleted on (t, t + 1),
(iii) all vertices that are active on (t, t+1) are also active on (t ′, t ′+1), with the only possible exception of the last descendant

v of u on (t ′, t + 1) which may be free on (t ′, t ′ + 1),
(iv) all vertices that are depleted on (t, t + 1) are also depleted on (t ′, t ′ + 1), except u which is active on (t ′, t ′ + 1),
(v) all vertices that are active on (t ′, t ′ + 1) are also active on (t, t + 1), except u which is depleted on (t, t + 1), and
(vi) all vertices that are free on (t ′, t ′ + 1) are also free on (t, t + 1), with the only possible exception of v if it is active on

(t, t + 1).

Proof. The proof is almost identical to the proof of Lemma 2.2 of [7].
Assume that there is at least one depleted vertex during the interval (t, t + 1). Notice that t > p, because there is no

vertex with the right bound greater than p which is deactivated within the first iteration. Let u be a vertex with the latest
deactivation time among those that are depleted during (t, t + 1). This vertex is included in one of the paths constructed
by the algorithm. Without loss of generality, for the rest of the proof, assume that u is in P1.

We will show that this vertex u is unique. Notice that all but at most one of the vertices deactivated during a given
iteration of the loop on lines 3–13 (say, at time t) have the right bound equal to t and hence cannot be depleted during a
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onempty interval. The only possible exception is the extremity of the path P1 chosen at line 4 (and only if it is deactivated
ue to attaching a vertex to P1 at the next line).
We define Q to be the subpath of P1 constructed within iteration t formed by all descendants of u, except that if the

ast descendant v of u is active during (t, t + 1), we do not include v in Q . Observe that the successor of u has the same
deactivation time as u, hence it is distinct from v, and therefore Q is nonempty. Let ℓQ be the leftmost left bound among
the left bounds of vertices of Q , and let rQ be the rightmost right bound.

If P1 has a vertex that is active during (t, t + 1), this vertex is v and it is not a vertex of Q . Thus, all vertices of Q are
either depleted during (t, t + 1) or their right bounds are at most t . By the choice of u, none of them belongs to C∗t+1, and
hence rQ ≤ t . We choose t ′ = min{ℓQ − 1, p}. Notice that for w ∈ V (Q ), rw ≥ du. Thus, if we let w be the vertex of Q
such that ℓw = ℓQ , then w is free during (t ′ + 1, du).

Observe that all vertices of Q are in C∗t ′+1,t \ (C
∗

t ′ ∪ C∗t+1). Hence, this set is not empty and property (i) is proved.
To show (ii), observe that since the deactivation of u happened when its successor x in P1 was free, we have du ≥ ℓx.

Hence, x cannot be depleted during (t ′, t ′ + 1). Observe that u ̸= wb, as wb is not depleted during (t − 1, t). Therefore, u
has a predecessor in P1. Denote it by u′. If u′ was adjacent to the vertex w of Q , then the algorithm would choose w as
the successor of u′, since ru′ > rQ ≥ rw . Consequently, the left bound of u′ is at most t ′, so u is active during (t ′, t ′ + 1).
The uniqueness of u will follow easily once we establish property (iv).

To show (iii), assume that y is a vertex different from v that is active during (t, t + 1) but has been activated after t ′.
Note that y is in P2. Since wb is not active during (t, t + 1), y ̸= wb and y has a predecessor y′. We first suppose that y is
active during (du−1, du). The vertex y′ is deactivated at some time t ′′ such that t ′+1 ≤ t ′′ ≤ du−1. Hence, it is adjacent
to the previously defined vertex w of Q that is free during (t ′ + 1, du). Since rw ≤ rQ < t + 1 ≤ ry, the successor of y′
should be w rather than y, a contradiction.

It follows that y is not active during (du − 1, du). The path P2 contains a vertex y′′ that is active during (du − 1, du),
where y is a descendant of y′′. Observe that y′′ is not active during (t, t + 1) because y is. Suppose that the right bound of
y′′ is at least t + 1. Then y′′ is depleted during (t, t + 1), so by the choice of u, y′′ is deactivated before time du and cannot
be active during (du − 1, du), a contradiction.

Thus, the right bound of y′′ is not larger than t . But then P2 ∋ y′′ should have been chosen at line 4 of the algorithm
instead of P1 ∋ u.

For (iv), assume that some z ̸= u is depleted during (t, t + 1), but dz ≥ t ′ + 1. By the choice of u, we have dz < du.
Without loss of generality, assume that z was chosen such that dz is maximum. Note that z is a vertex of P2. If P2 contains
a vertex z ′ that is active during (t, t + 1), then by (iii), z ′ is active during (t ′, t ′ + 1) and we conclude that z cannot be
included in P2; a contradiction.

It follows that no vertex of P2 is active during (t, t + 1), that is, t = t∗. Moreover, by the choice of z, the right bounds
of all its descendants are at most t , because if there is a descendant z ′ of z with rz′ ≥ t + 1, then z ′ is depleted during
(t, t + 1) and dz′ > dz , a contradiction. The path P2 must contain a vertex that is active during (du − 1, du). However, this
vertex has a right bound smaller than the one of u, contradicting the correct execution of the algorithm at line 4.

To obtain (v), assume that a ̸= u is active during (t ′, t ′+ 1) but not active during (t, t + 1). The vertex a is included in
P2. If one of the descendants of a is active during (t, t+1), then by (iii), this vertex is active during (t ′, t ′+1) contradicting
the activeness of a at the same time. Similarly, if a or one of its descendants is depleted during (t, t + 1), then by (iv),
this vertex is depleted during (t ′, t ′ + 1) and a cannot be active. It follows that the right bounds of a and its descendants
are less than or equal to t . Note that P2 has a vertex that is active during (du − 1, du). Therefore, P2 should be selected by
the algorithm at line 4 instead of P1 (whose extremity is u); a contradiction.

It remains to prove (vi). Let b be a vertex that is free during (t ′, t ′ + 1) and not free during (t, t + 1). Moreover, we
assume that b ̸= v if v is active during (t, t + 1). Our algorithm does not terminate until time t . Therefore, b is included
in P2 which has a vertex that is active during (t ′, t ′ + 1). By (v), this vertex remains active until t + 1, but it means that
b is not included in P2. □

It is useful to have one additional property (vii).

Lemma 16. Let t ∈ {p, . . . , q − 1} such that Algorithm 1 with input (G∗, T ∗) either finishes iteration t of the for loop at
Lines 3–13 or terminates at Line 10 within iteration t. If there is at least one depleted vertex on the interval (t, t + 1), then
there exists an integer t ′ with p ≤ t ′ < t that satisfies the conditions (i)–(vi) of Lemma 15 and the following additional
property:

(vii) there is x ∈ V (G∗) such that ax = t ′ and x is active during (t ′, t ′ + 1).

Proof. By Lemma 15, there is t ′ < t such that the conditions (i)–(vi) are satisfied. We choose the minimum t ′ that satisfies
(i)-(vi) and show that (vii) holds for t ′.

Let us first show that there exists a vertex x ∈ V (G∗) such that ax = t ′. Assume, towards a contradiction, that there is
no x with ax = t ′. We prove that (i)–(vi) are satisfied for t ′′ = t ′ − 1, which will contradict the minimality of t ′.

For condition (i), observe that C∗t ′+1,t \ (C
∗

t ′ ∪ C∗t+1) is exactly the subset of vertices that are involved in some of the
cliques between C∗t ′+1 and C∗t and in no clique out of this range. Therefore, since t ′′ < t ′, we have C∗t ′+1,t \ (C

∗

t ′ ∪ C∗t+1) ⊆
C∗ \ (C∗ ∪ C∗ ), implying that condition (i) holds for t ′′ as well.
t ′′+1,t t ′′ t+1
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If y ∈ V (G∗) is active on (t ′, t ′ + 1), then y is active on (t ′′, t ′′ + 1) given that ay ̸= t ′. This immediately implies that
(ii) and (iii) are satisfied. If y ∈ V (G∗) is depleted on (t ′, t ′ + 1), then y is depleted on (t ′′, t ′′ + 1) because no vertex was
activated at time t ′. Therefore, (iv) holds. If y ∈ V (G∗) is active on (t ′′, t ′′ + 1), then y is still active on (t ′, t ′ + 1) as no
vertex was activated at time t ′ by the assumption we made towards a contradiction. Hence, (v) holds. Finally, suppose
that y ∈ V (G∗) is free on (t ′′, t ′′ + 1). Then it is either free on (t ′, t ′ + 1) or ry = t ′ as it was not activated at time t ′. Since
every vertex of G∗ that has a right bound before t∗ should be activated at some time, then we have ry > t ′ and y is free
on (t ′, t ′ + 1). This implies that (vi) holds. Therefore, (i)-(vi) are satisfied for t ′′ = t ′ − 1, giving the desired contradiction.

Since there exists some vertex activated at time t ′, consider one such vertex x that is the last to be attached to one of
the two paths at time ax = t ′. If x is not active on (t ′, t ′ + 1) (that is, dx = t ′) then the fact that t ′ < t ≤ t∗ implies that
the algorithm must have attached some vertex y to the path containing x, at time t ′ and after x was attached. But this
implies that ay = t ′, contradicting the choice of x. □

We now use Lemma 16 to construct the following decreasing sequence t1, t2, . . . of positive integers. We set t1 = t∗.
Then we construct ti+1 from the already constructed ti as follows. If, for t = ti > p, there is at least one depleted vertex
on (t, t + 1), then find t ′ < t such that the conditions (i)–(vii) of Lemmas 15 and 16 are satisfied and set ti+1 = t ′. We
stop the construction if there is no depleted vertex on (t, t + 1) for t = ti.

Clearly, the constructed sequence is finite and we denote by k the number of its elements, that is, the sequence is
t1, . . . , tk.

For i ∈ {1, . . . , k}, we define Si = C∗ti ∩ C∗ti+1 and let S∗ =
⋃k

i=1 Si. We use the following crucial property of S∗ that was
shown in the proof of Theorem 2.1 of [7]. We provide the proof for completeness.

Lemma 17 ([7]). The set S∗ is a separator of G∗ and

c(G∗ − S∗) ≥ k+ 1 > |S∗|.

Proof. The subgraphs G∗[C∗1,tk ] − S∗ and G[C∗t1+1,s] − S∗ contain wb and we, respectively; in particular, they have at least
one component each. By Lemma 15(i), G∗[C∗ti+1+1,ti ] − S∗ has at least one component for each i ∈ {1, . . . , k− 1}. Since all
these components are distinct components of G∗ − S∗, the graph G∗ − S∗ has at least k+ 1 components.

By Lemma 15 (ii), (v) and (vi), (C∗ti+1 ∩C
∗

ti+1+1
)\ (C∗ti ∩C

∗

ti+1
) contains only vertices that are depleted during (ti+1, ti+1+1)

for each i ∈ {1, . . . , k − 1}. Further, C∗t1 ∩ C∗t1+1 has no vertices that are free during (t, t + 1), because at least one path
is not extendable at time t1. Also this set has at most one vertex that is active during (t, t + 1). Hence, the remaining
vertices are depleted. By Lemma 15 (ii) and (iv), for each i ∈ {1, . . . , k − 1}, exactly one vertex that is depleted during
(ti, ti+1) has a different status during (ti+1, ti+1 + 1) and is active. It follows that |S∗| ≤ 1+ (k− 1) = k < c(G∗ − S∗). □

From Lemma 17, we can establish an essential result for the proof of Theorem 12.

Lemma 18. The set S∗ is a T-separator in G and

cT (G− S∗) > |S∗|.

Mindful of Lemma 17, Lemma 18 intuitively states that the set R of renounced vertices of G does not play an important
role in finding a T -separator of G whose removal ‘‘maximizes’’ the number of resulting components containing some
member of T .

Proof. Let Xk = C∗1,tk \C
∗

tk+1
, Xi = C∗ti+1+1,ti \ (C

∗
ti+1 ∪C

∗

ti+1
) for i ∈ {1, . . . , k−1} and X0 = C∗t1+1,s \C

∗
t1 . We have two claims.

Claim 19. cT (G∗ − S∗) ≥ k+ 1.

It suffices to prove that each Xi has nonempty intersection with T . Let us first argue that wb ∈ Xk and we ∈ X0.
As the main loop of Algorithm 1 (Lines 3–13) starts iterating with t = p, there is no depleted vertex on (t, t + 1) for

t < p. Hence tk ≥ p and given that wb ∈ Cp \ Cp+1 it follows that wb ∈ C∗p \ C
∗

p+1. In other words, wb ∈ C∗1,p \ C
∗

p+1 and so
wb ∈ Xk. Similarly, we ∈ Cq \ Cq−1 = C∗q \ C

∗

q−1 since t∗ < q, which implies that we ∈ C∗q,s \ C
∗

q−1 and so we ∈ X0.
Now fix some i ∈ {1, . . . , k − 1}. By construction of the sequence t1, . . . , tk the conditions (i)–(vii) of Lemmas 16 are

satisfied with t = ti and t ′ = ti+1. By (ii), there is a vertex u ∈ C∗ti+1 ∩C
∗

ti+1
that is active on (ti+1, ti+1+1) and depleted on

(ti, ti+ 1). This means that ti+1+ 1 ≤ du ≤ ti and ru ≥ ti+ 1. From these bounds, some vertex x must have been attached
to the path with extremity u at time t = du in Line 5 of Algorithm 1 and so, again by the algorithm, must be a member
of T with rx = du < ti + 1.

If we can show that x ∈ Xi = C∗ti+1+1,ti \ (C
∗
ti+1 ∪ C∗ti+1), then the claim follows. Since rx < ti + 1, then x in neither free

nor active on (ti, ti + 1). Hence, by (vi), x is also not free on (ti+1, ti+1 + 1). Therefore, ti+1 < ℓx. Since rx < ti + 1, then
x /∈ C∗ti+1 ∪ C∗ti+1. This means that x ∈ Xi and the claim is proved.

Claim 20. For all distinct i, j ∈ {0, . . . , k} and every x ∈ X and y ∈ X , x and y are in distinct components of G− S∗.
i j

155



C. Crespelle and P.A. Golovach Discrete Applied Mathematics 313 (2022) 147–178

t
d
w

r

z
1

c
g

a
w
w
i

w

P

o
c
v
c

l

G
t
t

p∑
t

A
t

C

v
t
t

s

y

From the definition of S∗ and by Observation 10, S∗ separates Xi and Xj in G∗ = G[V \ R] and we now want to prove
hat S∗ also separates Xi and Xj in G. In other words, we want to prove that the vertices of R do not connect vertices from
istinct Xi’s. To this purpose, it suffices to show that for every z ∈ R there is i ∈ {0, . . . , k} such that ti+1+1 ≤ ℓz ≤ rz ≤ ti,
here we assume that t0 = s and tk+1 = 0.
Suppose, towards a contradiction, that there is some z ∈ R and some i ∈ {1, . . . , k} with the property that ℓz ≤ ti and

z > ti, and assume without loss of generality that i is minimum with respect to these conditions.
We first show that i > 1. Indeed, if i = 1 then ℓz ≤ t1 = t∗ and rz > t∗. But as z is a member of R, it follows that
∈ (Ct∗ ∩Ct∗+1)\ (V (P1)∪V (P2)). But (Ct∗ ∩Ct∗+1)\ (V (P1)∪V (P2)) = ∅ from the condition at Line 8, given that Algorithm
quits at Line 10 at time t = t∗, a contradiction.
Therefore i > 1. Recall in this case that ti was constructed from t = ti−1 by choosing ti < t such that for t ′ = ti the

onditions (i)–(vii) of Lemmas 15 and 16 hold. To finish off the proof of the claim, we will show that ℓz ≤ ti ≤ ti−1 < rz ,
iving the final contradiction since, by the minimality of i, there is no z ∈ R with ℓz ≤ ti−1 and rz > ti−1.
We already know that ℓz ≤ ti ≤ ti−1. By (vii), there is x ∈ V (G∗) such that ax = ti and x is active on (ti, ti + 1). By (ii)

nd (v), x is either active or depleted on (ti−1, ti−i + 1). In either case, rx ≥ ti−1 + 1 > ti. Given that ax = ti (that is, x
as attached to some path at the ti-th iteration of the for loop of Algorithm 1 at Lines 3–13) and rx > ti, it follows that x
as attached to some path at Line 9 of Algorithm 1. Hence, the right bound of x is less than or equal to that of z, which

mplies rz ≥ ti−1 + 1 and the claim is proved.
It follows that

cT (G− S∗) ≥ k+ 1 > |S∗|,

here the first inequality follows from Claims 19 and 20 and the second from Lemma 17. □

We are now ready to complete the proof of Theorem 12.

roof of Theorem 12. We summarize the main steps of our algorithm and analyze its running time.
As argued earlier, we can safely assume that G is connected. As mentioned above, we start by applying the algorithm

f Booth and Lueker [4] to construct a clique path C1, . . . , Cs of G in time O(n + m). Note that the algorithm outputs a
lique path where each clique is inclusion maximal. In particular, s ≤ n. The algorithm also computes ℓv and rv for each
ertex v ∈ V (G). This allows us to find the vertices wb and we in time O(n). Also in time O(n), we construct the list L that
ontains the set of right bounds of the elements of T \ {wb, we} in increasing order.
Next, we run Algorithm 1. Notice that the only computations of the algorithm involve, at each iteration t of the for

oop, deciding

(a) whether the path under consideration should be extended, and
(b) if (a) holds, then which vertex of G is to be attached to its extremity.

iven that, by the algorithm, a path is extended only if the right bound of its extremity or of some vertex of T is precisely
, computation (a) takes constant time with the list L at hand at each iteration t of the for loop. Hence, computation (a)
akes O(n) time by the end of the algorithm.

Whenever a path is to be extended, we must consider the neighborhood of its extremity. As we only extend one
ath at a time, by the end of the algorithm the number of vertices that have been considered to be attached is at most

v∈V dG(v) = 2m. Hence computation (b) takes O(m) time by the end of the algorithm. Thus Algorithm 1 takes O(n+m)
ime.

If Algorithm 1 finishes at Line 15 and outputs two paths P1 and P2, then we are done by Lemma 13. Otherwise,
lgorithm 1 finishes at Line 10 so we work backwards through the algorithm and need to describe how to construct
he sequence t1, . . . , tk, the set S∗ =

⋃k
i=1 Si and the paths P∗1 and P∗2 in O(n+m) time.

As we run the algorithm, we record

(a) for each vertex in P∗1 ∪ P∗2 , its activation and depletion time and
(b) for each t ∈ {p, . . . , q}, the set At of vertices that are active on (t, t + 1).

learly, all these auxiliary computations can be done in time O(n).
Let Q = V (P∗1 )∪V (P∗2 ) be ordered with respect to their left bounds (break ties arbitrarily). Denote by δi the number of

ertices that are depleted on (ti, ti+1) for i ∈ {1, . . . , k}. Scanning Q , starting from its last vertex and working backwards
owards its first vertex, we find Si, ti and δi for each i ∈ {1, . . . , k}. The set S1 together with δ1 is computed directly in
ime O(n). It remains to show how to compute ti+1, Si+1 and δi+1 if ti, Si and δi are given.

If δi = 0, the construction stops. Otherwise, for t = ti, we successively consider values of t ′ = t − 1, . . . and stop as
oon as t ′ satisfies conditions (i)–(vii) of Lemma 16 which, by the lemma, is guaranteed to happen since δi > 0.
To verify (vii), we only need to check whether there is x ∈ At ′ such that ax = t ′.
To verify (i), we work backwards through Q , starting from its last element towards its first, until we find some vertex
∈ Q such that ℓy ≥ t ′ + 1. If such a vertex exists, then (i) holds. Otherwise, (i) fails.
Conditions (ii), (iii) and (v) can be easily verified by considering A ′ and A .
t t
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For (iv), we count the number of vertices that are depleted on (t ′, t ′ + 1) whose right bounds are at least t + 1. Then
comparing this number with δt , we can decide whether (iv) holds. Finally, to check (vi), we consider the free vertices of
C∗t ′ ∩ C∗t ′+1.

To evaluate the total running time, notice that we can trace Q once only, because we can simply consider, for each
alues of t ′ and t , the subset of Q from the place we stopped in the preceding step. Hence, the total number of operations
nvolving Q is O(n). Moreover, for each x ∈ At ′ with ax = t ′, we have C∗t ′ ∩ C∗t ′+1 ⊆ NG∗ [x]. Hence, considering C∗t ′ ∩ C∗t ′+1
an be done in time that is proportional to |NG∗ (x)|. Since each such x is unique for distinct values of t ′, it follows that
he total number of operations is O(n+m). Hence, all the sets Si for i ∈ {1, . . . , k} can be computed in O(n+m) time.

It follows that S∗ = ∪k
i=1Si can be constructed in time O(n + m), as needed. By Lemma 18, S∗ is a T -separator with

T (G− S∗)− |S∗| > 0 and hence certifies a no-answer. □

To avoid possible misunderstandings, note that the assumption that the cliques of the clique path of G in the proof of
heorem 12 are maximal is crucial for the running time analysis. But it is also necessary to prove Lemmas 13–18 without
his maximality assumption, since the cliques C∗1 , . . . , C∗s of the graph G∗ (obtained from G by the removal of the set of
enounced vertices) are not necessarily maximal. In other words, it is essential to start off with an input graph whose
lique path consists of maximal cliques but to also prove statements that concern interval graphs whose clique path may
ontain nonmaximal cliques.
Using Theorem 12, we can now describe, in Corollary 22, how to obtain an algorithm for Cycle Segment Cover and

rove Theorem 1 for interval graphs. First, we state an auxiliary folklore observation (see, e.g., [13]).

bservation 21. Let G be a graph, T ⊆ V (G) and k be a positive integer. Let G′ be the graph obtained from G by adding k
ertices that are universal in G′. Then scT (G) ≤ k if and only if scT (G′) ≤ 0.

roof. Observe that the separators of G′ are exactly the subsets S ′ of vertices containing both some separator S of G and
he k introduced universal vertices, which gives |S ′| = |S|+k. On the other hand, observe that the connected components
f G′ \ S ′ are the same as the connected components of G \ S and that the terminals are also the same in G′ and in G. □

orollary 22. There is an algorithm that, given an instance (G, T , r) of Cycle Segment Cover where G is an interval graph
nd T is not a clique, in time O(n + m) returns either a T-cycle-segment cover of size at most r or a T-separator S∗ with
T (G− S∗)− |S∗| > r that certifies a no-answer.

roof. If r = 0, then an instance (G, T , 0) of Cycle Segment Cover is precisely an instance (G, T ) of Terminal Cyclability
nd the corollary follows by Theorem 12. So we can assume, from now on, that r ≥ 1.
Let G′ be the interval graph obtained2 from G by adding a set X of r universal vertices to G and consider (G′, T ) as an

nstance of Terminal Cyclability. If G′ contains a cycle C that covers T and does not intersect X , then C also covers T in
. So we can assume that C ∩ X ̸= ∅ which, in turn, implies that C − X consists of a family of at most r mutually disjoint
aths that covers T , as required.
Let us now consider the case where G′ is not T -cyclable. By Theorem 12, G′ contains a T -separator S such that

T (G′ − S) > |S| and, as each vertex of X is universal and S is a separator, X ⊆ S. Let S∗ = S \ X . Then S∗ is a T -separator
n G such that

cT (G− S∗) = cT (G′ − S) > |S| = |S∗| + r,

o that rearranging gives us cT (G− S∗)− |S∗| > r as needed.
To complete the proof, it remains to argue that the algorithm from Theorem 12 with input (G′, T ) can be adapted to run

n time O(n+m), where n = |V (G)| and m = |E(G)|. (The reader might suspect that replicating the proof of Theorem 12
s sufficient for this purpose. It is, however, possible that |E(G′)| is not O(m) so that the size of G′ is not linear in the size
f G so we need to more carefully analyze Algorithm and the procedure that is used to construct S∗.)
Instead of running Algorithm 1 directly with input (G′, T ), we rather run it with input (G, T ) as long as the if condition

f Line 8 in Algorithm is satisfied. If the algorithm returns P1 and P2, then G is T -cyclable and there is nothing to prove.
o assume that at some iteration of the for loop, it was impossible to attach a new vertex from G to some extremity of
he path under consideration, i.e. the if condition of Line 8 is not satisfied. In this case, we augment our algorithm by
ttaching an arbitrary vertex x of X (not included in either paths so far) to this path. It is clear that this is possible as
ong as there is a vertex of X not included in either paths. Given the list L at hand from the proof of Theorem 12, the
epetition of this procedure is an algorithm that runs in time O(n+m) that either returns a yes-instance of Cycle Segment
over or terminates when every vertex of X has been included in one of the paths at the time the if condition of Line 8
n Algorithm 1 is not satisfied.

In the latter case, we must describe how to construct the set S∗ in O(n + m) time. As we run the above procedure,
e store in a list L′, for each interval (t, t + 1), the (size of the) subsets of vertices of X that are active, depleted and

ree during (t, t + 1). This can be done in O(n) time as we can simply determine the activation and depletion times of

2 Note that the class of interval graphs is stable under the addition of a universal vertex.
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ach vertex of X as these are universal. We then proceed just as in the proof of Theorem 12 by constructing the sequence
1, . . . , tk and the sets S1, . . . , Sk and let S∗ = ∪k

i=1Si. Since, using the list L′, we can easily accommodate the set X when
erifying conditions (i)–(vii) as we construct the sequence t1, . . . , tk, this completes the proof. □

.2. k-Cyclability for interval graphs

In this subsection we prove Theorem 2 for interval graphs. For this, given an interval graph G which is not complete,
e shall determine, in polynomial time, the largest integer k such that G is k-cyclable. Corollary 22 immediately gives the

ollowing corollary.

orollary 23. The class of interval graphs is cycle-scattering dual (see Definition 3).

Proof. Let G = (V , E) be an interval graph and let T ⊆ V be a set of terminals. We want to prove that segT (G) =
ax{scT (G), 0} (see Definition 3). We denote A the algorithm whose existence is stated in Corollary 22.
From Observation 3, we have scT (G) ≤ segT (G). Then, if segT (G) = 0, we indeed have segT (G) = max{scT (G), 0}.

On the other hand, if segT (G) > 0, thanks to Observation 3 again, we just need to prove that scT (G) ≥ segT (G). To
this purpose, simply run Algorithm A on the instance (G, T , segT (G) − 1). Since, by definition, it is impossible to cover
the vertices of T using only segT (G) − 1 paths in G, then, from Corollary 22, Algorithm A provides a set S∗ such that
cT (G− S∗)− |S∗| ≥ segT (G). This implies that scT (G) ≥ segT (G). □

By Lemma 9 and Corollary 23, to solve k-Cyclability on interval graphs, it is sufficient to construct a polynomial
algorithm that computes the k-scattering number of G for any k ≤ n− 1. Afterwards, the only task remaining will consist
in finding the largest integer k such that sck(G) ≤ 0.

We start with the following lemma.

Lemma 24. Let G be an interval graph, let C1, . . . , Cs be a clique path of G, where C1, . . . , Cs are pairwise distinct maximal
cliques of G, and let S be a separator of G. Then there exist t1, . . . , tr with 1 ≤ t1 < · · · < tr < s such that

S ′ =
r⋃

i=1

(Cti ∩ Cti+1) ⊆ S (4)

is a separator of G and c(G− S ′) ≥ c(G− S).

Proof. Note that since G has a separator S, G is not a complete graph, that is, s ≥ 2. By Proposition 11, the minimal
separators of G are the sets Ct ∩ Ct+1 for t ∈ {1, . . . , s − 1}. This means that there is t ∈ {1, . . . , s − 1} such that
Ct ∩ Ct+1 ⊆ S. Consider the set of indices I = {t ∈ {1, . . . , s− 1} | Ct ∩ Ct+1 ⊆ S}. We then denote I = {t1, . . . , tr} with
t1 < · · · < tr . Let S ′ =

⋃r
i=1(Cti ∩ Cti+1) ⊆ S.

We show that for any two distinct vertices u and v of G− S that are in distinct components of this graph, u and v are
in distinct components of G− S ′ as well. By Proposition 11, if u and v are in distinct components of G− S, then there is
t ∈ {1, . . . , s− 1} such that Ct ∩ Ct+1 ⊆ S is a minimal {u, v}-separator in G. By the construction of I, we have t ∈ I and,
therefore, Ct ∩ Ct+1 ⊆ S ′. Hence, u and v are in distinct components of G− S ′.

We obtain that if any two vertices are in distinct components of G− S, they are also in distinct components of G− S ′.
We conclude that c(G− S ′) ≥ c(G− S). □

Informally, the above lemma states that, in computing the k-scattering number, one can restrict one’s attention to
separators of a special form, which we call canonical separators.

Definition 4. A canonical separator of an interval graph G is a separator of G that is the union of some minimal separators
of G. By convention, when G is not connected, we also say that the empty set is a canonical separator.

A direct consequence of Lemma 24 is that, for an interval graph G, sck(G) can be equivalently defined as

sck(G) = max{c(G− S)− |S| | S is a canonical separator of G s.t. |S| ≤ k− 1}. (5)

Our algorithm follows a dynamic programming scheme on the given clique path C1, . . . , Cs of a noncomplete interval
graph G composed by pairwise distinct maximal cliques, which we artificially extend with empty cliques C0 = Cs+1 = ∅,
for convenience of notations.

For each integer i ∈ {1, . . . , s+1}, we denote Gi = G[C1,i] and ni = |C1,i|. Along our algorithm, we dynamically compute,
for each i ∈ {1, . . . , s}, a table that we denote Di, indexed by integers from 0 to ni − 1. For each j ∈ {0, . . . , ni − 1}, Di is
determined by

Di(j) = max{c(Gi − S)− |S| | S is a canonical separator of Gi+1 s.t.
|S| ≤ j and Ci ∩ Ci+1 ⊆ S}
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henever Gi+1 has a canonical separator S of size at most j such that Ci∩Ci+1 ⊆ S, and Di(j) = −∞ otherwise. Remember
hat, from Proposition 11, the minimal separators of Gs are the sets Ct ∩ Ct+1 for t ∈ {1, . . . , s− 1}. Since Cs ∩ Cs+1 = ∅, it
ollows that the minimal separators of Gs and Gs+1 are the same and so are their canonical separators (see Definition 4).
oreover, note that Gs = G[C1,s] = G. Therefore, by taking i = s in the definition of Di(j) above, we obtain

Ds(j) = max{c(G− S)− |S| | S is a canonical separator of G s.t. |S| ≤ j}

o that, from Eq. (5), Ds(j) = scj+1(G), that is, Ds is the table of values of the k-scattering numbers for k ∈ {1, . . . , n}.
The dynamic programming scheme we use is initialized by filling the table D1. Since G is not a complete interval graph,

we have that s ≥ 2 and G2 has a unique canonical separator C1 ∩ C2. Hence, we set D1(j) = −∞ if 0 ≤ j < |C1 ∩ C2| and
D1(j) = 1 − |C1 ∩ C2| if |C1 ∩ C2| ≤ j ≤ n1 − 1. We shall then use the recursion formula given by Lemma 25 in order to
compute Ds. For every pair of indices α, β ∈ {1, . . . , s} such that α ≤ β define

cα,β = c(G[Cα,β \ (Cα−1 ∪ Cβ+1)]),

and set δi = |Ci ∩ Ci+1| for i ∈ {1, . . . , s− 1} and δs = +∞.

Lemma 25. Let G be a noncomplete interval graph and C1, . . . , Cs a clique path of G composed by pairwise distinct maximal
cliques together with empty cliques C0 and Cs+1. For every i ≥ 2 and every k ∈ {0, . . . , ni − 1},

(i) if k < |Ci ∩ Ci+1| then Di(k) = −∞, and
(ii) if k ≥ |Ci ∩ Ci+1|, then

Di(k) = max
1≤j≤i−1

{c1,i − δi, cj+1,i − |(Ci ∩ Ci+1) \ Cj| + Dj(k− |(Ci ∩ Ci+1) \ Cj|)}.

roof. Item (i) is given by the definition of Di(k) so it only remains to prove item (ii). If we can show that both

Di(k) ≥ max
1≤j≤i−1

{c1,i − δi, cj+1,i − |(Ci ∩ Ci+1) \ Cj| + Dj(k− |(Ci ∩ Ci+1) \ Cj|)} (6)

Di(k) ≤ max
1≤j≤i−1

{c1,i − δi, cj+1,i − |(Ci ∩ Ci+1) \ Cj| + Dj(k− |(Ci ∩ Ci+1) \ Cj|)} (7)

old, then (ii) follows.
We first prove (6). Note that Di(k) ≥ c1,i − δi. The inequality is trivial for i = s. Otherwise, for i ≤ s− 1, S = Ci ∩ Ci+1

s a canonical separator of Gi+1 and c(Gi − S) = c1,i. It remains to show that for all j such that 1 ≤ j ≤ i− 1, we have

Di(k) ≥ cj+1,i − |(Ci ∩ Ci+1) \ Cj| + Dj(k− |(Ci ∩ Ci+1) \ Cj|). (8)

Let j ∈ {1, . . . , i− 1}. If Dj(k− |(Ci ∩ Ci+1) \ Cj|) = −∞, then (8) is trivial. Assume that Dj(k− |(Ci ∩ Ci+1) \ Cj|) ̸= −∞.
rom the definition of Dj, it follows that there exists a canonical separator S of Gj+1 such that

(a) Cj ∩ Cj+1 ⊆ S
(b) |S| ≤ k− |(Ci ∩ Ci+1) \ Cj| and
(c) c(Gj − S)− |S| = Dj(k− |(Ci ∩ Ci+1) \ Cj|).

Take S ′ = S∪((Ci∩Ci+1)\Cj). Since j ≤ i−1, we have (Ci∩Ci+1)∩S ⊆ Cj, which implies that |S ′| = |S|+|(Ci ∩ Ci+1) \ Cj|. For
he same reason, (Ci∩Ci+1)∩Cj = (Ci∩Ci+1)∩(Cj∩Cj+1) which, together with (a), implies that Ci∩Ci+1 ⊆ S ′. Therefore, since
is canonical and, from (b), |S ′| = |S| + |(Ci ∩ Ci+1) \ Cj| ≤ k, it follows that S ′ is canonical and so Di(k) ≥ c(Gi− S ′)− |S ′|.
n the other hand, by construction of S ′, c(Gi − S ′) = cj+1,i + c(Gj − S). Combining these observations with (b) and (c)
ives us

Di(k) ≥ c(Gi − S ′)− |S ′|
= cj+1,i + c(Gj − S)− |S ′|
= cj+1,i − |(Ci ∩ Ci+1) \ Cj| + c(Gj − S)− |S|
= cj+1,i − |(Ci ∩ Ci+1) \ Cj| + Dj(k− |(Ci ∩ Ci+1) \ Cj|)

nd (6) is proved.
We now prove (7). By definition of Di, we may choose a canonical separator S of size at most k such that Ci ∩ Ci+1 ⊆ S

nd c(Gi− S)− |S| = Di(k). To prove (7), we assume that c(Gi− S)− |S| > c1,i− δi and shall show that there exists j such
hat 1 ≤ j ≤ i− 1 and

Di(k) ≤ cj+1,i − |(Ci ∩ Ci+1) \ Cj| + Dj(k− |(Ci ∩ Ci+1) \ Cj|).

We want to prove that there exists j with j < i such that Cj ∩ Cj+1 ⊆ S. Suppose that i = s. Note that Cs ∩ Cs+1 = ∅

s not a separator of Gs+1 = G unless G is disconnected and ∅ is its minimal separator. In this case, there exists j with
≤ j < s such that C ∩ C = ∅ ⊆ S. If i < s, then δ = |C ∩ C |. Given that c(G − S)− |S| > c − |C ∩ C |, since S
j j+1 i i i+1 i 1,i i i+1
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s a canonical separator, we obtain that there is some j < i such that Cj ∩ Cj+1 ⊆ S. We conclude that in both cases, there
exists j with j < i such that Cj ∩ Cj+1 ⊆ S and we chose the maximum value of j with this property.

Now define S∗ = S \ ((Ci ∩ Ci+1) \ Cj) so that |S| = |S∗| + |(Ci ∩ Ci+1) \ Cj|. By our choice of S and j, we have that

Di(k) = c(Gi − S)− |S| = cj+1,i + c(Gj − S)− |S|,

and, by the choice of j, c(Gj − S) = c(Gj − S∗) so that

Di(k) = cj+1,i − |(Ci ∩ Ci+1) \ Cj| + c(Gj − S∗)− |S∗| (9)

On the other hand, since S is a canonical separator and Cj ∩ Cj+1 ⊆ S∗, it follows that S∗ is a canonical separator of size
|S| − |(Ci ∩ Ci+1) \ Cj| ≤ k− |(Ci ∩ Ci+1) \ Cj|. Hence,

c(Gj − S∗)− |S∗| ≤ Dj(k− |(Ci ∩ Ci+1) \ Cj|),

which, combined with (9), gives us

Di(k) ≤ cj+1,i − |(Ci ∩ Ci+1) \ Cj| + Dj(k− |(Ci ∩ Ci+1) \ Cj|)

and (7) is proved. This completes the proof of the lemma. □

We are now ready to state the main result of this subsection that implies Theorem 2 for interval graphs.

Theorem 26. For a noncomplete interval graph G, one can solve k-Cyclability and compute the k-scattering number sck(G)
for all k ∈ {1, . . . , n} in time O(n3).

Proof. Given a noncomplete interval graph G, we compute a clique path C1, . . . , Cs using the algorithm of Booth and
Lueker [4]. Then we apply our dynamic programming algorithm to compute the tables Di for i ∈ {1, . . . , s}. The correctness
of the construction of D1 is straightforward and Lemma 25 ensures that the computation of the subsequent tables is correct
as well.

From Ds, we compute the k-scattering numbers sck(G) for all k ∈ {1, . . . , n}. Then we find the largest k ∈ {1, . . . , n}
such that sck(G) ≤ 0, and by Lemma 9 and Corollary 23, this gives us the maximum k such that G is k-cyclable.

To evaluate the running time, recall that the algorithm of Booth and Lueker [4] takes O(n+m) time. The clique path
of G can be stored as a list in which each cell Cj contains the list Lj of vertices whose left bound is Cj, sorted by increasing
right bound. This sorting can be done in O(n) time for the whole clique path.

Prior to the dynamic programming algorithm itself, we precompute all the coefficients cα,β , which are needed for the
recursion formula of Lemma 25. This takes O(n3) time as there are O(n2) of them and the number of connected components
in an interval graph can be computed in O(n) time.

For the dynamic programming part, it is easy to see that as i increases one can maintain the list of vertices in Ci∩Ci+1.
For each fixed i, it is possible to determine the quantities |(Ci ∩ Ci+1) \ Cj| for all the values of j in O(n) total time. To see
this, first sort the vertices of Ci∩Ci+1 by decreasing left bound as primary key and increasing right bound as secondary key,
which takes O(n) time. Then, scan the clique path of G, using scanning index j, starting from clique Ci in backward direction
(that is, by decreasing j). During this scan, when clique Cj is considered, go through the list Lj of vertices whose left bound
is Cj and for each vertex in Ci ∩ Ci+1 encountered in Lj, increment the counter for the vertices in |(Ci ∩ Ci+1) \ Cj−1|. This
takes time proportional to |Lj|, as both Lj and the vertices of Ci ∩ Ci+1 having left bound Cj are sorted by increasing right
bound. Therefore, the whole scan takes O(n) time. Then, the maximum in the recursion formula takes O(n) time to be
computed for each Di(k) and as there are O(n2) couples i, k to be considered, this gives a running time of O(n3) for the
whole algorithm. □

4. Bipartite permutation graphs

In this section we prove Theorems 1 and 2 for bipartite permutation graphs.

Definition 5. Let G = (V1, V2, E) a bipartite graph, and let σ1 = ⟨u1, . . . , up⟩ and σ2 = ⟨v1, . . . , vq⟩ be orderings of V1
nd V2 respectively. It is said that (σ1, σ2) is a strong ordering of G if for every 1 ≤ i < i′ ≤ p and 1 ≤ j′ < j ≤ q, if
ivj, ui′vj′ ∈ E(G), then uivj′ , ui′vj ∈ E(G).

We use the following crucial property proved by Spinrad, Brandstädt and Stewart [35].

roposition 27 ([35]). A bipartite graph G is a bipartite permutation graph if and only if it has a strong ordering.

Spinrad, Brandstädt and Stewart also proved in [35] that it can be decided in linear time whether a bipartite graph
s a permutation graph and that, in this case, a strong ordering of the graph can be obtained in linear time as well.
hroughout this section we assume that all considered bipartite permutation graphs are given together with their strong
rderings. We also assume that V1 = {u1, . . . , up} and V2 = {v1, . . . , vq} and use the default notation σ1 = ⟨u1, . . . , up⟩

nd σ2 = ⟨v1, . . . , vq⟩ where (σ1, σ2) is a strong ordering.

A strong ordering of a bipartite permutation graph has the following useful property.
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Fig. 2. Regular cycles.

Lemma 28 ([35]). Let (σ1, σ2) be a strong ordering of a connected bipartite permutation graph G = (V1, V2, E). Then for every
i ∈ {1, 2} and every v ∈ Vi, the vertices of NG(v) occur consecutively in σ3−i.

Proposition 27 implies that Hamiltonian paths and cycles have a simple structure in a bipartite permutation graph (if
they exist).

Proposition 29 ([35]). Let G = (V1, V2, E) be a connected bipartite permutation graph with a strong ordering (σ1, σ2).

• If G has a Hamiltonian cycle, then p = q and

– if p is even, then C = u1v2u3v4 · · · up−1vpupvp−1 · · · u2v1u1 is a Hamiltonian cycle,
– if p is odd, then C = u1v2u3 · · · vp−1upvpup−1vp−2 · · · u2v1u1 is a Hamiltonian cycle.

• If G has a Hamiltonian path, then there is a Hamiltonian path P such that the path ordering with respect to P of V1 and
V2 is σ1 and σ2 respectively.

.1. Certifying algorithms for Terminal Cyclability and Cycle Segment Cover

In this subsection, we prove Theorem 1 for bipartite permutation graphs. Let us sketch the main steps of our argument.
irstly, we shall consider Terminal Cyclability and Cycle Segment Cover for r ≥ 1 separately. The main reason for this

is that the auxiliary structural results used in our algorithms are slightly different when we aim to cover the terminals
by a cycle and when we use a family of paths.

Recall that in Terminal Cyclability, we are given a bipartite permutation graph G = (V1, V2, E) and a subset T ⊆ V (G)
and must decide whether there is a cycle that covers T . To be able to decide in O(n+m) time whether such a cycle exists
nd, if the answer is no, to produce a separator S of G such that cT (G− S) > |S| that certifies a no-answer, we introduce

the notion of safe pairs. Essentially, a pair (s, t) of integers is safe if there exists a cycle for the instance (Gs,t , Ts,t ), where
Gs,t = G[{u1, . . . , us} ∪ {v1, . . . , vt}] and Ts,t = T ∩ V (Gs,t ), and (s, t) will be called a maximal safe pair if there exists no
safe pair (s′, t ′) for which either s′ > s and t ′ ≥ t or t ′ > t and s′ ≥ s. We show that to decide whether T is cyclable, it
suffices to restrict one’s attention to maximal safe pairs. Our algorithm tries to find a maximal safe pair (s, t) such that
T = Ts,t and if it fails to discover such a pair, then a maximal safe pair allows us to find a separator S mentioned above.

For Cycle Segment Cover for r ≥ 1, we will use the same approach but some technical difficulties which are not
present in the case of Terminal Cyclability must, however, be overcome.

It would have been ultimately convenient to find a solution to Cycle Segment Cover that uses our solution to Terminal
Cyclability as a blackbox, thereby avoiding any kind of repetitive argumentation. However, one cannot hope to adopt the
same approach as in the case of interval graphs, because the class of bipartite permutation graphs is not closed under the
addition of a universal vertex3 and so an analogue of Observation 21 for bipartite permutation graphs cannot be applied.

4.1.1. Terminal Cyclability for bipartite permutation graphs
Throughout this subsection, let G = (V1, V2, E) be a bipartite permutation graph with a strong ordering (σ1, σ2), and

let T ⊆ V (G) be distinct from a clique. In this subsection, we also assume that G is connected unless it is explicitly stated
to be otherwise.

Definition 6. A cycle C of G that covers T is said to be regular if there are indices 1 ≤ i1 < · · · < ik ≤ p and
1 ≤ j1 < · · · < jk ≤ q such that

(i) if k is even, then C = ui1vj2ui3vj4 · · · uik−1vjkuikvjk−1 · · · ui2vj1ui1 (see Fig. 2(a)) and
(ii) if k is odd, then C = ui1vj2ui3 · · · vjk−1uikvjkuik−1vjk−2 · · · ui2vj1ui1 (see Fig. 2(b)).

Similarly, a pair (π1 = ⟨i1, . . . , ik⟩, π2 = ⟨j1, . . . , jk⟩) of sequences of integers such that 1 ≤ i1 < · · · < ik ≤ p and
1 ≤ j1 < · · · < jk ≤ q is said to form a regular T -cover if C defined in (i) or (ii) (depending on the parity of k) is a cycle
that contains all the vertices of T .

3 In fact, the class of bipartite permutation graphs is not closed under the addition of a vertex universal with respect to one side of the bipartition,
i.e., for V or V .
1 2
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emma 30. If G has a cycle containing the vertices of T , then there is a regular cycle C that covers T or, equivalently, there
s a pair of sequences (π1, π2) that is a regular T -cover.

roof. Let C be a cycle containing the vertices of T and let U = V (C). Clearly, C is a Hamiltonian cycle of G[U]. Let
ui1 , . . . , uik} = U ∩ V1, where 1 ≤ i1 < · · · < ik ≤ p. Let also {vj1 , . . . , vjk} = U ∩ V2 for 1 ≤ j1 < · · · < jk ≤ q.
y Proposition 29, G[U] has the Hamiltonian cycle C ′ such that either C ′ = ui1vj2ui3vj4 · · · uik−1vjkuikvjk−1 · · · ui2vj1ui1 or
′
= ui1vj2ui3 · · · vjk−1uikvjkuik−1vjk−2 · · · ui2vj1ui1 if k is either even or odd, respectively. By Definition 6, C ′ is a regular

ycle covering T . □

emma 31. Let k ≥ 2. Then (π1 = ⟨i1, . . . , ik⟩, π2 = ⟨j1, . . . , jk⟩) with 1 ≤ i1 < · · · < ik ≤ p and 1 ≤ j1 <

· · · < jk ≤ q forms a regular T-cover if and only if T ⊆ {ui1 , . . . , uik} ∪ {vj1 , . . . , vjk} and, for each h ∈ {2, . . . , k},
uih−1vjh−1 , uih−1vjh , uihvjh−1 , uihvjh ∈ E(G).

Proof. Suppose that (π1 = ⟨i1, . . . , ik⟩, π2 = ⟨j1, . . . , jk⟩) forms a regular T -cover. By definition, T ⊆ {ui1 , . . . , uik} ∪

{vj1 , . . . , vjk}. Suppose that k is even. Then C = ui1vj2ui3vj4 · · · uik−1vjkuikvjk−1 · · · ui2vj1ui1 is a cycle. Therefore, for each
∈ {2, . . . , k}, uih−1vjh , uihvjh−1 ∈ E(G). Similarly, if k is odd, then C = ui1vj2ui3 · · · vjk−1uikvjkuik−1vjk−2 · · · ui2vj1ui1 is a

ycle and we again have that uih−1vjh , uihvjh−1 ∈ E(G) for h ∈ {2, . . . , k}. By Definition 5, uih−1vjh−1 , uihvjh ∈ E(G) for every
∈ {2, . . . , k}, and we obtain that uih−1vjh−1 , uih−1vjh , uihvjh−1 , uihvjh ∈ E(G).
For the opposite direction, assume that T ⊆ {ui1 , . . . , uik} ∪ {vj1 , . . . , vjk} and for each h ∈ {2, . . . , k}, it holds that

ih−1vjh−1 , uih−1vjh , uihvjh−1 , uihvjh ∈ E(G). We have that if k is even, then C = ui1vj2ui3vj4 · · · uik−1vjkuikvjk−1 · · · ui2vj1ui1 is
cycle, and if k is odd, then C = ui1vj2ui3 · · · vjk−1uikvjkuik−1vjk−2 · · · ui2vj1ui1 is a cycle. By Definition 6, this means that

π1, π2) is a regular T -cover. □

efinition 7. Let s ∈ {1, . . . , p} and t ∈ {1, . . . , q}, and let Ts,t = T ∩
(
{u1, . . . , us} ∪ {v1, . . . , vt}

)
. The pair (s, t) is

alled safe if usvt ∈ E(G) and there is a pair πs,t = (π1 = ⟨i1, . . . , ik⟩, π2 = ⟨j1, . . . , jk⟩) with 1 ≤ i1 < · · · < ik = s and
≤ j1 < · · · < jk = t such that either k = 1 and Ts,t ⊆ {us, vt} = {ui1 , vj1} or k ≥ 2 and πs,t is a regular Ts,t-cover. A safe
air (s, t) is maximal if there exists no safe pair (s′, t ′) for which either s′ > s and t ′ ≥ t or t ′ > t and s′ ≥ s.

If the algorithm fails to find a safe pair (s, t) such that Ts,t = T , then the algorithm should produce a T -separator S
uch that cT (G− S) > |S|. We show that there is such a separator of a special structure in the next lemma.

emma 32. Let (s, t) be a maximal safe pair such that Ts,t ̸= T . Then there is a nonnegative integer r such that either
= {us, us−1, . . . , us−r} or S = {vt , vt−1, . . . , vt−r} is a T-separator such that cT (G− S) > |S|. Moreover, given πs,t , the set S
an be found in time O(n).

roof. Since (s, t) is safe, by definition usvt ∈ E(G) and there is a pair πs,t = (π1 = ⟨i1, . . . , ik⟩, π2 = ⟨j1, . . . , jk⟩) with
≤ i1 < · · · < ik = s and 1 ≤ j1 < · · · < jk = t such that either k = 1 and Ts,t ⊆ {us, vt} = {ui1 , vj1} or k ≥ 2 and πs,t is
regular Ts,t-cover.
If us has a neighbor in {vt+1, . . . , vq} and vt has a neighbor in {us+1, . . . , up}, then, from Definition 5 and Lemma 28,

e have that usvt+1, us+1vt , us+1vt+1 ∈ E(G). But, by Lemma 31, this implies (s + 1, t + 1) is a safe pair, contradicting
the maximality of (s, t). Hence either us has no neighbor in {vt+1, . . . , vq} or vt has no neighbor in {us+1, . . . , up}. By
symmetry, we can assume without loss of generality that vt is adjacent to neither of us+1, . . . , up. By the strong ordering
property, this implies that no vertex of {v1, . . . , vt} is adjacent to some vertex of {us+1, . . . , up}. But, since G is connected,
there must exists some vertex a ∈ {u1, . . . , us} and some vertex b ∈ {vt+1, . . . , vq} such that ab ∈ E(G). Since usvt ∈ E(G),
Definition 5 and Lemma 28 imply that us is adjacent to b and hence to vt+1.

Our aim is to show that there is 0 ≤ r ≤ s− 1 such that S = {us, us−1, . . . , us−r} is a T -separator and cT (G− S) > |S|.
Towards this aim, we formally define jk+1 = t + 1 and show the following claim.

Claim 33. There must exist an integer ℓ ≥ 0 such that

(i) us−ℓ = uik−ℓ
and,

(ii) either us−ℓ = u1 or vjk−ℓ+1 is not adjacent to us−ℓ−1.

roof of Claim 33. Let ℓ ∈ {0, . . . , k − 1} be maximum such that us−ℓ = uik−ℓ
. Observe that ℓ is well-defined (since

= ik) and that uik−ℓ
, . . . , uik appear consecutively in σ1. Suppose, towards a contradiction, that (ii) fails for every

h ∈ {0, . . . , ℓ}, that is, s− ℓ ≥ 2 and vjk−h+1 is adjacent to us−h−1 (see Fig. 3). If ℓ = k− 1 then since vjk−ℓ+1us−ℓ−1 ∈ E(G),
us−ℓ−1vjk−ℓ

∈ E(G) by Definition 5. Hence uih−1vjh , uih−1vjh+1 , uihvjh , uihvjh+1 ∈ E(G) for every h ∈ {1, . . . , k} and hence, by

emma 31, (⟨i0 = s− ℓ− 1, . . . , ik⟩, ⟨j1, . . . , jk+1⟩) is a regular Ts,t+1-cover, which contradicts the maximality of (s, t).
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Fig. 3. Configuration leading to a contradiction. Here ℓ = 2, the edges of Ts,t -cover are shown by thick lines, and crucial adjacencies are shown by
thin lines.

Fig. 4. Construction of S. Here r = 2, the edges of Ts,t -cover are shown by thick lines, and crucial nonadjacencies are shown by straight dashed
lines.

Now suppose ℓ < k− 1. This means that ik−ℓ−1 < s− ℓ− 1 < s− ℓ = ik−ℓ. Since vjk−ℓ−1 is adjacent to both us−l = uik−l
and uik−l−1 , then, by Lemma 28, vjk−ℓ−1 is adjacent to us−ℓ−1. Let

i′h =

⎧⎨⎩
ih+1 if 0 ≤ h ≤ k− ℓ− 1,
s− ℓ− 1 if h = k− ℓ− 1,
ih if k− ℓ ≤ h ≤ k.

for h ∈ {0, . . . , k}. By Definition 5, it holds that ui′h−1
vjh , ui′h−1

vjh+1 , ui′h
vjh , ui′h

vjh+1 ∈ E(G) for every h ∈ {1, . . . , k}. Hence,
y Lemma 31, (⟨i′0, . . . , i

′

k⟩, ⟨j1, . . . , jk+1⟩) is a regular Ts,t+1-cover, again contradicting the maximality of (s, t). Hence, (ii)
olds for the chosen value of ℓ. Therefore, ℓ exists and the claim is proved. □ □

Let r be the minimum value of ℓ ≥ 0 satisfying the conditions (i) and (ii) of Claim 33. We prove that S =
us, us−1, . . . , us−r} is a T -separator of G such that cT (G− S) > |S|.

Define (see Fig. 4)

X0 = {u1, . . . , us−r−1} ∪ {v1, . . . , vjk−r+1−1},

Xh = {vjk−r+h} for 1 ≤ h ≤ r,
Xr+1 = {us+1, . . . , up} ∪ {vt+1, . . . , vq}.

Observe that X0, X1, . . . , Xr+1 are disjoint subsets of V (G) \ S. By Claim 33(ii), Definition 5 and Lemma 28, there are
no edges between X0 and Xh for 1 ≤ h ≤ r + 1. Of course, there are also no edges between Xi and Xj for 1 ≤ i < j ≤ r .
Since, by assumption, there are no edges between vt and {us+1, . . . , up}, there are also no edges between Xh and Xr+1
for h ∈ {1, . . . , r}. The vertices u1, . . . , us−r−1 have no neighbors among the vertices vjk−r+1 , . . . , vq, and the vertices
v1, . . . , vjk−r+1−1 are not adjacent to any of the vertices us+1, . . . , up. Thus, NG(X0) ⊆ S. Furthermore, NG(Xi) ⊆ S for
i ∈ {1, . . . , r}. Finally, because us+1, . . . , up are not adjacent to either of v1, . . . , vt , NG(Xr+1) ⊆ S. We have that NG(Xi) ⊆ S
for i ∈ {0, . . . , r + 1} and, therefore, every two vertices that are in distinct sets Xj and Xj for i, j ∈ {0, . . . , r + 1} are in
distinct components of G− S. Thus, if we can show that T ∩ Xℓ ̸= ∅ for every ℓ ∈ {0, . . . , r + 1}, then

cT (G− S) ≥ r + 2 > |S| = r + 1

and we obtain that cT (G− S) > |S|.
Given that Ts,t ̸= T , we immediately have that T ∩ Xr+1 ̸= ∅.
Now, suppose towards a contradiction that X0 ∩ T = ∅. Thus,

Ts,t+1 ⊆ Ts,t ∪ {vt+1} ⊆ {uik−r , . . . , uik} ∪ {vjk−r+1 , . . . , vjk+1}.

If r = 0, then Ts,t+1 ⊆ {us, vt+1} (given that jk+1 = t+1 and ik = s) so that (s, t+1) is a safe pair, which contradicts the max-
imality of (s, t). Let r ≥ 1. Then for every h ∈ {0, . . . , r−1}, we have that uik−h−1vjk−h , uik−h−1vjk−h+1 , uik−hvjk−h , uik−hvjk−h+1 ∈

E(G). Thus, by Lemma 31, the pair
(
⟨ik−r , . . . , ik⟩, ⟨jk−r+1, . . . , jk+1⟩

)
is a Ts,t+1-cover, which again contradicts the maxi-

mality of (s, t).
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Finally, to prove that T ∩Xh ̸= ∅ for each h ∈ {1, . . . , r}, we suppose for a contradiction that there exists ℓ ∈ {1, . . . , r}
uch that vjk−ℓ+1 /∈ T . By the choice of r , uik−hvk−h+2 ∈ E(G) for each h ∈ {0, . . . , ℓ−1}. Thus, if we define for h′ ∈ {1, . . . , k},

j′h′ =
{
jh′ if 1 ≤ h ≤ k− ℓ,

jh′+1 if k− ℓ+ 1 ≤ h ≤ k.

hen the pair (π1 = ⟨i1, . . . , ik⟩, ⟨j′1, . . . , j
′

k⟩) is a Ts,t+1-cover by Lemma 31. This final contradiction to the maximality of
(s, t) proves the first part of the lemma.

Note that to construct our set S, we only have to find r , that is, the minimum value of ℓ satisfying (i) and (ii) of Claim 33,
nd this can be easily done in time O(n) provided πs,t is given (the details are left to the reader) and so the ‘‘moreover’’
art of the lemma is immediate. □

Let us emphasize once again that one way of understanding Lemma 32 is that if there is no cycle that covers T in G,
then one can find a separator S of G such that cT (G − S) > |S| by ‘‘simply" finding a maximal safe pair of G. That is, to
be able to compute S efficiently it suffices to compute a maximal safe pair efficiently. In our next lemma, we provide a
characterization of safe pairs that will allow us to identify them efficiently. To be able to give the details of the lemma,
we define for a safe pair (s, t), the value pred(s, t) = ∅ if Ts,t ⊆ {us, vt}, and set pred(s, t) = (s′, t ′), otherwise, where (s′, t ′)
is a safe pair such that (s′, t ′) ̸= (s, t), s′ ≤ s, t ′ ≤ t , us′vt , usvt ′ ∈ E(G) and T ∩ ({us′+1, . . . , us−1} ∪ {vt ′+1, . . . , vt−1}) = ∅.
Notice that the choice of (s′, t ′) may be not unique. We show that pred(s, t) can be chosen in a special way.

Lemma 34. Suppose s ∈ {1, . . . , p}, t ∈ {1, . . . , q}, usvt ∈ E(G) and Ts,t \ {us, vt} ̸= ∅. Then (s, t) is a safe pair if and only if
s, t ≥ 2, us−1vt , usvt−1 ∈ E(G) and at least one of the following holds:

(i) (s− 1, t − 1) is a safe pair;
(ii) (s− 1, t − 1) is not safe, (s, t − 1) is safe and vt−1 /∈ T ;
(iii) (s− 1, t − 1) is not safe, (s− 1, t) is safe and us−1 /∈ T .

Moreover, if (s, t) is safe, then we can set pred(s, t) = (s− 1, t − 1), pred(s, t) = pred(s, t − 1) and pred(s, t) = pred(s− 1, t)
in the cases (i), (ii) and (iii) respectively.

Proof. To prove the ‘‘only if" part, suppose that (s, t) is a safe pair such that s ∈ {1, . . . , p}, t ∈ {1, . . . , q}, usvt ∈ E(G)
and Ts,t \ {us, vt} ̸= ∅. Since Ts,t \ {us, vt} ̸= ∅, there is a pair πs,t = (π1 = ⟨i1, . . . , ik⟩, π2 = ⟨j1, . . . , jk⟩) with
1 ≤ i1 < · · · < ik = s and 1 ≤ j1 < · · · < jk = t such that k ≥ 2 and πs,t is a regular Ts,t-cover. Over all such
pairs, let πs,t be such that (ik − ik−1)+ (jk − jk−1) is minimum. Clearly, s, t ≥ 2 and, by Lemma 28, us−1vt , usvt−1 ∈ E(G).
If ik−1 = s− 1 and jk−1 = t − 1, then (i) holds and we can set pred(s, t) = (s− 1, t − 1).

Suppose that ik−1 < s− 1 or jk−1 < t − 1. Observe that (s− 1, t − 1) is not a safe pair in this case by the selection of
π (s, t). Assume that ik−1 < s − 1 and jk−1 < t − 1. By Lemma 28 and Definition 5, uik−1vt−1, us−1vjk−1 , us−1vt−1 ∈ E(G).
Since (s, t) is a safe pair, T ∩ ({uik−1+1, . . . , uik−1} ∪ {vjk−1+1, . . . , vjk−1}) = ∅. This means that (s− 1, t − 1) is a safe pair;
a contradiction. Hence, either ik−1 = s− 1 or jk−1 = t − 1. Assume that ik−1 = s− 1 and jk−1 < t − 1. Note that vt−1 /∈ T
by Definition 6 for Ts,t-cover. By Lemma 28, us−1vt−1, usvt−1 ∈ E(G). It follows that (s, t − 1) is a safe pair by Lemma 31.
Let (s′, t ′) = pred(s, t − 1). Suppose that s′ < s − 1. Observe that ut ′vs−1 ∈ E(G) by Lemma 28. Then by the definition
of a safe pair and (s′, t ′), we obtain that (s − 1, t − 1) is a safe pair; a contradiction. We conclude that s′ = s − 1 and
we can set pred(s, t) = (s′, t ′), because vt−1 /∈ T . Thus, (ii) is fulfilled and we can set pred(s, t) = pred(s, t − 1). The case
ik−1 < s − 1 and jk−1 = t − 1 is symmetric and by the same arguments we conclude that (iii) holds and we can set
pred(s, t) = pred(s− 1, t).

To prove the ‘‘if" part, suppose that s, t ≥ 2, us−1vt , usvt−1 ∈ E(G) and at least one of (i), (ii) and (iii) holds. If (i) holds,
then (s, t) is a safe pair, because us−1vt , usvt−1 ∈ E(G). Suppose that (i) does not hold, that is, (s−1, t−1) is not safe. Since
(ii) and (iii) are symmetric, we can assume without loss of generality that (ii) holds. If Ts,t−1 ⊆ {us, vt−1}, then Ts,t−1 ⊆ {us}

because vt−1 /∈ T . Therefore Ts,t ⊆ {us, ut}, but then Ts,t \ {us, vt} = ∅, a contradiction. Hence, by definition of a safe pair,
there is a pair πs,t−1 = (π1 = ⟨i1, . . . , ik⟩, π2 = ⟨j1, . . . , jk⟩) with 1 ≤ i1 < · · · < ik = s and 1 ≤ j1 < · · · < jk = t − 1 such
that k ≥ 2 and πs,t−1 is a regular Ts,t−1-cover.

Suppose that ik−1 < s− 1. By Lemma 28, us−1vjk−1 , us−1vt−1 ∈ E(G). Since T ∩ {uik−1+1, . . . , us−1} = ∅, we obtain that
(s − 1, t − 1) is a safe pair, a contradiction. Hence, ik−1 = s − 1. Since us−1vt , usvt ∈ E(G) and vt−1 /∈ T , we immediately
obtain that (s, t) is a safe pair. This completes the proof. □

We are now ready to solve Terminal Cyclability for bipartite permutation graphs.

Theorem 35. There is an algorithm that, given an instance (G, T ) of Terminal Cyclability where G is a bipartite permutation
graph and T is not a clique, in time O(n+m) returns either a cycle of G covering T or a T-separator S∗ with cT (G−S∗)−|S∗| > 0
that certifies a no-answer.

Proof. Let G = (V1, V2, E) be a bipartite permutation graph. If G has two distinct components containing vertices of T ,
then G has no cycle covering T and we return S∗ = ∅. Otherwise, the vertices of T are in the same component and we
can discard the other components if they exist. Clearly, all this can be done in linear time.
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So we can henceforth assume that G is connected. By Proposition 27, G has a strong ordering (σ1 = ⟨u1, . . . , up⟩, σ2 =

v1, . . . , vq⟩) that can be constructed in time O(n+m) [35]. By Lemma 28, the neighborhood of each vertex is a sequence
f the consecutive vertices of V1 or V2 with respect to σ1 or σ2 respectively.
Next, we try to decide whether, for each s = 1, . . . , p and each neighbor vt of us, the pair (s, t) is safe and, if this

s the case, compute pred(s, t). To do so, first check whether Ts,t ⊆ {us, vt}. If this is the case, (s, t) is safe and we set
pred(s, t) = ∅. Otherwise, check whether s, t ≥ 2, us−1vt , usvt−1 ∈ E(G) and whether one of the conditions (i)–(iii) of
Lemma 34 holds. If this is the case, set pred(s, t) as defined in Lemma 34. Thanks to Lemma 34, this determines whether
(s, t) is safe or not. Obviously, all this can be done in O(m) time. For each fixed s, we also compute the maximum t for
which (s, t) is a safe pair. Clearly, all this can be done in time O(m).

Suppose we find a safe pair (s, t) such that T = Ts,t (to decide whether T = Ts,t in linear time, we use (σ1, σ2)). We
know, by Lemma 30, that there is a regular cycle C that covers T . Hence, by using the labels pred(s′, t ′) assigned to the
afe pairs (s′, t ′), we can construct the pair πs,t = (π1 = ⟨i1, . . . , ik⟩, π2 = ⟨j1, . . . , jk⟩) with 1 ≤ i1 < · · · < ik = s and
1 ≤ j1 < · · · < jk = t that is a regular T -cover. Since T is not a clique, k ≥ 2 and we therefore obtain a regular T -cover.
Clearly, this can be done in time O(n).

Suppose we do not find a safe pair (s, t) such that T = Ts,t . We consider the last s ∈ {1, . . . , p} such that there is a safe
pair (s, t). Let t be the maximum t such that (s, t) is a safe pair using the stored precomputed value. Then we have that
(s, t) is a maximal safe pair such that Ts,t ̸= T . Thanks to Lemma 32, there is a T -separator S∗ such that cT (G− S∗) > |S∗|
which we can output in time O(n).

To complete the proof, observe that the total running time is O(n+m). □

4.1.2. Cycle Segment Cover with r ≥ 1 for bipartite permutation graphs
In this subsection we construct a certifying algorithm for Cycle Segment Cover on bipartite permutation graphs for

the case r ≥ 1. Throughout this subsection, G = (V1, V2, E) is a bipartite permutation graph with a strong ordering (σ1, σ2)
and T ⊆ V (G). Recall that we assume that σ1 = ⟨u1, . . . , up⟩ and σ2 = ⟨v1, . . . , vq⟩. Notice that G may be disconnected
and we do not demand T be distinct from a clique.

Let P be a path in G. We say that P is straight if the path order of V1 ∩ V (P) coincides with the order induced by σ1
and the path order of V2 ∩ V (P) coincides with the order induced by σ2.

Lemma 36. For every X ⊆ V (G), it holds that if G has a path P with V (P) = X, then there is a straight path P ′ with V (P ′) = X.

Proof. Immediate from Proposition 29. □

Using Lemma 36, we assume that all paths that are considered in this subsection are straight.
We now make a few definitions that are analogues of similar definitions for cycles given in the previous subsection.

For a path P , denote by π (P) = (π1(P), π2(P)) a pair of increasing sequences of integers π1(P) = ⟨i1, . . . , ik⟩ and
π2(P) = ⟨j1, . . . , jr⟩ such that V1 ∩ V (P1) = {ui1 , . . . , uik} and V2 ∩ V (P) = {vj1 , . . . , vjr }. Note that one of the sequences
is empty if P is trivial, that is, if P only has a single vertex. Fix s ∈ {1, . . . , p} and t ∈ {1, . . . , q}, and write Ts,t = T ∩
({u1, . . . , us}∪{v1, . . . , vt}). Then a pair (s, t) is said to be 1-safe if there is a path P with V (P) ⊆ {u1, . . . , us}∪{v1, . . . , vt}

such that us is an end-vertex of P , usvt ∈ E(P) and Ts,t ⊆ V (P). Similarly, (s, t) is said to be 2-safe if there is a path P
with V (P) ⊆ {u1, . . . , us} ∪ {v1, . . . , vt} such that vt is an end-vertex of P , usvt ∈ E(P) and Ts,t ⊆ V (P). For the sake of
brevity, call (s, t) simply safe if (s, t) is either 1-safe or 2-safe and call its corresponding path P (s, t)-safe. A safe pair (s, t)
is maximal if there is no safe pair (s′, t ′) such that either s < s′ and t ≤ t ′ or s ≤ s′ and t < t ′. Clearly, if there is a safe
pair (s, t) such that T = Ts,t , then we have a path that covers T .

Lemma 37. Let G be connected and let (s, t) be a maximal safe pair with the corresponding (s, t)-safe path P such that
Ts,t ̸= T . Then there is a nonnegative integer ℓ such that either S = {us, us−1, . . . , us−ℓ} or S = {vt , vt−1, . . . , vt−ℓ} is a
Ts,t-separator such that

(i) cTs,t (G− S) > |S|,
(ii) NG({us+1, . . . , up} ∪ {vt+1, . . . , vq}) ⊆ S and for each component H of G − S containing a vertex of T \ Ts,t , V (H) ⊆
{us+1, . . . , up} ∪ {vt+1, . . . , vq}.

Moreover, such a separator S satisfying (i) and (ii) can be found in O(s+ t) time.

Proof. By symmetry, we assume without loss of generality that (s, t) is a 2-safe pair, that is, vt is an end-vertex of P and
us is the previous vertex. Let π (P) = (π1(P), π2(P)) for π1(P) = ⟨i1, . . . , ik⟩ and π2(P) = ⟨j1, . . . , jr⟩.

If NG(vt ) ∩ {us+1, . . . , up} ̸= ∅, then vtus+1 ∈ E(G) by the definition of a strong ordering and Lemma 28 and (s + 1, t)
is a 1-safe pair contradicting the maximality of (s, t). Hence, vt has no neighbor in {us+1, . . . , up}. Because G is connected
and Ts,t ̸= T , we have that t < q and us is adjacent to vt+1.

Claim 38. There is an integer h ≥ 0 such that

(a) us−h = uik−h and,
(b) either u = u or v is not adjacent to u .
s−h 1 jr−h s−h−1
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roof of Claim 38. Let h ∈ {0, . . . , k−1} be maximum such that us−h = uik−h ; thus uik−h , . . . , uik are consecutive vertices
n σ1. Suppose the claim is false for all h′ ∈ {0, . . . , h}, that is, s− h ≥ 2 and vjr−h′ is adjacent to us−h′−1.

Suppose that h = k − 1. If vj1 is an end-vertex of P , then r = k + 1 and vj1us−kvj2us−k+1 · · · vjr usvt+1 is a path and
s+1,t ⊆ Ts,t ∪ {vt+1} ⊆ V (P) ∪ {vt+1} ⊆ V (P ′). Hence, (s, t + 1) is a safe pair, which contradicts the maximality of (s, t).
imilarly, if ui1 is an end-vertex of P , then r = k and us−kvj1us−k−1 · · · vjr usvt+1 is a path, which again contradicts the
aximality of (s, t).
Finally, suppose that k − 1 < h. This means that is−h−1 < s − h − 1 < s − h = is−h. By Lemma 28, vjr−h−1 is adjacent

o us−h−1. Let P ′ = P[{ui1 , . . . , uik−h−1} ∪ {vj1 , . . . , vjr−h−1}]. Then P ′us−h−1vjr−h · · · vjr usvt+1 is a path, contradicting the
aximality of (s, t). This completes the proof of the claim. □

We define ℓ ≥ 0 be the minimum value of h for which Claim 38 is fulfilled. We prove that S = {us, us−1, . . . , us−ℓ} is
Ts,t-separator satisfying (i) and (ii).
Let X0 = {u1, . . . , us−ℓ−1}∪{v1, . . . , vjr−ℓ−1}, and Xh = {vjr−ℓ+h−1} for h ∈ {1, . . . , ℓ+1}. Clearly, X0, . . . , Xℓ+1 are disjoint

ubsets of V (G) \ S. Since vt has no neighbor in {us+1, . . . , up}, it follows by Definition 5 and Claim 38, that for every two
vertices that are in distinct sets Xi and Xj for i, j ∈ {0, . . . , ℓ+1}, it holds that these vertices are in distinct components of
−S. Thus, if we can show that Ts,t∩Xh ̸= ∅ for h ∈ {0, . . . , ℓ+1}, then it will follow that cTs,t (G−S) ≥ ℓ+2 > |S| = ℓ+1

and (i) holds. Notice that Ts,t ∩ Xh = T ∩ Xh for h ∈ {0, . . . , ℓ+ 1}. Thus, we can consider T instead of Ts,t .
To show that T ∩X0 ̸= ∅, assume that T ∩X0 = ∅. Then we can assume that ℓ = k−1, r = k and P = us−k−1vj1 · · · usvjk .

By the definition of ℓ, there is a path P ′ = vj1us−k−1 · · · vjkusvt+1 but this contradicts the maximality of (s, t). Hence,
T ∩ X0 ̸= ∅.

To prove that T ∩ Xh ̸= ∅ for h ∈ {1, . . . , ℓ + 1}, we have to show that vjr−ℓ
, . . . , vjr ∈ T . To obtain a contradiction,

assume that there is h ∈ {0, . . . , ℓ}, such that vjr−h /∈ T . Let P ′ = P[{ui1 , . . . , uik−h}∪ {vj1 , . . . , vjr−h−1}], that is, we truncate
P at uik−h . Let jr+1 = t + 1. Because us is adjacent to vt+1 and by the definition of ℓ, us−h′vs−h′+1 for h′ ∈ {0, . . . , h}. Then
there is the path P ′′ = Pvjr−h−1us−h−1 . . . vjr usvt+1 that contradicts the maximality of (s, t). This completes the proof that
T ∩ Xh ̸= ∅ for h ∈ {0, . . . , ℓ+ 1}.

To show (ii), recall that NG({us+1, . . . , up} ∪ {vt+1, . . . , vq}) ⊆ V1 and by the definition of ℓ, vs−ℓ−1 is not adjacent to
vt+1. Then NG({us+1, . . . , up} ∪ {vt+1, . . . , vq}) ⊆ S. Since, T \ Ts,t ⊆ {us+1, . . . , up} ∪ {vt+1, . . . , vq}, we have that (ii) holds.

To see that S can be found in O(s + t) time, it is sufficient to observe that to find minimum ℓ satisfying (a) and (b),
we traverse P starting from vt and this can be done in time O(s+ t). □

As in Section 4.1.1, we now state lemmas for efficiently computing safe pairs and safe paths. To be able to state the
lemmas concisely, we need some definitions. Let (s, t) be an h-safe pair for some h ∈ {1, 2}, and let P be its corresponding
(s, t)-safe path so that usvt is an end-edge of P . If P has exactly two vertices, then set predh(s, t) = ∅. Otherwise, set
predh(s, t) = (s′, t ′) where s′ ≤ s, t ′ ≤ t and us′vt ′ is the unique edge of P adjacent to usut . These labels allow us to
compute P . Note that P is not necessarily unique for (s, t).

Lemma 39. Let G be connected and let s ∈ {1, . . . , p} and t ∈ {1, . . . , q}. Then a pair (s, t) is a 1-safe (respectively, 2-safe)
pair if and only if usvt ∈ E(G) and one of the following is fulfilled:

(i) Ts,t ⊆ {us, vt},
(ii) s ≥ 2 and (s− 1, t) is a 2-safe pair (respectively, t ≥ 2 and (s, t − 1) is a 1-safe pair),
(iii) s ≥ 2, us−1 /∈ T and (s− 1, t) is a 1-safe pair (respectively, t ≥ 2, vt−1 /∈ T and (s, t − 1) is a 2-safe pair).

Moreover, if (s, t) is safe, then we can assign pred1(s, t) = ∅ in case (i), pred1(s, t) = pred2(s − 1, t) and pred2(s, t) =
pred1(s, t − 1) in case (ii), and pred1(s, t) = pred1(s− 1, t) and pred2(s, t) = pred2(s, t − 1) case (iii).

Proof. By symmetry, it is sufficient to prove the lemma for 1-safe pairs.
For the ‘‘only if" part, suppose that (s, t) is 1-safe and let P be its corresponding (s, t)-safe path. Assume that

Ts,t \ {us, vt} ̸= ∅. Then s ≥ 2. Let (s′, t) = pred1(s, t). If s′ = s− 1, then (s− 1, t) is a safe pair and (ii) holds. Assume that
s′ < s−1. Since Ts,t ⊆ V (P), us−1 /∈ T . By Lemma 28, us−1vt ∈ E(G). Thus, (s−1, t) is a 1-safe pair (set P := (P\{us})∪{us−1))
and (iii) follows.

For the ‘‘if" part, suppose usvt ∈ E(G). If (i) holds and Ts,t ⊆ {us, vt}, then (s, t) is 1-safe and we can let pred(s, t) = ∅. If
(ii) holds, then since (s−1, t) is 2-safe, there is an (s−1, t)-safe path P ′ with end-vertex vt . Then (s, t) is a 1-safe pair such
that Pus is its corresponding (s, t)-safe path and we let pred1(s, t) = pred2(s− 1, t). Finally, suppose that (iii) holds. Let P ′
be an (s− 1, t)-safe path with end-vertex us−1 and let vt be its unique vertex adjacent to us−1. Let P = (P ′ \ {us−1})∪ {us}.
Then P is a path and since us−1 /∈ T , Ts,t ⊆ V (P). Hence, (s, t) is a 1-safe pair and we can let pred1(s, t) = pred1(s−1, t). □

Lemma 40. Let G be connected, and let s ∈ {1, . . . , p} and t ∈ {1, . . . , q} be such that (s, t) ̸= (p, q). Then a safe pair (s, t)
is maximal if and only if there is no safe pair (s′, t ′) such that s′ ≥ s, t ′ ≥ t, (s, t) ̸= (s′, t ′) and either s′ = s or t ′ = t.

Proof. Suppose that (s, t) is maximal. By definition, there is no safe pair (s′, t ′) such that (s, t) ̸= (s′, t ′) and either s′ > s
and t ′ ≥ t or t ′ > t and s′ ≥ s.
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Conversely, suppose that there is no safe pair (s′, t ′) such that (s, t) ̸= (s′, t ′) and either s′ = s or t ′ = t . To obtain a

ontradiction assume that (s, t) is not maximal. Then there are s′ ∈ {s, . . . , p} and t ′ ∈ {t, . . . , q} such that (s′, t ′) ̸= (s, t)
and (s′, t ′) is safe. Assume that this pair is chosen in such a way that min{s′− s, t ′− t} is minimum. We claim that either
s = s′ or t = t ′. Assume that s′ > s and t ′ > t . Suppose that Ts′,t ′ ⊆ {us′ , vt ′}. Since G is connected, either t < q and
usvt+1 ∈ E(G) or s < p and us+1vt ∈ E(G). Hence either (s, t + 1) or (s + 1, t) is safe, a contradiction. Otherwise, by
Lemma 39 (ii) and (iii), we have that either (s′ − 1, t ′) or (s′, t ′ − 1) is safe. This contradicts the choice of (s′, t ′). □

Now we are ready to show the main result of this subsection.

Theorem 41. There is an algorithm that, given a bipartite permutation graph G and T ⊆ V (G), in time O(n + m) finds a
minimum size family of vertex-disjoint paths P covering T and, if T cannot be covered by a single path, a T-separator S∗ such
that cT (G− S∗)− |S∗| ≥ |P| certifying the optimality of P .

Proof. We show an algorithm for connected graphs and then explain how to deal with the disconnected case. In a first
stage, we describe the algorithm and prove its correctness. In a second and final stage, we analyze its running time.
Our algorithm will return a minimum size family P of vertex-disjoint paths that cover T and a T -separator S∗ such that
cT (G− S∗)− |S∗| ≥ |P| if |P| ≥ 2 and the algorithm will return S∗ = ∅ if T = ∅ or if T can be covered by one path. Note
that in the latter case S∗ is not a T -separator.

By Proposition 27, G has a strong ordering (σ1 = ⟨u1, . . . , up⟩, σ2 = ⟨v1, . . . , vq⟩). Of course, if T = ∅ then P = ∅, and
if |T | = 1 then P = {T } and S∗ = ∅. So we can assume from now on that |T | ≥ 2. We begin by computing a maximal
safe pair (s, t) of G together with its corresponding (s, t)-safe path P . In case Ts,t = T , we set P = {P} and S∗ = ∅. In case
Ts,t ̸= T , we find a Ts,t-separator S ⊆ {u1, . . . , us} ∪ {v1, . . . , vt} such that

(i) cTs,t (G− S) > |S|, and
(ii) NG({us+1, . . . , up} ∪ {vt+1, . . . , vq}) ⊆ S and for each component H of G − S containing a vertex of T \ Ts,t ,

V (H) ⊆ {us+1, . . . , up} ∪ {vt+1, . . . , vq}.

Thanks to Lemma 37, we know that S exists.
We next recursively apply our algorithm to each of the k ≥ 1 components H1, . . . ,Hk of the graph H = G \(
{u1, . . . , us} ∪ {v1, . . . , vt}

)
. That is, for each Hi we take Ti = T ∩ V (Hi) ⊊ T and return a minimum size family Pi of

paths that cover Ti and a certificate Si such that

cTi (Hi − Si)− |Si| ≥ |Pi|. (10)

Here we assume inductively the correctness of the algorithm for H1, . . . ,Hk. Taking P = {P} ∪ P1 ∪ · · · ∪ Pk, we obtain a
family of paths that covers T . And taking S∗ = S ∪ S1 ∪ · · · ∪ Sk, we infer by (10) and Lemma 37(i) that

cT (G− S∗)− |S∗| ≥ |P|.

By Observation 3, this inequality implies that P has minimum size which completes the proof of correctness.
We now show that the algorithm can be implemented in time O(n+m).
The strong ordering of G can be constructed in time O(n + m) [35]. We compute it once and use it throughout the

algorithm.
If |T | ≤ 1, we need constant time to solve the problem. Otherwise, we have to find a maximal safe pair (s, t). For this,

we compute 1 and 2-safe pairs together with their corresponding labels pred1 and pred2 by following the strong ordering.
To be able to recognize that a pair is maximal, we alternate between V1 and V2 in the following way.

We introduce counters a1, b1 and a2, b2. Initially, a1 = b1 = 1 and a2 = b2 = 0. We find safe pairs and for each
safe pair (i, j), we label it as 1 or 2-safe (or both) and compute pred1(i, j) or pred2(i, j) (or both). Assume that for each
i ∈ {1, . . . , a1 − 1}, we already computed the safe pairs (i, j) for all j such that uivj ∈ E(G). Symmetrically, we assume
that for each j ∈ {1, . . . , a2 − 1}, we already computed the safe pairs (i, j) for all i such that uivj ∈ E(G). We iterate as
follows. For each i = a1, . . . , b1, we find the safe pairs (i, j) and compute the labels for all j such that uivj ∈ E(G) using
Lemma 39. For each i, we also find the maximum index ci such that (i, ci) is safe and set ci = 0 otherwise. Next, we
compute c∗ = max{ci | a1 ≤ i ≤ b1} and define a2 = a2 + 1 and b2 = c∗. We then pass to V2 and proceed analogously:
For each j = a2, . . . , b2, we find the safe pairs (i, j) and compute the labels for all i such that uivj ∈ E(G). We also find
the maximum value dj such that (dj, j) is safe for j ∈ {a2, . . . , b2} and set dj = 0 if there is no such a pair. We compute
d∗ = max{dj | a2 ≤ j ≤ b2}. Then we define a1 = a1 + 1, b1 = d∗ and again pass to V1 etc. We stop when we find a safe
pair (s, t) such that either Ts,t = T or recognize that (s, t) is maximal using Lemma 40. Observe that the values ci and di
allow us to verify whether each considered safe pair (i, j) is maximal using the already computed information whenever
we finish considering the edges incident to ui and vj.

So far, the algorithm runs in time O(
∑s

i=1 dG(ui)+
∑t

j=1 dG(vj)), where (s, t) is some maximal safe pair. By the last claim
of Lemma 37, we compute S in time O(s + t). By Lemma 37, either S = {us, us−1, . . . , us−ℓ} or S = {vt , vt−1, . . . , vt−ℓ}

for some nonnegative integer ℓ. Assume without loss of generality that S = {us, us−1, . . . , us−ℓ}. By Lemma 37 (ii),
NG({us+1, . . . , up} ∪ {vt+1, . . . , vq}) ⊆ S. Let W = {vj | t + 1 ≤ j ≤ j and vjus+1 /∈ E(G)}. By Definition 5 and Lemma 28,

the vertices of W are isolated vertices of H . Moreover, H − W is either empty or connected, because G is connected.
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s the vertices of W form trivial components of H , the computations take O(|W |) time. Finally, recursively applying the
lgorithm for the graph H −W , one can verify that the total running time is O(n+m).
It remains to extend the algorithm for disconnected graphs. If G has a unique component containing the vertices of

, we simply run the algorithm for this component. Assume that G has at least two connected components G1, . . . ,Gr
ontaining the vertices of T . We compute a minimum family Pi that cover Ti = T ∩ V (Gi) and a certificate Si for
∈ {1, . . . , r}. Then we define P = P1 ∪ · · · ∪ Pr and S∗ = S1 ∪ · · · ∪ Sr . Notice that even if S∗ = ∅, then S∗ is a
-separator, because G has at least two components containing the vertices of T . Then it is straightforward to verify that
covers T and S∗ is a T -separator certifying optimality. □

.1.3. Cycle Segment Cover for bipartite permutation graphs
Combining Theorems 35 and 41 we obtain the following corollary that proves the claim of Theorem 1 for bipartite

ermutation graphs.

orollary 42. There is an algorithm that, given an instance (G, T , r) of Cycle Segment Cover where G is a bipartite
ermutation graph and T is not a clique, in time O(n + m) returns either a T-cycle-segment cover of size at most r or a
-separator S∗ with cT (G− S∗)− |S∗| > r that certifies a no-answer.

roof. If r = 0, then we simply use Theorem 35. Assume that r ≥ 1. We use the algorithm from Theorem 41. The
lgorithm in O(n+m) time finds a minimum size family of vertex-disjoint paths P covering T . If r ≥ |P|, then we return
. Otherwise, r < |P| and, in particular, this means that T cannot be covered by a single path. Then the algorithm from
heorem 41 returns a T -separator S∗ such that cT (G− S∗)− |S∗| ≥ |P| > r and we return S∗. □

.2. k-Cyclability for bipartite permutation graphs

Theorem 35 allows us to solve k-Cyclability for bipartite permutation graphs. We just need one auxiliary lemma.

emma 43. Let G = (V1, V2, E) be a connected bipartite permutation graph with at least three vertices and let k be a positive
nteger. Then G is k-cyclable if and only if for every i = 1, 2 and every set T ⊆ Vi of min{|Vi|, k} consecutive vertices with
espect to σi, T is cyclable.

roof. By definition, if G is k-cyclable, then for every i = 1, 2 and every set T ⊆ Vi of min{|Vi|, k} consecutive vertices
ith respect to σi, T is cyclable.
To show the opposite implication, assume that G is not k-cyclable. We must show that for some i = 1, 2 there exists

set T ⊆ Vi of min{|Vi|, k} consecutive vertices with respect to σi such that T is not cyclable.
Since G is not k-cyclable, we can find a subset T ⊆ V (G) of size at most k that is not cyclable. Let us argue that T can

e assumed to not be a clique. If T has size one, then T is cyclable by definition. The one outstanding case is k = 2 as G is
bipartite. Suppose that T = {u, v} for some adjacent vertices u ∈ V1 and v ∈ V2. Since G has at least three vertices and T
is not cyclable, either u or v, say u, is a cut-vertex of G. Then u has two neighbors x and y that are in distinct components
of G− u. It follows that {x, y} is not cyclable, as needed.

Since T is not a clique and not cyclable, there is a maximal safe pair (s, t), where s ∈ {1, . . . , p} and t ∈ {1, . . . , q}, such
that Ts,t ̸= T . By Lemma 32, either there is 1 ≤ s′ ≤ s and S = {us′ , . . . , us} or there is 1 ≤ t ′ ≤ t and S = {vt ′ , . . . , vt}

uch that S is a T -separator and cT (G− S) > |S|. By symmetry, assume without loss of generality that S = {us′ , . . . , us}.
Let vh′ ∈ V2 be the last vertex with respect to σ2 that is adjacent to us′−1 if s′ ≥ 2 and vh′ = v1 if s′ = 1. Let also vh be the

irst vertex with respect to σ2 that is adjacent to us+1 if s < p and vh = vq if s = p. Since S is a T -separator, we have that S
is a separator of G. By the definition of a strong ordering and Lemma 28, we have that h′ < h, the vertices vh′ , . . . , vh are
n distinct components of G− S and each component of G− S contains exactly one vertex of T ′ = {vh′ , . . . , vh}. Therefore,

|T ′| = cT ′ (G− S) = c(G− S) ≥ cT (G− S) > |S|.

So if |T ′| ≤ k then we are done. If |T ′| > k, then we select an arbitrary subset T ′′ ⊆ T ′ such that T ′′ contains k consecutive
ertices with respect to σ2. We have that

cT ′′ (G− S) = |T ′′| = k ≥ |T | ≥ cT (G− S) > |S|

nd, therefore, T ′′ is not cyclable. This completes the proof. □

heorem 44. k-Cyclability can be solved in time O(nm) on bipartite permutation graphs.

roof. Let (G, k) be an instance of k-Cyclability where G = (V1, V2, E) is a bipartite permutation graph. If |V (G)| ≤ 3,
then the problem is trivial, and if k ≤ 1, then it can be solved in linear time by Proposition 6. So we can assume that
|V (G)| ≥ 3 and k ≥ 2. If G is disconnected, then G is not k-cyclable. Suppose that G is connected. By Proposition 27, G has
a strong ordering (σ1, σ2) that can be constructed in time O(n + m) [35]. Our algorithm then checks for every i = 1, 2
whether T is cyclable for every set T ⊆ Vi of min{|Vi|, k} consecutive vertices with respect to σi. Each computation can
be done, by Theorem 35, in time O(n+m). Applying Lemma 43, G is k-cyclable if and only if every such T is cyclable. The
total running time is O(nm). □
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Fig. 5. Example of a composition tree using parallel and series operations (left), the cograph G it represents (center) and the cotree of G (right),
which is unique. Some vertices are decorated in order to ease the reading.

Our algorithm for Terminal Cyclability on bipartite permutation graphs can be seen as a certifying algorithm for
k-Cyclability as well: If (G, k) is a yes-instance for G = (V1, V2, E), then we can produce the certificate that consists of a
strong ordering (σ1, σ2) and a family of cycles containing T for each set T ⊆ Vi of min{|Vi|, k} consecutive vertices with
respect to σi (i = 1, 2). If (G, k) is a no-instance, the certificate is a separator S of G such that |S| ≤ k−1 and c(G−S) > |S|.

5. Cographs

In this section, we show Theorems 1 and 2 for cographs.
There are several characterizations of the class of cographs. They are often defined as the graphs that do not admit the

P4 (path on 4 vertices) as induced subgraph. Equivalently, they are the graphs obtained from a single vertex under the
closure of the parallel composition and the series composition. The parallel composition of two graphs G1 = (V1, E1) and
G2 = (V2, E2) is the disjoint union of G1 and G2, i.e., the graph Gpar =

(
V1 ∪ V2, E1 ∪ E2

)
. The series composition of two

graphs G1 and G2 is the disjoint union of G1 and G2 plus all possible edges from a vertex of G1 to one of G2, i.e., the graph
Gser =

(
V1 ∪ V2, E1 ∪ E2 ∪ {xy | x ∈ V1, y ∈ V2}

)
. These operations can naturally be extended to a finite number of graphs.

This gives a nice representation of a cograph G by a tree whose leaves are the vertices of the graph and whose internal
nodes (nonleaf nodes) are labeled P , for parallel, or S, for series, corresponding to the operations used in the construction
of G. It is always possible to find such a labeled tree T representing G such that every internal node has at least two
children, no two parallel nodes are adjacent in T and no two series nodes are adjacent. This tree T is unique [11] and is
called the cotree of G. See the example on Fig. 5.

We denote Tu the subtree of T rooted at u and V (u) the subset of vertices of G that are the leaves of Tu. Cographs
orm a hereditary family, i.e. every induced subgraph of a cograph is also a cograph. The cotree of the induced subgraph
[V (u)] of cograph G is precisely Tu. The set of children of node u of T is denoted C(u) and the subset of its children ui
uch that V (ui) ∩ T ̸= ∅ is denoted CT (u), where as usual, T is the set of terminals given in the Terminal Cyclability
roblem.
The lists we use in the algorithm contain no duplicates. They are denoted with parentheses and their elements are

eparated by commas, e.g. (a, b, c, d). We use three operations on a list: first returns the first element of the list, last
eturns its last element and operation Insert inserts a given element in the list after a specified element. For example,
f L = (a, b, c, d), the operation Insert x after c in L updates L as L = (a, b, c, x, d).

.1. The algorithm for Cycle Segment Cover

The aim of this subsection is to prove the following theorem.

heorem 45. There is an algorithm that, given an instance (G, T , r) of Cycle Segment Cover where G is a cograph, given
y its cotree T , and T is not a clique, outputs in O(n) time either a T-cycle-segment cover of size at most r or a T-separator
∗ with cT (G− S∗)− |S∗| > r that certifies a no-answer.

The general idea of the algorithm we present is to recursively compute, for each node u of the cotree T of G, a T -cycle-
egment cover of T ∩ V (u) in G[V (u)] of minimum size. More precisely, we compute a quadruple (σ (u),P(u),Q (u), S(u))
hat satisfies the following invariant.

nvariant 1. The quadruple (σ (u),P(u),Q (u), S(u)) computed for each node u ∈ T is such that:

1. σ (u) = segT∩V (u)(G[V (u)]) and
2. P(u) is a minimum (T ∩ V (u))-cycle-segment cover in G[V (u)] and
3. Q (u) = V (u) \

⋃
P∈P(u) V (P).

4. if σ (u) > 0 then S(u) is a separator of G[V (u)] such that cT (G[V (u)] − S(u)) − |S(u)| = σ (u), and if σ (u) = 0 then
S(u) = ∅.
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The algorithm terminates when the quadruple (σ (r),P(r),Q (r), S(r)) has been computed for the root r of T . As
(r) = V (G), we then have that σ (r) = segT (G) and P(r) is a T -cycle-segment cover of G of size σ (r). In addition, if
(r) > 0, the algorithm produces a separator S(r) such that cT (G[V (r)]− S(r))−|S(r)| = σ (r) that is a certificate that P(r)
s a minimum T -cycle-segment cover. The purpose of Q (u) is that it contains all the vertices that are not used in P(u) and
hat are available to connect some paths later in the algorithm, when treating the ancestors of u. The paths P in P(u) are
epresented by their sequence of vertices P = x1, x2, . . . , xl. When P(u) contains a unique element which is a cycle, this
ycle is also represented as a path, which satisfies the additional condition that x1 and xl are adjacent.
The algorithm uses two recursive subroutines that call each other: one for series nodes, named CoverSeries(u), and

ne for parallel nodes, named CoverParallel(u). The first call to one of these subroutines is made on the root of the
otree and therefore the whole algorithm terminates when the call made on the root is over. Routine CoverSeries(u)
alls CoverParallel(u1) on a unique specific child u1 of u, while CoverParallel(u) calls CoverSeries(ui) on all
he children ui of u such that V (ui) contains some terminal. We now describe the two routines CoverSeries and
overParallel.

.1.1. Algorithm for parallel nodes

Algorithm 2: CoverParallel(u)
1 Pre-conditions: u is a parallel node.
2 begin
3 sort the children {u1, . . . , uk} of u such that the children ui ∈ CT (u) appear first;
4 for i = 1 to |CT (u)| do
5 (σi,Pi,Qi, Si)← CoverSeries(ui);
6 end
7 if |CT (u)| = 1 then
8 (σ ,P,Q , S)← (σ1,P1,Q1 ∪ (V (u) \ V (u1)), S1);
9 else

10 σ ←
∑

ui∈CT (u)
|P(ui)|;

11 P ←
⋃

ui∈CT (u)
P(ui);

12 Q ←
⋃

ui∈CT (u)
Q (ui) ∪

⋃
ui∈C(u)\CT (u)

V (ui);
13 S ←

⋃
ui∈CT (u)

S(ui);
14 end
15 return (σ ,P,Q , S);
16 end

The routine for parallel nodes is called CoverParallel(u) (Algorithm 2). It is very simple. Given the quadruples
σ (ui),P(ui),Q (ui), S(ui)) computed for each child ui ∈ CT (u), it outputs the quadruple (σ (u),P(u),Q (u), S(u)) for u which
s obtained as described in Algorithm 2.

The validity of Routine CoverParallel is stated by the following lemma.

emma 46. When u is a parallel node, the quadruple (σ ,P,Q , S) returned by Routine CoverParallel(u) satisfies
nvariant 1.

roof. We have to check that the four properties of Invariant 1 are satisfied. Let us start with the general case where
T (u) > 1. From Invariant 1, for each child ui ∈ CT (u) we have Q (ui) = V (ui) \

⋃
P∈P(ui)

V (P). Therefore, since P
s set to

⋃
ui∈CT (u)

P(ui) (Line 11) and Q (u) is set to
⋃

ui∈CT (u)
Q (ui) ∪

⋃
ui∈C(u)\CT (u)

V (ui) (Line 12), then we also have
(u) = V (u) \

⋃
P∈P(u) V (P) and 3. of Invariant 1 is satisfied.

Observe that since u is a parallel node, for each child ui of u, V (ui) is a connected component of G[V (u)]. Then, since
CT (u)| > 1, there is no cycle in G[V (u)] containing all the vertices of T ∩V (u). In addition, P(u) =

⋃
ui∈CT (u)

P(ui) is clearly
T ∩ V (u)-cycle-segment cover in G[V (u)] (recall that cycles are represented as paths) and we have σ (u) = |P(u)|.
hen, in order to prove that Properties 1. and 2. hold, it is enough to exhibit a separator S of G[V (u)] such that
T (G[V (u)] − S)− |S| = σ (u). This is obviously given by S(u) if Property 4. holds, which we prove now
Note that, because for every child ui ∈ CT (u) the quadruple (σ (ui),P(ui),Q (ui), S(ui)) satisfies Property 4., if σ (ui) > 0,

hen S(ui) is such that cT (G[V (ui)] − S(ui)) − |S(ui)| = σ (ui). Let us denote C the subset of children ui of u such that
(ui) contains some vertex of T (i.e. ui ∈ CT (u) with our notations) and σ (ui) > 0. Since, by definition, S(ui) = ∅
hen σ (ui) = 0, then we have S(u) =

⋃
ui∈C

S(ui). Clearly, S(u) is a separator of G[V (u)]. Moreover, observe that
or any ui ∈ C the connected components of G[V (u)] − S(u) that contain some vertex of T ∩ V (ui) are exactly the
onnected components of G[V (ui)] − S(ui) that contain some vertex of T , because S(u) is such that S(u) ∩ V (ui) = S(ui).
urthermore, observe that for any ui ∈ CT (u) \ C , V (ui) is a connected component of G[V (u)] − S(u) and contains
ome vertex of T . Therefore, cT (G[V (u)] − S(u)) − |S(u)| = |CT (u) \ C | +

∑
ui∈C

(cT (G[V (ui)] − S(ui)) − |S(ui)|). For
∈ C (u) \ C , we have |P(u )| = 1 and so |C (u) \ C | =

∑
|P(u )|. On the other hand, for u ∈ C , we have
i T i T ui∈CT (u)\C i i
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T (G[V (ui)] − S(ui)) − |S(ui)| = σ (ui) = |P(ui)|, from 4.. Then, by injecting these equalities in the identity above we get
T (G[V (u)] − S(u)) − |S(u)| =

∑
ui∈CT (u)\C

|P(ui)| +
∑

ui∈C
|P(ui)| =

∑
ui∈CT (u)

|P(ui)| = |P(u)|, from the definition of P(u)
t Line 11. Finally, we obtain cT (G[V (u)] − S(u))− |S(u)| = |P(u)|, which proves that 4. holds, and then, as noted before,
roperties 1. and 2. also hold.
Now, consider the case where |CT (u)| = 1 and denote u1 the unique element of CT (u). Since V (u1) is a connected

omponent of G[V (u)], we have σ (u) = σ (u1). In this case (see Lines 7 and 8), the quadruple returned by CoverParallel
s clearly correct: it is the same as the quadruple of u1, except for Q (u), which is augmented with the vertices of
(u) \ V (u1). □

ime complexity of CoverParallel. If we exclude the time spent for the calls to Routine CoverSeries (Lines 4 to 6)
nd provided that the children of u are already sorted as stated at Line 3 (we will do this for all nodes of the tree at the
ame time as a preprocessing step before the first call to Routines CoverParallel and CoverSeries), then the time
eeded for Routine CoverParallel to compute the quadruple (σ (u),P(u),Q (u), S(u)) is O(|C(u)|). Indeed, it is enough
o scan the children of u while computing the desired sum for σ (u) and performing the desired union for P(u), Q (u) and
(u). Representing all these sets by lists, the union of two sets is performed in constant time. Then the whole time taken
y Routine CoverParallel is the time needed to scan the children of u, that is O(|C(u)|).

.1.2. Algorithm for series nodes
The algorithm for series node (Algorithm 4) is called CoverSeries(u). It uses the quadruple (σ (u1),P(u1),Q (u1),

(u1)) already computed for its child u1 such that |V (u1)| is maximum and calls Routine ExtendCov(X, σ ,P,Q , S)
Algorithm 3) once for each of its children ui, i ≥ 2, distinct from u1. We first describe Routine ExtendCov(X, σ ,P,Q , S).

outine ExtendCov. Given two disjoint subsets of vertices X and Y that are complete to each other (all possible edges
etween X and Y ) and given a minimum (T ∩ Y )-cycle-segment cover in G[Y ] (encoded as a quadruple (σ ,P,Q , S) that
atisfies Invariant 1), Routine ExtendCov computes a minimum (T ∩ (X ∪ Y ))-cycle-segment cover in G[X ∪ Y ]. It uses a
ist Seq of paths and a merge operation which consists in concatenating all the paths in list Seq.

The main idea of Routine ExtendCov is as follows. First, we use the vertices of X (and prioritarily those of T ∩ X)
o connect the paths in P until they eventually form one cycle (Lines 9 to 16). We can do this as X is complete to Y . If
here are not enough vertices in X to obtain a cycle in this way, the Routine stops and return the reduced set of paths
btained. Otherwise, if we obtain a cycle before using all the vertices of X , it may happen that the terminals in T ∩ X are
ot all contained in this cycle (even if we use the terminals of T ∩ X before the other vertices in X). Then, the routine
ncludes them in the cycle. In order to ensure that we can include all of them in the cycle, we proceed in two steps. As
ong as there remain some unused vertices in Q , that is some vertices in Y that are not in the cycle, we insert at the same
ime one vertex of Q and one vertex of T ∩ X (Lines 18 to 22). This ensures, together with the pre-condition |Y | ≥ |X |
f Routine ExtendCov, that if there are no more vertices of Q we can use before we inserted all the vertices of T ∩ X ,
hen the number of vertices remaining in T ∩ X is less than the number of edges in the paths of P . Then, each remaining
ertex of T ∩ X can be inserted instead of one edge of some path in P (Lines 24 to 32), as the paths of P are made only
f vertices in Y .

alidity of routine ExtendCov. It is stated by Lemma 50. In order to prove it, we first establish three preliminary technical
emmas.

emma 47. At the end of Routine ExtendCov(X, σ ,P,Q , S), P ′ consists of a collection of disjoint paths that contain all the
ertices of T ∩ (X ∪ Y ).

roof. Let us first show that P ′ is a collection of disjoint paths. At the end of the algorithm (Lines 33 and 34), P ′ is built
y merging into one path the sequence Seq built along the algorithm and by adding to P ′ the paths of P that are not in
eq. So we have to check that the sequence Seq of vertices built indeed defines a path and that the (rest of the) paths of
, which are altered during the algorithm, at Line 28, are still paths at the end of the algorithm. To see that Seq indeed
efines a path, observe that Seq is initialized with the path P1 of P at Line 8 and that Seq is updated at Line 11 of the
lgorithm by placing a vertex of X between two paths of P , whose vertices are in Y . Consequently, since X is complete
o Y (see Pre-condition (ii)), Seq remains a path. At Line 16, before Seq is updated by adding a vertex of X at the end, the
ast element in Seq was a path of P which is made only of vertices of Y , so Seq again remains a path, which now finishes
y a vertex in X . Then, at Line 19, when Seq is updated again by appending to it the sequence (yl, xj), Seq continues to
efine a path as well. Finally, the paths in P that are in Seq are altered at Line 28 (if there exists some path in P that is
ot in Seq, then at Line 16, we have σ ′ > 1 and so j = n+ 1, and Lines 18 to 32 are not executed). At that time a vertex
j ∈ X is inserted after the vertex α of some path Pl ⊆ Y . Again, because X is complete to Y , then xj is adjacent to both α

nd the next vertex on Pl and Pl remains a path after the insertion of xj. Thus, at the end of Routine ExtendCov, P ′ is a
ollection of disjoint paths.
We now show that P ′ contains all the vertices of T ∩ (X ∪Y ). Recall that from Pre-condition (ii), n ≤ |Y | and so t ≤ |Y |.
fter the first loop (Lines 10 to 14) and the conditional following it (Line 16), we have inserted exactly j − 1 vertices

171



C. Crespelle and P.A. Golovach Discrete Applied Mathematics 313 (2022) 147–178

R

Algorithm 3: ExtendCov(X, σ ,P,Q , S)
1 Pre-conditions: (i) X ⊆ V (G) and (ii) σ = segT∩Y (G[Y ]) for some Y ⊆ V (G) \ X such that Y is complete to X and
|Y | ≥ |X | and (iii) P is a minimum (T ∩ Y )-cycle-segment cover in G[Y ] and (iv) Q = Y \

⋃
P∈P V (P) and (v) if

σ > 0 then S is such that cT∩Y (G[Y ] − S)− |S| = σ and if σ = 0 then S = ∅.
2 begin
3 let n = |X |, t = |T ∩ X |;
4 we denote X = {x1, . . . , xn} the vertices of X sorted so that
5 the vertices of T ∩ X = {x1, . . . , xt} form an interval in the beginning, when t > 0;
6 we denote P = {P1, . . . , P|P|}, where |P| ≥ 1, and Q = {y1, . . . , y|Q |} when |Q | ≥ 1;
7 σ ′ ← σ ; Q ′ ← Q ∪ X;
8 j← 1; Seq← (P1);
9 if σ ′ > 0 then

10 while j ≤ n and σ ′ > 1 do
11 Seq← Seq.(xj, Pj+1);
12 Q ′ ← Q ′ \ {xj};
13 j← j+ 1; σ ′ ← σ ′ − 1;
14 end
15 end
16 if j ≤ n then Seq← Seq.(xj); Q ′ ← Q ′ \ {xj}; j← j+ 1; σ ′ ← σ ′ − 1;
17 l← 1;
18 while j ≤ t and l ≤ |Q | do
19 Seq← Seq.(yl, xj);
20 Q ′ ← Q ′ \ {yl, xj};
21 j← j+ 1; l← l+ 1;
22 end
23 h← 0;
24 while j ≤ t and h < |P| do
25 h← h+ 1; α← first(Ph);
26 while j ≤ t and α ̸= last(Ph) do
27 αnext ← next(α);
28 Insert xj between α and αnext in Ph;
29 Q ′ ← Q ′ \ {xj};
30 α← αnext ; j← j+ 1;
31 end
32 end
33 if σ ′ ≥ 2 then P ′ ← {merge(Seq), P|P|−σ ′+2, . . . , P|P|};
34 else P ′ ← {merge(Seq)};
35 if σ ′ > 0 then S ′ ← S ∪ X;
36 else S ′ ← ∅;
37 return (σ ′,P ′,Q ′, S ′);
38 end

of X in P . Then, either we have j − 1 ≥ t and all the vertices of T ∩ X have been inserted in P , or we have j ≤ t and
the second loop (Lines 18 to 22) will iterate at least once. Note that before the second loop starts, we have j ≤ t ≤ n,
which implies that the first loop stopped because σ ′ = 1 and that the conditional of Line 16 was positive, so we now
have σ ′ = 0. Since σ ′ was initialized at σ and decremented always at the same time as j is incremented, then, at Line 17
of the algorithm, just before the second loop starts, we have inserted j − 1 = σ vertices of X in P . After the second
loop stops, if we have j > t , since again, at that point, j − 1 = t vertices of X have been inserted in P , then all those in
T ∩ X have been inserted. Otherwise, if j ≤ t , the second loop stopped because l = |Q | + 1 and then exactly |Q | new
vertices of X have been inserted in P during the execution of the second loop. This gives a total of |P| + |Q | vertices of
X inserted in P so far and the third loop (Lines 24 to 32) is ready to iterate at least once, because j ≤ t . Now, we show
that when the third loop stops, we always4 have j > t . If h < |P|, this is clear. On the other hand, if h ≥ |P|, then the
third loop was executed once for each of the paths Pl ∈ P . And for each path Pl, the inner loop (Lines 26 to 31) executes
exactly |E(Pl)| times and insert one vertex of X in P at each iteration (Line 28). Then, during the execution of the third

4 In other words, the loop condition l < |Q | is not necessary, it is used only to explicitly guarantee to the reader that the third loop will never
iterate with a value of l for which Pl is undefined. But actually, this is already guaranteed by the sole condition j ≤ t and the pre-conditions of
outine ExtendCov, as we prove it now.
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oop,
∑

P∈P |E(P)| new vertices of X are inserted in P , which makes the total number of such vertices reach the value
|P|+ |Q |+

∑
P∈P |E(P)|, and as usual the incrementation of j during the algorithm guarantees that this value is also j−1.

So we have j − 1 = |P| + |Q | +
∑

P∈P |E(P)|. Moreover, from Pre-condition (iv) we have |Q | = n −
∑

P∈P |V (P)| and
P∈P |E(P)| also writes (

∑
P∈P |V (P)|) − |P|. This gives j − 1 = n ≥ t , which means that all the vertices in T ∩ X have

een inserted in P ′, which ends the proof of the lemma. □

emma 48. At the end of Routine ExtendCov(X, σ ,P,Q , S), if |P ′| > 1 or |P ′| = 1 and the unique element in P ′ is not a
ycle, then σ ′ = |P ′|. Otherwise, i.e. if |P ′| = 1 and the unique element in P ′ is a cycle, then σ ′ = 0.

roof. Let us first consider the case where σ > 0. In an execution of the algorithm, σ ′ is initialized at σ at Line 7 and
rom Pre-condition (ii) and (iii), σ = |P|. Then, in the first loop, σ ′ is decremented (Line 13) every time that two paths
n P are joined together by a vertex of x (Line 11). If at the end of the execution of the first loop we have j > n, then the
nstructions at Lines 16 to 32 are not executed and it follows that at the end of the algorithm σ ′ = |P ′|. Moreover, since

> 0, by definition of P , the last vertex of the last path in P and the first vertex of the first path in P are not adjacent.
his implies that if |P ′| = 1 then the unique element in P ′ is not a cycle and we are in the first case of the statement of
he lemma. On the other hand, if j ≤ n at the end of the first loop, then P ′ contains only one path and this unique path
s made a cycle by inserting a vertex of X at the end of it at Line 16, and σ ′ takes the value 0. Afterwards, in the rest of
he execution of the algorithm, the value of σ ′ remains unchanged and the unique element in P ′ remains a cycle (see the
roof of Lemma 47). Therefore, we are in the second case of the lemma.
Finally, if σ = 0, then σ ′ is set to 0 at Line 7 and the first loop does not execute. Consequently, at Line 17, we have
′
= 0 and the unique element in P ′, which is the unique element in P , is a cycle. As above, it follows that the value of
′ remains unchanged and the unique element in P ′ remains a cycle until the end of the execution of the algorithm. We
re again in the second case of the lemma. □

emma 49. At the end of Routine ExtendCov(X, σ ,P,Q , S), if σ ′ > 0, then we have cT∩(X∪Y )(G[X ∪ Y ] − S ′)− |S ′| = |P ′|.

roof. Since σ ′ only decreases during the routine, if σ ′ > 0 at the end then σ ′ > 0 at the beginning. Consequently, the
ondition σ ′ > 0 at Line 9 is true and the first loop (Lines 10 to 14) executes (note that its number of iterations may be
ull though). Assume for contradiction that the condition j ≤ n at Line 16 is true. Since at the end of the first loop, we
ave j > n or σ ′ ≤ 1, it follows that σ ′ ≤ 1. Moreover, since σ ′ decreases by exactly one at each iteration of the first
oop, we must have σ ′ = 1. Since the condition j ≤ n at Line 16 is true, σ ′ is then decremented (at Line 16 as well) and
e have σ ′ = 0 at the end of Routine ExtendCov, which is a contradiction. Therefore, when σ ′ > 0 at the end of the
outine, the condition at Line 16 is false, i.e. j > n. Consequently, Lines 18 to 32 are not executed. This implies that at the
nd of the algorithm |P ′| = σ − n, because each of the vertices of X that was added to Seq is between two paths of P .
Beside this, observe that when σ ′ > 0, at the end of the routine, we have S ′ = S ∪ X (see Line 35) and so

S ′| = |S| + n. Moreover, note that σ ′ > 0 at the end implies that σ > 0. Then, from Pre-condition (v), S is such that
T∩Y (G[Y ]− S)− |S| = σ . Finally, observe that the connected components of G[Y ]− S and of G[X ∪ Y ]− S ′ are exactly the
ame. As a consequence, we have cT∩(X∪Y )(G[X∪Y ]−S ′)−|S ′| = cT∩Y (G[Y ]−S)−|S ′| = cT∩Y (G[Y ]−S)−|S|−n = σ−n = |P ′|,
hich ends the proof of the lemma. □

We can now prove the correctness of Routine ExtendCov.

emma 50. When the pre-conditions of Routine ExtendCov(X, σ ,P,Q , S) are satisfied, the quadruple (σ ′,P ′,Q ′, S ′)
returned by the routine satisfies the following four post-conditions:

(1) σ ′ = segT∩(X∪Y )(G[X ∪ Y ]) and
(2) P ′ is a minimum (T ∩ (X ∪ Y ))-cycle-segment cover in G[X ∪ Y ] and
(3) Q ′ = (X ∪ Y ) \

⋃
P∈P ′ V (P).

(4) if σ ′ > 0 then S ′ is such that cT∩(X∪Y )(G[X ∪ Y ] − S ′)− |S ′| = σ ′ and if σ ′ = 0 then S ′ = ∅

Proof. First, observe that the four post-conditions above are the same as the conditions of Invariant 1, the difference
being that Invariant 1 is stated for a node of the cotree, while here these conditions are applied more generally on an
arbitrary subset of vertices. We prove that each of the conditions of the lemma holds at the end of the execution of the
routine, starting with Condition (3). At the beginning of the algorithm (Line 7), Q ′ is initialized with Q ∪X , so at that time
we have indeed Q ′ = (X ∪ Y ) \

⋃
P∈P ′ V (P). During the algorithm, every time some vertex of Q or X is incorporated in

P , it is withdrawn of Q ′ immediately after. So at the end of the algorithm, we still have Q ′ = (X ∪ Y ) \
⋃

P∈P ′ V (P) and
Condition (3) is satisfied.

Condition (4) always holds at the end of the routine, because if σ ′ = 0 then S ′ is set to ∅ at Line 36 and if σ ′ > 0, then
Lemmas 48 and 49 ensure Condition (4).

We now prove that Condition (2) holds. From Lemma 47, P ′ is a cycle-segment cover of T ∩ (X ∪Y ). We need to prove
′
in addition that it is a minimum (T ∩ (X ∪ Y ))-cycle-segment cover. We distinguish two cases. First, if |P | = 1 and the
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nique element in P ′ is a cycle, then P ′ is necessarily a minimum (T ∩ (X ∪ Y ))-cycle-segment cover in G[X ∪ Y ]. Now,
consider the case where |P ′| > 1 or |P ′| = 1 and the unique element in P ′ is not a cycle. From Lemma 48, in this case
we have σ ′ > 0. Then, from Lemma 49, we have cT∩(X∪Y )(G[X ∪ Y ] − S ′) − |S ′| = |P ′|, which ensures that the segment
cover P ′ is of minimum cardinality. Thus, in any case, Condition (2) holds at the end of the routine.

Finally, Condition (2) and Lemma 48 directly imply that Condition (1) holds as well, which ends the proof. □

Time complexity of routine ExtendCov. With a suitable implementation, Routine ExtendCov runs in O(|X |) time. Sorting
the vertices of X at Lines 4 and 5 so that the vertices of T appear as an interval at the beginning takes O(|X |) time. In
our implementation, X , P , Q , Q ′, Seq and the paths in P are stored as lists. By managing appropriately pointers to these
lists, all basic operations involved in the algorithm take constant time. Note that list Q ′ is stored in two parts, one for
the vertices of Q and one for the vertices of X . At Lines 33 and 34, since all elements of Seq are lists, merging all of them
takes O(|Seq|) time. Moreover, since every second element in Seq is a path formed by a single vertex of X and since all
these vertices are pairwise distinct, we have O(|Seq|) = O(|X |), which is the time needed to perform merge(Seq). Then, in
order to bound the complexity of ExtendCov it is sufficient to bound the total number of iterations of the four loops it
contains. Let us start with the third loop (Lines 24 to 32) and observe that this loop iterates only when j ≤ t just before
Line 24, which implies that we had j ≤ n (as t ≤ n) after the first loop stopped, at Line 14. Then, at that time, the first
loop stopped because σ ′ = 1, which means that all the paths in P have been placed in Seq. Therefore, if the third loop
iterates, we have |P| ≤ |Seq| = O(|X |), as explained above. As the third loop does not iterate more than |P| times (see
condition l < |P|) then its number of iterations is also O(|X |). Finally, observe that in the first loop (Line 10 to 14), in the
second loop (Line 18 to 22) and in the inner loop (Line 26 to 31) nested in the third one, at each iteration a distinct vertex
of X leaves Q , so the total cumulated number of iterations of all these loops cannot exceed |X | and the overall running
time of Routine ExtendCov is O(|X |).

Routine CoverSeries. The routine for treating a series node u is called CoverSeries. It is described in Algorithm 4 and
mainly consists in iteratively calling Routine ExtendCov on all the children of u but one, on which Routine CoverPar-
allel has been previously called.
Algorithm 4: CoverSeries(u)
1 Pre-conditions: u is a series node.
2 begin
3 sort the children {u1, . . . , uk} of u such that
4 the children ui ∈ CT (u) appear first and |V (u1)| is maximum among children in CT (u);
5 (σ ,P,Q , S)← CoverParallel(u1);
6 for i = 2 to k do
7 (σ ′,P ′,Q ′, S ′)← ExtendCov(V (ui), σ ,P,Q , S);
8 (σ ,P,Q , S)← (σ ′,P ′,Q ′, S ′);
9 end

10 return (σ ,P,Q , S);
11 end

Validity of routine CoverSeries. It is stated by the following lemma.

Lemma 51. When u is a series node, the quadruple (σ ,P,Q , S) returned by Routine CoverSeries(u) satisfies Invariant 1.

roof. The quadruple returned by the call to CoverParallel(u1) at Line 5 satisfies the conditions of Invariant 1 for
1 (see Section 5.1.1). Because these conditions are satisfied and because the V (ui)’s are pairwise disjoint and complete
o each other (since u is series), then, when the call to ExtendCov(V (ui), σ ,P,Q , S) occurs at Line 7 in one iteration
f the loop, the pre-conditions of ExtendCov are satisfied, with X = V (ui), i ≥ 2 and Y =

⋃
j<i V (uj). Then, from

emma 50, at the end of the iteration of the loop, we have σ = segT∩
⋃

j≤i V (uj)(G[
⋃

j≤i V (uj)]) and P is a minimum
T ∩

⋃
j≤i V (uj))-cycle-segment cover in G[

⋃
j≤i V (uj)] and Q =

⋃
j≤i V (uj) \

⋃
P∈P V (P) and if σ > 0 then S is such

hat cT∩⋃j≤i V (uj)(G[
⋃

j≤i V (uj)] − S) − |S| = σ and if σ = 0 then S = ∅. Consequently, the pre-conditions of ExtendCov
re satisfied in the next iteration of the loop, with X = V (ui+1), and Y =

⋃
j≤i V (uj). When the loop stops to iterate, we

ave i = k and
⋃

j≤i V (uj) = V (u). Thus, the quadruple (σ ,P,Q , S) returned by CoverSeries at Line 10 satisfies the four
roperties of Invariant 1. □

ime complexity of routine CoverSeries. If we exclude the time spent for the call to CoverParallel, which will be
ounted separately, in the complexity of CoverParallel, the time spent for a call to CoverSeries(u) is entirely due
o the time spent for the calls to ExtendCov in the loop. From Section 5.1.2, each call takes time O(|V (ui)|), for i ≥ 2.
onsequently, the total time spent for all the calls to ExtendCov is O(

∑
i≥2 |V (ui)|) and this is the overall time complexity

f CoverSeries.
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.1.3. The whole algorithm for Cycle Segment Cover
The algorithm for Cycle Segment Cover of a cograph G mainly consists in calling one of the routines CoverSeries

r CoverParallel on the root r of the cotree T of G: Routine CoverSeries if r is a series node and Routine Cov-
rParallel if r is a parallel node. Then, these two routines call each other in a recursive way along the tree until the
nitial call made on the root terminates. When this call terminates, it returns (as any other call to routines CoverSeries
nd CoverParallel) a quadruple (σ ,P,Q , S) which satisfies Invariant 1, as proven by Lemmas 46 and 51. Therefore, we
ave σ = segT (G), P is a minimum T -cycle-segment cover in G and S is certificate of this (when segT (G) > 0, otherwise
he cycle being the unique element of P is itself a certificate that segT (G) = 0).

Let us now turn to the time complexity of this algorithm, which we will prove to be O(n). Note that Routines Cover-
eries and CoverParallel both need the children of the node u which is processed to be sorted in a special way: the
hildren ui whose subtree contains some terminal (i.e. ui ∈ CT (u), with the notations we adopted) must appear before the
thers and for u a series node, a child ui ∈ CT (u) such that |V (ui)| is largest must appear in first position. For complexity
easons, these sortings of the children lists of the nodes of the cotree T are made altogether in a preprocessing step that
ccur before the beginning of the algorithm in itself, that is before the first call to CoverSeries or CoverParallel on
he root of T . This preprocessing consists of a bottom-up traversal of the cotree T of G, starting from the leaves. In this
rocess, each node v forwards to its parent u the number of leaves |V (v)| in its subtree and the number |V (v) ∩ T | of

these leaves that are terminals. Once a node has received the information from all its children, it determines its own and
forward it to its parent. In addition, when |V (v) ∩ T | ̸= 0, v is placed in the front of the children list of u, and for u a
series node, we keep track of its child v with greatest |V (v)| and we place it again in the first position once all children
of u have been processed.

Clearly, the complexity of the preprocessing step is O(n) and this is also the complexity of the whole algorithm.
ndeed, we already showed that, provided that the children of u are properly sorted (see the preprocessing step above),
he complexity of one call to CoverParallel(u) is O(|C(u)|) and the complexity of one call to CoverSeries(u) is
(
∑

i≥2 |V (ui)|), with u1 the child of u in CT (u) such that |V (u1)| is largest. Moreover, for a series node u, there is no
all to CoverParallel that is made on the children of u different from u1. Also note that obviously, computing the
uadruple (σ (x),P(x),Q (x), S(x)) for a terminal leaf x ∈ T takes constant time. Then, a simple induction shows that the
ime needed to compute the quadruple (σ (u),P(u),Q (u), S(u)) for a node u, either by a call to CoverParallel(u) or a
all to CoverSeries(u), takes a time proportional to the size of Tu, which is also O(|V (u)|) since every node has at least
wo children. Thus, the overall complexity of the algorithm is O(|V (r)|) = O(n) time.

.2. The algorithm for k-Cyclability

We now consider the k-Cyclability problem on cographs. Theorem 45 gives the following corollary.

orollary 52. The class of cographs is cycle-scattering dual.

roof. The proof is the same as the proof of Corollary 23, replacing Corollary 22 with Theorem 45. □

Using Lemma 9 and Corollary 52, we construct a polynomial algorithm that computes the k-scattering number of G
or any k ≤ n − 1. Afterwards, the only task remaining will consist in finding the largest integer k such that sck(G) ≤ 0.
e prove the following theorem.

heorem 53. For a noncomplete cograph G, the scattering numbers sck(G) for all k ∈ {1, . . . , n} can be computed and
-Cyclability can be solved in time O(n3).

Our algorithm is similar to, but simpler than, the one we presented for Cycle Segment Cover. It follows a bottom-up
ynamic programming scheme along the cotree T of G. In this bottom-up process, for each node u ∈ T , we determine
table Du indexed by the integers from 0 to |V (u)| − 1 and that associates to each integer k in this range the number
u(k) = sck+1(G[V (u)]) (see Definition 2 for the definition of sck+1). When the tables Dui have been computed for all the
hildren ui of a node u, then the bottom-up process computes the table Du of u as explained below, depending on whether
is a series node or a parallel node.

.2.1. Algorithm for series nodes
To treat the case of u being a series node, it is crucial to note that in order to disconnect G[V (u)] by withdrawing
subset S ⊆ V (u) of vertices, it is necessary to include in S the vertices of V (ui) for all the children ui of u

xcept one, which we denote v. Moreover, note that for all k ∈ {0, . . . , |V (v)| − 1}, we straightforwardly have
u(k+

∑
ui∈C(u)\{v}

|V (ui)|) ≥ Dv(k)−
∑

ui∈C(u)\{v}
|V (ui)|.

The algorithm for building Du uses these two facts as follows. It starts by setting Du(k) = −∞ for all the values of k
n the range of the table, namely {0, . . . , |V (u)| − 1}. Then, for each child v of u and for each k ∈ {0, . . . , |V (v)| − 1}, if
u(k +

∑
ui∈C(u)\{v}

|V (ui)|) < Dv(k) −
∑

ui∈C(u)\{v}
|V (ui)|, then the algorithm sets Du(k+

∑
ui∈C(u)\{v}

|V (ui)|) to the value
(k)−

∑
|V (u )|.
v ui∈C(u)\{v} i
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Let us now show that the values affected to Du(j) at the end of this algorithm are correct for all j. As we noted previously,
e necessarily have Du(k +

∑
ui∈C(u)\{v}

|V (ui)|) ≥ Dv(k) −
∑

ui∈C(u)\{v}
|V (ui)|. So the only risk is that the value of Du(j)

t the end of the algorithm is less than what it should be. More explicitly, there could exist a set S ⊆ V (u) such that
(G[V (u)]−S)−|S| > Du(|S|) at the end of the algorithm. Assume for contradiction that such a set S exists. From our initial
emark, S must include the vertices of V (ui) for all the children ui of u except one, denoted v. Let Sv = S ∩ V (v), then we
ave c(G[V (u)] − S) = c(G[V (v)] − Sv). This gives c(G[V (u)] − S)− |S| = c(G[V (v)] − Sv)− |Sv| −

∑
ui∈C(u)\{v}

|V (ui)| and
ince by definition c(G[V (v)] − Sv)− |Sv| ≤ Dv(|Sv|), we obtain

c(G[V (u)] − S)− |S| ≤ Dv(|Sv|)−
∑

ui∈C(u)\{v}

|V (ui)|

On the other hand, after the integer |Sv| has been considered when treating child v of u, the algorithm ensures that
u(|Sv| +

∑
ui∈C(u)\{v}

|V (ui)|) ≥ Dv(|Sv|) −
∑

ui∈C(u)\{v}
|V (ui)|. As the value of Du(|Sv| +

∑
ui∈C(u)\{v}

|V (ui)|) = Du(|S|)
nly increases during the algorithm, at the end we have Du(|S|) ≥ Dv(|Sv|) −

∑
ui∈C(u)\{v}

|V (ui)|. Together with what
recedes, this gives c(G[V (u)] − S) − |S| ≤ Dv(|Sv|) −

∑
ui∈C(u)\{v}

|V (ui)| ≤ Du(|S|), which is a contradiction with our
ssumption. Therefore, the value of Du(j) at the end of the algorithm is not less than what it should be, it is correct for
ll j ∈ {0, . . . , |V (u)| − 1}.
For each child v of u the algorithm considers |V (v)| values for k, each of them in constant time. Therefore, the total

ime spent by the algorithm for computing table Du is O(
∑

v∈C(u) |V (v)|) = O(|V (u)|).

.2.2. Algorithm for parallel nodes
The algorithm for a parallel node u makes use of a routine named ExtendScat(D1,D2). Given the tables D1 and

2 of the scattering numbers of two graphs G1 and G2, ExtendScat computes the table D of the scattering numbers
f the disjoint union G of graphs G1 and G2. More explicitly, for any i ∈ {0, . . . , |V (Gα)|}, where α ∈ {1, 2}, we have
α(i) = sci+1(Gα). D is similarly defined by D(i) = sci+1(G) for all i ∈ {0, . . . , |V (G)|}.
The routine is very simple, it affects D(i) with the value maxk1+k2=i D1(k1)+D2(k2) by parsing all the couples (k1, k2) ∈

0, . . . , |V (G1)|}×{0, . . . , |V (G2)|}. The correctness of this is straightforward and the running time of ExtendScat(D1,D2)
s O(|V (G1)||V (G2)|) time.

The whole algorithm for a parallel node u takes as input the tables Dui of its l children ui, 1 ≤ i ≤ l and computes

ExtendScat(Du1 , ExtendScat(Du2 , . . . , ExtendScat(Dul−1 , ExtendScat(Dul , )) . . .)).

his gives Du and takes time O(
∑

1≤i≤l−1(|V (ui)|.
∑

i+1≤j≤l |V (uj)|)) = O(|V (u)|2).

.2.3. The whole algorithm for k-Cyclability
As we already said, the algorithm for determining the largest k such that G is k-cyclable is a bottom-up process along

he cotree T of G. In this process, for each node u of T , we compute the table Du that is indexed by integers i from
to |V (u)| − 1 and such that Du(i) = sci+1(G[V (u)]). Then, at the end of the algorithm, when the table Dr has been

omputed for the root r of T , the largest k such that G is k-cyclable is simply the smallest k such that Dr (k) > 0, because
r (k) = sck+1(G) > 0 and Dr (k− 1) = sck(G) ≤ 0.
The algorithm starts by computing the table Dl for all the leaves l of T , which is the table having only one cell indexed
and containing the value Dl(0) = 1. Once the tables Dui have been computed for all the children ui of u, then the

able of u itself is determined by either using the algorithm for parallel nodes or for series nodes (both described above),
epending of whether u is a series node or a parallel node. This process ends with the computation of the table of the root.
s the time needed to process a series node u is O(|V (u)|) and the time needed to process a parallel node is O(|V (u)|2),
he execution of the whole algorithm takes time O(

∑
u series |V (u)| +

∑
u parallel |V (u)|2) = O(n2)+ O(n3) = O(n3).

inal remarks. In this algorithm, we simply output the largest k such that G is k-cyclable without providing any certificate
or it. Nevertheless, note that we could augment the algorithm to provide a certificate that G is not (k + 1)-cyclable. To
his purpose, it is enough to exhibit a separator S of size k such that c(G− S)− |S| ≥ k+ 1 and modifying the algorithm
o do so is not difficult. However, providing a certificate that prove that all subsets T of terminals of size at most k are
yclable is a real challenge as, to the best of our knowledge, it is not even known whether there exists such a certificate
f polynomial size in the case where input graphs are restricted to cographs.
Finally, we note that in the case where one is not interested in determining the largest k such that G is k cyclable

ut instead only wants to know whether G is k cyclable for some given k small compared to n, then one can adapt our
lgorithm by limiting the size of the tables Du to be indexed from 0 to k−1. Doing this, the time complexity of processing a
eries node u becomes O(k|C(u)|) and the complexity for a parallel node becomes O(k2|C(u)|). Consequently, the complexity

2
f the whole algorithm expresses as O(k n) which is a significant improvement when k is much smaller than n.
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. Conclusions

We considered Terminal Cyclability together with its generalization Cycle Segment Cover and k-Cyclability on graph
lasses. We showed that Cycle Segment Cover on interval graphs, bipartite permutation graphs and cographs can be
olved in linear time. Moreover, we obtained certifying algorithms for these problems that either produce a solution,
hat is, a cycle or a family of paths that cover the set of terminal vertices T or output a T -separator S∗ that certifies a
o-answer. We then used these results to show that k-Cyclability can be solved in polynomial time when restricted to
hese graph classes.

A natural open question is to consider the aforementioned problem for other graph classes. In particular, what can
e said about the class of cocomparability graphs (see [6,22] for the formal definition and properties of this class)? For
nstance, it is proved by Deogun, Kratsch and Steiner [15] that a cocomparability graph G with at least three vertices has
Hamiltonian cycle if and only if sc(G) ≤ 0. They also proved that the set of vertices of G can be covered by at most k
ertex-disjoint paths if and only if sc(G) ≤ k. This indicates that the class of cocomparability graphs is a natural candidate
or Cycle Segment Cover and k-Cyclability. Still, we do not see how to extend the results of [15] to our settings.

Another interesting question is about the complexity of k-Cyclability. It is easy to see that the problem is in ΠP
2.

olovach et al. conjectured in [21] that k-Cyclability is ΠP
2-complete. The conjecture is still open.
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