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Climate change has been implicated in an increased number of distributional
shifts of marine species during the last century. Nonetheless, it is unclear
whether earlier climatic fluctuations had similar impacts. We use ancient
DNA to investigate the long-term spawning distribution of the Northeast
Arctic cod (skrei) which performs yearly migrations from the Barents Sea
towards spawning grounds along the Norwegian coast. The distribution
of these spawning grounds has shifted northwards during the last century,
which is thought to be associated with food availability and warming temp-
eratures. We genetically identify skrei specimens from Ruskeneset in west
Norway, an archaeological site located south of their current spawning
range. Remarkably, 14C analyses date these specimens to the late Holocene,
when temperatures were warmer than present-day conditions. Our results
either suggest that temperature is not the only driver influencing the spawn-
ing distribution of Atlantic cod, or could be indicative of uncertainty
in palaeoclimate reconstructions in this region. Regardless, our findings
highlight the utility of aDNA to reconstruct the historical distribution of
economically important fish populations and reveal the complexity of
long-term ecological interactions in the marine environment.
1. Introduction
Significant poleward shifts in the distribution of marine species have been
observed during the last century and have been associated with global warm-
ing [1]. The description of species distributions under a changing climate may
yield fundamental insights into ecosystem dynamics and responses to future
climate change. Nonetheless, we still have a poor understanding of the historical
distribution of marine species during the late Holocene.

Atlantic cod, an economically important and highly exploited fish species in
the North Atlantic Ocean, comprises various stocks with different life-history
characteristics. Along the Norwegian coast, two distinct ecological ecotypes of
Atlantic cod have been identified. The ‘stationary’ ecotype (Norwegian coastal
cod, NCC) spawns along the Norwegian coast and has limited migration
between spawning and feeding areas [2,3]. By contrast, the ‘migratory’ ecotype
(Northeast Arctic cod, NEAC), also known as ‘skrei’ (from the old Norse ‘the
wanderer’), migrates every year during winter–spring (March to beginning of
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Figure 1. (a) Distribution of spawning sites for the migratory skrei ecotype from top to bottom: Finnmark (orange), Troms (dark orange), Lofoten (light orange) and
Møre (light brown). Spawning map and details are adapted from Sundby and Nakken [4]. Blue arrows indicate the pathway of the NwAC and the NwCC. Red arrows
indicate the spawning migration of skrei from feeding grounds. No skrei is currently observed below 62° N [3]. The background colour indicates average Norwegian
and Barents Sea sea-surface temperature (SST) during January to December 2021. The distribution of the sediment core locations used in the study are highlighted
per colour according to each proxy: alkenone (in blue: I, II, III, IV, V and VI), diatom (in pink: a), foraminifer (in yellow: A,B,C,D and E), tree-ring (TRW, in green: 1),
spring sea-ice composition (SpSIC, in grey: S) and total organic carbon (TOC, in brown: T). (b) Historical climate reconstructions presented as an individual line for
each sediment core for each proxy (electronic supplementary material, figure S2 for individual locations) with a dotted reference at 0° C in all temperature graphs.
SST and July temperatures ( jT) anomalies were calculated with respect to the long-term 1981–2010 average for their specific location (see electronic supplementary
material, methods for details on long-term means). 14C dating range (orange for skrei and grey for stationary ecotype) are shown for each ancient Atlantic cod (see
electronic supplementary material, figure S1 and table S1 for details). Specimen COD253 was not dated due to insufficient bone material. Fish illustrations were
drawn by Geir Holm. Tree-ring, diatom, foraminifer, alkenone, sea ice and TOC illustrations were drawn by Lourdes Martínez-García.

2

royalsocietypublishing.org/journal/rsbl
Biol.Lett.18:20220021

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 M

ay
 2

02
2 
May) from colder feeding grounds (down to −1.5° C) in the
Barents Sea towards warmer (up to 8° C) spawning areas
along the Norwegian coast like Finnmark, Troms, Lofoten
and Møre (figure 1a) [4,5]. In particular, the Lofoten archipe-
lago has been the major spawning ground of skrei since at
least medieval times, when relevant historical records first
appeared [6]. Right after spawning, skrei eggs, larvae and
juveniles will drift ca 600–1200 km towards the northeast of
the Barents Sea, following the Norwegian Coastal Current
(NwCC) and the Norwegian Atlantic Current (NwAC;
figure 1a) [3,7].

Recent observations have shown a pronounced north-
ward re-distribution of skrei [3,5]. The causes for this shift
have been debated [2,4,8], although a northward movement
of prey in the Barents Sea, directly influenced by an increase
in sea temperatures, has been implicated [4]. Displacement of
skrei feeding grounds lengthens migration distances to
southern spawning locations (i.e. Møre) and could potentially
influence the spawning latitude of skrei [5]. Nonetheless, it is
unclear whether historical climate fluctuations along with
ecological interactions (i.e. prey–predator interaction) have
similarly influenced such distributions over longer temporal
scales. Archaeological bone assemblages of skrei and the
stationary ecotype are morphologically similar and
difficult to distinguish with certainty [6]. Yet, the two eco-
types are genetically different, with significant population
differentiation in several chromosomal inversions [6,9].
Genome-wide scans of such chromosomal regions allow the
identification of individual skrei ecotypes with high confi-
dence [6], even when using low-coverage sequence data
from poorly preserved archaeological specimens [10].

We used ancient DNA (aDNA) to study the long-term
spawning distribution of the stationary and migratory Atlan-
tic cod ecotypes. We obtained genome-wide data of five
archaeological specimens (ca 4322–2092 cal. BP) from Ruske-
neset, west Norway (figure 1a and electronic supplementary
material, table S1). Given the low latitudes of Ruskeneset,
overall warmer climatic conditions and low sea-ice conditions
in the Barents Sea during the late Holocene (within the past ca
5000 years, figure 1b and electronic supplementary material,
figure S2) [11], and the contemporary temperature-related
shifts in distribution, we expected that our ancient specimens
would comprise stationary ecotypes.
2. Material and methods
(a) Sample collection and age calibration
Ancient samples (n = 6) retrieved in 1914–1916 at the archaeolo-
gical site Ruskeneset in the municipality of Bergen, west
Norway (60.23° N – 5.15° E) [12] were used to extract DNA.
The zooarchaeological assemblage (bones) from Ruskeneset are
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in the osteological collections at the Natural History Department,
the University Museum, University of Bergen.

Ruskeneset is a rock-shelter area in the western coast of
Norway which preserves evidence of human activities (e.g.
bones, shells and archaeological elements) dating back to the
late Neolithic and Bronze Age [13]. During the Bronze Age, the
shelter would have been nearly inaccessible from land due to
steep cliffs on both east and west, with easier access from the sea-
side by boat (N. Anfinset pers. comm.). Moreover, the fishing
and hunting gear findings (e.g. harpoons, hooks, arrowheads
and daggers) indicate that this was a hunting and fishing station
rather than a permanent coastal settlement [13]. The site is
located close to tidal current channels and is at a lower latitude
than the current spawning grounds of skrei [3,4]. Four specimens
were dated using 14C content (figure 1b; electronic supplemen-
tary material, figure S1 and table S1). Age calibration of the
samples was calculated in OxCal v. 4.4.4 [14] using the
Marine20 calibration curve [15]. We used slightly different ΔR
values for the stationary (−164 ± 29) and skrei (−144 ± 46)
ecotypes to account for differences in the marine reservoir
effect given that these ecotypes feed either around the coast of
Norway or in the Barents Sea (figure 1b; electronic supplementary
material, figure S1) [15,16].

(b) DNA extraction and library amplification
All ancient samples were processed in the aDNA laboratory at
the University of Oslo under rigorous conditions [17,18]. DNA
extraction and library preparation were according to Ferrari
et al. [19]. Ancient read data for five specimens were processed
using PALEOMIX 2.13 [20]. Sequencing reads were trimmed,
filtered and collapsed using AdapterRemoval v. 2.1.7 [21], and
aligned to the Atlantic cod gadMor2 nuclear genome [22,23]
using BWA backtrack v. 0.7.12 [24] with a minimum quality
score of 25. DNA postmortem damage was assessed using Map-
Damage v. 2.0.9 [25] and the resulting BAM files were indexed
with samtools v. 1.9 [26]. Additional details of the laboratory
protocols are provided in the electronic supplementary material.

(c) Genomic statistical analyses
Four different chromosomal inversions associated with
migratory behaviour and temperature clines were investigated
(LG1, LG2, LG7 and LG12) to determine the probability of the
ancient Atlantic cod specimens to be skrei [9,27–30]. These chro-
mosomal inversions differ in their affinity towards a particular
geographic area as previously described in Star et al. [6]. The
BAMscorer pipeline [10] was used to assign inversion haplo-
types. First, the Atlantic cod reference SNP database from
Ferrari et al. [10] was used to associate divergent SNPs to differ-
ent haplotypes. This reference SNP database includes 276
Atlantic cod individuals from three geographical locations (wes-
tern Atlantic, eastern Atlantic and Baltic Sea) [31,32] across the
species’ range. Second, five ancient Atlantic cod specimens
were compared to the reference dataset with score_bams. Ancient
specimens were identified as skrei or stationary Lofoten Coastal
or stationary (Norwegian) West Coastal individuals using the
population specific chromosomal inversion frequencies obtained
from Star et al. [6] and Johansen et al. [33].

(d) Reference palaeoclimate datasets
To describe the climate as reflected during the late Holocene, par-
ticularly during the period of the Atlantic cod ancient samples (ca
4322–2092 cal. BP), a range of previously published marine and
terrestrial palaeoreconstructions were compiled using tempera-
ture, spring sea-ice conditions (SpSIC) and total organic carbon
(TOC) reconstructions along the Norwegian coast, Scandinavia
and northern Barents Sea (electronic supplementary material,
table S2). The localities of these datasets overlap with the spatial
distribution of spawning and feeding areas of skrei (figure 1a).

Marine palaeoreconstructions are established from reference
sea-surface temperature (SST) datasets based on three different
proxies: alkenone (UK’37) [34–36], planktic foraminifer [34,37,38]
and diatom assemblages [39]. Reference SpSIC dataset is based
on the seasonal sea-ice biomarker IP25 [40], while TOC is based
on the open water phytoplankton biomarkers brassicasterol and
HBI III [40]. For further comparisons, SpSIC previously reported
in Pie�nkowski et al. [41] was included. This dataset includes
recent observations of persisting levels of seasonal sea-ice
during the Holocene Thermal Maximum (6000–10 000 cal. BP;
electronic supplementary material, figure S2). The terrestrial
palaeoreconstruction is established from a reference July tempera-
ture ( jT) dataset based on tree-ring width (TRW) data [42]. TRW
was selected because tree growth is a reliable and sensitive
proxy for climatic conditions (e.g. temperatures, precipitation
and drought) [43]. All temperatures are presented as an individual
line for each sediment core for each proxy (figure 1b) and as indi-
vidual graphs (electronic supplementary material, figure S2) to
avoid introducing uncertainty between proxies. Full details of cli-
mate datasets are provided in the electronic supplementary
material and electronic supplementary material, table S2.
3. Results
We successfully extracted aDNA from five out of six Atlantic
cod specimens and radiocarbon dated four specimens
(electronic supplementary material, table S1). Sequencing
reads showed the patterns of DNA fragmentation and deami-
nation rates that are associated with authentic aDNA
(electronic supplementary material, figure S3). Our sequen-
cing results yield approximately 59 million paired reads,
with between 1% and 7% endogenous DNA and approxi-
mately 74 000 to approximately 1 million aligned reads for
five specimens (electronic supplementary material, table
S1). This is sufficient coverage to unequivocally determine
the genotype of the four major chromosomal inversions of
Atlantic cod (LG1, LG2, LG7 and LG12; electronic sup-
plementary material, table S3). Two out of five specimens
(40%) were identified as skrei with a near 100% probability
(figure 2; electronic supplementary material, tables S3 and
S4). The specimens were dated to three different periods
approximately 4300, approximately 3100 and approximately
2400 cal. BP which is consistent with previous dates obtained
for Ruskeneset [13,44]. These specimens represent the oldest
genetically identified southern skrei to date. Although our
sample size remains limited, our findings suggest a presence
of skrei at Ruskeneset between ca. 4322 and 2092 cal. BP at
overall warmer temperatures than present-day conditions
(figure 1b; electronic supplementary material, figure S2).
4. Discussion
Several reasons may explain the historical skrei presence at
lower and warmer latitudes than today. First, skrei could
have been obtained from northern latitudes and transported
to Ruskeneset. Such transport would indicate the mobility
of human settlements during the late Neolithic and/or
Bronze Age from northern to southern Norway. Nonetheless,
bone material and artefact evidence indicate that Ruskeneset
was a hunting site associated with local marine exploitation
[13]. Transport of skrei from northern Norway to this location
therefore seems improbable.
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Second, it is possible that the association of these inversion
haplotypes with the skrei ecotype is of a recent evolutionary
origin, and that the adaptive association we use to distinguish
each ecotype has not remained stable across time. Neverthe-
less, the evolutionary origin of these inversions is dated to
0.4 and 1.66 million years ago, and they have been selectively
maintained within the Atlantic cod populations ever since
[9,30]. It would seem unlikely that the association of such evol-
utionary ancient genetic variants with this distinct behaviour
evolved as recently as the last millennia.

Third, although no skrei is currently observed below 62°N
(figure 1a), they were sporadically observed below 62°N
during the start of the twentieth century [8]. The impact of fish-
ing has been hypothesized for the current absence of such
southern spawners—through the removal of larger individuals
with greater capacity for migration—however, larger fish are
not associated with increased migration distance [2]. The
reasons for these observations, therefore, remain unknown.
The archaeological southern latitude of skrei could reflect such
sporadic spawning events, possibly during short cold spells—
representing annual inter-variability—experienced within the
date range of each individual and the temperature variability
resolution of the palaeoclimate reconstructions (figure 1b;
electronic supplementary material, figure S2). Moreover, the
complexity of marine reservoir correction on tissues from ani-
mals feeding at latitudes higher than 50°N adds uncertainty
to the precision of radiocarbon dates. Regardless, the prob-
ability of observing such sporadic southern spawning events
would appear low, given that only a few specimens were
sampled over a ca 4000 years period of natural history. Our
results, therefore, tentatively suggest more frequent southern
spawning of skrei during the late Holocene.

Finally, there may be uncertainty around the climatic
reconstructions in the Barents Sea. A recent observation has
identified persisting levels of seasonal sea-ice during the
entire Holocene Thermal Maximum (6000–10 000 cal. BP) in
this region [41] (electronic supplementary material, figure
S2). Consequently, as the climate in the Barents Sea further
cooled during the late Holocene (ca 5900 cal. BP to present)
[11], this region may have had reduced primary productivity
and more significant ice cover than currently estimated [40].
Such a scenario could have resulted in more southern located
feeding grounds and decreasing migration distance towards
lower latitude spawning areas. Our observations would
agree with such more extensive presence of sea-ice than cur-
rently assumed during the late Holocene in the Barents Sea.

Taken together, we here identify the oldest known
migratory ecotype in an archaeological Atlantic cod fishbone
assemblage. Although the reasons for their southern distri-
bution during the late Holocene remain unclear, our results
highlight the utility of aDNA to reconstruct the historical
distribution of economically important fish populations.
Our findings indicate that the response of marine species to
present-day and future climate change may be more complex
than currently anticipated.
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