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Abstract: Experimentation and the evaluation of algorithms have a long history in algebra. In this
paper we follow a single test example over more than 250 years. In 1685, John Wallis published
A treatise of algebra, both historical and practical, containing a solution of Colonel Titus’ problem
that was proposed to him around 1650. The Colonel Titus problem consists of three algebraic
quadratic equations in three unknowns, which Wallis transformed into the problem of finding the
roots of a fourth-order (quartic) polynomial. When Joseph Raphson published his method in 1690,
he demonstrated the method on 32 algebraic equations and one of the examples was this quartic
equation. Edmund Halley later used the same polynomial as an example for his new methods in
1694. Although Wallis used the method of Vietè, which is a digit–by–digit method, the more efficient
methods of Halley and Raphson are clearly demonstrated in the works by Raphson and Halley. For
more than 250 years the quartic equation has been used as an example in a wide range of solution
methods for nonlinear equations. This paper provides an overview of the Colonel Titus problem and
the equation first derived by Wallis. The quartic equation has four positive roots and the equation
has been found to be very useful for analyzing the number of roots and finding intervals for the
individual roots, in the Cardan–Ferrari direct approach for solving quartic equations, and in Sturm’s
method of determining the number of real roots of an algebraic equation. The quartic equation,
together with two other algebraic equations, have likely been the first set of test examples used to
compare different iteration methods of solving algebraic equations.

Keywords: Vietè’s method; Newton–Raphson method; regula falsi method; testing of algorithms
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1. Introduction

A problem brought to John Pell (1611–1685) in 1649, and discussed at the time
with Silius Titus (1623–1704), was the following—to find numbers a, b, and c satisfying
the equations

a2 + bc = 16, b2 + ac = 17, and c2 + ab = 22. (1)

A solution with positive integers is easily seen to be a = 2, b = 3, and c = 4, but Pell
decided to challenge himself by changing the final equation:

a2 + bc = 16, b2 + ac = 17, and c2 + ab = 18. (2)

In 1662, Pell left notes on their progress for Titus and by the following year he and John
Wallis had successfully solved it, calculating values of a, b, and c to 15 decimal places
each [1]. The solution was printed in 1685 [2], derived from the general problem

a2 + bc = l, b2 + ac = m, and c2 + ab = n.

Colonel Titus’ problem is likely the earliest instance of a problem involving three
simultaneous quadratic equations ([3], p. 34) and is one of the first algebraic problems
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leading to a quartic equation, an equation that is not derived from a problem in geometry
or trigonometry.

A variant of the Colonel Titus problem is Question 113 in Ladies’ Diary from 1725
shown in Figure 1

a2 + bc = 920, b2 + ac = 980, and c2 + ab = 1000, (3)

and was solved by John Turner in 1726. Turner only specifies the quartic equation to be
solved and a solution a, b, c, of (3). Question 113 is also found in algebra textbooks in
1820 ([4], p. 405) and in 1840 ([5], p. 563).

The publications of collected questions in Ladies’ Diary in 1774, 1775 [6,7], and 1817 [8]
sparked new interest in Colonel Titus’ problem.

A fourth variant of the problem was published in Question 209 in The Scientific Recep-
tacle in 1796 and shown in Figure 2:

a2 + bc = 1 806 520, b2 + ac = 2 225 275, and c2 + ab = 5 567 720. (4)

John Ryley solved the problem and introduced a new way to solve it by expressing a and b
as a fraction of c [9].

Figure 1. Question 113, proposed by Thomas Grant in Ladies Diary from 1725, taken from Charles
Hutton 1775 [7], p. 266. In the collection by Leybourn from 1817, the question is slightly rephrased [8],
p. 145.

Wallis ([2], pp. 225–256) eliminates the variables b and c in (2) and reduces the three
equations to a fourth-order algebraic equation

x4 − 80x3 + 1998x2 − 14,937x + 5000 = 0 (5)

where x = 2a2. In the following we will use the term “Pell–Wallis equation” to refer to (5).
To determine a root x∗, Wallis uses Viète’s method and a is found through a =

√
x∗/2.

To compute b, Wallis derives a cubic equation which follows from multiplying the first
quadratic equation by a and the second by b and eliminates abc to obtain the cubic equation

17b− b3 = 16a− a3, where a =

√
1
2

x∗.

Having found a and b, the unknown c is found from the first quadratic a2 + bc = 16.
One of the most classical problems in mathematics is the solution of systems of

polynomial equations in several unknowns [10]. They arise in robotics, coding theory,
optimization, mathematical biology, computer vision, game theory, statistics, machine
learning, control theory, and numerous other areas [10]. Systems of quadratic polynomial
equations appear in nearly every crypto-system [11] and in robotics [12].
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For more than 250 years, the equation x4 − 80x3 + 1998x2 − 14937x + 5000 = 0 has
played an important role in the development of new methods, analyses of algebraic equa-
tions, and comparisons of methods for solving nonlinear equations.

In Section 2 we discuss four different approaches in solving Colones Titus’ problem
that have appeared in the literature and in Section 3 we discuss different techniques
and methods using the Pell–Wallis Equation (5). For a modern treatment of numerical
methods for roots of polynomials, see [13,14] and references therein. For solving systems of
polynomial equations, see [10,11] and references therein.

2. Colonel Titus’ Problem

Using the notation in Wallis algebra book from 1685 [2], Ch. LX–LXI, the general
Colonel Titus problem is as follows. For given positive real numbers l, m, and n, find a, b,
and c such that

a2 + bc = l, (6)

b2 + ac = m, and (7)

c2 + ab = n. (8)

We review several solution techniques, mainly using what could be described as
high-school algebra [15]. An elegant solution is given in Solutions of the principal questions of
Dr. Hutton’s course of mathematics by Thomas Stephens Davies, and we follow his solution
technique.

From (6) and (7) we have

c =
l − a2

b
and c =

m− b2

a
.

Equating the two expressions for c, we have a cubic equation in b

b3 −mb + a(l − a2) = 0.

From (8) and the two expression for c above, we have

n− ab = c2 =
l − a2

b
m− b2

a

which is a quadratic equation in b

(l − 2a2)b2 + nab + (a2 − l)m = 0.

Multiply the quadratic equation by b and the cubic equation by l − 2a2 and subtract the
two expressions to eliminate the cubic term. We now have two quadratic equations in b

(l − 2a2)b2 + nab + (a2 − l)m = 0 and nb2 −mab + (a2 − l)(l − 2a2) = 0.

To eliminate b2, multiply the first quadratic equation by n and the second by l − 2a2 and
subtract the two resulting quadratic equations. The result is a linear equation in b. Solve
for b:

b =
(l − a2)(mn− (l − 2a2)2)

a(n2 + m(l − 2a2))
.

Substitute the value for b in

nb−ma =
(l − a2)(mn2 −m2a2 − n(l − a2)(l − 2a2))

a(n2 + m(l − 2a))
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and
1
b
(a2 − l)(l − 2a2) =

n(l − a2)(l − 2a2)2a(n2 + m(l − aa2))

(l − a2)(mn− (l − 2a2)2)
.

Equate the two expressions in nb−ma = (l − a2)(l − 2a2)/b and simplify

8a8 − 20la6 + (18l2 − 2mn)a4 + (5lmn− 7l3 −m3 − n3)a2 + (l2 −mn)2 = 0.

Multiply the equation by 2 and let x = 2a2 and we have the equation

x4 − 5lx3 + (9l2 −mn)x2 + (5lmn− 7l3 −m3 − n3)x + 2(l2 −mn)2 = 0. (9)

For each real root, x∗ of (9) a, b, and c, can be computed in the following way; a in 2a2 =
x∗, b in n b2 −ma b = (l − a2)2 − a2(l − a), and c in a2 + bc = l. For l = 16, m = 17, and
n = 18 we have the equation

x4 − 80x3 + 1998x2 − 14937x + 5000 = 0

which is (5).
Different techniques for solving Colonel Titus’ problem have been suggested in the

literature by philomaths and mathematicians, school teachers of mathematics, and pro-
fessors of mathematics. The different solution techniques can mainly be divided in two
groups; the first group is based on elimination and the second group on first reformulating
the problem and then performing an elimination.

The first solution to Colonel Titus’ problem was published by J. Wallis [2] and this
was an elimination of the unknowns that results in the quartic Equation (5). To find the
four positive roots of (5) Wallis used a digit-by-digit computation method. The solution
of Colonel Titus’ problem by Wallis was republished by Francis Maseres (1731–1824) in
1800, including numerous details ([16], pp. 187–239). However, Maseres did not use a
digit-by-digit method to find the roots, but rather the Newton–Raphson method. Similar
solutions using explicit elimination are found in [5,17–19], all leading to the same quartic
Equation (5). J. Kirkby [20] in 1735 and A. Cayley [21] in 1860 used a general elimination
theory, leading to the same quartic equation.

The method of introducing two new variables expressing the unknowns as a fraction of
one of the other variable was studied by J. Ryley [9] in 1796, and made popular by William
Frend [22] in 1800. Variations of this technique are found in [23–25]. Ivory expressed two of
the unknowns as a difference of the third [26,27]. All these reformulations lead to quartic
equations that are different from the quartic Equation (5). These quartic equations never
reached the same popularity as (5).

Using iterative methods to solve the three equations simultaneously was suggested in
the Diarian Repository [6] in 1774 and by Whitley [28] in 1824.

2.1. Ladies’ Diary 1725 Question 113

We find a variation of Colonel Titus’ problem in the journal Ladies’ Diary from 1725 in
Question 113 shown in Figure 1 where l = 920, m = 980, and m = 1000.

In Ladies’ Diary in 1726 John Turner (active in Ladies’ Diary from 1726 to 1750 ([17],
p. 423)) gives a solution of the problem and states the equation (using the notation in Wallis)

8a8 − 20la6 + (18l2 − 2mn)a4 + (5lmn− 7l3 −m3 − n3)a2 + l4 − 2l2mn + m2n2 = 0.

Let x = 2u2 and multiplying the equation by two gives (9). Turner gives the solution of
Question 113 in Ladies’ Diary to be 19.5991, 22.7788, and 23.5276. There are three minor
typographical errors in the solution by Turner ([29], p. 7):

8a8 − 18la6 + (18l2+2mn)a4 + (5lmn− 7l3 −m3 − n3−mn)a2 + l4 − 2l2mn + m2n2 = 0.
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These three typographical errors are repeated in Diarian Miscellany [7] and Diarian Reposi-
tory [6] and one error is pointed out in the Errata of [8].

For l = 920, m = 980, and n = 1000, the Equation (9) has four positive roots approxi-
mately equal to 1937.6, 1881.6, 768.0, and 12.7, and the only root that gives reasonable ages
is 768.0, and the ages are approximately a = 19.5965, b = 22.7799, and c = 23.5286.

2.2. A Renewed Interest in Colonel Titus’ Problem

In Diarian Repository by S. Clark [6], pp. 190–191 (Archibald [30] states that Samuel
Clark was the editor of this repository) from 1774; Diarian Miscellany by C. Hutton from
1775 [7], pp. 266 and 271; and later in Leybourn’s four volume collection of questions in
Ladies’ Diary from 1817 [8], pp. 145–146, we find Question 113 and the three Equations (6)–
(8). The three repositories [6–8] all reproduce John Turner’s equation and solution (ages)
but also give additional information or alternative solution techniques.

Leybourn also presents an additional solution of Colones Titus’ problem provided
by Mark Noble (a mathematician at Royal Military College (Sandhurst)) in the appendix
in the fourth volume [17], pp. 255–259. The contribution is signed N and in the preface
of Leybourn’s first volume ([8], Preface page X) it is signed "this is Mark Noble".This is
an elimination technique and it leads to the same quartic equation as in Wallis. Noble
derives one cubic and one quadratic equation similar to the equations derived by Kirkby.
Although Kirkby invokes a general elimination result from Newton ([31], p. 74), Noble
carries out the elimination explicitly and obtains the Equation (9). Noble gives the roots of
the polynomials and the different values of a, b, and c.

2.3. The Scientific Receptacle 1796 Question 209

The Scientific Receptacle published in 1796 the question shown in Figure 2 ([9], p. 77).
The problem is find positive numbers (using the notation in Wallis) a, b, and c so that

a2 + bc = 1, 806, 520, b2 + ac = 2, 225, 275, and c2 + ab = 5, 567, 720

with a solution published in a later issue in the same volume ([9], p. 95).

Figure 2. Question 209 in The Scientific Receptacle from 1796 proposed by James Gale.

John Ryley (1747–1815) published the solution of the problem in 1796 [9]. Ryley
considered the three Equations (6)–(8) and introduced two new variables x and y so that

b = x c and a = y c. (10)

and derived the equation

(n2 − lm)x4 + (m2 + ln)x3 − 4mnx2 + (n2 + lm)x + m2 − ln = 0. (11)
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From a root of (11), all other quantities can be determined. However, Ryley does not
compute any root of (11) or values of a, b, and c for the given l, m, and n.

2.4. First Reformulation and then Elimination

J. Ryley was the first to express two of the unknowns as a fraction of the third. W. Frend
(1757–1841) ([22], pp. 240–246) in 1800 provided a different derivation and introduced x
and y so that

b = x a and c = y a, (12)

and derived the equation

(mn− l2)x4 − (ln + m2)x3 + 4lmx2 − (l2 + mn)x−m2 + ln = 0. (13)

A minor improvement of Frend’s solution, avoiding a square root, was given by John
Hellins (c. 1749–1827) in the introduction of the same volume in which Frend’s solution
was found [16], pp. lxxi–lxxii. By interchanging the variables, Equation (13) can be derived
from (11).

For l = 16, m = 17, and n = 18 we obtain the equation

50x4 − 577x3 + 1088x2 − 562x− 1 = 0.

The equation has four real solutions (or roots), of which one is negative. Maseres [16]
(pp. 246–275) finds the three positive roots to be approximately 1.027179787, 1.17565,
and 9.3388519 using Newton–Raphson iteration. Maseres regards the root 1.027179787
as “impossible” since y is negative. For a given root, y and the unknowns a, b, and c are
easily found.

Maseres ends the tract with a comment that Mr. Frend’s solution has the advantage
that it saves the trouble of those very tedious and perplexing algebraic multiplications and
divisions necessary in Dr. Wallis’s solution [16], p. 275. A similar solution to Frend’s was
given by Tebay [25] in 1845. A third variation is to express a and b in terms of c [23].

James Ivory (1765–1842) [26] wrote that the solution provided by Wallis to the prob-
lem (2) was remarkably operose and inellegant and a solution of the same problem by Frend [22]
is preferable to Wallis’s solution. Ivory expressed two of the unknowns as a difference of
the third and the analysis was printed in 1804 in [26], but with no numerical solution. Ivory
restricts his analysis to the specific choice l = 16, m = 17, and n = 18. Ivory’s analysis
was mailed to Baron Maseres [27] p. 360 and Maseres added many details and a numerical
solution based on the Newton–Raphson method [32].

Whitley [24], p. 121 wrote in 1824 that Mr. Ivory’s solution was an elegant specimen
of analysis and Davis [18], p. 274 in 1840 called it an exceedingly elegant investigation.
Cockle [3] speculated that the analysis can be carried over to the case where m = (n + l)/2.
It can be shown that the derivation by Ivory can be extended to the general case of l, m,
and n. Maseres [32], pp. 371–395 computed the two positive roots of the quartic equation
derived by Ivory and these correspond to the positive a, b, and c values provided by Wallis.

2.5. Simultaneous Solution of the Three Unknowns

In the Repository Solution section in the Diarian Repository [6], pp. 190–191 an iterative
approach was suggested. First, find an approximate solution (in this case 23, 22.5, and
21.1); then, find a correction (x, y, and z) that solves the (linear) equations where the second
order terms are eliminated. . . . then via the solution of the resulting equations, x, y, and z will be
determined to a sufficient degree of exactness; if not, the operation must be again repeated with the
last found values. . . [6], pp. 190–191. This is Newton’s method but no actual computations
of a, b, and c are shown, except for finding the starting point for the iteration.

J. H. Swales, the editor of the Liverpool Apollonius asked its readers in 1823 to find
a simpler solution than those given by Ivory [26], p. 156 and Frend [22], p. 240. Three
traditional solutions were submitted by J. Whitley, Settle, and S. Ryley and a completely
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new approach using a fixed-point iteration method by Whitley was published in the next
volume. In 1853, T. T. Wilkinson, in his series of articles on the History of Mathematical
Periodicals wrote in relation to the Liverpool Apollonius (In Mechanics Magazine, Volume 58,
1853 p. 307) that the iterative method used by Whitley was one of the neatest and most
effective methods of solving Colonel Titus’ problem. The same appraisal was provided
in 1865 in the Educational Times (Educational Times p. 270, 1865 on Question 113 from the
Ladies’ Diary).

The method proposed by Whitley [28], pp. 127–128 in 1824 is the fixed-point iteration ak+1
bk+1
ck+1

 =

 √
l − bkck√
m− akck√
n− akbk

 k ≥ 0

with the starting point given by a0 = b0 = c0 = 3, where l = 16, m = 17, and n = 18.
Table 1 compares the fixed-point iteration to Newton’s method for F(a, b, c) ≡ (a2 + bc−
16, b2 + ac− 17, c2 + ab− 18) = (0, 0, 0) with the starting point (a0, b0, c0) = (3, 3, 3).

Table 1. Fixed-point iterations of Whitley and Newton’s method.

Whitley

k ak bk ck

1 2.6458 3.0104 3.1678
2 2.5423 2.9910 3.2242
3 2.5211 2.9785 3.2390
4 2.5205 2.9726 3.2415
5 2.5227 2.9703 3.2414

Newton

k ak bk ck

1 2.5833 2.9167 3.2500
2 2.5263 2.9698 3.2395
3 2.5255 2.9692 3.2406
4 2.5255 2.9692 3.2406

Arthur Cayley (1821–1895) considered Colonel Titus’ problem and suggested that if
a = x

z and b = y
z the equations become

x2 + cyz− lz2 = 0

y2 + czx−mz2 = 0

(c2 − n)z2 + xy = 0

which are three homogeneous equations of second order in three unknowns [21]. However,
Cayley did not solve the homogeneous equations. Schumacher solved this problem [33]
in 1911.

2.6. Erroneous Solution

The achievements of Adrien Quentin Buée (1748–1825), also called Abbé Buée, are
important in relation to the conceptual development of the negative numbers and for
the graphical representation of the complex numbers. In [34], he considers Colonel Titus’
problem and makes an attempt to solve it using geometry and complex numbers. He claims
that the solution must be a = 3.25x, b = 4.25x, and c = 5.25x, where x is the area of a
circle in the geometric construction. However, he does not find any correct solution to
the problem.
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3. The Pell–Wallis Equation

In the late 17th and early 18th centuries, there were numerous collections of alge-
braic equations [35]. Most practical algebraic equations were derived from geometric or
trigonometric problems. An algebra book by John Ward from 1695 contains ten geometric
problems with corresponding algebraic equations [36] and The Young Mathematician’s guide
from 1707 contains more than 20 practical problems from geometry and trigonometry,
leading to algebraic equations [37]. However, The Pell–Wallis equation is derived from a
different type of problem. The equation has been in use for 270 years, from the first time it
appeared in print in 1685 to the most recent reference to the equation in a paper from 1955.

3.1. Digit-by-Digit Methods

The root finding method used by Wallis in 1685 was a digit-by-digit computation
method [2]. The method used by Wallis was based on Vietè’s method but it deviated
from Vietè’s method in the divisor used to compute the next digit [38]. In this method,
the roots are computed with a very high degree of accuracy. With Horner’s technique
to compute shifted polynomials, the digit-by-digit approach became more efficient using
Holdred’s and Horner’s divisor [38]. The Pell–Wallis equation is used as an example in
Holdred [39], pp. 55–56 and Nicholson [40], pp. 74–76, 80–82 in 1820 and [41], p. 19;
de Morgan [42], pp. 50–51 in 1839; Perkins [43], pp. 356–358 and Young [44], pp. 213–221 in
1842; Lobatto [45], pp. 114–166 in 1845; Schnuse [46], pp. 212–216 in 1850; and Onley [47],
pp. 240–245 in 1878—all using digit-by-digit computation.

3.2. Bracketing Methods

In Vietè’s method, the first digit of a root must be specified. This will normally lead
to the determination of the intervals of the roots. Intervals of the real roots may also
provide a starting point for linear interpolation. Cardano’s golden rule and regula falsi are
methods in which a root is bracketed. Application of the Newton–Raphson method and
the Halley method, which are iterative methods, requires a starting point sufficiently close
to a root/solution and this point is often determined to be in an interval including the root.

The Pell–Wallis equation has been used as an example in [48], p. 335, Kirkby [20] Part
IV, pp. 32–34 in 1735; Frend [49], pp. 109–111 and [50] pp. 298–299 in 1799 and 1800. A
more systematic approach was employed with the application of Sturm’s theorem in [51]
from 1839 and Young [52], pp. 159–161 in 1841. This method was also used by Siebel in
1880 and 1887 [53], pp. 406–407 [54], pp. 337–338 in an ad hoc way.

3.3. Linear Interpolation

The first use of the Pell–Wallis equation and interpolation occurred in 1732. Graaf [55],
pp. 33–35 considered (5) and scaled the variable x ← x/10 in the interval of 0 to 3.6 and
plotted the graph (x, f (x)), where f (x) is the left-hand side of (5). Based on the graph,
an interval where a solution exists was identified, and then linear interpolation. This is a
variation of regula falsi [56] and Cardano’s regula aurea [57], Chapter 30 methods, since
both end points of the interval are changed in de Graaf’s approach.

The method of John Davidson, a teacher in mathematics in Burntisland, involves
a bracketing approach and linear interpolation [58], p. 114, [59], p. 38, as shown in his
textbooks from 1814 and 1852. This is Cardano’s golden rule [57], Chapter 30.

3.4. The Newton–Raphson Method

Wallis published his algebra book in 1685 [2] and it contained the first printed version
of Newton’s method. When Raphson presented his method in 1690 it was regarded as a
different method. It was not until the mid-18th century that it became clear that the two
methods generated the same sequence of iterations [35]. From a computational point of
view, the methods are very different. Raphson demonstrated his method on 32 examples
and the Pell–Wallis equation was given as example 21 [60] Problem XXI. Kirby [20], Part IV,
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pp. 35, 44–45 in 1735 used the Newton–Raphson method to find one of the roots of the
Pell–Wallis equation.

In Volume III of Scriptores logarithmici from 1796, Francis Maseres used the Newton–
Raphson method. First an approximation 0.3507 to the smallest root is found by using a
series expansion and then two iterations are performed [61], pp. 718–725. Maseres writes
". . . and this I take to be the very best method that can be employed to find the value of x to this
degree of exactness".

Lockhart [62] in 1839 argues that the numbers of digits required to compute an approxi-
mate solution using the Newton–Raphson method is not worse than Horner’s digit-by-digit
method, as presented by De Morgan [42] in 1839.

3.5. Halley’s Method

Edmund Halley (1656–1742), in a paper from 1694, derived two methods, the rational
and irrational method [63]. Halley pointed out that the Pell–Wallis Equation (5) was solved
by Wallis using the method of Vieté and solved by Raphson using the Newton–Raphson
method. Halley applied both methods to the Pell–Wallis equation. For the irrational
method, two possible corrections can be used before the new iteration.

In 1710, Christian Wolff (1679–1754) provided a different derivation of Halley’s irra-
tional method and redid the computation method developed by Halley using the irrational
method and the correction to find the largest root of (5) [64], pp. 192–194.

Philip Ronyane (1683–1755) applied Halley’s rational and irrational methods. With
the irrational method he use the two corrections used by Halley and gave a derivation of
the corrections, whereas Halley has just stated them [65], pp. 242–244.

One of the earliest professors in mathematics in an American college was Isaac Green-
wood (1702–1745) and two notebooks from his students—Samuel Langdon (1723–1797),
who graduated from Harvard in 1740, and James Diman (1707–1788), who graduated in
1730—have been kept [66], ([67], pp. 3–17). A topic in the Diman notebook from 1730 is
“Dr. Halley’s theorems for solving equations of all sorts” and here we find (reproduced
in [66], p. 64) three iterations with Halley’s rational method on (5).

3.6. Ferrari–Cardano Approach

The linear shift x− 20 in the Pell–Wallis equation makes the term x3 vanish and the
depressed quartic equation is

x4 − 402x2 + 983x + 25,460 = 0. (14)

Taking two slightly different approaches, Francis Maseres first finds the depressed quar-
tic (14) and then, with reference to Ferrari, finds the resolvent cubic

v3 − 201v2 − 25460v− 967,897
8

= 0, (15)

and, with reference to Descartes [68], p. 142, the resolvent cubic (in e2) is

e6 − 804u4 + 59764e2 − 966,289 = 0. (16)

The four roots of the Pell–Wallis equation can then found [68], pp. 134–182. Maseres points
out that the use of linear interpolation and one iteration with Newton–Raphson will require
fewer arithmetic operations than the use of Ferrari-Cardano approach [68] p. 178.

William Rutherford (1798–1871) found the depressed quartic (14) and then derived
the resolvent cubic equation (in u2)

u6 − 402
2

u4 +
59,764

16
u2 − 966,289

64
= 0. (17)
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From the resolvent cubic (17), using Horner’s method, Rutherford found one root and the
four roots of the Pell–Wallis equation [69], pp. 17–18.

Orson Pratt (1811–1881) [70], pp. 130–131 used the depressed quartic (14) and derived
the resolvent depressed cubic

y3 − 1,401,372y− 633,074,427 = 0.

A root of the depressed cubic is found using a digit-by-digit approach with a modified
divisor in Vietè’s method, to eleven decimal places, and then the roots of the Pell–Wallis
equation are given.

Christian Heinrich Schnuse (1800–1878) considered the Pell–Wallis equation and
derived the depressed quartic (14) and the resolvent cubic (17). Using a digit-by-digit
approach, he found the same root of (17) as Rutherford in 1849 [46], pp. 358–359.

3.7. Gräffe’s Method

D. Miguel Merino (1831–1905) translated and revised a work by Johann Franz Encke
(1791–1865) [71] on the numerical solution of equations. Using Gräffe’s method and one
final Newton–Raphson iteration, the four roots are found [71], pp. 42–44. In Gräffe’s method
a sequence of polynomials is generated and the method is a “root-squaring” process and
approximations to the roots can be computed from the coefficients of of the generated
polynomials. The method works well for the Pell–Wallis equation since the roots are
real, positive, and separated. The method is suitable for computation by hand, whereas
computer implementations usually exhibit overflow after only a few steps. After a few
steps, the estimates of the roots are good and suitable for a correction by means of Newton–
Raphson iterations. The two smallest roots are correct with four decimal digits after four
steps in Gräffe’s method. Given that the two smallest roots have been accurately computed,
the remaining two roots can be computed [72], pp. 74–75. Encke in 1839, Merino in 1879,
and Rey Pastor [72] (1888–1962) in 1924 found it more convenient to work with the log of
the coefficients of the polynomials.

3.8. Miscellaneous Methods and Comments

• Wells pointed out in 1698 that the Pell–Wallis equation was solved by Raphson,
Halley, and Wallis using the Newton–Raphson method, Halley’s methods, and Vietè’s
method [73], pp. 213–214.

• In 1716 [74], pp. 138–139, Struyck translated Halley’s papers from 1694 into Dutch
(French translation in 1912 [75], pp. 148–149).

• In the 4th edition of the Theory of Equations [76], pp. 269–270 from 1899, Burnside
and Panton derived the resolvent cubic (16). They also showed that the roots are
real [76], p. 194 and if two of the roots are known, the two remaining roots can easily
be found [76], p. 267.

• With reference to [72] (pp. 74–75) for the Pell–Wallis equation Carlos Calvo Car-
bonell [77] derived the depressed quartic (14) and scaled the variable

√
402x and

obtained the equation

x4 − x2 +
983√
4023

x +
25,460
4022 = 0. (18)

By graphical inspection, the roots of (18) are located in intervals of length 0.01.For a
point in the interval, a first correction method is a Newton-Raphson iteration, then a
correction based on the next term in the Taylor expansion. The four roots are computed
using two or three corrections.

• Silvestre François Lacroix (1765–1843) [78], p. 261 discussed the Pell–Wallis equation
as a problem of scaling the coefficients and found that the two roots are between 0 and
10 and 10 and 20.
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• Preston Albert Lambert (1862–1925), in 1903, used the Pell–Wallis equation to find the
depressed fourth-order polynomial (14) and applied Maclaurin expansion to find an
approximate solution [79], p. 92.

• Leonard Eugene Dickson (1874–1954), in his book on Elementary theory of Equations
from 1914, used the Pell-Wallis equation as a problem. He first found two approximate
roots r and s and then the next two roots r1 and r2 by solving using expressions for
r1 + r2 and r1 − r2 as functions of r and s [80], p. 121.

• We find numerous examples of the use of the Pell–Wallis equation as an exercise
or problem in the second half of the 19th century: [81], p. 218, [82], p. 116, [83],
p. 350, [84], p. 14, [85] p. 358, [86], pp. 352–353, [87], p. 170, and [88], p. 307.

3.9. An Early Comparison of Four Algorithms on Three Examples

One of the first comparisons of the use of several algorithms on different problems
is found in [16]. The methods used were Newton–Raphson, Halley’s two methods, and
regula falsi or linear interpolation. The latter method is called the the differential method
in [16] or the method of double position. Maseres [16] p. 109 provides a reference to A Course
of Mathematics in Two Volumes, Composed for the Use of the Royal Military Academy by Charles
Hutton for the equivalence between the differential method and the method of double
position.

The three equations tested were x3 − 17x2 + 54x− 350 = 0, x4 − 3x2 + 75x− 10,000 =
0, and the Pell–Wallis equation −x4 + 80x3 − 1998x2 + 14,937x − 5000 = 0. These three
examples are from Halley [63].

4. Concluding Remarks

We have shown that the three quadratic equations in three unknowns forming Colonel
Titus’ problem can be reduced to a single quartic equation using standard high school
algebra. The different derivations of a quartic equation have been suggested by philomaths
and mathematicians, school teachers of mathematics, and professors of mathematics over a
period ranging from the mid-17th to the early 20th century. We find systems of quadratic
equations in modern crypto-systems or robotics. Today, solutions can easily be obtained
through the use of computer algebra systems implemented in Maple, Mathematica, or
Wolfram. The modern theory related to solution methods, such as the use of a Gröbner
basis, has not yet been explored in relation to Colonel Titus’ problem.

We have seen that the quartic equation, the Pell–Wallis Equation (5), derived from
Colonel Titus’ problem, has been used for more than 250 years as a test example to develop
methods to solve algebraic equations, techniques to determine the number of roots, or
intervals of the roots, as well as in numerous textbooks. As a well-known equation, it has
been included in the early numerical comparisons of root finding methods.

The references in this paper do not form a complete list of the use of this equation and
Colonel Titus’ problem.
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