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—— Abstract
In 1959, Erdds and Gallai proved that every graph G with average vertex degree ad(G) > 2 contains
a cycle of length at least ad(G). We provide an algorithm that for k£ > 0 in time 20) . nOM Jecides
whether a 2-connected n-vertex graph G contains a cycle of length at least ad(G) + k. This resolves
an open problem explicitly mentioned in several papers. The main ingredients of our algorithm are
new graph-theoretical results interesting on their own.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms; Theory of
computation — Parameterized complexity and exact algorithms

Keywords and phrases Longest path, longest cycle, fixed-parameter tractability, above guarantee
parameterization, average degree, Erdds and Gallai theorem

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.55
Related Version Full Version: https://arxiv.org/abs/2202.03061

Funding Fedor V. Fomin: supported by the Research Council of Norway via the project BWCA
(grant no. 314528).

Petr A. Golovach: supported by the Research Council of Norway via the project BWCA (grant no.
314528).

Danil Sagunov: supported by Leonhard Euler International Mathematical Institute in Saint Peters-
burg (agreement no. 075-15-2019-1620).

Kirill Simonov: supported by the Austrian Science Fund (FWF) via project Y1329 (Parameterized
Analysis in Artificial Intelligence).

1 Introduction

The circumference of a graph is the length of its longest (simple) cycle. In 1959, Erdds
and Gallai [4] gave the following, now classical, lower bound for the circumference of an
undirected graph.

» Theorem 1 (Erdés and Gallai [4]). Every graph with n vertices and more than 1(n —1)¢
edges (£ > 2) contains a cycle of length at least £+ 1.

We provide an algorithmic extension of the Erdos-Gallai theorem: A fixed-parameter
tractable (FPT) algorithm with parameter k, that decides whether the circumference of
a graph is at least £ + k. To state our result formally, we need a few definitions. For an
undirected graph G with n vertices and m edges, we define (g (G) = % Then by the
Erdés-Gallai theorem, G always has a cycle of length at least {gg(G) if Lpe(G) > 2. The
parameter {pc(G) is closely related to the average degree of G, ad(G) = 22 Tt is easy to
see that for every graph G with at least two vertices, £pg(G) — 1 < ad(G) < Lga(G).
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The mazimum average degree mad(G) is the maximum value of ad(H) taken over all
induced subgraphs H of G. Note that ad(G) < mad(G) and mad(G) — ad(G) may be
arbitrarily large. By Goldberg [13] (see also [12]), mad(G) can be computed in polynomial
time. By Theorem 1, we have that if ad(G) > 2, then G has a cycle of length at least ad(G)
and, furthermore, if mad(G) > 2, then there is a cycle of length at least mad(G). Based on
this guarantee, we define the following problem.

LoNGEST CYCLE ABOVE MAD

Input: A graph G on n vertices and an integer k£ > 0.
Task: Decide whether G contains a cycle of length at least mad(G) + k.

Our main result is that this problem is FPT parameterized by k. More precisely, we show
the following.

» Theorem 2. LONGEST CYCLE ABOVE MAD can be solved in time 2°%) . n©) on
2-connected graphs.

While Theorem 2 concerns the decision variant of the problem, its proof may be easily
adapted to produce a desired cycle if it exists. We underline this because the standard
construction of a long cycle that for every e € E(G) invokes the decision algorithm on G — e,
does not work in our case, as edge deletions decrease the average degree of a graph.

Theorem 2 has several corollaries. The following question was explicitly stated in the
literature [6, 9]. For a 2-connected graph G and a nonnegative integer k, how difficult is it
to decide whether G has a cycle of length at least ad(G) + k? According to [9], it was not
known whether the problem parameterized by k is FPT, W/1]-hard, or Para-NP. Even the
simplest variant of the question, whether a path of length ad(G) + 1 can be computed in
polynomial time, was open. Theorem 2 resolves this question because mad(G) > ad(G) for
every graph G.

» Corollary 3. For a 2-connected graph G and a nonnegative integer k, deciding whether G
has a cycle of length at least ad(G) + k can be done in time 2°0%) . nOM),

Similarly, we have the following corollary.

» Corollary 4. For a 2-connected graph G and a nonnegative integer k, deciding whether G
has a cycle of length at least Lpg(G) + k can be done in time 2°*) . nPM,

An undirected graph G is d-degenerate if every subgraph of G has a vertex of degree at
most d, and the degeneracy of G is defined to be the minimum value of d for which G is
d-degenerate. Since a graph of degeneracy d has a subgraph H with at least d - |V (H)|/2
edges, we have that d < ad(H) < mad(G). Therefore, Theorem 2 implies the following
corollary, which is the main result of [6].

» Corollary 5 ([6]). For a 2-connected graph G of degeneracy d, deciding whether G has a
cycle of length at least d + k can be done in time 2°%) . O

Theorem 1 provides the same lower bound on the number of vertices in a longest path.
We consider the LONGEST PATH ABOVE MAD problem that, given a graph G and integer
k, asks whether G has a path with at least mad(G) + k vertices. Observe that a graph G
has a path with ¢ vertices if and only if the graph G’, obtained by adding to G a universal
vertex that is adjacent to every vertex of the original graph, has a cycle with ¢ + 1 vertices.
Because mad(G’) > mad(G), Theorem 2 yields the following.
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» Corollary 6. LONGEST PATH ABOVE MAD can be solved in time 2°) .n®M) on connected
graphs.

We complement Theorem 2 by observing that the 2-connectivity condition is crucial
for tractability due to the fact that the considered properties are not closed under taking
biconnected components. In particular, it may happen that every long cycle of a graph is in
a biconnected component of small average degree. This yields the following theorem.

» Theorem 7 (x).! It is NP-complete to decide whether an n-vertex connected graph G has
a cycle of length at least pa(G) + 1.

The single-exponential dependence in k of algorithm in Theorem 2 is asymptotically
optimal: it is unlikely that LONGEST CYCLE ABOVE MAD can be solved in 2°() . n©(1)
time. This immediately follows from the well-known result (see e.g. [2, Chapter 14]) that
existence of an algorithm for HAMILTONIAN CYCLE with running time 2°(™ would refute the
Ezponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [14]. Thus LONGEST
CyCLE ABOVE MAD cannot be solved in 2°%) . n@(M) time, unless ETH fails.

Comparison with the previous work. Two of the recent articles on the circumference of
a graph above guarantee are most relevant to our work. The first is the paper of Fomin,
Golovach, Lokshtanov, Panolan, Saurabh, and Zehavi [6] who gave an algorithm that in time
20(k) . nO(M) for a 2-connected graph G of degeneracy d, decides whether G has a cycle of
length at least d+ k. In the heart of their algorithm is the following “rerouting” argument: If
a cycle hits a sufficiently “dense” subgraph H of G, then this cycle can be rerouted inside H
to cover all vertices of H. The main obstacle on the way of generalizing the result of Fomin
et al. [6] “beyond” the average degree was the lack of rerouting arguments in graphs of large
average degree.

The rerouting arguments in the proof of Theorem 2 use the structural properties of dense
graphs developed in the recent work of Fomin, Golovach, Sagunov, and Simonov [9] (see [8]
for the full version) on parameterized complexity of finding a cycle above Dirac’s bound.
We remind that by the classical theorem of Dirac [3], every 2-connected graph has a cycle
of length at least min{26(G), |V (G)|}, where 6(G) is the minimum degree of G. Fomin et
al. gave an algorithm that in time 20 +BD . O decides whether a 2-connected graph G
contains a cycle of length at least min{26(G — B), |V (G)|—|B|} +k, where B is a given subset
of vertices which may have “small” degrees. The result of Fomin et al. [8, 9] is “orthogonal”
to ours in the following sense: It does not imply Theorem 2 and Theorem 2 does not imply
the theorem from [8]. However, the tools developed in [8], in particular the new type of
graph decompositions called Dirac decompositions, appear to be useful in our case too.

From a more general perspective, our work belongs to a popular subfield of Parameterized
Complexity concerning parameterization above/below specified guarantees. In addition
to [9, 6], the parameterized complexity of paths and cycles above some guarantees was
studied in [1, 15], and [7].

2  Overview of the proof of the main result

Here we outline the critical technical ideas leading to our main result, Theorem 2. We first
explain our techniques for the LONGEST CYCLE ABOVE AD problem. Let us remind that in
this problem, the task is to decide whether a graph G has a cycle of length at least ad(G) + k.
(The difference with mad is that we do not take the maximum over all subgraphs.)

1 The results with omitted proofs are marked with the “x” sign. Missing proofs can be found in the full
version of this paper [10].
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The nucleus of our proof is a novel structural analysis of dense subgraphs in graphs with
large average degrees. Informally, we prove that if there is a cycle of length at least ad(G) + &
in G, then G contains a dense subgraph H and a long (of length at least ad(G) + k) cycle
C' that “revolves” around H (see Figure 1). By that, we mean the following. First, the
number of times cycle C enters and leaves H is bounded by O(k). Second, C' contains at least
ad(G) — ck vertices of H for some constant c. Moreover, we need a way stronger “routing”
property of H. Basically for any possible “points of entry and departure” of cycle C' in H, we
show that these pairs of vertices could be connected in H by internally vertex-disjoint paths
of total length at least ad(G) — ck. Furthermore, such paths could be found in polynomial
time. Then everything boils down to the following problem. For a given subgraph H of G,
we are looking for at most & internally vertex-disjoint paths outside H of total length Q(k),
each path starts and ends in H. This task can be done in time 2°%*) . n.©() by making use
of color-coding. Finally, if we find such paths, then we could complete them to a cycle of
length at least ad(G) + k by augmenting them by the paths inside H.

\\/5\3 .

/?z>>
A

Figure 1 A cycle “revolving” around H. The segments of the cycle outside H are shown in green
and the segments inside H are blue.

Identifying dense subgraph H. Notice that we can assume that ad(G) > ak for a sufficiently
big positive constant o.. Otherwise, we can solve the problem in 2°®*) . n0(1) time using the
known algorithm for LONGEST CYCLE [11]. We start with preprocessing rules “illuminating”
some “useless” parts of the graph. If G contains several connected components, it suffices
to keep only the densest of them, as its average degree is at least the average degree of G.
Similarly, if G is connected but has a cut-vertex, keeping the densest block also suffices.
Further, if there is a vertex v of degree less than %ad(G), then v can be safely removed. By
applying these reduction rules exhaustively, we find an induced 2-connected subgraph H of
G whose minimum degree §(H) > fad(H) > 3ad(G). Similarly to removing sparse blocks, if
G contains a vertex separator X of size two such that there is a “sparse” component A of
G — X, then A can be removed. By applying the last reduction rule we either find a cycle of
length at least ad(G) + k or can conclude that the resulting subgraph H is 3-connected.

If (G, k) is a yes-instance, that is, graph G contains a cycle of length at least ad(G) + &,
there are two possibilities. Either in G a cycle of length at least 25(H) 4 k “lives” entirely in
H, or it passes through some other vertices of G. If a long cycle is entirely in H, we can
employ the recent result of Fomin et al. [8] that finds in time 29%) . n®() in a 2-connected
graph G a cycle of length at least 26(G) + k > ad(G) + k. However, if no long cycle lives
entirely in H, the result of Fomin et al. is not applicable.
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The next step of constructing H crucially benefits from the graph-theoretical result of
Fomin et al. [8]. Specifically, we use the theorem about the Dirac decomposition from [8]. The
definition of the Dirac decomposition is technical and we give it in Section 4. For 2-connected
graphs, the Dirac decomposition imposes a very intricate structure. However, since, thanks

to the reduction rules, H is 3-connected, we bypass most of the technical details from [8].

Informally, the Dirac decomposition leads to the following win-win situation. By the Dirac’s
theorem [3], graph H contains a cycle S of length at least 26(H) > ad(G). Moreover, we
could find such a cycle in polynomial time. By the result of Fomin et al. [8], if the length
of S is less than 26(H) + k, then either S can be enlarged in polynomial time, or (a) H
is small, that is, [V (H)| < ad(H) + k, yielding that H is extremely dense; or (b) H has a
vertex cover of size fad(H) — O(k). If S got enlarged, we iterate until we achieve cases (a)
or (b). If we are in case (a), the construction of H is completed. In case (b), we need to
prune the obtained graph a bit more. More specifically, we can delete O(k) vertices in the
vertex cover and select a subset of the independent set to achieve the property that (i) each
of remaining vertices in the vertex cover is adjacent to at least ad(H) — O(k) vertices in the
selected independent subset, and (ii) every vertex of the selected subset of the independent
set sees nearly all vertices of the vertex cover. This mean that the obtained induced subgraph
is also “dense”, albeit in a different sense. Depending on the case, we use different arguments
to establish the routing properties of H.

Routing in H. The case (a), when |V (H)| < ad(H) + k, is easier. In this case, the degrees
of almost all vertices are close to |V (H)|. Let S = {z1y1,...,Zeye} an arbitrary set of O(k)
pairs of distinct vertices of H forming a linear forest (that is, the union of z;y; is a union of
disjoint paths). The intuition behind S is that x; corresponds to the vertex from where the
long cycle leaves H and y; when it enters H again. We show first how to construct a cycle in
H + S (that is, the graph obtained from H by turning the pairs of S into edges) containing
every pair z;y; from S as an edge. This is done by performing constant-length jumps: any
two vertices can be connected either by an edge, or through a common neighbor, or through
a sequence of two neighbors. Then we extend the obtained cycle to a Hamiltonian cycle in
H + S — every vertex of H that is not yet on a cycle can be inserted due to the high degrees
of the vertices. The extension of S into a Hamiltonian cycle is shown in Figure 2 (a).

e

a) b) <)

Figure 2 Constructing cycles. The set of pairs S that may be both edges and nonedges of H is
shown by red lines and the extension of S into a long cycle is blue. The paths “revolving” around H
are green. The vertex cover in ¢) is denoted by A.

Therefore, if there is a collection of at most & internally vertex disjoint paths going outside
from H and returning back, the high density of H allows collecting all of them in a cycle
containing all the vertices of H. Together with all the additional vertices these paths visit
outside of H we construct a long cycle in G (see Figure 2 (b)). The only condition is that
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these paths have to form a linear forest. Thus, if we find a collection of such paths with
enough internal vertices, we immediately obtain a long cycle “revolving” around H. The
crucial part of the proof is to show that if there is any cycle of length at least ad(H) + k in
G, then it can be assumed to have this form.

Let us remark that a similar “rerouting” property was used by Fomin et al. [6] in their
above-degeneracy study. Actually, for case (a), we need only a minor adjustment of the
arguments from [6]. However, in the “bipartite dense” case (b) the structure of the dense
subgraph H is more elaborate and this case requires a new approach. Contrarily to case (a),
the long cycle that we construct in H 4+ .S is not Hamiltonian but visits all the vertices of
the vertex cover (see Figure 2 (¢)). In this case, the behavior of paths depends on which
part of H they hit. Because of that, while establishing the routing properties, we have to
take into account the difference between paths connecting vertices from the vertex cover,
independent set, and both. Pushing the “rerouting” intuition through, in this case, turns out
to be quite challenging.

Final steps. After finalizing the “rerouting” arguments above, it only remains to design
an algorithm that checks whether there exists a collection of paths in G that start and
end in H and have at least a certain number of internal vertices in total. We do it by a
color-coding-style approach. For case (a), such a subroutine has already been developed in
the above-degeneracy case [6]. On the other hand, for the “bipartite dense” case (b) we need
to impose an additional restriction on the desired paths, as the length of the final cycle also
depends on how the paths’ end-vertices are distributed between the two parts and we have
to incorporate these kinds of constraints in our path-finding subroutine.

Finally, to solve LONGEST CYCLE ABOVE MAD, we use the fact that given a graph G,
we can find an induced subgraph F with ad(F) = mad(G) in polynomial time by the result
of Goldberg [13] (see also [12]). Then we find a dense subgraph H of F with the described
properties and use H to find a cycle of length at least mad(G) + k.

3 Preliminaries

In this section, we introduce basic notations, and a series of previously-known results that
will be helpful to us.

We consider only finite undirected graphs. For a graph G, V(G) and E(G) denote its
vertex and edge sets, respectively. Throughout the paper we use n = |V(G)| and m = |E(G)|
whenever the considered graph G is clear from the context. For a graph G and a subset
X C V(QG) of vertices, we write G[X] to denote the subgraph of G induced by X. We write
G — X to denote the graph G[V(G) \ X]; for a single-element set X = {z}, we write G — .
Similarly, if Y is a set of pairs of distinct vertices, G —Y = (V(G), E(G) \'Y). For a set Y
of pairs of distinct vertices of G, G +Y denotes the graph (V(G), E(G) UY), that is, the
graph obtained by adding the edges in Y \ F(G); slightly abusing notation we may denote
the pairs of such a set Y in the same way as edges. For a vertex v, we denote by Ng(v) the
(open) neighborhood of v, i.e., the set of vertices that are adjacent to v in G. A set of vertices
X is a vertex cover of G if for every edge xy of G, x € X or y € X.

A path P in G is a subgraph of G with V(P) = {vg,..., v} and E(P) = {v;—1v; | 1 <
i < £}. We write vguy - - - vg to denote P; the vertices vy and vy are end-vertices of P, the
vertices vo, ..., vy are internal, and £ is the length of P. For a path P with end-vertices s and
t, we say that P is an (s, t)-path. Two paths P; and P» are internally disjoint if no internal
vertex of one of the paths is a vertex of the other; note that end-vertices may be the same.



F.V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov

For two internally disjoint paths P; and P> having one common end-vertex, we write Py Py
to denote the concatenation of P and P,. A graph F' is a linear forest if every connected
component of F' is a path. Let S be a set of pairs of distinct vertices of G; they may be

either edges or nonedges. We say that S is potentially cyclable if (V(G),S) is a linear forest.

A cycle is a graph C with V(C) = {v1,...,v} for £ > 3 and E(C) = {v;—1v; | 1 < i < £},
where vy = v;. We may write that C = vy ---vs. A cycle C (a path P, respectively) is
Hamiltonian if V(C) = V(G) (V(P) = V(G), respectively). A graph G is Hamiltonian if it
has a Hamiltonian cycle.

A set of vertices S is a separator of a connected graph G, if G — S is disconnected. For a
positive integer k, G is k-connected if |V (G)| > k and for every set .S of at most k — 1 vertices,
G — S is connected. If S = {v} is a separator of size one, then v is called a cut-vertez. Note,
in particular, that a connected graph with at least three vertices is 2-connected if it has
no cut-vertex. A block of a connected graph with at least two vertices is an inclusion-wise
maximal induced subgraph without cut-vertices, that is, either a 2-connected graph or Ks.

The degree of a vertex v in a graph G is dg(v) = |Ng(v)|. The minimum degree of G
is 6(G) = min{dg(v) | v € V(G)}. For a nonempty set of vertices X, the average degree of

X is adg(X) = ﬁ > vex de(v), and the average degree of G is ad(G) = adg(V(G)) = 22,

The mazimum average degree is mad(G) = max{ad(H) | H is induced subgraph of G}.
The following observation about the circumference lower bound ¢ge(G) and the average
degree of G is useful for us.

» Observation 8. For every graph G with at least two vertices Lpa(G)—1 < ad(G) < Lga(G).

Goldberg [13] proved that, given a graph G, an induced subgraph H of maximum density,
that is, a subgraph with the maximum value ‘Iggggl‘, can be found in polynomial time. This
result was improved by Gallo, Grigoriadis, and Tarjan [12]. Note that if H is an induced

subgraph of maximum density, then mad(G) = ad(H).

» Proposition 9 ([12]). An induced subgraph of maximum density of a given graph G can be
found in O(nmlog(n?/m)) time.

We use the lower bound on the length of a longest (s, t)-path in a 2-connected graph via
the average degree obtained by Fan [5].

» Proposition 10 ([5, Theorem 1]). Let s and t be two distinct vertices in a 2-connected
graph G. Then G has an (s,t)-path of length at least adg(V(G) \ {s,t}).

Notice that the proof of Proposition 10 in [5] is constructive and a required path can be
found in polynomial time.

It is well-known that LONGEST CYCLE, which asks whether a graph has a cycle of length
at least k, can be solved in 29%) . n©() time. The currently best deterministic algorithm is

due to Fomin et al. [11].
» Proposition 11 ([11]). LONGEST CYCLE can be solved in 4.884% - n®M) time.

The task of LONGEST (s,t)-PATH is, given a graph G with two terminal vertices s and ¢,
and a positive integer k, decide whether G has an (s, t)-path with at least k vertices. Fomin
et al. [11] proved that this problem is FPT when parameterized by k.

» Proposition 12 ([11]). LONGEST (s,t)-PATH can be solved in 2°%) . n®W) time.
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4 Finding a dense subgraph

Here we show that given an instance of LONGEST CYCLE ABOVE MAD, we can in polynomial
time either solve the problem or find a dense induced subgraph of the input graph. This
part crucially depends on structural and algorithmic results obtained by Fomin et al. in [8].
We derive the following structural corollary for 3-connected graphs from [8, Lemma 20].

» Corollary 13 (%). Let G be a 3-connected graph and k be an integer such that 0 < k <
2—145(6*). Then there is an algorithm that, given a cycle C of length less than 26(G) + k, in
polynomial time either

returns a longer cycle in G, or

returns a vertex cover of G of size at most 6(G) + 2k, or

reports that C' is Hamiltonian.

Now, by applying exhaustively the classical reduction rules from the proof of Theorem 1
and a new reduction rule that removes sparse 2-connected components, we reach the situation
where we can apply Corollary 13. The result of this process is encapsulated in the next
lemma.

» Lemma 14 (x). There is a polynomial-time algorithm that, given an instance (G, k) of
LONGEST CYCLE ABOVE MAD, where 0 < k < g-mad(G) — 1, either
(i) finds a cycle of length at least mad(G) + k in G, or
(ii) finds an induced subgraph H of G with ad(H) > mad(G) — 1 such that 6(H) > 1ad(H)
and |V(H)| <ad(H)+k+1, or
(iii) finds an induced subgraph H of G such that there is a partition {A, B} of V(H) with
the following properties:
B is an independent set,
imad(G) — 4k < |4,
for everyv € A, [Ny (v) N B| > 2|4,
for everyv € B, dy(v) > |A| — 2k — 2.

5 Covering vertices of dense graphs

In this section, we prove that, given a sufficiently dense graph G and a bounded-size set
of pairs of distinct vertices S forming a linear forest, we can find a long cycle in G + S
containing all edges from S. First, we consider the case where there is a small number of
vertices in the graph compared to the average degree. Then, we deal with the case where one
part in a bipartition of a dense bipartite graph has bounded size. The proofs of the next two
lemmas follow the strategy of using the high density of the graph to connect an arbitrary
small subset of vertices in a cycle via constant-length jumps, and then extend this cycle to a
long cycle using similar arguments. Recall that for a set S of pairs of distinct vertices of a
graph G, we say that S is potentially cyclable if (V(G),S) is a linear forest.

» Lemma 15 (x). Let G be a graph and k be an integer such that (i) 0 < k < gsad(G), (ii)
§(G) > 3ad(G), and (iii) ad(G) + k > n. Let also S be a potentially cyclable set of at most
k pairs of distinct vertices. Then G + S has a Hamiltonian cycle containing every edge of S.

Now we consider dense bipartite graphs. Similarly to Lemma 15, we show that for a
given set of pairs of vertices forming a linear forest there is a cycle containing all these pairs
in the extended graph, and also each vertex of the “high-degree” part of the graph. For an
example, see Figure 3.
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Figure 3 Structure of G and G’ = G + S. The set of pairs S is shown by red lines and the edges
of C that are not in S are green. Note that G’ is not required to be bipartite.

» Lemma 16 (x). Let G be a bipartite graph, {A, B} is a bipartition of V(G) with p = |A|,
and let k be an integer such that (i) 0 < k < 5p, (ii) for every v € A, dg(v) > 2p, and (iii)
for every v € B, dg(v) > p— k. Let S be a potentially cyclable set of at most %k pairs of
distinct vertices. Then G' = G+ S has a cycle C containing every edge of S and every vertex
of A. Furthermore, C' is a longest cycle in G' containing the edges of S and the length of C
is 2p — s + t, where s is the number of edges of S with both end-vertices in A and t is the
number of edges in S with both end-vertices in B.

6 Rerouting long cycles to dense dubgraphs

In this section, we show that a dense induced subgraph can be used to find a long cycle in a
2-connected graph. Specifically, we show that one can always assume that a long cycle is an
extension of a longest cycle in a dense subgraph. To state this more precisely, we need some
additional terminology that we introduce next.

Let T C V(G) for a graph G. A path P is called a T-segment if P has length at least two,
the end-vertices of P lie in T, and v ¢ T for any internal vertex v of P. A set of internally
disjoint paths P = {P,..., P.} is a system of T-segments if (i) P; is a T-segment for every
i€ {1,...,r}, and (ii) the union of the paths in P is a linear forest. Let A, B C V(G) be
disjoint sets of vertices in G. For a pair {x,y} of distinct vertices in G, we say that {z,y} is
an A-pair (B-pair, respectively) if x,y € A (x,y € B, respectively), and we say that {z,y}
is an (A, B)-pair if either x € A, y € B or, symmetrically, y € A, x € B. If {A,B} is a
partition of 7' C V(G), then for a T-segment P with end-vertices = and y, P is an A-segment
if {x,y} is an A-pair, P is a B-segment if {z,y} is a B-pair, and P is an (A, B)-segment if
{z,y} is an {A, B}-pair.

First, we consider the case when there is a dense subgraph H with the property that
for every potentially cyclable set S of at most k pairs of distinct vertices, H + S has a
Hamiltonian cycle containing every edge of S. We show the following lemma whose proof is
almost identical to the proof of Lemma 3 in [6].

» Lemma 17 (x). Let G be a 2-connected graph and let k be a positive integer. Suppose that
H is an induced subgraph of G such that |V (H)| > 2k and for every potentially cyclable set
S of at most k pairs of distinct vertices of H, H + S has a Hamiltonian cycle containing
every edge of S. Then G has a cycle of length at least |V (H)| + k if and only if one of the
following holds:
(i) There are two distinct vertices s,t € V(H) such there is an (s,t)-path P in G of length
at least k + 1 whose internal vertices lie in V(G) \ V(H).
(ii) There is a system of T-segments P = {P1,...,P.} for T =V (H) such that r <k and
the total number of vertices on the paths in P outside T is at least k and at most 2k — 2.
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Now we show a related result for dense induced subgraphs of another type. See Figure 4
for an illustration.

Figure 4 Structure of segments in Case (ii) of Lemma 18. The A-segments are shown by green
lines, the B-segments are red, and the (A, B)-segments are blue.

» Lemma 18. Let G be a 2-connected graph and let k be a positive integer. Suppose that H
is an induced subgraph of G whose set of vertices has a partition {A, B} with |A| > %k and
B being an independent set. Suppose also that for every potentially cyclable set S in H of at
most k pairs of distinct vertices in H, with s A-pairs and t B-pairs, H+ S has a cycle of
length at least 2|A| — s +t. Then G has a cycle of length at least 2|A| + k if and only if one
of the following holds:
(i) There are two distinct vertices x,y € V(H) such that H has an (z,y)-path P of length
at least k + 2 whose internal vertices lie in V(G) \ V(H).
(ii) There is a system of T-segments P = {P1,...,P.} for T = V(H) with s A-segments
and t B-segments such that
(a) r <k,
(b) every A-segment has at least two internal vertices,

(c) the total number of internal vertices on the paths in P is at least k + s —t and at
most 3k — 2.

Proof. Let T = V(H). First, we show that if either (i) or (ii) is fulfilled, then G has a cycle
of length at least |V (H)| + k.

Suppose that there are distinct z,y € T and an (z,y)-path P in G with all internal
vertices outside T such that the length of P is at least k + 2. Let S = {zy}. We have that
H + S has a cycle C containing zy of length at least 2| A| — 1. We replace the edge zy in C
by the path P. Then the length of the obtained cycle C” is at least 2| A| + k as required.

Assume that there is a system of T-segments P = {P,..., P} for T = V(H) with s
A-segments and ¢ B-segments such that (a)—(b) are fulfilled. Let x; and y; be the end-vertices
of P; for i € {1,...,r} and define S = {x1y1,...,2,y-}. Observe that S is a potentially
cyclable set for H and |S| < k. Then H + S has a cycle C of length at least 2|A| that
contains every edge of S. We construct the cycle C’ from C by replacing z;y; by the path P;
for every i € {1,...,r}. Because the total number of internal vertices in the paths of P is at
least k + s — ¢, the length of C” is at least |V (H)| + k.

For the opposite direction, assume that G has a cycle C of length at least 2|A| + k. We
consider the following three cases.
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Case 1. V(C)NT =0. Since G is a 2-connected graph, there are pairwise distinct vertices
z,y € T and 2/, y" € V(C), and vertex disjoint (z,z’) and (y,y’)-paths P, and P, such that
the internal vertices of the paths are outside T'U V(C'). The cycle C has length at least
2|A| + k > 3k. Therefore, C' contains an (z,y’)-path P with at least k + 1 vertices. The
concatenation of P, P and P, is an (z,y)-path in G of length at least k 4+ 2 whose internal
verices are outside 7. Hence, (i) is fulfilled.

Case 2. |V(C)NT|=1. Let V(C)NT = {a} for some vertex x. Since G is 2-connected,
there is an (y,y’)-path P in G — z such that ' € V(C), y € T, and the internal vertices
are outside T'U V(C). Because the length of C is at least 3k, C' contains an (z’,y’)-path P’
with at least k + 2 vertices. The concatenation of P’ and P is an (s, t)-path in G of length
at least k 4+ 2 whose internal verices are outside 7. Hence, (i) holds.

Case 3. |V(C)NT|> 2. Observe that because B is an independent set, H has no cycle
of length greater that 2| A|. Therefore, as k > 0 and |V (C)| > 2|A| + k, V(C)\ T # (. Let
Py, ..., P, be the “outside” segments of C' with respect to H, that is, P, ..., P, are paths
on C such that (x) for every i € {1,...,¢}, P; is an (z;,y;)-path with at least one internal
vertex for some distinct x;,y; € T and the internal verices of P; are outside T', and ()
Ule V(P)\T =V(C)\T. If P; has length at least k + 2 for some ¢ € {1,...,¢}, then (i)
holds. Assume that this is not the case, that is, the length of each P; is at most k + 1. Let
I, Ig,1ap C {1,...,£} be the subsets of indices such that P; is an B-segment for i € I, a
B-segment for i € Ig, and an (A, B)-segment for ¢ € I4p; note that some of these sets may
be empty.

First, we consider Iz. Suppose that the paths P; for i € Iz have at least k — |I 5] internal
vertices. Consider an inclusion minimal subset of indices JJ C Ig such that the paths P; for
i € J have at least k — |J| internal vertices and let S = {z;y; | i € J}. Observe that the

pairs of S compose either a linear forest or a cycle. Suppose that the pairs in S form a cycle.

Then every edge of C is outside H, and we have that C is the concatenation of the paths
P, € J. Note that |J| > 2 in this case. Let j € J. By the choice of J, the total number of
internal vertices on the paths P; for ¢ € J\ {j} is at most k — |J| — 1. Because the length
of P; is at most k + 1, we have that |[V(C)| < (k—|J| - 1)+ |J|+k =2k -1 < 2|A| + k;
a contradiction. Therefore, S forms a linear forest. We obtain that P = {P; |i € J} is a
system of T segments and |P| < k. To see that the total number of internal vertices on the
paths in P is at most 2k, let j € J. Because the total number of internal vertices on the
paths P; for ¢ € J\ {j} is at most k — |J| — 1 and the length of P; is at most k + 1, the
number of internal vertices on the paths in P is at most (k — |J| — 1) + k < 3k — 2. We
conclude that (ii) is fulfilled.

Assume from now on that the paths P; for ¢ € Ig have at most k — |Ig| — 1 internal
vertices. Then we analyse I4p in a similar way. Let ¢ = |Ig|. Suppose that the paths
P; for i € I U I have at least k — ¢ internal vertices. Consider an inclusion minimal
subset of indices J C I4p such that the paths P; for i € J U Ig have at least k — t internal
vertices and let S = {z;y; | ¢ € JU Ig}. Notice that |S| < k. Again, we have that the
pairs of S compose either a linear forest or a cycle. Then we exclude the possibility that

S forms a cycle. If we have a cycle, then C' is the concatenation of the paths P, € JU Ig.

Pick an arbitrary j € J. We have that the total number of internal vertices on the paths
P, fori € (J\ {j})UIp is at most k —t — 1. Because the length of P; is at most k + 1,

VO <(k—t—1)+(J|+t)+k=2k+|J| —1<2|A] + k and we get a contradiction.

Hence, S forms a linear forest and P = {P; | i € JU Ip} is a system of T segments and

55:11

ESA 2022



55:12

Longest Cycle Above Erd6s—Gallai Bound

|P| < k. To upper bound the total number of internal vertices on the paths in P, let j € J.
Because the total number of internal vertices on the paths P; for i € (J\ {j}) UIp is at most
k —t—1 and the length of P; is at most & 4 1, the number of internal vertices on the paths
in P is at most 2k — ¢t — 1 < 3k — 2. We obtain that (ii) holds.

It remains to consider the case where the paths P; for i € I,p U Ig have at most
k —t — 1 internal vertices. For this we analyse I4. Let I’y C I4 be the set of indices i € I4
such that P, has at least two internal vertices. Let r be the number of internal vertices
on the paths P; with ¢ € I’y UIg UIsp. Observe that because B is an independent set,
[V(C)| <r+t+2|A] — |I]. Hence, r +t — |I/;| > k. We select an inclusion minimal set of
indices J C I’y such that the paths P; for i € JU Ig U I4p have at least k —t + | J| internal
vertices and let S = {z;y; | i € JUIpUIsp}. Let also s = |J|. Observe that because P;
has at least two internal vertices for every i € Iy, |S| < k. In the same way as above, the
pairs of S compose either a linear forest or a cycle, and we show that it should be a linear
forest. If the pairs of S form a cycle, then C' is the concatenation of the paths P; € J. Let
j € J. By the minimality of J, the total number of internal vertices on the paths P; for
i€ (J\{j})UIpUlIap is at most k + (s — 1) —t — 1. Because the length of P; is at most
E+1,|VIO) < (k+(s=1)—t—1)+(s+t+ |[Iap|) + k =2k + |Iap| + 25 — 2. Observe
that t + s + [Iap| < k, because if t + s + [Iap| > k + 1, the total number of the internal
vertices on the paths P; for i € (J\ {j}) U Ip U I4p would be at least k + s. Therefore,
[V(C)| <2k + |ITap| +2s —2 < 4k — 2 < 2|A| + k; a contradiction. We obtain that S forms
a linear forest and P = {P; | i € JUIgUIp} is a system of T segments, and |P| < k. To
get the upper bound for the total number of internal vertices on the paths in P, let j € J.
Because the total number of internal vertices on the paths P; for i € (J\ {j})UIp is at most
k+ (s —1) —t — 1 and the length of P; is at most k + 1, the number of internal vertices on
the paths in P is at most 2k + s — ¢t — 2 < 3k — 2. We conclude that (ii) is fulfilled. This
concludes the analysis of Case 3 and the proof of the lemma. |

Fomin et al. [6] proved the following algorithmic result about systems of T-segments.

» Proposition 19 ([6, Lemma 4]). Let G be a graph, T C V(G), and let p and r be positive
integers. Then it can be decided in 2°®) .nOW) time whether there is a system of T-segments
P with r paths having p internal vertices in total.

However, we need an algorithm for constructing a system of T-segments with additional
properties described in Lemma 18. For this, we modify the algorithm from Proposition 19.

» Lemma 20 (%). Let G be a graph, T C V(G), and let {A, B} be a partition of T. Let
also p and r be positive integers, and suppose that s and t are nonnegative integers with
s+t <r. Then it can be decided in 2°P) .n®W) time whether there is a system of T-segments
P with r paths having p internal vertices in total such that (i) P contains s A-segments,
(ii) t B-segments, and (iii) every A-segment has at least two internal vertices.

7 Proof of the main result

Now we have all ingredients to prove our main result. We restate it here for the reader’s
convenience.

» Theorem 2. LONGEST CYCLE ABOVE MAD can be solved in time 2°%) . n©) op
2-connected graphs.
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Proof. Let (G, k) be an instance of LONGEST CYCLE ABOVE MAD, where G is a 2-connected
graph. We use the algorithm from Proposition 9 and compute mad(G) in polynomial time. If
k = 0, the problem is trivial, because a cycle of length at least mad(G) exists by Theorem 1.
Hence, we can assume that k£ > 1. If k > 8—18mad(G) — 1, we use Proposition 11 and solve
the problem in 2°%) . M) time. From now, we assume that 0 < k < %mad(G) —1. In
particular, k < %mad(G) — 1. We apply Lemma 14, and in polynomial time either
(i) find a cycle of length at least mad(G) + k in G, or
(ii) find an induced subgraph H of G with ad(H) > mad(G) — 1 such that §(H) > Jad(H)
and |V(H)| < ad(H) +k+1, or
(iii) find an induced subgraph H of G such that there is a partition {A, B} of V(H) with
the following properties:
B is an independent set,
%mad(G) — 4k < |A],
for every v € A, [Ny (v) N B| > 2|A|,
for every v € B, dy(v) > |A| — 2k — 2.

If the algorithm finds a cycle of length at least mad(G) + &, then we return it and stop. In
Cases (ii) and (iii), we get a dense induced subgraph H that can be used to find a solution.

Case (ii). The algorithm from Lemma 14 returns an induced subgraph H of G with
ad(H) > mad(G) — 1 such that §(H) > }ad(H) and |V(H)| < ad(H) + k + 1. Let k' =
[mad(G)] 4k — |V (H)|. We have that G has a cycle of length at least mad(G) + k if and only
if G has a cycle of length at least |V(H)|+ k. Note that k' < k+1 < ggmad(G) < g5ad(H).
By Lemma 15, for every potentially cyclable set S of at most k 4 1 pairs of distinct vertices
of H, H + S has a Hamiltonian cycle containing every edge of S.

Suppose that &’ < 0. Observe that H has a Hamiltonian cycle as we can use Lemma 15
for S = {e}, where e is an arbitrary edge e € E(H). Then we conclude that H has a cycle of
length at least mad(G) + k and stop. Assume that k&’ > 0. Note that |V (H)| > ad(H) > 2k'.
Then by Lemma 17, G has a cycle of length at least |V(H)| + k" if and only if one of the
following holds:

(a) There are two distinct vertices s,t € V(H) such that H has an (s, t)-path P of length at

least k' + 1 whose internal vertices lie in V/(G) \ V(H).

(b) There is a system of T-segments P = {P1,..., P.} for T = V(H) such that » < k" and

the total number of vertices on the paths in P outside T is at least ¥’ and at most 2k’ — 2.

First, we check if (a) can be satisfied. For this, we consider all pairs of distinct vertices s
and t of H. For every pair, we construct G' = G[(V(G)\V (H))U{s, t}] and use Proposition 12
to find an (s, t)-path of length at least & + 1 in G in 2°®*) . n©M) time. If we find such a

path for some pair, we report the existence of a cycle of length at least mad(G) + k and stop.

Otherwise, we verify (b) using Proposition 19. We use the algorithm from Proposition 19
forre {1,...,k'} and for p € {K',..., 2k — 2}. If we find a required system of T-segments,
then we return that G has a cycle of of length at least mad(G) + k and stop. If we fail to
find such a system for every r and p, we conclude that G has no cycle of length at least
mad(G) + k. Note that this can be done in 20 . n@() time. This concludes Case (ii).

Case (iii). The algorithm from Lemma 14 returns an induced subgraph H of G such that
there is a partition {4, B} of V(H) with the properties:

B is an independent set,

Lmad(G) — 4k < |A],

for every v € A, |Ng(v) N B| > 2|4],

for every v € B, dg(v) > |A| — 2k — 2.
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Let k' = [mad(G)] + k — 2| A|. Observe that G has a cycle of length at least mad(G) + k if
and only if G has a cycle of length at least 2|A| + k’. We have that 2|A| > [mad(G)] — 8k
and, therefore, k' < 9%.

Note that |A| > imad(G) — 4k > 40k, since k < gemad(G) — 1. Also, we have that for
every v € B, dg(v) > |A| — 4k. Therefore, by Lemma 16, for every potentially cyclable set
S of at most 9k pairs of distinct vertices, G’ = G + S has a cycle C containing every edge
of S and the length of C is 2|A| — s + ¢, where s in the number of edges of S with both
end-vertices in A and t is the number of edges in S with both end-vertices in B.

Suppose that &’ < 0. Then we observe that H has a cycle of length 2| A| because we can
set S = {xy}, where xy € E(H) with z € A and y € B. Then H has a cycle of length at
least 2|A| + k' and we conclude that G has a cycle of length at least mad(G) + k. Assume
that &’ > 0. Since |A| > 40k > 3k, we can apply Lemma 18. We obtain that G has a cycle
of length at least 2|A| + &’ if and only if one of the following holds:

(a) There are two distinct vertices x,y € V(H) such that H has an (x,y)-path P of length

at least k' + 2 whose internal vertices are in V(G) \ V(H).

(b) There is a system of T-segments P = {Py,..., P.} for T = V(H) with s A-segments and

t B-segments such that

r <k <9k,

every A-segment has at least two internal vertices,

the total number of internal vertices vertices on the paths in P is at least k' +s — ¢
and at most 3k’ — 2 < 27k — 2.

To verify (a), we use the same approach as in Case (ii), that is, we consider all pairs of
distinct vertices « and y of H. For every pair, we construct G’ = G[(V(G) \ V(H)) U {z, y}]
and use Proposition 12 to find an (z,y)-path of length at least &’ + 2 in G in 20() . n©(1)
time. If we find such a path for some pair, we report the existence of a cycle of length at least
mad(G) + k and stop. Otherwise, we verify (b) using Lemma 20. We use the algorithm from
this lemma for r € {1,...,k'}, s € {0,...,k'} and ¢t € {0,...,k'} such that s+¢ < r, and for
p e {k'+s—1t3k" —2}. If we find a system of T-segments P = {Py,...,P.} for T = V(H)
with s A-segments and t B-segments with the required properties, then we conclude that
G has a cycle of of length at least 2|A| + &k’ and stop. If such a system does not exist for
every choice of r, s, t, and p, we have that G has no cycle of length at least mad(G) + k. By
Lemma 20, this can be done in 2°*) . n®M) time, because &’ < 9k. This concludes Case (iii).

Because the algorithm from Lemma 14 is polynomial and the other subroutines used in
our algorithm for LONGEST CYCLE ABOVE MAD run in 2°%) . n©(M) | the overall running
time is 2°%) . nW and this concludes the proof.

Let us remark that since the algorithms for paths in Propositions 19 and 12 and Lemma 20
are, in fact, constructive, and the same holds for the algorithms for cycles in Lemmas 17
and 18 and Proposition 11, our algorithm is not only able to solve the decision problem, but
also can find a cycle of length at least mad(G) + k if it exists. <

—— References

1 Ivona Bezdkovd, Radu Curticapean, Holger Dell, and Fedor V. Fomin. Finding detours
is fixed-parameter tractable. In J4th International Colloguium on Automata, Languages,
and Programming, ICALP 2017, volume 80 of LIPIcs, pages 54:1-54:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

2 Marek Cygan, Fedor V. Fomin, f.ukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michat Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.



F.V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov

10

11

12

13

14

15

Gabriel A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc. (8), 2:69-81,
1952.

Paul Erdos and Tibor Gallai. On maximal paths and circuits of graphs. Acta Math. Acad. Sci.
Hungar, 10:337-356 (unbound insert), 1959.

Genghua Fan. Long cycles and the codiameter of a graph, I. J. Comb. Theory, Ser. B,
49(2):151-180, 1990. doi:10.1016/0095-8956(90)90024-T.

Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and

Meirav Zehavi. Going far from degeneracy. SIAM J. Discret. Math., 34(3):1587-1601, 2020.

doi:10.1137/19M1290577.
Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Meirav Zehavi. Parameterization above a multiplicative guarantee. In 11th Innovations in

Theoretical Computer Science Conference (ITCS), volume 151 of LIPIcs, pages 39:1-39:13.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.39.

Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Algorithmic extensions
of Dirac’s theorem. CoRR, abs/2011.03619, 2020. arXiv:2011.03619.

Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Algorithmic extensions
of Dirac’s theorem. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms,
(SODA 2022), pages 931-950. STAM, 2022. doi:10.1137/1.9781611977073.20.

Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Longest cycle above
Erdés-Gallai bound. CoRR, abs/2202.03061, 2022. arXiv:2202.03061.

Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Long

directed (s,t)-path: FPT algorithm. Inf. Process. Lett., 140:8-12, 2018. doi:10.1016/j.ipl.

2018.04.018.

Giorgio Gallo, Michael D. Grigoriadis, and Robert Endre Tarjan. A fast parametric maximum
flow algorithm and applications. SIAM J. Comput., 18(1):30-55, 1989. doi:10.1137/0218003.
Andrew V. Goldberg. Finding a maximum density subgraph. Technical Report CSD-84-171,
University of California, 1984.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. doi:10.1006/jcss.2001.

1774.
Bart M. P. Jansen, Laszl6 Kozma, and Jesper Nederlof. Hamiltonicity below Dirac’s condition.
In Proceedings of the 45th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), volume 11789 of Lecture Notes in Computer Science, pages 27-39. Springer,
2019.

55:15

ESA 2022


https://doi.org/10.1016/0095-8956(90)90024-T
https://doi.org/10.1137/19M1290577
https://doi.org/10.4230/LIPIcs.ITCS.2020.39
http://arxiv.org/abs/2011.03619
https://doi.org/10.1137/1.9781611977073.20
http://arxiv.org/abs/2202.03061
https://doi.org/10.1016/j.ipl.2018.04.018
https://doi.org/10.1016/j.ipl.2018.04.018
https://doi.org/10.1137/0218003
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774

	1 Introduction
	2 Overview of the proof of the main result
	3 Preliminaries
	4 Finding a dense subgraph
	5 Covering vertices of dense graphs
	6 Rerouting long cycles to dense dubgraphs
	7 Proof of the main result

