
Relative NAND-clause growth in Neg
refutations

Wim Van den Broeck

Master’s Thesis
Department of Informatics

University of Bergen

January 18, 2022

2

Acknowledgements

A great debt of gratitude goes to my supervisor, Michał Walicki, for helpful feedback
and outstanding guidance.

ii Acknowledgements

Abstract

Any given propositional discourse can be expressed as a NAND-OR theory – a set
of OR-clauses (disjunctions of literals) and NAND-clauses (negated conjunctions e.g.
¬(x∧y)) – making NAND-OR theories similar to traditional normal forms such as CNF
and DNF. This thesis will discuss the inference system Neg; a non-explosive, sound
and refutationally complete resolution system over NAND-OR theories. Of particular
interest will be inconsistent theories which can be refuted in Neg by deriving the empty
clause. The main result in this thesis will be a counterexample to the conjecture that
the NAND-clauses of inconsistent NAND-OR theories need not grow greater than the
size of its OR-clauses in the derivation of the empty clause. Further properties of such
inconsistency derivations are explored with the aim of analysing the creation NAND-
clauses in Neg.

iv Abstract

Contents

Acknowledgements i

Abstract iii

1 Introduction 1
1.1 Proof complexity . 1

2 Background 3
2.1 GNF and NAND-OR . 3
2.2 The RIP system . 4

2.2.1 Neg . 5
2.2.2 Inconsistency of ¬PHP3

4 . 6
2.3 Problem Statements and Thesis outline 8

3 Pigeonhole principle in Neg 11
3.1 Properties of Rneg . 11
3.2 NAND-clause growth in refutation of ¬PHPh

p 13

4 Arbitrary NAND-OR theories in Neg 15
4.1 Conjecture 2 holds for ¬PHPh

p . 15
4.2 ¬PHP2,2

5 . 17
4.3 NAND-binary NAND-OR theories . 19

4.3.1 bin(¬PHP3,2
7) . 22

4.4 GNF theories . 27

5 Conclusions and Future Work 29

A 31
A.1 Translating clausal theories into GNF 31

vi CONTENTS

Chapter 1

Introduction

1.1 Proof complexity

Proof complexity concerns itself with the lengths of proofs in various proof systems.
Much work has been devoted to finding proof length lower and upper bounds in stan-
dard proof systems with various interrelated goals in mind.

Of particular interest to the field are the lengths of the shortest proofs of proposi-
tional tautologies. This area of study has been shown to be inherently connected to
open questions in computational complexity theory such as whether NP = coNP. It
was shown in [1] [2] by Cook and Reckhow that NP = coNP if and only if there ex-
ists a super proof system – a propositional proof system that admits polynomial size
proofs of tautologies τ ∈ TAUT in the length of the tautology –. In particular it was
shown that TAUT is NP-complete (hence TAUT is coNP-complete). Thus the exis-
tence of a super proof system would give rise to a procedure in the likes of guessing
non-deterministically a proof of τ to then verifying it deterministically with the super
proof system. This would put TAUT in NP and so NP = coNP. With that, finding
super-polynomial lower bounds for standard propositional proof systems has been re-
garded as evidence toward separating NP and coNP.

Further, studying proof complexity of propositional proof systems is interesting in
the context of automated theorem proving. Automated theorem provers are usually
based on some propositional proof system. This is true also for many algorithms and
other mathematical methods used in various fields of science. Finding proof complexity
lower and upper bounds in general implies (computational) complexity lower and upper
bounds of these automated theorem provers. In this way the study of proof complexity
is intimately connected to practical work in for example SAT solving.

In addition, powerful insights have been developed on the parallels between proof
complexity and areas such as circuit complexity and bounded arithmetic.

In this text proofs for propositional logic in the resolution system Neg from [3] shall
be looked at. Neg reasons over NAND-OR theories. These are theories comprising
of a set of OR-clauses (disjunctions of literals, x1 ∨ x2 ∨ . . .∨ xi) and NAND-clauses
(negated conjunctions, ¬(x1∧ x2∧ . . .∧ xi)). Any propositional theory can be written
in this form. Neg’s only rule, Rneg, is a resolution style rule that takes in its premise
a set of NAND-clauses and an OR-clause and concludes in a NAND-clause that is a
union of the premise NAND-clauses with atoms from the OR-clause omitted. Neg is,
sound, refutationally complete and non-explosive over NAND-OR theories. A theory is

2 Introduction

considered proven in Neg if we can derive the empty clause (`Neg {}) from its negation.
A main goal of this thesis is to analyse the NAND-clause growth in such derivations.
We content ourselves in only analysing NAND-clause growth as these are the only
clauses that the Rneg rule can produce. In keeping with the program of finding lower
bounds for propositional proof systems, we see the study of the growth of these NAND-
clauses as a step toward finding a lower bound for proofs in the Neg system. Neg’s
resolution-like reasoning, making it potentially suitable in automated theorem proving,
also motivates the study of its proof complexity.

A main result in this thesis will be the proof of a conjecture claiming that a cer-
tain family of NAND-OR theories representing the pigeonhole principle has proofs
in Neg where it’s NAND-clauses must grow to the size of it’s OR-clauses. We also
give counterexamples to some conjectures claiming NAND-clause bounds for arbitrary
NAND-OR theories and some relevant restrictions of NAND-OR theories.

Chapter 2

Background

Before we present the Neg system we describe the form of the theories over which it
reasons. This in part motivates the work on the Neg system as well as these theories
being interesting in their own right.

2.1 GNF and NAND-OR

A propositional theory over some alphabet Σ is in graph normal form (from here on
abbreviated to GNF) if it consists of formulae in the form:

x↔
∧
{¬xi|i ∈ I} (2.1)

where I is some index set and x ∈ Σ, all xi ∈ Σ and each x ∈ Σ occurs exactly once
on the left of such an equivalence [4].

Every theory in propositional logic can be represented as a directed graph such that
the models of this theory correspond bijectively to the kernels –an independent set of
vertices of the graph such that every vertex not in the set has an edge leading to a vertex
in the set– in its representative digraph. Finding a theory’s representative digraph can
be done especially easily if the theory is in GNF. Further, every theory in propositional
logic not in GNF can be translated to GNF (see appendix A). Additionally theories
represented as a GNF theory have the interesting property of being inconsistent if and
only if they are paradoxical. By paradoxical we mean that we can use substitutions to
arrive at the classical logical form of paradox, x↔¬x. This relation with paradoxicality
is in contrast to the general case where a theory may be inconsistent but not necessarily
paradoxical. Consider the following propositional theory (A similar example is given
in [4]):

a ↔ ¬b
b ↔ ¬c∧¬d
c ↔ ¬a
d ↔ ¬a

(2.2)

Here we see that no satisfying truth value assignment exists. Since every formulae
in this theory is in GNF we may go on to conclude that it is paradoxical. We can see
this more clearly with a series of substitutions:

4 Background

a↔¬b⇔ a↔¬(¬c∧¬d)⇔ a↔ c∨d⇔ a↔¬a∨¬a⇔ a↔¬a (2.3)

GNF theories, their correspondence with digraphs and their relation with paradoxi-
cality has been studied in [3] [5] [6] [7].

This paper will mainly be handling NAND-OR theories into which GNF theories
easily can be translated. Separating the bi-implication in 2.1 we get the following two
formulae:

x←
∧
{¬xi|i ∈ I} (2.4)

x→
∧
{¬xi|i ∈ I} (2.5)

We can reformulate 2.4 as follows:

x←
∧
{¬xi|i ∈ I}⇔ x∨¬(

∧
{¬xi|i ∈ I})⇔ x∨ (

∨
{xi|i ∈ I}) (2.6)

Further, we can also reformulate 2.5 as follows:

x→
∧
{¬xi|i ∈ I}⇔ ¬x∨ (

∧
{¬xi|i ∈ I})⇔

∧
{¬(x∧¬xi)|i ∈ I} (2.7)

We see now that for each variable x of a GNF theory we have two types of clauses:

OR-clauses: x∨
∨
i∈I

xi (2.8)

NAND-clauses: ¬(x∧ xi), for every i ∈ I (2.9)

From this point, OR-clauses may be written as xx1x2 instead of, x∨ x1 ∨ x2 ∨ x3
and NAND-clauses may be written as xx1 rather than ¬(x∧ x1). Both types of clauses
will be treated as sets of atoms where over-bars denote only that a set is a NAND-
clause. Hence we may write, ab⊆ abcd. Further, A⊆ Σ will denote an OR-clause and
A = {a|a ∈ A} will denote a NAND-clause.

Since every theory in propositional logic can be expressed in GNF, it follows that
every theory in propositional logic can be expressed as a NAND-OR theory. The theory
of 2.2 will have the following NAND-OR form:

OR:={ab,bcd,ac,ad}
NAND:={ab,bc,bd,ac,ad}

(2.10)

2.2 The RIP system

The following inference system was introduced in Michał Walicki’s paper, "Resloving
infinitary paradoxes" [3]. It is sound for arbitrary NAND-OR theories and refutationaly
complete for theories with a countable set of OR-clauses and where each NAND-clause
is finite.

2.2 The RIP system 5

(Ax) Γ `C, for C ∈ Γ

{Γ ` aiAi|i ∈ I} {Γ ` ai|i ∈ I}
(Rneg)

Γ `
⋃

i∈I Ai

Γ ` A {Γ ` BiKi|i ∈ I} {Γ ` aik|i ∈ I,k ∈ Ki}(Rpos)
Γ ` (A\{ai|i ∈ I})∪

⋃
i∈I Bi

With the Rneg rule a NAND-clause can be created using NAND-clauses in the
premise and an OR-clause as a side condition. With the Rpos rule an OR-clause can
be created using OR-clauses in the premise and a NAND-clause as a side condition.
Premise clause aiAi in Rneg represents the NAND-clause {ai}∪Ai, where Ai may be
empty.

The focus in this paper will be on proofs in Neg; a restriction of the RIP system
which uses only the axioms and the Rneg rule.

2.2.1 Neg
As shown in [3], Neg is sound for arbitrary theories and refutationally complete for
theories with countable number of OR-clauses. In this paper only finite theories are
considered.

For the purpose of easing readability, when the theory is clear from the context, we
omit ’Γ `’ in notation. For similar reasons, and to highlight its use as a side condition,
the OR-clause in the premise of a the Rneg rule application is moved to the side. The
figure below illustrates these changes:

Γ ` abx Γ ` cdy Γ ` xy
(1)

Γ ` abcd
abx cdy

(1’) xy
abcd

(2.11)

In an Rneg rule application the premise is a set of NAND-clauses as well as a single
OR-clause. There must be a bijective relationship between the atoms in the OR-clause
and the set of NAND-clauses. The corresponding NAND-Clause to eeach OR-clause
atom must contain that atom. In the conclusion will be a single NAND-clause formed
by the union of the NAND-clauses in the premise but omitting their corresponding atom
from the OR-clause. Below (2) and (3) are examples of incorrect Rneg rule aplications:

abx cdy
(2) xyz

abcd
axz by cy

(3) xyz
abc

(2.12)

(2) is not correct both in that there are more atoms in the OR-cause than there are
NAND-clauses in the premise and also since z from the OR-clause does not appear
in any NAND-clauses. In (3), though every atom in the OR-clause is represented in
some NAND-clause in the premise there is no bijective relation between them so it
fails also. Using instead xy as the OR-clause would fail also as y cannot ’cancel’ its
negated literal from both by and cy, so again there is no bijective relation between the

6 Background

atoms in the OR-clause and the NAND-clauses in the premise. Now follows correct
Rneg rule applications:

abx cy cz
(4) xyz

abc
x y z

(5) xyz
{} (2.13)

The atoms in each of the OR-clauses above are matched to precisely one NAND-
clause in their respective premises and all NAND-clauses have some match.

We can now show that the NAND-OR theory in 2.10, and thus also the theory in
2.2, is inconsistent in Neg. We do this by deriving the empty clause:

ab ac adbcd a
ac bc abcac

{}
(2.14)

Note that OR-clauses in Neg are fixed by the theory and only NAND-clauses are
generated. Consequently, our proof complexity analysis will focus on the size of the
NAND-clauses occurring in proofs.

2.2.2 Inconsistency of ¬PHP3
4

The pigeonhole principle is a counting principle which states that for p pigeons being
housed in h holes, where p > h, then at least one hole must house two pigeons. In
the study of propositional proof complexity, the pigeonhole principle is a canonical ex-
ample of a specific tautology for which much work has been devoted to proving lower
bounds under various proof systems. This is typically with the goal of determining that
the proof system in question is not efficient (does not admit polynomial lower bounds
for all tautologies) [8]. In its essence, the pigeonhole principle disallows bijective func-
tions from p to h for p > h. Consider the following common example showing an
application of the pigeonhole principle: in a room of 367 people, the pigeonhole prin-
ciple requires that at least two people share a birthday. The pigeonhole principle will
be a recurring example throughout this text through which we shall seek to analyse the
NAND-clause growth of inconsistency proofs in the Neg system.

PHPh
p refers to a family of theories representing instances of the pigeonhole prin-

ciple where p is the number of pigeons and h is the number of holes (we will only
consider instances where p≥ h+1 and h > 1). We can prove any particular PHPh

p the-
ory in Neg by proving the inconsistency of its negation ¬PHPh

p . An instance of ¬PHPh
p

amounts to a theory where each of the p pigeons is contained in a hole and each hole
contains only one pigeon. Letting the atom xi represent pigeon i occupying hole x, a
¬PHPh

p theory can be generally formalized as a NAND-OR theory with the following
axioms:

OR : =
{

1i2i . . .hi|i≤ p
}

NAND : =
{

xix j|0 < i < j ≤ p ,0 < x≤ h
} (2.15)

2.2 The RIP system 7

Each OR-clause is of size h and represents the fact that pigeon i can either occupy
the first hole, or the second hole, or the third and so on up until and including the h’th
hole. Each NAND-clause is binary and represents the fact that no hole can be occupied
by both pigeon i and pigeon j (i 6= j), that is to say no hole can contain more than one
pigeon.

The specific instance ¬PHP3
4 has been proven inconsistent in Neg by Kjetil Golid in

[5]. The set of axiomatic OR-clauses and NAND clauses for ¬PHP3
4 are given below:

OR : =
{

112131,122232,132333,142434
}

NAND : =

1112,1113,1114,1213,1214,1314,
2122,2123,2124,2223,2224,2324,
3132,3133,3134,3233,3234,3334

 (2.16)

The proof showing that the empty clause can be derived is repeated here as it is a
good example of a Neg proof and will be referenced multiple times.

Proposition 2.17. ¬PHP3
4 is inconsistent in Neg.

Proof.

1314

1214 2223

1114 2123 3132 112131
322314 122232

2314

1214

1114 2124 3133 112131
223314 3233 122232

3314 132333
14

2324

1213 2224

1113 2124 3132 112131
321324 122232

1324

2224

1112 2124 3133 112131
123324 3233 122232

3324 132333
24

3334

1213 3234

1113 2122 3134 112131
221334 122232

1334

2223

1112 2123 3134 112131
122334 3234 122232

2334 132333
34

14 24 34 142434{}

8 Background

2.3 Problem Statements and Thesis outline

This thesis will explore the following conjectures:

Conjecture 1 (First thesis statement). For any Neg proof of the pigeonhole principle
represented by 2.15, NAND-clauses grow to the size of the OR-clauses.

Note here again that proving a claim X in Neg amounts to deriving the empty clause
from a clausal theory, C¬X , representing ¬X , the negation of X (i.e. C¬X `Neg {}). This
is how proving the pigeonhole principle is to be understood. We may also say that
clausal theory C¬X has a refutation (or is refutable) in Neg to mean the same thing.

Conjecture 2 (Second thesis statement). Given any NAND-OR theory refutable in
Neg, there is always a Neg refutation in which no NAND-clause grows beyond the
size of the largest OR-clause.

Said differently, for conjecture 2 to hold for a specific theory we require that
no NAND-clause greater than the largest OR-axiom to be involved in its refutation.
Throughout the text we may say that a particular theory T has a narrow refutation if
conjecture 2 holds for that specific theory. In other words conjecture 2 states that any
theory refutable in Neg has a narrow refutation. Is it not the case that conjecture 2 holds
for T (i.e. NAND-clauses must grow beyond the size of OR-clauses in any refutation
of T), we may say that T has a wide refutation.

Upon deeper investigation it was found that conjecture 2 was too imprecisely formu-
lated to give interesting results. Discovery of a NAND-OR theory with NAND-axioms
greater than OR-axioms gave a trivial counterexample to the conjecture. 1 This obser-
vation motivated the investigation of some specialisations of conjecture 2:

Conjecture 3. Given any NAND-binary NAND-OR theory refutable in Neg, there
is always a Neg refutation in which no NAND-clause grows beyond the size of the
largest OR-clause.

By NAND-binary we refer to theories for which all NAND-axioms are binary. This
assures that we do not consider theories where NAND-axioms are greater than OR-
axioms.

Lastsly, we consider GNF theories:

Conjecture 4. Given any GNF theory refutable in Neg, there is always a Neg refu-
tation in which no NAND-clause grows beyond the size of the largest OR-clause.

GNF theories are themselves NAND-binary and NAND-binary NAND-OR theories
are of course just restrictions of arbitrary NAND-OR theories. These inclusions are
illustrated in figure 2.1.

1We must mention here also that we will disregard theories with unary NAND-clauses as they also may
give trivial counterexamlpes to our conjectures leaving little insight.

2.3 Problem Statements and Thesis outline 9

CLAUSAL
THEORIES

NAND-OR
THEORIES

NAND-BINARY
NAND-OR

GNF

Figure 2.1: Restrictions of NAND-OR theories

With that, finding a counterexample of conjecture 4 (which we were not able to do)
would mean finding a counterexample of conjectures 2 and 3 as well. Meanwhile, had
we been able to prove conjecture 2, then conjectures 3 and 4 would also be proven.

In 2.2.2 it was shown that conjecture 1 holds for a specific instance of the pigeonhole
principle. In Chapter 3 it will be shown that the conjecture holds in general. In Chapter
4 it will first be shown that conjecture 2 holds in general for the pigeonhole principle
but not for arbitrary NAND-OR theories. A variation of the the pigeonhole principle
with increased hole capacity will be presented as a counter example disproving the
conjecture. Aslo in chapter 4 we present a counterexample of conjecture 3 and present
some comments on the search for a counterexample of conjecture 4.

10 Background

Chapter 3

Pigeonhole principle in Neg

Showing that conjecture 1 holds would be significant as it would give a preliminary
lower bound on the growth of the NAND-clauses for our family of tautologies repre-
senting the pigeonhole principle and in turn give some insight into the complexity and
other properties of the Neg proof system. We first highlight some properties of the
Rneg rule that will be used in the proof of conjecture 1 and proofs later in the thesis.

3.1 Properties of Rneg

In [3] it was observed that if from some theory an empty clause can be derived in Neg
then unary NAND-clauses equal to the union of some OR-clause must be derivable (or
present as an axiom):

Γ `Neg {}⇔ ∃K ∈ OR : (∀k ∈ K : Γ ` k) (3.1)

With that, the last step of any Neg refutation will always look the same:

k1 k2 k3 . . . k1k2k3 . . .{}
(3.2)

Recall that the final step in the refutation of ¬PHP3
4 (proposition 2.17) was of the

form of 3.2 but also that several new non-axiomatic NAND-clauses were created in the
steps leading up to the final step. In particular, the first steps in creating each unary
NAND-clause created NAND-clauses of size 3 (equal to the size of the OR-Clauses).
It was shown in [5] that this was unavoidable for this case and it will be shown shortly
that this is unavoidable for ¬PHPh

p theories in general.
First we can make further observations on how Rneg constructs NAND-clauses.

The size of the concluding NAND-clause in any Rneg rule application will depend on
how many distinct atoms there are in the premise NAND-clauses. Consider again the
Rneg rule from section 2.2 where we had {ai|i∈ I} be the atoms in some OR-clause and
{aiAi|i ∈ I}, be the premise NAND-clauses. By elementary set theory we can express

12 Pigeonhole principle in Neg

the cardinality of the concluding NAND-clause with the following equation:

|
⋃
i∈I

Ai|= ∑
i∈I
|Ai\(Ai∩

⋃
j>i

A j)|) (3.3)

The above equality is simply a generalisation of the cardinality of the union of two
sets. From this we see that in general a concluding NAND-clause is at its greatest size
when all Ai are distinct.

Remark 3.4. For {ai|i ∈ I} atoms in some OR-clause and {aiAi|i ∈ I} premise
NAND-clauses, when each Ai is distinct we have Ai∩

⋃
j>i A j = /0. Then by equation

3.3 the size of the concluding NAND-clause can be expressed as follows:

|
⋃
i∈I

Ai|= ∑
i∈I
|Ai|= ∑

i∈I
|aiAi|− |ai|

In other words, the size of the concluding NAND-clause will be the differnce be-
tween the sum of the cardinalities of the premise NAND-clauses and the cardinality
of the OR-clause. This represents an upper bound on the possible size of the con-
cluding NAND-clause that can be created from these premises.

On the other hand, a concluding NAND-clause is at its smallest size when each Ai
is contained in some Am, a premise NAND-clause of maximum size.

Remark 3.5. Let {ai|i ∈ I} be atoms in some OR-clause, {aiAi|i ∈ I} premise
NAND-clauses, and amAm ∈ {ai|i ∈ I} where amAm is the largest premise NAND-
clause, |amAm|= max(|aiAi|). When each Ai is contained in amAm then by equation
3.3 the size of the concluding NAND-clause can be expressed as follows:

|
⋃
i∈I

Ai|= |Am|

Letting m be the largest index in our index set we have Ai ∩
⋃

j>i A j = Ai up until
i = m. This is a lower bound on the possible size of the concluding NAND-clause
that can be created from these premises.

In other words, a concluding NAND-clause will never be smaller than the largest
NAND-clause minus 1.

Finally, combining remarks 3.4 and 3.5 we make a corollary observation on Rneg
when all premise NAND-clauses are binary.

Remark 3.6. For OR-clause {ai|i∈ I}, when all premise NAND-clauses {aiAi|i∈ I}
are binary, the concluding NAND-clause can have size at most, |

⋃
i∈I Ai| = |{ai|i ∈

I}| (the size of the OR-clause) and can have smallest size 1. This follows from
remarks 3.4 and 3.5.

When all premise NAND-clauses are binary, the concluding NAND-clause can
never be larger than the premise OR-clause.

3.2 NAND-clause growth in refutation of ¬PHPh
p 13

3.2 NAND-clause growth in refutation of ¬PHPh
p

We repeat for convenience the axioms of a ¬PHPh
p theory from 2.15:

OR : =
{

1i2i . . .hi|i≤ p
}

NAND : =
{

xix j|0 < i < j ≤ p ,0 < x≤ h
} (3.7)

Consider again the refutation of ¬PHP3
4 in proposition 2.17. The first step in the

derivation of each unary NAND-clause created a NAND-clause of size 3. The proposi-
tion below shows that this is the case for all ¬PHPh

p .

Proposition 3.8. For any Neg proof of the pigeonhole principle represented by 3.7
NAND-clauses must grow to the size of the OR-clauses.

Proof. By 3.1, the final step of a derivation of an refutation requires a set of unary
NAND-clauses in the premise. In the absence of any such unary NAND-clauses among
the axioms, it is not possible to derive a refutation from the axioms alone and a new
clause must be created. Any derivation of a new NAND-clause must start with some
OR-clause as the side condition in a rule application . Choosing an arbitrary OR-clause
as side condition, any first step must look in general as follows:

1i1 j1 2i2 j2 . . . hih jh 1i2i . . .hi
1 j12 j2 . . .h jh

Each NAND-axiom in the premise is comprised of two atoms for the same hole.
Hence, the NAND-clauses in the premise are mutually disjoint on account of all OR-
clause being comprised of atoms for distinct holes. By remark 3.4 we take the differ-
ence between the sum of the lengths of the premise NAND-clauses and the length of
the OR-clause. Thus the concluding NAND-clause must be of size h as shown.

This result is in no way surprising and is really just a generalisation of what was
observed in proposition 2.17. With that we found a relative lower bound, h, on the size
of the longest NAND-clause necessary to refute a ¬PHPh

p theory. In the next chapter
we investigate if NAND-clauses of this size are the largest necessary in a refutation.

14 Pigeonhole principle in Neg

Chapter 4

Arbitrary NAND-OR theories in Neg

Conjectures 2, 3 and 4 would have arguably more far reaching consequences than con-
jecture 1. It would allow us to find a bound for the length of a line in a Neg proof
relative to the size of the OR-clauses in the theory. This would be meaningful for a
more complete analysis of the complexity of proofs in Neg.

Here, it will be shown that conjecture 2 holds for the pigeonhole principle in, sec-
tion 4.1. In sections 4.2 and 4.3 counterexamples of conjectures 2 and 3 in the form of
a variation of the ¬PHPh

p theories. In section 4.4 we discuss the search for a couterex-
ample of conjecture 4.

4.1 Conjecture 2 holds for ¬PHPh
p

From our pigeonhole axioms, inconsistency can be proven without the NAND-clauses
growing larger than the size of the OR-clauses. That is to say, any ¬PHPh

p theory has a
narrow refutation. Before proving this we give some useful definitions and prove some
relevant lemmata.

Definition 4.1. We define a ¬PHPh
p NAND-clause (3.7) to be ’hole-distinct’ if it

comprises of atoms for distinct holes.

Below are some examples of hole-distinct NAND-clauses:

• 21335473

• 112131

Observe once more the first and second lines of the unary NAND-clause deriva-
tions in proposition 2.17. The first NAND-clauses derived are of size 3 (size of the
OR-clauses) and are hole-distinct. Further, given some choice of OR-clause as a side
condition, there are several different choices of NAND-clauses for the premise that
would result in a legal rule application. This is the observation that motivates definition
4.1 and the lemma below:

Lemma 4.2. Using only ¬PHPh
p axioms (3.7), every hole-distinct NAND-clause of

size h can be proven in a single rule application.

16 Arbitrary NAND-OR theories in Neg

Proof. Letting P = {1, ..., p}, all OR-axioms will have the form 1π2π . . .hπ , π ∈ P.
Now letting H = {1, ...,h} and ji ∈ P, a generalised construction of a NAND-clause of
size h from axioms will look exactly as in proposition 3.8 (given again for convenience
with slightly different notation):

1π1 j1 2π2 j2 . . . hπh jh 1π2π . . .hπ
1 j12 j2 . . .h jh

To derive 1 j12 j2 . . .h jh for any j1, j2, . . . , jh ∈ P, take any π /∈ { j1, j2, . . . , jh}, which
exists since h < p. We have axiom 1π2π . . .hπ ∈ OR and for each 1 ≤ k ≤ h, kπk ji ∈
NAND. These axioms give the hole-distinct NAND-clause 1 j12 j2 . . .h jh by a single rule
application of Rneg as shown above. Remark 3.4 assures that we get a NAND-clause
of size h in the conclusion as all kπk ji are mutually distinct.

Observe now the second and third lines of the unary NAND-clause derivations in
proposition 2.17. Present among the NAND-clauses in the premises is a NAND-clause
of size 3, while the conclusions are NAND-clauses of size 2 (one less) and are a proper
subset of the size 3 NAND-clause. The premise NAND-clauses in each such derivation
satisfy the conditions of remark 3.5. This observation gives rise to the next lemma:

Lemma 4.3. Given our ¬PHPh
p axioms (3.7), if all hole-distinct NAND-clauses of

size k (k ≤ h) are provable (in Neg), then all hole-distinct NAND-clauses of size
k− 1 are provable without using any NAND-clauses longer than those used in the
proofs of the k-length NAND-clauses.

Proof. Consider an arbitrarily chosen hole-distinct NAND-clause of size (k-1),
α1

j1
. . .αk−1

jk−1
.1 As in the proof of lemma 4.2, it is always possible to find an OR-clause

1π2π . . .hπ such that π /∈ { ji ∈ P|1 ≤ i ≤ k, i ∈ N} (since k ≤ h < p). Given this and
the fact that our desired NAND-clause is hole-distinct, it is possible to separate the
OR-clause into two parts, α1

π . . .α
k−1
π β 1

π . . .β
h−(k−1)
π . The α i

π’s are those atoms in the
OR-clause for which the same hole occurs in the desired NAND-clause. The β i

π’s are
the atoms in the OR-clause for holes not occurring in the concluding NAND-clause.
With that we derive our chosen NAND-clause as follows:

α1
πα1

j1 . . .α
k−1
π α

k−1
jk−1

β 1
π α1

j1 . . .α
k−1
jk−1

. . . β
h−(k−1)
π α1

j1 . . .α
k−1
jk−1

α1
π . . .α

k−1
π β 1

π . . .β
h−(k−1)
π

α1
j1 . . .α

k−1
jk−1

Each α i
πα i

ji among the premises is axiomatic (and so is binary) while each

β i
πα1

j1
. . .αk−1

jk−1
is a hole-distinct NAND-clause of size k. We have the conditions of

remark 3.5 so the concluding NAND-clause is of size k−1.
1The superscripts of these variables are simply to distinguish them from one another and are not to be

mistaken for exponents.

4.2 ¬PHP2,2
5 17

Now we can prove that any hole-distinct NAND-clause is provable in Neg without
NAND-clauses growing beyond the OR-clauses:

Proposition 4.4. Given our ¬PHPh
p axioms (3.7), for each 1 ≤ k ≤ h, every hole-

distinct NAND-clause of length k is provable in Neg without use of any NAND-clause
longer than h.

Proof. The proof is by induction on k, with the basis k = h given by lemma 4.2, and
induction step by lemma 4.3.

Thus conjecture 2 holds for ¬PHPh
p :

Corollary 4.5. For ¬PHPh
p axioms from 3.7, there is always a Neg proof of incon-

sistency in which no NAND-clause grows beyond the size of the largest OR-clause.

Proof. By proposition 4.4, all unary NAND-clauses are provable without use of any
NAND-clause longer than h, since any unary NAND-clause is hole-distinct. We can
now use equation 3.1 taking any OR-clause to perform the final step as in 3.2 selecting
what unary NAND-clauses that are necessary.

Thus we have found a relative upper bound on the size of the greatest NAND-
clauses necessary to refute a ¬PHPh

p theory (also h).

4.2 ¬PHP2,2
5

The counterexample to conjecture 2 that will be shown here is on a NAND-OR theory
representing a variation of the pigeonhole principle. In this variation the capacity, c, of
the holes can be specified. We denote it as ¬PHPh,c

p where p ≥ hc+ 1. With that, in
order to reasonably expect to be able to derive a contradiction, it will be required to for
instance fit 5 pigeons into 2 holes. ¬PHP2,2

5 axioms will be as follows:

OR : =
{

1121,1222,1323,1424,1525
}

NAND : =


111213,111214,111215,111314,111315,
111415,121314,121315,121415,131415,
212223,212224,212225,212324,212325,
212425,222324,222325,222425,232425


(4.6)

The NAND-clauses have increased in size compared to the ¬PHPh
p clauses, because

now no 3 distinct pigeons can occupy the same hole as opposed to the previous cases
where no 2 pigeons could occupy the same hole.

It is immediate that ¬PHP2,2
5 will have a wide refutation given that NAND-axioms

are greater than OR-axioms. We show its refutation as it well be useful later.

18 Arbitrary NAND-OR theories in Neg

Proposition 4.7. ¬PHP2,2
5 is inconsistent in Neg.

Proof.

222425

111213 212425 1121
12132425 1222

132425 232425 1323
2425

111314 212225 1121
13142225 121314 1222

131425

111214 212325 1121
12142325 222325 1222

142325 1323
1425

121415

212223 111415 1121
22231415 1222

231415 131415 1323
1415

212324 111215 1121
23241215 222324 1222

232415

212224 111315 1121
22241315 121315 1222

241315 1323
2415

2425 1425 1424
25

1415 1524 1424
15 1525{}

Not only does this NAND-OR theory have axioms where the NAND-clauses are
greater than the OR-clauses, but the NAND-clauses must grow once more in order for
an inconsistency to be derived.

Proposition 4.8. In every refutation of ¬PHP2,2
5 in Neg the NAND-clauses grow

longer than the OR-clauses.

4.3 NAND-binary NAND-OR theories 19

Proof. Using an arbitrarily chosen OR-clause as the side condition, the first creation
of a new NAND-clause will always create one of size 4.

1i1 j11 j2 2i2 j32 j4 1i2i
1 j11 j22 j32 j4

We have the conditions of remark 3.4 so we take the difference between the sum of
the lengths of the premise NAND-clauses and the length of the OR-clause. The proof
is similar to the one of proposition 3.8 and so is not heavily commented.

We have found that conjecture 2 does not hold. A theory being in NAND-OR form
is not enough to guarantee it will have a narrow refutation.

4.3 NAND-binary NAND-OR theories

The counter-example of section 4.2 does not disprove conjecture 3 nor conjecture 4.
In section 2.1 it was shown that NAND-OR theories derived from GNF theories will
always be NAND-binary (all NAND-axioms in the theory are binary). Further, sec-
tion 4.1 showed that conjecture 2 holds for ¬PHPh

p – a NAND-binary theory not de-
rived directly from a GNF theory –. Notice also that in both ¬PHPh

p and ¬PHP2,2
5

NAND-clauses grew only in the first step, after which we were able to derive smaller
NAND-clauses until we eventually derived the empty clause. Remark 3.6 guarantees
that Rneg applications using only binary NAND-clauses will produce NAND-clauses
of the size of the premise OR-clause at greatest. If in addition theories need only grow
once (in the first step for example) then all NAND-binary NAND-OR theories have
narrow refutations. Our counter-example to conjecture 3 shows that this is not the case.

Before we move on to the next counter-example, we would like to know both that
any instance of ¬PHPh,c

p for c > 1 can be refuted in Neg and that all refutations are
wide. This result will be useful when presenting the counter-example to conjecture 3
which will be a modification to such a theory.

We make explicit in set notation the axioms of a general ¬PHPh,c
p theory as was

done in 3.7 for ¬PHPh
p :

OR : =
{

1i2i . . .hi|i≤ p
}

NAND : =
{

xi1xi2 . . .xic+1|0< i1< i2< .. . ic+1≤ p ,0 < x≤ h
} (4.9)

The following definitions will be useful in proving that ¬PHPh,c
p theories have wide

refutations:

Definition 4.10. We define a ¬PHPh,c
p NAND-clause to be ’n-hole-distinct’ if it com-

prises of atoms where each atom represents the same hole as at most n−1 other
atoms in the NAND-clause (there can be at most n atoms representing the same
hole).

20 Arbitrary NAND-OR theories in Neg

Example:

• 21232473 is 3-hole-distinct

• 112132 is 1-hole distinct

In general if a NAND-clause is n-hole-distinct for a particular n then it is also m-
hole-distinct for any m > n.

Definition 4.11. We define a ¬PHPh,c
p NAND-clause to be ’hole-n-saturated’ if it

contains exactly c (the hole capacity of the theory in question) different atoms of
the form ni.

Example:

• In ¬PHP2,2
5 , 12132425 is hole-1-saturated and hole-2-saturated.

• In ¬PHP3,1
4 112232 is hole-1-saturated, hole-2-saturated and hole-3-saturated

Lemma 4.12. Using only ¬PHPh,c
p axioms (4.9), every c-hole-distinct NAND-clause

of size h · c can be proven in a single rule application.

Proof. This proof is a generalisation of lemma 4.2 now also accommodating ca-
pacities for the holes. Let 1 j1. . .1 jc2 jc+1. . .2 j2c . . . h j(h-1)c+1. . .h jhc be an arbitrary c-hole-
distinct NAND-clause of size h · c. Letting P = {1, ..., p}, all axiomatic OR-clauses
have the form 1π2π . . .hπ , π ∈ P. Now letting H = {1, ...,h} and ji ∈ P, a generalised
construction of a NAND-clause of size h · c from axioms will look as follows:

1π1 j1. . .1 jc 2π2 jc+1. . .2 j2c . . . hπh j(h-1)c+1 . . .h jhc
1π2π . . .hπ

1 j1 . . .1 jc2 jc+1. . .2 j2c . . . h j(h-1)c+1 . . .h jhc

To derive 1 j1. . .1 jc2 jc+1. . .2 j2c . . . h j(h-1)c+1. . .h jhc for ji ∈ P, take any π /∈ { ji, . . . jhc},
which exists since h · c < p. We have axiom 1π2π . . .hπ ∈ OR and for each 1 ≤ k ≤ h,
kπki1. . .kic ∈ NAND. These axioms give 1 j1. . .1 jc2 jc+1. . .2 j2c . . . h j(h-1)c+1. . .h jhc for ji ∈
P by a single rule application of Rneg. Remark 3.4 assures that we get a concluding
NAND-clause of size h · c.

Lemma 4.12 also shows that refutations must be wide for capacity greater than 1.

Corollary 4.13. In every inconsistency proof of ¬PHPh,c
p (c > 1) in Neg, NAND-

clauses grow longer than the OR-clauses.

Proof. This follows immediately from lemma 4.12. Using an arbitrarily chosen OR-
clause as the side condition, the first creation of a new NAND-clause will always create
one of size h · c. For c > 1 this will give a NAND-clause greater than the OR-clauses.
The proof of this is a generalisation of the one in proposition 4.8. The illustrative rule
application is next to identical to the one in lemma 4.12.

4.3 NAND-binary NAND-OR theories 21

Lemma 4.14. Given our ¬PHPh,c
p axioms (4.9), if all c-hole-distinct NAND-clauses

of size k (for k ≤ h · c) are provable (in Neg), then all c-hole-distinct NAND-clauses
of size k−1 are provable.

Proof. This proof is a generalisation of lemma 4.3 without a size restriction on the
NAND-clauses used in the derivation. Consider an arbitrarily chosen c-hole-distinct
NAND-clause of size k− 1, α1

j1
. . .α1

jc . . . αm
j(m-1)c+1

. . .αm
jmc
. . .αn

jk−1
.2 We assume with-

out loss of generality that the first m · c atoms in this desired NAND-clause are those
that represent holes for which the NAND-clause is hole-α i-saturated (m then repre-
sents the number of different such holes). As in the proof of lemma 4.12, it is always
possible to find an OR-clause 1π2π . . .hπ with π /∈ { ji ∈ P|1 ≤ i ≤ k, i ∈ N} (since
k ≤ h · c < p). Given this and the fact that our desired NAND-clause is c-hole-distinct,
it is possible to separate the OR-clause into two parts, α1

π . . .α
m
π β 1

π . . .β
h−m
π . The α i

π’s,
i≤m, are those atoms in the OR-clause for which α1

j1
. . .α1

jc . . . αm
j(m-1)c+1

. . .αm
jmc
. . .αn

jk−1

is hole-α i-saturated. The β i
π’s are the atoms in the OR-clause for which the concluding

NAND-clause is not hole-β -saturated. With that we derive our chosen NAND-clause
as follows:

α1
πα1

j1. . .α
1
jc . . .α

m
π αm

j(m-1)c+1
. . .αm

jmc
β 1

π α1
j1. . .α

n
jk−1

. . . β
h−m
π α1

j1. . .α
n
jk−1

α1
π . . .α

m
π β 1

π . . .β
h−m
π

α1
j1 . . .α

1
jc . . . αm

j(m-1)c+1
. . .αm

jmc
. . .αn

jk−1

Each α i
πα i

jr . . .α
i
js among the premises is axiomatic while each β i

πα1
j1
. . .αn

jk−1
is a

c-hole-distinct NAND-clause of size k, derivable by assumption. Remark 3.5 assures
that we have a concluding NAND-clause of size k−1.

Now similar to the strategy in proving ¬PHPh
p theories to have narrow refutations,

we show that ¬PHPh,c
p theories are refutable:

Proposition 4.15. Given our ¬PHPh,c
p axioms (4.9), for each 1 ≤ k ≤ h · c, every

c-hole-distinct NAND-clause of length k is provable in Neg.

Proof. The proof is by induction on k, with the basis k = h · c given by lemma 4.12,
and induction step by lemma 4.14.

Corollary 4.16. ¬PHPh,c
p is refutable in Neg.

Proof. This follows immediately from proposition 4.15. All unary NAND-clauses
are provable since any unary NAND-clause is c-hole-distinct. We can now use equation
3.1 taking any OR-clause to perform the final step as in 3.2 selecting what unary NAND-
clauses that are necessary.

2The superscripts of these variables are again simply to distinguish from one another.

22 Arbitrary NAND-OR theories in Neg

Thus we have shown that any ¬PHPh,c
p theory has a refutation and every such refu-

tation is wide (for c > 1), as opposed to ¬PHPh
p theories which were narrow.

We now present a NAND-binary NAND-OR theory which will be a modification of
a ¬PHPh,c

p theory and will be a counter-example of conjecture 3.

4.3.1 bin(¬PHP3,2
7)

Consider ¬PHP3,2
7 shown below in abbreviated form:

OR :=
{

112131,122232, . . . 172737
}

NAND :=

111213,111214, . . . ,151617,
212223,212224, . . . ,252627,
313233,313234, . . . ,353637

 (4.17)

By corollaries 4.13 and 4.16 we know that we can derive the empty clause from
this theory and that every such derivation is wide. While adding extra clauses to this
theory may affect whether NAND-clauses greater than the OR-clauses are required to
derive the empty clause, it will not affect its derivability. With that, in similar fashion to
the weakening rule of traditional resolution, we can add clauses to our theory without
affecting its unsatisfiabilty. Consider now bin(¬PHP3,2

7), a transformation of ¬PHP3,2
7

into a NAND-binary NAND-OR theory:

OR :=


1
′
11
′
21
′
3,1

′
11
′
21
′
4, . . . ,1

′
51
′
61
′
7,

2
′
12
′
22
′
3,2

′
12
′
22
′
4, . . . ,2

′
52
′
62
′
7,

3
′
13
′
23
′
3,3

′
13
′
23
′
4, . . . ,3

′
53
′
63
′
7,

112131,122232, . . . 172737


NAND :=


111′1,121′2,131′3,141′4,151′5,161′6,171′7,
212′1,222′2,232′3,242′4,252′5,262′6,272′7,
313′1,323′2,333′3,343′4,353′5,363′6,373′7


(4.18)

All NAND-Clauses from 4.17 with their atoms relabelled are turned into OR-
clauses while new, binary NAND-clauses are added. We also retain OR-clauses from
4.17. Observe that each ¬PHP3,2

7 NAND-clause can be derived in one step. For exam-
ple:

111′1 121′2 131′3 1
′
11
′
21
′
3111213

(4.19)

4.3 NAND-binary NAND-OR theories 23

In this way we can derive every NAND-clause from ¬PHP3,2
7 in our bin(¬PHP3,2

7)

theory. At this point it is clear that ¬PHP3,2
7 is a subtheory of bin(¬PHP3,2

7) as all
¬PHP3,2

7 axioms are derivable from bin(¬PHP3,2
7). Letting D[X] represent the deduc-

tive closure in Neg of a theory X – the set of all formulae derivable from X – we have
the following equality:

D[bin(¬PHP3,2
7)] = D[bin(¬PHP3,2

7)] ∪ D[¬PHP3,2
7] (4.20)

Every axiom of ¬PHP3,2
7 is either present among the bin(¬PHP3,2

7) axioms or is
derivable from them. We are now ready to prove that bin(¬PHP3,2

7) does not have a
narrow refutation in Neg.

Proposition 4.21. There is no Neg refutation of bin(¬PHP3,2
7) where the NAND-

clauses don’t grow beyond the size of the OR-clauses.

Proof. Every ¬PHP3,2
7 OR-clause is already present in bin(¬PHP3,2

7) and every
¬PHP3,2

7 NAND-clause can be derived in bin(¬PHP3,2
7) (as illustrated in figure 4.19)

with the following general Rneg application (α ∈ {1,2,3}):

αiα
′
i α jα

′
j αkα

′
k

α
′
i α
′
jα
′
kαiα jαk

This gives now the following collection of clauses:

OR :=


1
′
11
′
21
′
3,1

′
11
′
21
′
4, . . . ,1

′
51
′
61
′
7,

2
′
12
′
22
′
3,2

′
12
′
22
′
4, . . . ,2

′
52
′
62
′
7,

3
′
13
′
23
′
3,3

′
13
′
23
′
4, . . . ,3

′
53
′
63
′
7,

112131,122232, . . . 172737



NAND :=



111′1,121′2,131′3,141′4,151′5,161′6,171′7,
212′1,222′2,232′3,242′4,252′5,262′6,272′7,
313′1,323′2,333′3,343′4,353′5,363′6,373′7,
111213,111214,111215, . . . ,151617,
212223,212224,212225, . . . ,252627,
313233,313234,313235, . . . ,353637



(4.22)

We already know from corollary 4.13 that a refutation using only ¬PHP3,2
7 clauses

will require NAND-clauses larger than the OR-clauses. The only fact that remains to
be shown is that the NAND-clauses must grow even when using some combination of
axioms and clauses that include at least one clause unique to bin(¬PHP3,2

7).
We use the OR-clauses of the form 1i2i3i and the binary axioms to create all clauses

of the form 1i
′
2i
′
3i
′
:

We add these clauses to our theory:

24 Arbitrary NAND-OR theories in Neg

1i1i
′ 2i2i

′ 3i3i
′

1i2i3i
1i
′2i
′3i
′

OR :=


1
′
11
′
21
′
3,1

′
11
′
21
′
4, . . . ,1

′
51
′
61
′
7,

2
′
12
′
22
′
3,2

′
12
′
22
′
4, . . . ,2

′
52
′
62
′
7,

3
′
13
′
23
′
3,3

′
13
′
23
′
4, . . . ,3

′
53
′
63
′
7,

112131,122232, . . . 172737



NAND :=



111′1,121′2,131′3,141′4,151′5,161′6,171′7,
212′1,222′2,232′3,242′4,252′5,262′6,272′7,
313′1,323′2,333′3,343′4,353′5,363′6,373′7,
111213,111214,111215, . . . ,151617,
212223,212224,212225, . . . ,252627,
313233,313234,313235, . . . ,353637

1′12′13′1,1
′
22′23′2,1

′
32′33′3, . . . ,1

′
72′73′7



(4.23)

At this point we cannot create a new NAND-clause of size 3 or less. In all deriva-
tions up until this point we have used only binary NAND-clauses together with each
type of OR-clause that we have among our axioms. This created NAND-clauses of the
type αiα jαk and 1′i2

′
i3
′
i respectively, each of size 3. We show now that involving even a

single ternary NAND-clause will produce a NAND-clause of size greater than 3. First
using an OR-axiom unique to bin(¬PHP3,2

7) (β ,γ ∈ {1,2,3}):

αiα
′
i α jα

′
j α

′
kβ
′
kγ
′
k

α
′
i α
′
jα
′
k

αiα jβ
′
kγ
′
k

All premise NAND-clauses are disjoint so by remark 3.4 we take the difference of
the sum of the lengths of the premie NAND-clauses and the OR-clause. This gives a
conclusion of length 4. The same applies when using a ¬PHP3,2

7 OR-axiom instead:

αiα
′
i βiβ

′
i γiγ jγk

αiβiγi
α
′
i β
′
i γ jγk

Involving more than one ternary NAND-clause would only increase the sum of the
lengths of the premise NAND-clauses as it will still be the case that these clauses are all
distinct. At this stage, any arbitrary Rneg application using two ternary and one binary
NAND-clause will yield a NAND-clause of size 5. First using an OR-axiom unique to
bin(¬PHP3,2

7):

4.3 NAND-binary NAND-OR theories 25

αiα
′
i α

′
jβ
′
jγ
′
j α

′
kβ
′
kγ
′
k

α
′
i α
′
jα
′
k

αiβ
′
jγ
′
jβ
′
kγ
′
k

Now using a ¬PHP3,2
7 OR-axiom instead:

αiα
′
i βiβlβm γiγ jγk

αiβiγi
α
′
i βlβmγ jγk

Using all ternary NAND-clauses will yield a NAND-clause of size 6. Again we first
using an OR-axiom unique to bin(¬PHP3,2

7):

α
′
i β
′
i γ
′
i α

′
jβ
′
jγ
′
j α

′
kβ
′
kγ
′
k

α
′
i α
′
jα
′
k

β
′
i γ
′
i β
′
jγ
′
jβ
′
kγ
′
k

And now using a ¬PHP3,2
7 OR-axiom instead:

αiαnαo βiβlβm γiγ jγk
αiβiγi

αnαoβlβmγ jγk

Having exhausted all possibilities, we can conclude that any refutation of bin(¬PHP3,2
7)

must use a NAND-clause of size 4.

Hence, having found a counterexample to conjecture 3 it is not the case that any
NAND-binary NAND-OR theory has a narrow refutation. That is, a theory being in
NAND-binary NAND-OR from is not a sufficient condition to guarantee a narrow proof.
As a final comment we show that the above result would not have held for any smaller
instance of bin(¬PHPh,c

p) (c > 1).
Consider bin(¬PHP2,2

5):

OR :=


1
′
11
′
21
′
3,1

′
11
′
21
′
4,1

′
11
′
21
′
5,1

′
11
′
31
′
4,1

′
11
′
31
′
5,

1
′
11
′
41
′
5,1

′
21
′
31
′
4,1

′
21
′
31
′
5,1

′
21
′
41
′
5,1

′
31
′
41
′
5,

2
′
12
′
22
′
3,2

′
12
′
22
′
4,2

′
12
′
22
′
5,2

′
12
′
32
′
4,2

′
12
′
32
′
5,

2
′
12
′
42
′
5,2

′
22
′
32
′
4,2

′
22
′
32
′
5,2

′
22
′
42
′
5,2

′
32
′
42
′
5,

1121,1222,1323,1424,1525


NAND :=


111′1,121′2,131′3,141′4,151′5,
212′1,222′2,232′3,242′4,252′5,
313′1,323′2,333′3,343′4,353′5



(4.24)

26 Arbitrary NAND-OR theories in Neg

After recreating its ¬PHP2,2
5 NAND-clauses we get:

OR :=


1
′
11
′
21
′
3,1

′
11
′
21
′
4,1

′
11
′
21
′
5,1

′
11
′
31
′
4,1

′
11
′
31
′
5,

1
′
11
′
41
′
5,1

′
21
′
31
′
4,1

′
21
′
31
′
5,1

′
21
′
41
′
5,1

′
31
′
41
′
5,

2
′
12
′
22
′
3,2

′
12
′
22
′
4,2

′
12
′
22
′
5,2

′
12
′
32
′
4,2

′
12
′
32
′
5,

2
′
12
′
42
′
5,2

′
22
′
32
′
4,2

′
22
′
32
′
5,2

′
22
′
42
′
5,2

′
32
′
42
′
5,

1121,1222,1323,1424,1525



NAND :=



111213,111214,111215,111314,111315,
111415,121314,121315,121415,131415,
212223,212224,212225,212324,212325,
212425,222324,222325,222425,232425

111′1,121′2,131′3,141′4,151′5,212′1,222′2,
232′3,242′4,252′5,313′1,323′2,333′3,343′4,
353′5



(4.25)

We are now able to involve a ternary NAND-clause in a rule application without
creating a NAND-clause of size 4 or greater. What is more, we can use this to the ef-
fect of creating a new binary NAND-clause:

111213 232′3 1323
11122′3

111214 242′4 1424
11122′4

111215 252′5 1525
11122′5 2

′
32
′
42
′
51112

(4.26)

The derivation in 4.26 can be generalised such that any binary NAND-clause of the
form, xix j where i, j ∈ {1 . . .5} and i 6= j, can be created.

With that, we can now prove that bin(¬PHP2,2
5) has a narrow refutation in Neg:

Proposition 4.27. There exists a Neg refutation of bin(¬PHP2,2
5) where the NAND-

clauses don’t grow beyond the size of the OR-clauses.

Proof. Take α,β ∈ {1,2} where α 6= β and take i1, . . . , i5 ∈ {1, . . . ,5} where i j 6= ik.
We create every binary NAND-clause of the form xix j with the following generalised
sequence of rule applications:

αi1αi2αi3 βi3β
′
i3

αi3βi3
αi1αi2β

′
i3

αi1αi2αi4 βi4β
′
i4

αi4βi4
αi1αi2β

′
i4

αi1αi2αi5 βi5β
′
i5

αi5βi5
αi1αi2β

′
i5

β
′
i3β

′
i4β

′
i5αi1αi2

4.4 GNF theories 27

Every rule application in the above figure is valid and uses clauses from 4.25 so
the entire sequence of rule applications is valid. Observe now that we have present
among our bin(¬PHP2,2

5) OR-clauses, clauses of the form 1 j2 j where j ∈ {1, . . . ,5}
and NAND-clauses of the form xix j. These are precisely the axioms of the theory
¬PHP2

5 (see 3.7). By corollary 4.5 we can derive the empty clause from these axioms
without having NAND-clauses grow passed the size of the OR-clauses. With that, we
can simply continue with these clauses to derive the empty clause in bin(¬PHP2,2

5).

4.4 GNF theories

On a final note, we give some words on the search for a counterexample to conjecture
4. We saw in the previous section that translating ¬PHP2,2

5 , our counterexample of con-
jecture 2, into a NAND-Binary NAND-OR theory did not result in a counterexample of
conjecture 3. Converting it to a GNF theory with the intention of finding a counterex-
ample of conjecture 4 will not work either. We translate ¬PHP2,2

5 into a GNF theory,
GNF(¬PHP2,2

5) (see appendix A and equations 2.4 - 2.9 for translation):

OR :=


111

′
1,121

′
2,131

′
3,141

′
4,151

′
5,

212
′
1,222

′
2,232

′
3,242

′
4,252

′
5,

α11121,α21222, . . . ,α51525,

α61
′
11
′
21
′
3,α71

′
11
′
21
′
4, . . . ,α151

′
31
′
41
′
5,

α162
′
12
′
22
′
3,α172

′
12
′
22
′
4, . . . ,α252

′
32
′
42
′
5



NAND :=



111′1,121′2,131′3,141′4,151′5,
212′1,222′2,232′3,242′4,252′5,
α1,α2,α3,α4,α5,α6, . . . ,α25,
α111,α212,α313,α414,α515,
α121,α222,α323,α424,α525,

α61′1,α61′2,α61′3, . . . ,α151′5,
α162′1,α162′2,α162′3, . . . ,α252′5



(4.28)

Notice that GNF(¬PHP2,2
5) contains bin(¬PHP2,2

5). bin(¬PHPh,c
p) was in fact dis-

covered from converting¬PHPh,c
p theories into GNF. It is immediate that GNF(¬PHP2,2

5)

has a narrow refutation since it contains ¬PHPh,c
p . The natural question now is, does

this apply to GNF(¬PHP3,2
7) aswell? GNF(¬PHP3,2

7):

28 Arbitrary NAND-OR theories in Neg

OR :=



111
′
1,121

′
2,131

′
3,141

′
4,151

′
5,161

′
6,171

′
7,

212
′
1,222

′
2,232

′
3,242

′
4,252

′
5,262

′
6,272

′
7,

313
′
1,323

′
2,333

′
3,343

′
4,353

′
5,363

′
6,373

′
7,

α1112131,α2122232, . . . ,α7172737,

α81
′
11
′
21
′
3,α91

′
11
′
21
′
4, . . . ,α421

′
51
′
61
′
7,

α432
′
12
′
22
′
3,α442

′
12
′
22
′
4, . . . ,α772

′
52
′
62
′
7,

α793
′
13
′
23
′
4,α803

′
13
′
23
′
5, . . . ,α1123

′
53
′
63
′
7



NAND :=



111′1,121′2,131′3,141′4,151′5,161′6,171′7,
212′1,222′2,232′3,242′4,252′5,262′6,272′7,
313′1,323′2,333′3,343′4,353′5,363′6,373′7,
α1,α2,α3,α4,α5,α6,α7,α8, . . . ,α112,
α111,α121,α131, . . . ,α717,α727,α737,

α81′1,α81′2,α81′3,α91′1, . . . ,α421′7,
α432′1,α432′2,α432′3,α442′1, . . . ,α772′7,
α783′1,α783′2,α783′3,α793′1, . . . ,α1123′7



(4.29)

The fact that bin(¬PHP3,2
7) is a subtheory of GNF(¬PHP3,2

7) does not in this case
discount it from only having wide refutations. Translating to GNF has introduced sev-
eral new types of OR and NAND-clauses. While using bin(¬PHP3,2

7) clauses only
would of course give a wide refutation, the presence of these new clauses presents the
potential to refute GNF(¬PHP3,2

7) by some other means. A proof by exhaustion has
proven to complex to achieve by hand. Thus we have no counterexample of conjecture
4, though we strongly suspect it should not hold.

Chapter 5

Conclusions and Future Work

In this thesis we had the aim of analysing NAND-clause growth in the Neg proof system
for arbitrary NAND-OR theories, NAND-binary NAND-OR theories and GNF theories.
In that endeavour we proved conjecture 1 which stated that NAND-clauses had to grow
to the size of the largest OR-clause in our interpretation of the pigeonhole principle as
a NAND-OR theory (¬PHPh

p). Furthermore, we found counter examples disproving
conjectures 2 3 stating that inconsistent NAND-OR and NAND-binary NAND-OR the-
ories have refutations in Neg where NAND-clauses do not grow larger than the size
of the greatest OR-clause (¬PHP2,2

5 and bin(¬PHP3,2
7)). Conjecture 4, stating that the

same is true for GNF theories, remains unsolved.
That being said, proving any of conjectures 2, 3 or 4 would have been a surprising

result and was never expected to hold. While we did not obtain a counterexample of
conjecture 4 (for a GNF theory), however the presented results, in particular that of the
NAND-binary NAND-OR theory in 4.3.1, strengthen the expectation that conjecture 4
should also fail. Further, truth of any of these conjectures would suggest some strong
limits on proof length that would be hard to believe. With the Neg system being a
resolution-like system, one would expect it to have similar proof length lower bounds
to other resolution-like systems. Of these, resolution and tree-like resolution are among
those known to have superpolynomial complexity when it comes to proof length [9]
[10].

Another interesting approach at finding lower bounds for Neg would be to explore
just how similar the Neg system is to other known resolution style systems. It would be
significant if we could for example find that Neg and resolution are p-equivalent – show
that proofs in either system can be translated into proofs in the other in polynomial
time –. This would settle the question of finding short proofs for tautologies in Neg
as p-equivalence between two propositional proof systems implies they have the same
proof complexity bounds [8]. Such a strategy would cover the aim of this thesis should
it succeed. That being said, finding p-equivalences are typically very difficult which is
why this strategy was not elected in this thesis.

Looking for a counterexample to conjecture 4 would be a natural continuation of
this thesis. Finding such a theory may be difficult to do by hand however. An approach
in the likes of creating all clauses possible to create in 1 step, and then 2 steps and so
on until one is forced to create a NAND-clause that is undesirably large, has proven
to quickly become quite complex. Resolution style proofs systems are known to be
well suited for automated proofing systems. Creating an automated proof assistant

30 Conclusions and Future Work

based on the Neg system would greatly increase efficiency of checking if GNF theories
have refutations where NAND-clauses do not grow too large. Achieving this may only
require modifying existing theorem provers to reason with the Rneg rule.

Lastly, having found a relative bound on the NAND-clause growth in refutations
of ¬PHPh

p theories is a promising result. This should make finding bounds on proof
lengths for this family of tautologies feasible. Work in this area may result in further
evidence separating NP and coNP.

Appendix A

A.1 Translating clausal theories into GNF

Since any clausal theory can be translated into CNF, showing that any theory T in
CNF is equisatisfiable with a GNF theory, GNF(T), is enough to show that any clausal
theory is equisatisfiable with a theory in GNF. Below we give a procedure that does
precisely this. Another version of this translation procedure can be found in [5] as well
as in [4] where it is described more formally.

We start with a theory in CNF so every formula in the theory is a conjunction of
clauses, C1∧ . . .∧Cn, where each Ci is a disjunction of literals, l1∨ . . .∨ lm. For each
formula in the theory follow the steps below.

step 1: For each variable li in the formula, introduce fresh variable l
′
i and two new

GNF formulae: l
′
i↔¬li and li↔¬l

′
i (given this hasn’t already been done in translating

a previous formula).
step 2: Replace each negative literal ¬li in the formula with its corresponding l

′
i

from the previous step. Every clause in the formula will now only contain positive
literals.

step 3: Replace each clause (l1∨ . . .∨ l j ∨ l
′
j+1∨ . . .∨ l

′
m), with the following GNF

formula where c is fresh: c↔ (¬l1∧ . . .∧¬l j∧¬l
′
j+1∧ . . .∧¬l

′
m∧¬c).

Following these steps for each formula in our theory will result in an equisatisfiable
GNF theory. To see this, observe that adding bi-implication formulae in step 1 does
not affect satisfiabiliy/unsatisfiability as one variable is fresh in these bi-implications.
Replacing negative literals by their corresponding positive literals in step 2, also does
not affect satisfiability. In step 3 we replace clauses with equisatisfiable formula and
so again satisfiability is not affected. Further, each new formula introduced is a GNF
formula. With that, since satisfiability is not affected in any step and each formula is
replaced with GNF formulae we can conclude that our new theory is in GNF and is eq-
uisatisfiable to our original CNF theory.

Example: We translate ¬PHP3
4 (described in section 2.2.2) into a GNF theory,

GNF(¬PHP3
4).

First we rewrite ¬PHP3
4 such that its in CNF:

32

¬PHP3
4 :=

{
112131,122232,
132333,142434

} ⋃ 1112,1113,1114,1213,1214,1314,
2122,2123,2124,2223,2224,2324,
3132,3133,3134,3233,3234,3334

 (A.1)

The OR-clauses were already in GNF so we simply seperate the NAND-clauses into
disjunctions of negated atoms.

Next, after applying step 1 of the procedure to all formulas we add F1 (below) to
our theory:

F1 :=



11↔ 1′1,1
′
1↔ 11,12↔ 1′2,1

′
2↔ 12,

13↔ 1′3,1
′
3↔ 13,14↔ 1′4,1

′
4↔ 14,

21↔ 2′1,2
′
1↔ 21,22↔ 2′2,2

′
2↔ 22,

23↔ 2′3,2
′
3↔ 23,24↔ 2′4,2

′
4↔ 24,

31↔ 3′1,3
′
1↔ 31,32↔ 3′2,3

′
2↔ 32,

33↔ 3′3,3
′
3↔ 33,34↔ 3′4,3

′
4↔ 34


(A.2)

Next we apply steps 2 and 3 to all the OR-clauses:

F2 :=


α1↔ 11∧21∧31∧α1,
α2↔ 12∧22∧32∧α2,
α3↔ 13∧23∧33∧α3,
α4↔ 14∧24∧34∧α4

 (A.3)

And then the NAND-clauses:

F3 :=



α5↔ 1′1∧1′2∧α5,α6↔ 1′1∧1′3∧α6,

α7↔ 1′1∧1′4∧α7,α8↔ 1′2∧1′3∧α8,

α9↔ 1′2∧1′4∧α9,α10↔ 1′3∧1′4∧α10,

α11↔ 2′1∧2′2∧α11,α12↔ 2′1∧2′3∧α12,

α13↔ 2′1∧2′4∧α13,α14↔ 2′2∧2′3∧α14,

α15↔ 2′2∧2′4∧α15,α16↔ 2′3∧2′4∧α16,

α17↔ 3′1∧3′2∧α17,α18↔ 3′1∧3′3∧α18,

α19↔ 3′1∧3′4∧α19,α20↔ 3′2∧3′3∧α20,

α21↔ 3′2∧3′4∧α21,α22↔ 3′3∧3′4∧α22



(A.4)

Taking unions we get, GNF(¬PHP3
4) = F1∪F2∪F3.

Bibliography

[1] Stephen A. Cook and R. A. Reckhow. On the lengths of proof in propositional
calculus. Proceedings of the Sixth Annual ACM Symposium on the Theory of
Computing, pages 135–148, 1974. 1.1

[2] Stephen A. Cook. The complexity of theorem proving procedures. Proceedings of
the Third Annual ACM Symposium on the Theory of Computing, pages 151–158,
1971. 1.1

[3] Michał Walicki. Resolving infinitary paradoxes. Journal of Symbolic Logic,
82(2):709–723, 2017. 1.1, 2.1, 2.2, 2.2.1, 3.1

[4] Michał Walicki. Introduction to Mathematical Logic. World Scientific Publishing
Co. Pte. Ltd., 5 Toh Tuck Link, Singapore 596224, extended edition, 2017. 2.1,
A.1

[5] Kjetil Golid. Incompleteness of the Inference System BNeg. Master’s thesis. Uni-
versity of Bergen (UiB), Bergen, Norway. 2016. 2.1, 2.2.2, 3.1, A.1

[6] Michał Walicki Marc Bezem, Clemens Grabmeyer. Expressive power of digraph
solvability. Annals of Pure and Applied Logic, 163:200–213, 2012. 2.1

[7] Sjur Dyrkolbotn and Michał Walicki. Propositional discourse logic. Synthese,
191(5):863–899, 2014. 2.1

[8] P. Beame and T. Pitassi. Propositional proof complexity: Past, present and future.
Electron. Colloquium Comput. Complex., 5, 1998. 2.2.2, 5

[9] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39:297–308, 1985. 5

[10] S.R. Buss. Towards np-p via proof complexity and proof search. Annals of Pure
Applied Logic, 163:1163–1182, 2012. 5

	Acknowledgements
	Abstract
	Introduction
	Proof complexity

	Background
	GNF and NAND-OR
	The RIP system
	Neg
	Inconsistency of PHP34

	Problem Statements and Thesis outline

	Pigeonhole principle in Neg
	Properties of Rneg
	NAND-clause growth in refutation of PHPhp

	Arbitrary NAND-OR theories in Neg
	Conjecture 2 holds for PHPhp
	PHP2, 25
	NAND-binary NAND-OR theories
	bin(PHP3, 27)

	GNF theories

	Conclusions and Future Work
	
	Translating clausal theories into GNF

