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ABSTRACT
We study the impact of an environment on the electromagnetic responses of a molecule in the presence of a dielectric medium. By applying the
dipole–dipole coupling between the molecule’s and the environment’s degrees of freedom, we can reduce the complex system into its compo-
nents and predict excitation lifetimes of single and few molecules attached to a dielectric surface by knowing the entire quantum–mechanical
properties of the molecules, such as transition energies and dipole moments. The derived theory allows for the description of superradiance
between two molecules depending on the geometric arrangement between both concerning their separation and orientation with respect to
each other. We analyze the possibility of superradiance between two molecules bound to a dielectric sphere and determine a change in the
relevant length scale where the usually considered wavelength in free space is replaced with the binding distance, drastically reducing the
length scales at which collective effects can take place.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0106503

I. INTRODUCTION

Organic photovoltaics and optoelectric devices, in which opti-
cal properties arise from the response of molecular complexes,
aggregates, or nanostructures, have attracted much attention.1–4

Recent investigations on the photoexcitation-driven processes in
such systems5,6 aim at increasing the efficiency of organic solar
cells,7,8 for instance, by exploiting concepts such as singlet fission.
For the optical properties of molecular complexes and nano-
structures, two effects play an important role in understanding
how the response of an individual molecule differs from that of
the full system. One is the Purcell effect,9,10 i.e., the environmen-
tal influence on the decay rate of an excited state, which is a
single-molecule effect in an effective environment. In contrast, the
corresponding collective effects of an ensemble of molecules yield
superradiance.11–13

Depositing molecules on noble gas surfaces is an attractive
strategy to study the molecule’s properties, as the noble gas surface
only weakly perturbs many properties of molecules.6 In this paper,
we investigate whether adsorption on noble gas surfaces is a viable
strategy to study the superradiance of molecules. Our investigations
indicate that even for weakly interacting noble gas surfaces, such as
neon, superradiance would only occur for separations so short that
typical molecules with a strong optical signal would overlap, entirely
changing the nature of the system. Thus, the presence of a weakly
interacting surface dramatically suppresses superradiance compared
to a free-standing monolayer.

Figure 1 depicts the considered scenario. We assume that two
molecules are weakly bound to a dielectric sphere with radius R
via van der Waals forces. The van der Waals assumption allows
the separation of the system into three interacting subsystems due
to the spatial separation of the electronic wave functions of each
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FIG. 1. Schematic figure of the considered system: two molecules (here: pent-
acene molecules) are attached via van der Waals forces to a spherical nanoparticle
with radius R.

subsystem.14 We calculate the sphere’s impact on the single
molecule’s properties by perturbing its wave functions due to the
presence of the dielectric object in dipole approximation, leading
to point-particles. Furthermore, we consider the impact of a second
molecule on the optical local mode density, which can be generalized
to N interacting molecules and allows for the description of super-
radiance in such systems. Current theoretical studies address super-
radiance by simulating the entire system13 restricting the observed
effects to a fixed molecule density that is usually assumed to be
dense. We also consider a dilute packing of the molecules on the
substrate, dramatically influencing the superradiance properties. To
illustrate the model, we will explicitly consider the superradiance of
the S1 → S0 transition of Acene near argon or neon clusters; see the
experiments reported in Ref. 15.

Superradiance is a collective effect of a group of emitters inter-
acting via an electromagnetic field. If the wavelength of the field is
much larger than the emitter’s separations, the ensemble will interact
with the field collectively and coherently.9,12,16,17 Thus, the collective
state reads as

∣I⟩ = 1√
N
(∣1, 0, 0, . . .⟩ + ∣0, 1, 0, . . .⟩ + ⋅ ⋅ ⋅ ), (1)

meaning that all particles share a single excitation. Furthermore, we
consider both particles to be of the same species and located at the
same distance to the interface. Thus, we can neglect the impact of
surface-induced state detunings because they occur equally for both
particles.18 To observe this effect experimentally, the superradiant
eigenstate of the dimer (the combined system of both molecules) has
to be of lower energy than the subradiant one. Otherwise, the exci-
tation will most likely decay non-radiatively. In terms of quantum
optics, this effect goes hand in hand with an increase in the transi-
tion rate Γ, which is proportional to the contraction of the Greens
tensor with the molecular transition dipole moments,

Γ∝ d⋆ ⋅ Im G ⋅ d. (2)

The exact formula is given in Eq. (15). The geometric arrangement
is encoded in the scattering Green function. To this end, superradi-
ance originates in the enhancement of the local mode density due to

the presence of the other molecules,19 which is proportional to the
imaginary part of the scattering Green tensor. By considering two
molecules at positions rA and rB, we can write the field enhancement
proportional to the sum over the Green functions,

Im g(r A, r A) + Im g(r B, r B) + Im g(r A, r B) + Im g(r B, r A), (3)

induced by each molecule [equal positions Im g(r, r): local-mode
density] and a cavity-like resonance [different positions Im g(r, r′):
collective atom-field coupling constants], where we assumed the in-
phase combination of the sheared excitation (1). The scalar Green
function g(r, r′) represents the relevant direction of the dyadic
Green function due to the orientation of both molecules, which is
its perpendicular component in the presence of a surface or its trace
in free space. The first two terms in Eq. (3) denote the mode density
of each molecule and the cross-terms leading to the superradiance
enhancement. Thus, we can obtain a measure by comparing the total
local mode density to the one generated by the single molecules as a
superradiance fidelity,

σ = 1 + Im g(r A, r B) + Im g(r B, r A)
Im g(r A, r A) + Im g(r B, r B)

, (4)

which indicates superradiance for values close to two, σ ≲ 2, and the
absence of superradiance for values close to unity.

II. DIELECTRIC FUNCTION OF ARGON AND NEON
The dielectric function of the argon crystal was computed

using the many-body perturbation theory based on the Bethe–
Salpether equation (BSE) in the Tamm–Dancoff approximation.20

One-molecule excitation energies are obtained at the G0W0 level
based orbitals obtained via density functional theory (DFT) with the
PBE0-1/3 functional.21 Experimental lattice constants are used.22 All
the calculations are performed with the VASP software package.23–25

In the calculations, we use a 6 × 6 × 6 sampling of the Brillouin
zone with 128 electronic bands for the G0W0 calculations. We use
15 virtual occupied and 15 unoccupied band orbitals in the BSE cal-
culations. The GW-BSE method is well established as an accurate

FIG. 2. Dielectric function of solid argon: the real part (blue curve), imaginary part
(orange), and on the imaginary frequency axis (green).
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FIG. 3. Dielectric function of solid neon: the real part (blue curve), imaginary part
(orange), and on the imaginary frequency axis (green).

method for obtaining an optical spectrum, which is confirmed by
the fact that the static dielectric constant of ε1(0) = 1.71 of argon
agrees well with the experimental value of 1.67.26 Moreover, the first
peak position at 11.67 eV is in good agreement with the experimen-
tal peak position at 12.06 eV.27 The computed dielectric function of
solid argon is depicted in Fig. 2 and correspondingly for solid neon
in Fig. 3.

III. THEORETICAL MODEL
The dependence of the excitation lifetime on the separation

between the pentacene molecule and the argon cluster and on the
size of the cluster itself is obtainable via the internal dynamics of
the molecule’s energy levels by coupling to the ground-state elec-
tromagnetic field. This approach is based on macroscopic quantum
electrodynamics.28,29 In this theory, a molecule with discrete energy
levels is coupled to the local mode density, which is enhanced by
the presence of the cluster. We outline the fundamental steps deriv-
ing the theory, followed by applying spherical geometries. We make
quantitative predictions of the excitation lifetime using the formal-
ism with material and response properties obtained with density
functional theory.

A. Internal dynamics of molecules near interfaces
The excitation lifetime describes the dynamics of a decay

process within the molecule. Thus, one refers to such processes
as internal dynamics within the quantum-optical framework. To
describe the internal quantum mechanical dynamics of a molecule
in the presence of dielectric bodies, we obtain the Hamiltonian
by separation into the subsystems: the molecular system ĤM, the
electromagnetic fields Ĥ F, and the molecule-field coupling ĤMF,

Ĥ = ĤM + ĤF + ĤMF. (5)

Molecular states ∣n⟩ are described by an infinite set of discrete wave
functions leading to the diagonalized molecular Hamiltonian

Ĥ M =∑
n

En∣n⟩⟨n∣ =∑
n

EnÂnn, (6)

with flip operator Âmn = ∣n⟩⟨m∣. This molecular system is coupled in
dipole approximation,30

Ĥ MF = −d̂ ⋅ Ê(r M) = −∑
n,m

Âmndmn ⋅ Ê(rM), (7)

where the electric field is evaluated at the position of the molecule
rM. In this dipole approximation, the interacting molecules are con-
sidered as point molecules. For small distances (close to the binding
distance), typically higher orders of the multipole expansion are
required.31 However, we stay in the dipole approximation, discuss
the fundamental results, and illustrate a simple extension method
toward the end of the manuscript, the discussion about finite-size
effects at the end of Sec. IV B. The electromagnetic field is described
by the field Hamiltonian30

Ĥ F = ∑
λ=e,m

∫ d3r
∞

∫
0

dω h̵ωf̂ †
λ(r, ω) ⋅ f̂ λ(r, ω), (8)

with the dressed field’s ladder operators f̂ λ and f̂ †
λ containing the

photonic and surface excitations (such as polarizations and polari-
tons), where λ distinguishes between the electric (e) and magnetic
(m) contributions. The electric field at the molecule’s position will
be evaluated via the Green function G(r, r′, ω),

Ê(r) =
∞

∫
0

dω ∑
λ=e, m

∫ d3r′ Gλ(r, r′, ω) ⋅ f̂ (r′, ω) +H.c., (9)

where the Green function separates into its electric part via the
projection of the total Green function G,

G e(r, r′, ω) = i
ω2

c2

√
h̵

πε0
Im ε(r′, ω)G(r, r′, ω), (10)

and magnetic part

G m(r, r′, ω) = i
ω
c

¿
ÁÁÀ h̵

πε0

Im μ(r′, ω)
∣μ(r′, ω)∣2

[∇′ ×G(r, r′, ω)]T. (11)

The Green function is the general solution of the vector Helmholtz
equation30

∇× 1
μ(r, ω)∇×G(r, r′, ω) − ω2

c2 ε(r, ω)G(r, r′, ω) = δ(r − r′),
(12)

J. Chem. Phys. 157, 194111 (2022); doi: 10.1063/5.0106503 157, 194111-3
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and, thus, denotes the field propagator for classical fields or the pho-
ton propagator for quantized fields. It contains information about
the dielectric environment meaning the cluster in the considered
case. Its particular solutions are considered directly in Sec. III B.

In the quantum-optical framework, the excitation lifetime is
described via the internal molecule’s dynamics, which is determined
via Heisenberg’s equations of motion for the flip operators,32

˙̂Amn =
1
ih̵
[Âmn, Ĥ] = iωmnÂmn +

i
h̵∑k
(Âmkdnk − Âkndkm) ⋅ Ê(r A).

(13)
By solving the system of coupled equations of motion (13) and split-
ting the result into its imaginary and real parts, one obtains the
atomic frequency shifts for the nth excited state,18

δωn = −
μ0

h̵π∑k≠n
𝒫
∞

∫
0

dω
ω2dnk ⋅ Im G(rA, rA, ω) ⋅ dkn

ω + ωkn
, (14)

and the transition rate

Γn =
2μ0

h̵ ∑k<n
ω2

nkdnk ⋅ Im G(r A, r A, ωnk) ⋅ dkn. (15)

The transition rate (linewidth) γn is typically detected via the
excitation lifetime τn, which are inversely related to each other
τn = 1/γn. Both quantities describe the properties of the free iso-
lated molecule. In the presence of an environment, they will change
to τn → 1/(γn + Γn) via the mode-coupling (15) concerning the
environmental degrees of freedom. This effect is known as the Pur-
cell effect.10 Thus, the transition rate (15) describes the change in
the free-space rate caused by the presence of the environment. At
binding separation, the local mode density is typically a positive
quantity. Hence, a dielectric object results in a reduction in the
excitation lifetime. The simultaneous consideration of both effects
is only relevant if the observed transition ωkn is closed by a reso-
nance of the dielectric object. In this case, the impact of the detuning
δωkn = δωk − δωn on the local mode density Im G(rA, rA, ωnk
+ δωnk) gets relevant.

B. Scattering Green function in bulk and near planar
and spherical surfaces

In this manuscript, we estimate the impact of the presence
of a dielectric object on the superradiance between two molecules.
In terms of the macroscopic quantum electrodynamics, these
effects are expressed by the scattering Green functions (25), which
include information about the electromagnetic properties of the
environment. In free space, the Green function reads30

G(0)(r, r′, ω) = − c2

3ω2 δ(ρ) − c2e iωρ/c

4πω2ρ3 {[1 − i
ωρ
c
− (ωρ

c
)

2
]I

− [3 − 3 i
ωρ
c
− (ωρ

c
)

2
]eρeρ}, (16)

with the relative coordinate ρ = r − r′ = ρeρ, its magnitude ρ = ∣ρ∣,
its unit vector eρ = ρ/ρ, and the three-dimensional unit matrix
I = diag(1, 1, 1), which leads to

Im G(0)(r, r′, ω) = 1
6πρ

sin(ωρ
c
)I (17)

and to the coincidence limit (r′ ↦ r),

Im G(0)(r, r, ω) = ω
6πc

I. (18)

By inserting this result into the spectral detuning (14), one obtains
the Lamb shift,33 and into the change in the transition rate (15),
one obtains the well-known Einstein coefficient.28,34 These impacts
of the quantum vacuum are included via a renormalized response
function.

1. Fresnel scattering at planar surfaces
For large cluster radii, the electromagnetic scattering at the

cluster can be approximated by the Fresnel reflection at a planar
interface. In this limit, the scattering Green function is given by30

G(1)pl (r, r′, ω) = i
8π2 ∫

d2k∥

k�1
e ik∥ ⋅(r−r′)+ ik�1 (z+z′)

× [rse1
s+e1

s− + rpe1
p+e1

p−], (19)

with the Fresnel reflection coefficients

rs =
k�1 − k�2
k�1 + k�2

, rp =
ε2k�1 − ε1k�2
ε2k�1 + ε1k�2

, (20)

the wave vector parallel to the plane k∥ � ez and its component

toward the z direction k�j =
√

εjω2/c2 − k∥2. For the considered
geometry, the Green tensor (37) simplifies in the non-retarded limit
at equal positions to

Im G(1)pl (r, r, ω) = c2

32πω2z3 Im rp

⎛
⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 2

⎞
⎟⎟⎟⎟
⎠

, (21)

with the distance between the surface and the molecule z. In the
non-retarded limit, the reflection coefficient for s-polarized waves
vanishes rs = 0, and the reflection coefficient for p-polarized waves
simplifies to

rp ≈
ε2 − ε1

ε2 + ε1
, (22)

which is, thus, k independent. Details on its derivation can be found
in Appendix A 1. For the consideration of the superradiance, only
the zz-component is required, which reads in the non-retarded limit,

Gzz(r, r′, ω) = 1
4π

rpc2

ω2 ∫ dk∥ e−2k∥zk∥
2
J0(k∥x). (23)
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Finally, we find

Im Gzz(r, r′, ω) = − 1
4πk2

0z3 Im rp
(x/z)2 − 8
((x/z)2 + 4)5/2 , (24)

where we assumed both molecules to be located at the same distance
from the surface z and an in-plane separation x.

2. Mie scattering at spherical surfaces
As mentioned above, we consider a pentacene molecule in front

of an argon nano-droplet. This droplet is modeled as a dielectric
sphere. This assumption yields the requirement of the Mie scatter-
ing to obtain the impact of the curvature onto the decay rate (15). In
this case, the scattering Green function for source and final points
outside the sphere of radius R and permittivity ε(ω) reads19,35

G(1)sp (r, r′, ω) = ik0

4π ∑p=e,o

∞

∑
l=1

l

∑
m=0
(2 − δm0)

2l + 1
l(l + 1)

(l −m)!
(l +m)!

× [rsMpml(k0)M′pml(k0) + rpNpml(k0)N′pml(k0)],
(25)

where the prime sign denotes that the primed argument r′ has to
be used in the vector wave functions. The reflection coefficients for
s-polarized waves reads as

rs = −
kηl(kR)jl(k0R) − k0ηl(k0R)jl(kR)

kηl(kR)h(1)l (k0R) − k0ζl(k0R)jl(kR)
, (26)

and for p-polarized waves as

rp = −
kηl(k0R)jl(kR) − k0ηl(kR)jl(k0R)

kζl(k0R)jl(kR) − k0ηl(kR)h(1)l (k0R)
, (27)

with the spherical Bessel and Hankel functions of the first kind jl(x)
and h(1)l (x), respectively, and the Ricatti functions

ηl(x) =
1
x

d[xjl(x)]
dx

, ζl(x) =
1
x

d[xh(1)l (x)]
dx

. (28)

Furthermore, the scattering Green’s function (25) requires the
spherical vector wave functions35

Me
oml(k) = ∓

m
sin ϑ

h(1)l (kr)Pm
l (cos ϑ)

sin

cos
mφeϑ

−h(1)l (kr)dPm
l (cos ϑ)

dϑ
cos

sin
mφeφ, (29)

N e
oml(k) =

l(l + 1)
kr

h(1)l (kr)Pm
l (cos ϑ)

cos

sin
mφer +

1
kr

drh(1)l (kr)
dr

×
⎡⎢⎢⎢⎢⎢⎣

dPm
l (cos ϑ)

dϑ
cos

sin
mφeϑ ∓

mPm
l (cos ϑ)
sin ϑ

sin

cos
mφeφ

⎤⎥⎥⎥⎥⎥⎦
,

(30)

with the vacuum wave number k0 = ω/c and the wave number inside
the sphere k = k0

√
ε(ω). The vectors er , eϑ, and eφ are the mutu-

ally orthogonal unit vectors. The reflection coefficients (26) and (27)
depend neither on the orientation e, o nor on m. This allows us to
derive the corresponding sums together with the addition theorem
for Legendre polynomials29,36

Pl(cos φ1 cos φ2 + sin φ1 sin φ2 cos Θ)

=
l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)! Pl

m(cos φ1)Pl
m(cos φ2) cos(mΘ),

(31)

which reduces the Green function for Mie scattering in the coinci-
dence limit (r′ ↦ r) to

G(1)sp (r, r, ω) = ik0

8π

∞

∑
l=1
(2l + 1)

⎡⎢⎢⎢⎢⎣
rs[h(1)l (k0r)]

2
(eϑeϑ + eφeφ)

+ rp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

l(l + 1)
k2

0r2 [h
(1)
l (k0r)]

2
erer+

⎡⎢⎢⎢⎢⎣

1
k0r

drh(1)l (k0r)
dr

⎤⎥⎥⎥⎥⎦

2

× (eϑeϑ + eφeφ)
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
. (32)

In the non-retarded limit (∣r∣ − R≪ R), the reflection coefficients
(26) and (27) can be approximated by

rs ≈ 0, (33)

rp ≈ i
l + 1

(2l + 1)‼(2l − 1)‼
ε(ω) − 1

lε(ω) + 1 + l
(ωR

c
)

2l+1
, (34)

with the double factorial (2n + 1)!! =∏n
k=1(2k + 1), by using the

asymptotic forms of the spherical Bessel and first kind Hankel
functions37

jl(z) ≃
zl

(2l + 1)‼ , h(1)l (z) ≃
− i(2l − 1)‼

zl+1 , (35)

respectively, for ∣z∣≪ 1. Finally, the scattering dyadic Green func-
tion in the non-retarded limit reads

G(1)sp (r, r, ω) = c2

8πω2r3

∞

∑
l=1

l(l + 1) ε − 1
lε + l + 1

(R
r
)

2l+1

× [2(l + 1)erer + l(eϑeϑ + eφeφ)], (36)

which is in agreement with the Green function for the
Casimir–Polder potential for an atom close to a sphere. Details on
this calculation are given in Appendix A 2.

For large sphere radii R, the main contribution of the l-sum of
the Green function (36) comes from large l values and the scattering
Green function reduces to a planar surface,30,38

G(1)pl (r A, r A, ω) = c2

32πω2z3
ε(ω) − 1
ε(ω) + 1

diag(1, 1, 2), (37)
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consisting of the Fresnel reflection coefficient at the surface (ε − 1)/
(ε + 1) and the diagonal matrix diag(1, 1, 2) denoting the aniso-
tropy of the space. Here, the interface is located in the x-y-plane with
the distance between the molecule and the surface z = r − R.

The rr-component in the non-retarded limit of the two-point
scattering Green function required for computing the superradiance
is given by

Im Grr(r, r′, ω) = 1
4πk2

0r3

∞

∑
l=1

l(l + 1)2 Im [ ε(ω) − 1
lε(ω) + 1 + l

](R
r
)

2l+1

×Pl(cos ϑ′). (38)

IV. SUPERRADIANCE OF TWO POINT-LIKE
MOLECULES NEAR AN INTERFACE

The superradiance is characterized by relation (4). In this
description, the superradiance rate is almost independent of the con-
sidered molecules. Due to the rotational average, see Appendix B,
the dipole transition factorizes, and only the frequency of the

radiation field remains. In the considered scenarios, with sym-
metry [G(r, r′) = G(r′, r)], the superradiance rate in free-space
(subscribed fs) can be described as

σ fs = 1 + Im Tr G(0)(r, r′, ω)
Im Tr G(0)(r, r, ω)

= 1 + sin k0x
k0x

, (39)

with the non-retarded free-space Green function (17), its coinci-
dence limit (18), the distance between the molecules x, and the
wave vector of the considered transition k0 = ω/c. It shows that
the relevant length scale for separating the molecules is the wave-
length of the radiation. Thus, superradiance between two molecules
in free space is a long-range phenomenon governed by the respec-
tive transition’s wavelength. For particle separations longer than the
wavelength, superradiance is suppressed, and the particles will react
individually. Superradiance only occurs for separations below the
wavelength.

A. Superradiance near planar interfaces
The superradiance fidelity in front of a plate (subscribed pl) is

found to be

σ pl = 1 + Im G(0)zz (r, r′) + Im G pl,zz(r, r′)
Im G(0)zz (r, r) + Im G pl,zz(r, r)

= 1 +
96z3[ 4

3 k2
0 sin(k0x)

√
x2 + 4z2(z2 + x2/4)2 + x(z2 − x2/8) Im rp]

x(8k3
0z3 + 3 Im rp)(x2 + 4z2)5/2

= 1 +
128λ3[k2

0x2 sin k0x(λ2 + 1/4)2√
4λ2 + 1 + 3

32 Im rp(8λ2 − 1)]
(8k3

0x3λ3 + 3 Im rp)(4λ2 + 1)5/2 , (40)

with the non-retarded free-space Green function (17), its coinci-
dence limit (18), the non-retarded Green function for the planar
interface (24), its coincidence limit (21), and the ratio between sep-
aration of both molecules and their distance to the surface λ = z/x.
The consideration of the non-retarded Green functions restricts the
model to non-radiative decays,40,41 which are dominant for the con-
sidered scenario of weakly responding substrates and small distances
between the particles and the surface. For small values of this ratio,
which corresponds to the case where the molecules are closer to the
surface than separated from each other, the result can be expanded
in a Taylor series leading to

σ pl = 1 + ( 8
3 Im rp

k2
0x2 sin k0x − 4 Im rp)λ3

≈ 1 + (σ fs − 1) 8k3
0z3

3 Im rp
. (41)

In the last step, we have inserted the free-space fidelity (39) and used
λ≪ 1. It shows that the presence of the surface causes the free-space
fidelity to be strongly suppressed. The relevant length scale can be
identified as the distance to the surface.

Figure 4 illustrates the observed behavior of the superradi-
ance fidelity for two pentacene molecules attached to an argon (a)
and a neon surface (b) for the S1 → S0-transition with a radiation
frequency ω = 3.4753 × 1015 rad/s. One observes that the relevant
length scale is the binding distances to the surface. As this length
is very short, it strongly reduces the possibility of observing superra-
diance compared to the free-space case. Furthermore, one sees that
the impact of the surface drops for larger surface–molecule distances
caused by the z−3-power law of the surface potential19 contributing
to the superradiance fidelity. Because of the low dielectric response
of the considered materials (argon and neon), a molecule–surface
separation of merely 20 nm restores the free-space superradiance
fidelity. Thus, for larger separations, the impact of the surface can
be neglected. The observed reduction in the superradiance fidelity
with increasing molecule–molecule distance is similar for all fre-
quencies. However, the dependence on the imaginary part of the
reflection, which is related to surface plasmons, causes the superra-
diance fidelity to depend strongly on the dielectric response of the
supporting material. The observed superradiance fidelity plateaus
illustrate the free-space rate’s functional dominance. The drop-down
to 1 occurs for separations larger than plotted. It can be observed
that Eq. (41) satisfies the expected limit limx↦∞σpl = 1. Figure 5
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FIG. 4. Superradiance fidelity σ for two molecules separated by a distance x for different distances to a surface z at 20 nm (orange line), 10 nm (green line), 5 nm (red line),
4 nm (purple line), 3 nm (brown line), 2 nm (pink line), 1 nm (gray line) and at a roughly binding separation of 0.5 nm (olive line). For comparison, the free-space fidelity
σ fs is also shown. In particular, we have chosen an argon cluster (a) and a neon cluster (b), and a radiation frequency ω = 3.4753 × 1015 rad/s, which corresponds to the
S1 → S0-transition of pentacene, similar to Ref. 39.

illustrates the spectral dependence of the superradiance fidelity for
two molecules at different distances between both (1, 5, 10, and
20 nm). It can be observed that the free-space contribution dom-
inates the superradiance fidelity at low frequencies, and at higher
frequencies, the material properties start playing a role. Interest-
ingly, the impact of the material response is strong for more weakly
responding materials, which can be seen by comparing Figs. 5(a)
and 5(b) together with the imaginary part of the reflection coeffi-
cient depicted in Fig. 6. This behavior illustrates the dominant role
of the optical mode density [coincidence limit G(r, r)], contribut-
ing inversely to the superradiance fidelity. The observed behav-
iors far beyond the peak have to be interpreted cautiously, as the
GW-BSE calculations were not carefully converged for very high
energies. Remarkably, for even larger molecule–molecule distances,
the superradiance fidelity flips sign and reaches a minimum at a 20%
reduced radiation fidelity compared to the single-molecule in free

space. The Green function implies two possibilities for changing the
sign and leading to a reduction in the superradiance: (i) by going
to separations larger than the wavelength, where the superradiance
fidelity will follow the damped wave propagation, as it is the case in
free-space, see Eq. (39), or (ii) by special geometric arrangements of
the dipoles and their corresponding images. The latter describes the
origin of the effect observed here. However, the exact conditions are
hard to illustrate explicitly due to the curvature effects of the inter-
face. Other effects for sign changes in the superradiance fidelity, such
as position-dependent spectral shifts and non-radiative decoherence
channels, exist beyond the Green function manipulation.

B. Superradiance near spheres
Finally, we analyze the impact of the curvature on the super-

radiance. To describe this case, we insert the results of the non-

FIG. 5. Superradiance fidelity σ for two molecules separated by a distance x at the binding distance to the surface z = 0.5 nm depending on the radiation frequency
determined via the dielectric response of argon (a) and neon (b).
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FIG. 6. Imaginary part of the reflection coefficients for argon (blue line) and
neon (green line). For comparison, the imaginary parts of corresponding dielectric
functions for argon (orange line) and neon (red line) are plotted.

retarded spherical Green function (36) and (38) into the superra-
diance fidelity (4) leading to the expression (subscript sp)

σ sp = 1 + Im G(0)zz (r, r′) + Im G sp,rr(r, r′)
Im G(0)zz (r, r) + Im G sp,rr(r, r)

, (42)

the non-retarded free-space Green function (17), its coincidence
limit (18), the non-retarded Green function for the spherical inter-
face (38), and its coincidence limit (36). In analogy to the planar sys-
tem, introduced in Sec. IV A, the consideration of the non-retarded
Green functions restricts the model to non-radiative decays,40,41

which are dominant for the considered scenario of weakly respond-
ing substrates and small distances between the particles and the
surface. Due to the summation over the spherical modes, a com-
pact result is not obtainable. Instead, we numerically analyze the

dependence of the superradiance fidelity for two pentacene
molecules bounded to an argon cluster with different radii R. The
results are depicted in Fig. 7, where one observes that the small
clusters with radii below 10 nm slightly reduce the superradiance
fidelity, which is, in our opinion, not observable because it has a
relative impact below 1%. Figure 7(b) shows the superradiance rate
depending on the angle ϑ between both molecules and the center
of the sphere according to the spherical Green function (25); (a)
depicts the same physical situation but along the arc length between
both molecules. Based on both figures, it can be observed that (i)
the superradiance fidelity is almost independent of the cluster dia-
meter and (ii) for relevant molecule separations (larger than 1 nm),
the superradiance is entirely suppressed. The system can effectively
be treated as a plane surface for larger curvature radii. One sees that
the curvature of the surface is unimportant for the superradiance,
and only the molecule–molecule distance plays a significant role.
The observed effect is caused by the small separation between the
molecules and the surface, see Sec. IV A.

To include finite-size effects, the electromagnetic scattering
process can be smeared out over the whole molecule by a spa-
tially dependent polarizability42 distribution and averaging over the
weighted pairwise interactions.14,43–45 This approach can be applied
to the considered system due to the spatial delocalization of exci-
tations in pentacene. However, the result will be equivalent to
the obtained fidelities, but the centre-to-centre distance has to be
exchanged with the shortest distance between both molecules.14

V. CONCLUSIONS
We have illustrated a theoretical approach to separate a com-

plex system into its components and calculated a theory to estimate
the change in excitation lifetimes in the presence of absorbing media.
Furthermore, we derived an effective model to predict the super-
radiance fidelity of two molecules depending on their geometric
arrangement concerning their separation and distance to the sur-
face. In addition, we illustrated a possible extension of the model to
include finite-size and orientational effects.

FIG. 7. Superradiance fidelity σsp for two pentacene molecules attached at 0.5 nm separation to a spherical argon cluster with different curvature radii R: 5 nm (blue curve),
10 nm (orange), 20 nm (green), 30 nm (red), 40 nm (purple), and 50 nm (brown) plotted against the separation between molecules (a) and on the angle between both
molecules and the center of the cluster (b).
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The derived model has been applied to the superradiance
between two molecules (in particular, the optical transition of pen-
tacene) attached to an argon and a neon cluster and analyzed the
superradiance fidelity depending on the molecule separation and
their distance to the surface. We found a strong suppression for the
superradiance of molecules bound to a surface and that an enhance-
ment can only occur for densely packed molecules. Furthermore,
we analyzed the impact of surface curvature on the superradiance,
where we did not find any remarkable influence caused by the
small distance between molecules and the surface. The introduced
approach is not restricted to noble gas surfaces, as long as there is no
strong electronic wave-function overlap between the molecule and
the surface. Formally, every surface can be described by inserting the
corresponding dielectric function where, in particular, surface plas-
mons feature explicitly as resonances in the reflection coefficients.
In addition, this approach can be directly applied to atoms or small
clusters.

The introduced approach (4) can be extended directly to few-
or many-molecule systems sharing the excitation due to the addi-
tivity of the local-mode density. However, the numbers of terms in
the numerator grow quadratically with the number of interacting
molecules, whereas the number in the denominator only linearly,
simplifying to similar terms due to the isotropy of the Green func-
tions. Thus, the superradiance fidelity will increase linearly with
the number of molecules and saturate due to the finite molecule–
molecule separation and the inverse power law of the interactions.
When all particles are excited, the superradiance emission receives a
further N leading to the well-known quadratic scaling law. Further-
more, the model can be adapted to studying superradiance in gas
clouds, where each molecule can be treated as an effective medium
due to its environment,46 leading to local-field corrections,47 which
can be extended to many molecules and will result in a superradiance
fidelity depending on the molecule’s density.
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APPENDIX A: DYADIC GREEN FUNCTIONS
1. For planar interfaces

For large cluster radii, its curvature does not play an important
role, and the electromagnetic scattering at the cluster can be approx-
imated by the Fresnel reflection at a planar interface. In this case, the
scattering Green function reads30

G(1)pl (r, r′, ω) = i
8π2∫

d2k∥

k�1
e ik∥ ⋅(r−r′)+ ik�1 (z+z′)[rse1

s+e1
s−+rpe1

p+e1
p−],

(A1)

with the Fresnel reflection coefficients

rs =
k�1 − k�2
k�1 + k�2

, (A2)

rp =
ε2k�1 − ε1k�2
ε2k�1 + ε1k�2

, (A3)

the wave vector parallel to the plane k∥ � ez and its component
toward the z direction,

k�j =
√

εj
ω2

c2 − k∥2. (A4)

By introducing spherical coordinates for the k∥ integral, k = k∥

(cos φ, sin φ, 0), one finds e j
s± = ek∥ × ez = (sin φ,− cos φ, 0) and

e j = 1
kj
(k∥ez ∓ k�j ek∥) = c

ω√εj
(∓k�j cos φ,∓k�j sin φ, k∥). Thus, the

dyads in Eq. (A1) read

e1
s+e1

s− =
⎛
⎜⎜⎜⎜
⎝

sin2 φ − sin φ cos φ 0

− sin φ cos φ cos2 φ 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

(A5)

and

e1
p+e1

p− =−
c2

ω2ε1

⎛
⎜⎜⎜⎜
⎝

k�1
2 cos2 φ k�1

2 sin φ cos φ −k∥k�1 cos φ

k�1
2 sin φ cos φ k�1

2 sin2 φ −k∥k�1 sin φ

k∥k�1 cos φ k∥k�1 sin φ −k∥
2

⎞
⎟⎟⎟⎟
⎠

.

(A6)

By choosing the coordinate system such that k∥ ⋅ (r − r′) = k∥

x cos φ, the φ integration can be carried out by using the relations

2π

∫
0

dφ e ix cos φ cos(nφ) = 2π inJn(x) (A7)

and
2π

∫
0

dφ e ix cos φ sin(nφ) = 0, (A8)
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with the cylindrical Bessel functions of the first kind Jn(x), and the scattering Green function for the planarly layered case can be written as

G(1)pl (r, r′, ω) = i
8π ∫

k∥ dk∥

k�1
e ik�1 (z+z′)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

rs

⎛
⎜⎜⎜⎜
⎝

J+(k∥x) 0 0

0 J−(k∥x) 0

0 0 0

⎞
⎟⎟⎟⎟
⎠
− rpc2

ω2ε1

×
⎛
⎜⎜⎜⎜
⎝

k�1
2J−(k∥x) 0 2 ik∥k�1 J1(k∥x)

0 k�1
2J+(k∥x) 0

−2 ik∥k�1 J1(k∥x) 0 −2k∥
2
J0(k∥x)

⎞
⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A9)

with J±(k∥x) = J0(k∥x) ± J2(k∥x). The coincidence limit is given by
x ↦ 0 and z′ = z, which leads to

G(1)pl (r, r, ω) = i
8π ∫

k∥ dk∥

k�1
e i2k�1 z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

rs

⎛
⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

− rpc2

ω2ε1

⎛
⎜⎜⎜⎜
⎝

k�1
2 0 0

0 k�1
2 0

0 0 −2k∥
2

⎞
⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A10)

In the non-retarded limit, which is valid for distances smaller than
the relevant wavelength, z ≪ c/ωrel, which also means that large val-
ues of k∥ contribute most to the integral and, thus, k�1 = k�2 = ik∥ that
further leads to the vanishing of the reflection of s-waves, rs = 0, the
Green function further simplifies to

G(1)pl (r, r, ω) = c2

32πω2z3 rp

⎛
⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 2

⎞
⎟⎟⎟⎟
⎠

. (A11)

2. Spherical dyadic Green’s function
The dyadic Green’s function in spherical coordinates (r, φ, ϑ) is

given by

G(r, r′, ω) = ik1

4π∑e,o

∞

∑
l=1

2l + 1
l(l + 1)

l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)!

× [rsMe
oml(k1)M′e

oml(k1) + rpN e
oml(k1)N′e

oml(k1)],
(A12)

with spherical vector wave functions

Me
oml(k) = ∓

m
sin ϑ

h(1)l (kr)Pm
l (cos ϑ)

sin

cos
mφeϑ

−h(1)l (kr)dPm
l (cos ϑ)

dϑ
cos

sin
mφeφ, (A13)

N e
oml(k) =

l(l + 1)
kr

h(1)l (kr)Pm
l (cos ϑ)

cos

sin
mφer

+ 1
kr

drh(1)l (kr)
dr

⎡⎢⎢⎢⎢⎢⎣

dPm
l (cos ϑ)

dϑ
cos

sin
mφeϑ

∓ mPm
l (cos ϑ)
sin ϑ

sin

cos
mφeφ

⎤⎥⎥⎥⎥⎥⎦
, (A14)

with the vacuum wave number k1 = ω/c and the wave number inside
the sphere k2 = k1

√
ε(ω). The vectors er , eϑ, and eφ are the mutually

orthogonal unit vectors. The reflection coefficients for s-polarized
waves read as

rs = −
k2ηl(k2R)jl(k1R) − k1ηl(k1R)jl(k2R)

k2ηl(k2R)h(1)l (k1R) − k1ζl(k1R)jl(k2R)
, (A15)

and for p-polarized waves as

rp = −
k2ηl(k1R)jl(k2R) − k1ηl(k2R)jl(k1R)

k2ζl(k1R)jl(k2R) − k1ηl(k2R)h(1)l (k1R)
, (A16)

with the spherical Bessel and Hankel functions of the first kind jl(x)
and h(1)l (x), respectively, and the Ricatti functions,

ηl(x) =
1
x

dxjl(x)
dx

, ζl(x) =
1
x

dxh(1)l (x)
dx

. (A17)

In Eq. (A12) together with the reflection coefficients (A15) and
(A16), it can be observed that the m is only given inside the vector
wave functions,

G(r, r′, ω) = ik1

4π

∞

∑
l=1

2l + 1
l(l + 1)[rs∑

e,o

l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)! Me

oml(k1)

×M′e
oml(k1) + rp∑

e,o

l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)!

×N e
oml(k1)N′e

oml(k1)]. (A18)
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This leads to the terms

Ml(r, r′, ω) =∑
e,o

l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)! Me

oml(k1)M′e
oml(k1)

= h(1)l (kr)h(1)l (kr′)
l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)!{[

m
sin ϑ

Pm
l (cos ϑ) sin mφeϑ +

dPm
l (cos ϑ)

dϑ
cos mφeφ]

× [ m
sin ϑ′

Pm
l (cos ϑ′) sin mφ′eϑ′ +

dPm
l (cos ϑ′)

dϑ′
cos mφ′eφ′]

+ [ m
sin ϑ

Pm
l (cos ϑ) cos mφeϑ −

dPm
l (cos ϑ)

dϑ
sin mφeφ][

m
sin ϑ′

Pm
l (cos ϑ′) cos mφ′eϑ′ −

dPm
l (cos ϑ′)

dϑ′
sin mφ′eφ′]}

= h(1)l (kr)h(1)l (kr′)
l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)!{

m2

sin ϑ sin ϑ′
Pm

l (cos ϑ)Pm
l (cos ϑ′)[sin mφ sin mφ′ + cos mφ cos mφ′]eϑeϑ′

+ m
sin ϑ

Pm
l (cos ϑ)dPm

l (cos ϑ′)
dϑ′

[sin mφ cos mφ′ − cos mφ sin mφ′]eϑeφ′

+ m
sin ϑ′

Pm
l (cos ϑ′)dPm

l (cos ϑ)
dϑ

[cos mφ sin mφ′ − sin mφ cos mφ′]eφeϑ′

+ dPm
l (cos ϑ)

dϑ
dPm

l (cos ϑ′)
dϑ′

[cos mφ cos mφ′ + sin mφ sin mφ′]eφeφ′}

= h(1)l (kr)h(1)l (kr′)
l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)!{

m2

sin ϑ sin ϑ′
Pm

l (cos ϑ)Pm
l (cos ϑ′) cos[m(φ − φ′)]eϑeϑ′

+ m
sin ϑ

Pm
l (cos ϑ)dPm

l (cos ϑ′)
dϑ′

sin[m(φ − φ′)]eϑeφ′

− m
sin ϑ′

Pm
l (cos ϑ′)dPm

l (cos ϑ)
dϑ

sin[m(φ − φ′)]eφeϑ′ +
dPm

l (cos ϑ)
dϑ

dPm
l (cos ϑ′)

dϑ′
cos[m(φ − φ′)]eφeφ′}. (A19)

These sums can be carried out by using the addition theorem for Legendre polynomials

Pl(cos φ1 cos φ2 + sin φ1 sin φ2 cos Θ) =
l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)! × Pm

n (cos φ1)Pm
n (cos φ2) cos mΘ. (A20)

By derivating Eq. (A20) twice with respect to Θ, one derives

−P′′l (cos φ1 cos φ2 + sin φ1 sin φ2 cos Θ)sin2φ1 sin2φ2 × sin2Θ + P′l (cos φ1 cos φ2 + sin φ1 sin φ2 cos Θ) sin φ1 sin φ2 cos Θ

=
l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)! m2Pm

n (cos φ1)Pm
n (cos φ2) cos mΘ, (A21)

and ones with respect to Θ

P′l (cos φ1 cos φ2 + sin φ1 sin φ2 cos Θ) sin φ1 sin φ2 sin Θ =
l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)! mPm

n (cos φ1)Pm
n (cos φ2) sin mΘ. (A22)

Note that the differentials with respect to ϑ and ϑ′ commute with the sums. Hence, the dyadic product of the M vector wave functions
simplifies to

Ml(r, r′, ω) = h(1)l (kr)h(1)l (kr′){[−P′′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)] sin ϑ sin ϑ′ sin2(φ − φ′)

+ P′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)] cos(φ − φ′)]eϑeϑ′

+ dP′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)] sin ϑ′ sin(φ − φ′)
dϑ′

eϑeφ′

− dP′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)] sin ϑ sin(φ − φ′)
dϑ

eφeϑ′ +
d2Pl[cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)]

dϑdϑ′
eφeφ′}.

(A23)
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This equation further simplifies to by taking the coincidence limit
r′ ↦ r

Ml(r, r, ω) = [h(1)l (kr)]
2 l(l + 1)

2
(eϑeϑ + eφeφ). (A24)

Furthermore, in the limit of both molecules located on the
sphere, r = R + z, φ = 0, and ϑ = 0 and r′ = R + z = r, φ′ = 0 = φ, and
ϑ′ = δ/(R + z), the s-wave scattering simplifies to

Ml(r, r′, ω) = [h(1)l (kr)]
2
{P′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′]eϑeϑ′

+ d2Pl[cos ϑ cos ϑ′ + sin ϑ sin ϑ′]
dϑdϑ′

eφeφ′}, (A25)

= [h(1)l (kr)]
2
{
(l + 1)[cos ϑ′Pl(cos ϑ′) − Pl+1(cos ϑ′)]

sin2ϑ′
eϑeϑ′

+
(l + 1)[cos ϑ′Pl+1(cos ϑ′)−Pl(cos ϑ′)((l+1)cos2ϑ′ − l)]

sin2ϑ′
eφeφ′}.

(A26)

It can be observed that the coincidence limit only depends on
the distance and the orientation of the molecule with respect to
the surface normal. The same analysis can be performed for the
p-polarized waves leading to the tensor for the N vector wave
functions

Nl(r, r′, ω) =∑
e,o

l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)! N e

oml(k1)N′e
oml(k1)

=∑
e,o

l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)!

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l(l + 1)
kr

h(1)l (kr)Pm
l (cos ϑ)

cos

sin
mφer

+ 1
kr

drh(1)l (kr)
dr

⎡⎢⎢⎢⎢⎢⎣

dPm
l (cos ϑ)

dϑ
cos

sin
mφeϑ ∓

mPm
l (cos ϑ)
sin ϑ

sin

cos
mφeφ

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l(l + 1)
kr′

h(1)l (kr′)

× Pm
l (cos ϑ′)

cos

sin
mφ′er′ +

h(1)′l (kr′)
kr′

⎡⎢⎢⎢⎢⎢⎣

dPm
l (cos ϑ′)

dϑ′
cos

sin
mφ′eϑ′ ∓

mPm
l (cos ϑ′)
sin ϑ′

sin

cos
mφ′eφ′

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=
l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)!

⎧⎪⎪⎨⎪⎪⎩

l2(l + 1)2

k2 rr′
h(1)l (kr)h(1)l (kr′)Pm

l (cos ϑ)Pm
l (cos ϑ′)

× [cos mφ cos mφ′ + sin mφ sin mφ′]erer′

+ l(l + 1)
k2rr′

h(1)l (kr)h(1)′l (kr′)Pm
l (cos ϑ)dPm

l (cos ϑ′)
dϑ′

[cos mφ cos mφ′ + sin mφ sin mφ′]ereϑ′

+ l(l + 1)m
k2rr′ sin ϑ′

h(1)l (kr)h(1)′l (kr′)Pm
l (cos ϑ)Pm

l (cos ϑ′)[− cos mφ sin mφ′ + sin mφ cos mφ′]ereφ′

+ l(l + 1)
k2rr′

h(1)′l (kr)h(1)l (kr′)dPm
l (cos ϑ)

dϑ
Pm

l (cos ϑ′)[cos mφ cos mφ′ + sin mφ sin mφ′]eϑer′

+
h(1)′l (kr)h(1)′l (kr′)

k2rr′
dPm

l (cos ϑ)
dϑ

dPm
l (cos ϑ′)

dϑ′
[cos mφ cos mφ′ + sin mφ sin mφ′]eϑeϑ′

+
h(1)′l (kr)h(1)′l (kr′)

k2rr′
m

sin ϑ′
dPm

l (cos ϑ)
dϑ

Pm
l (cos ϑ′)[− cos mφ sin mφ′ + sin mφ cos mφ′]eϑeφ′

× l(l + 1)
k2rr′

h(1)′l (kr)h(1)l (kr′) m
sin ϑ

Pm
l (cos ϑ)Pm

l (cos ϑ′)[− sin mφ cos mφ + cos mφ sin mφ′]eφer′

+
h(1)′l (kr)h(1)′l (kr′)

k2rr′
m

sin ϑ
Pm

l (cos ϑ)dPm
l (cos ϑ′)

dϑ′
[− sin mφ cos mφ′ + cos mφ sin mφ′]eφeϑ′

+
h(1)′l (kr)h(1)′l (kr′)

k2rr′
m2

sin ϑ sin ϑ′
Pm

l (cos ϑ)Pm
l (cos ϑ′)[sin mφ sin mφ′ + cos mφ cos mφ′]eφeφ′

⎫⎪⎪⎬⎪⎪⎭

=
l

∑
m=0
(2 − δm0)

(l −m)!
(l +m)!{

l2(l + 1)2

k2rr′
h(1)l (kr)h(1)l (kr′)Pm

l (cos ϑ)Pm
l (cos ϑ′) cos m(φ − φ′)erer′

+ l(l + 1)
k2rr′

h(1)l (kr)h(1)′l (kr′)Pm
l (cos ϑ)dPm

l (cos ϑ′)
dϑ′

cos m(φ − φ′)ereϑ′

+ l(l + 1)m
k2rr′ sin ϑ′

h(1)l (kr)h(1)′l (kr′)Pm
l (cos ϑ)Pm

l (cos ϑ′) sin m(φ − φ′)ereφ′
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+ l(l + 1)
k2rr′

h(1)′l (kr)h(1)l (kr′)dPm
l (cos ϑ)

dϑ
Pm

l (cos ϑ′) cos m(φ − φ′)eϑer′

+
h(1)′l (kr)h(1)′l (kr′)

k2rr′
dPm

l (cos ϑ)
dϑ

dPm
l (cos ϑ′)

dϑ′
cos m(φ − φ′)eϑeϑ′

+
h(1)′l (kr)h(1)′l (kr′)

k2rr′
m

sin ϑ′
dPm

l (cos ϑ)
dϑ

Pm
l (cos ϑ′) sin m(φ − φ′)eϑeφ′

− l(l + 1)
k2rr′

h(1)′l (kr)h(1)l (kr′) m
sin ϑ

Pm
l (cos ϑ)Pm

l (cos ϑ′) sin m(φ − φ′)eφer′

−
h(1)′l (kr)h(1)′l (kr′)

k2rr′
m

sin ϑ
Pm

l (cos ϑ)dPm
l (cos ϑ′)

dϑ′
sin m(φ − φ′)eφeϑ′

+
h(1)′l (kr)h(1)′l (kr′)

k2rr′
m2

sin ϑ sin ϑ′
Pm

l (cos ϑ)Pm
l (cos ϑ′) cos m(φ − φ′)eφeφ′

⎫⎪⎪⎬⎪⎪⎭
. (A27)

Now, the sum over m can be carried out together with the addition theorem (A20)–(A22), which leads to

Nl(r, r′, ω) = { l2(l + 1)2

k2rr′
h(1)l (kr)h(1)l (kr′)Pl[cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)]erer′

+ l(l + 1)
k2rr′

h(1)l (kr)h(1)′l (kr′)
dPl[cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)]

dϑ′
ereϑ′

+ l(l + 1)
k2rr′

h(1)l (kr)h(1)′l (kr′)P′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)] sin ϑ sin(φ − φ′)ereφ′

+ l(l + 1)
k2rr′

h(1)′l (kr)h(1)l (kr′)
dPl[cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)]

dϑ
eϑer′

+
h(1)′l (kr)h(1)′l (kr′)

k2rr′
d2Pl[cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)]

dϑdϑ′
eϑeϑ′

+
h(1)′l (kr)h(1)′l (kr′)

k2rr′
dP′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)] sin ϑ sin(φ − φ′)

dϑ
eϑeφ′

− l(l + 1)
k2rr′

h(1)′l (kr)h(1)l (kr′)P′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)] sin ϑ′ sin(φ − φ′)eφer′

−
h(1)′l (kr)h(1)′l (kr′)

k2rr′
dP′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)] sin ϑ′ sin(φ − φ′)

dϑ′
eφeϑ′

+
h(1)′l (kr)h(1)′l (kr′)

k2rr′
{−P′′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)] sin ϑ sin ϑ′ sin2(φ − φ′)

+ P′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(φ − φ′)] cos(φ − φ′)}eφeφ′

⎫⎪⎪⎬⎪⎪⎭
, (A28)

and can be further simplified to, in the coincidence limit r′ ↦ r,

Nl(r, r, ω) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

l2(l + 1)2

k2r2 [h(1)l (kr)]
2
erer +

⎡⎢⎢⎢⎢⎣

1
kr

drh(1)l (kr)
dr

⎤⎥⎥⎥⎥⎦

2
l(l + 1)

2
(eϑeϑ + eφeφ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (A29)

Furthermore, in the limit of both molecules located on the sphere, r = R + z, φ = 0, and ϑ = 0 and r′ = R + z = r, φ′ = 0 = φ, and ϑ′ = δ/(R + z),
the p-wave scattering simplifies to
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Nl(r, r′, ω) =
⎧⎪⎪⎨⎪⎪⎩

l2(l + 1)2

k2r2 [h(1)l (kr)]
2
Pl cos ϑ′erer′

+ l(l + 1)
k2r2 [h

(1)
l (kr)]

2 dPl[cos ϑ cos ϑ′ + sin ϑ sin ϑ′]
dϑ′

ereϑ′

+ l(l + 1)
k2r2 [h

(1)
l (kr)]

2 dPl[cos ϑ cos ϑ′ + sin ϑ sin ϑ′]
dϑ

eϑer′

+
[h(1)′l (kr)]

2

k2r2

d2Pl[cos ϑ cos ϑ′ + sin ϑ sin ϑ′]
dϑdϑ′

eϑeϑ′

+
[h(1)′l (kr)]

2

k2r2 P′l [cos ϑ cos ϑ′ + sin ϑ sin ϑ′]eφeφ′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (A30)

and can be further simplified to in the coincidence limit r′ ↦ r.

To this end, the scattering Green’s function in the coincidence
limit reads as

G(r, r, ω) = ik1

8π

∞

∑
l=1
(2l + 1)

⎡⎢⎢⎢⎢⎣
rs[h(1)l (k1r)]

2
(eϑeϑ + eφeφ)

+ rp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

l(l + 1)
k2

1r2 [h
(1)
l (k1r)]

2
erer +

⎡⎢⎢⎢⎢⎣

h(1)′l (k1r)
k1r

⎤⎥⎥⎥⎥⎦

2

×(eϑeϑ + eφeφ)
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
. (A31)

The rr-component of the spherical Green function reduces to

Grr(r, r′, ω) = − i
4πk0r2

∞

∑
l=1
(2l + 1)l(l + 1)

×
√

εk0ηl(k0R)jl(
√

εk0R) − k0ηl(
√

εk0R)jl(k0R)
√

εk0ζl(k0R)jl(
√

εk0R) − k0ηl(
√

εk0R)h(1)l (k0R)

× [h(1)l (k0r)]
2
Pl cos ϑ′. (A32)

APPENDIX B: ROTATIONAL AVERAGE

According to the results of internal dynamics of a quan-
tized molecule system coupled to an environment, the change in
transition rates is proportional to

Γn ∝ dnk ⋅ Im G(r A, r A, ωnk) ⋅ dkn. (B1)

The vectorial component of the planar Green function (A11)
is described by exex + eyey + 2ezez . Due to the bounding of the
molecule onto the planar surface, the molecule’s z-component needs
to be aligned with the z-component of the surface, whereas the
remaining components can be orientated arbitrarily to each other.
To this end, we average over the remaining orientation,

Γn ∝
1

2π

2π

∫
0

dϑ R(ϑ) ⋅ dnk ⋅ Im G(r A, r A, ωnk) ⋅ R(ϑ) ⋅ dkn, (B2)

with the rotation matrix along the z-axis,

R(ϑ) =
⎛
⎜⎜⎜⎜
⎝

cos ϑ − sin ϑ 0

sin ϑ cos ϑ 0

0 0 1

⎞
⎟⎟⎟⎟
⎠

, (B3)

which results in

Γn ∝ d2
x + d2

y + 2d2
z. (B4)

By considering two separated molecules for the superradiance, each
molecule has to be averaged for its own,

Γn ∝
1
(2π)2

2π

∫
0

dϑ dϑ′ R(ϑ) ⋅ dnk ⋅ Im G(r A, r B, ωnk) ⋅ R(ϑ′) ⋅ dkn

= 2
(2π)2 dz. (B5)

This result can directly be transferred to the spherical case with
G(1)sp = Arerer + Aϑeϑeϑ + Aφeφeφ by aligning the molecule z-axis
perpendicular to the surface er , which results in

Γn ∝ Aφ(d2
x + d2

y) + Ard2
z , (B6)

for the coincidence case. According to the construction of the s- and
p-wave scattering matrices, M and N, respectively, the vectorial
dependence of the Green function can be written as

G(1)sp = Arr′erer′ + Arϑ′ereϑ′ + Aϑr′eϑer′ + Aϑϑ′eϑeϑ′ + Aφφ′eφeφ′ ,
(B7)

which results in

Γn ∝
Arr′

(2π)2 d2
z , (B8)

for the rotational average.
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