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Rise and fall of sea ice production in the
Arctic Ocean’s ice factories

S. B. Cornish 1 , H. L. Johnson 1, R. D. C. Mallett2, J. Dörr 3,4, Y. Kostov 5 &
A. E. Richards1

The volume, extent and age of Arctic sea ice is in decline, yet winter sea ice
production appears to have been increasing, despite Arctic warming being
most intense during winter. Previous work suggests that further warming will
at some point lead to a decline in ice production, however a consistent
explanation of both rise and fall is hithertomissing. Here, we investigate these
driving factors through a simple linear model for ice production. We focus on
the Kara and Laptev seas-sometimes referred to as Arctic “ice factories” for
their outsized role in ice production, and train themodel on internal variability
across the Community Earth System Model’s Large Ensemble (CESM-LE). The
linear model is highly skilful at explaining internal variability and can also
explain the forced rise-then-fall of ice production, providing insight into the
competing drivers of change. We apply our linear model to the same climate
variables from observation-based data; the resulting estimate of ice produc-
tion over recent decades suggests that, just as in CESM-LE, we are currently
passing the peak of ice production in the Kara and Laptev seas.

Arctic sea ice extent and thickness is in an on-going decline, sustained
over at least the length of the satellite record, and directly related to
anthropogenic carbon emissions1. The retreat of Arctic sea ice is both
an expression and driver of Arctic Amplification, which is the phe-
nomenon of intensified climate change in the Arctic region relative to
lower latitudes2–4. Though losses are observed in all seasons, they are
more pronounced during late summer than late winter, in terms of
both extent5 and thickness6. These trends reveal that increases in
summer melting are to some extent compensated by increasing ice
production during winter, though not by enough to prevent the con-
tinued decline of the annual mean reservoir of sea ice6.

Ice production is important for a number of reasons. As pro-
gressively more icemelts during the summer, winter ice production is
critical in restoring the ice packbefore the onset of polar day,when the
high albedo of sea ice and its snow cover plays a crucial role in the
radiative budget of the region. The distribution of sea ice is important
during the winter; it limits heat fluxes from the ocean to the atmo-
sphere and plays a complex part in the surface momentum balance7.

Sea-ice growth also plays a vital hydrographic role: brine is rejected
from sea ice during freezing, and freshwater is redistributed via sea ice
motion between locations of growth and melt8–10.

There is an apparent tension in theobservationof risingwinter sea
ice growth in concert with Arctic Amplification, which is intensified
during the winter3,11. However, the two phenomena are most likely
linked12. As progressively less sea ice survives the summer, the winter
ice pack is increasingly thin, promoting both higher winter growth
rates13 and increased heat fluxes from ocean to atmosphere14. Heat
sequestered in the Arctic Ocean during summer is released into the
atmosphereprior to andduringwinter sea ice growth11.Meanwhile, the
sea ice growth rate is tightly coupled to heat fluxes from the ocean to
the atmosphere, because it is determined by the energy balance at the
lower boundary of the ice. As ice thickens, the conductive heat loss to
the atmosphere declines, and growth rate slows in direct proportion.
Sea ice thinner than ~0.4m permits heat fluxes one to two orders of
magnitude larger than those through perennial, thicker ice15. Lang
et al.14 attribute a rise of ~1 °C in Arctic surface air temperature per
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decade to declining winter sea ice thickness. In principle, this surface
warming may be partially offset by increased long-wave emission16.
However, due to the predominantly stable atmospheric stratification,
surface-intensified warming is inefficiently transmitted to the top of
the atmosphere, and therefore outgoing long-wave emissions only
very weakly compensate the warming (the lapse-rate feedback)17–19.

The inverse relationship between sea ice thickness and growth
rate underpins a well-known negative feedback on Arctic sea ice loss20.
There are other effects, however, that also act to promote winter sea
ice growth in a warming Arctic. Sea ice that is formed later in the
season ismore likely to avoid the limiting effects of snow—an effective
insulator—on growth rate21,22. Similarly, snow melt during summer
preconditions more rapid growth at the beginning of the freezing
season due to the loss of this insulating snow cover23. Additionally,
thinner sea ice is weaker and more mobile, leading to an increase in
wind-driven sea ice divergence24–26, which promotes winter growth27.
These negative feedbacks provide stability to the Arctic sea ice system,
such that rapid or irreversible losses in summer sea ice area are
unlikely16,22,28.

In recent warm winters such as 2015/2016 and 2016/2017, growth
suppression and even wintermelting have been observed13,29–31, calling
into question whether the action of these negative feedbacks may be
becoming overwhelmed by warming. Based on simulations with the
sea ice model CICE, Stroeve et al.13 suggest that the thermodynamic
growth during the winter 2016/2017 was 11–13 cm lower than the
2011–2017 mean, with the overall positive trend in winter ice growth
from 1985 ending in 2012. Winter ice growth then weakened until the
end of the model run in 2018. Using the same large ensemble of cou-
pled climate model runs we employ here (CESM-LE), Petty et al.32

identify that the positive correlation between temperature and winter
growth weakens through themid-century under the RCP8.5 emissions
scenario, eventually becoming a negative relationship—indicative of
warming overwhelming the negative feedbacks on sea ice loss.
Observational evidence of increasing winter sea ice production, and
model-based suggestions of an imminent or recently-begun decline—
both associated with anthropogenic climate change—motivate a phy-
sical explanation of this rise-then-fall behaviour.

The Kara and Laptev shelf seas have been referred to as the “ice
factories” of the Arctic Ocean due to their outsized contribution to
Arctic sea ice production33 (Fig. 1a). Classified as interior shelves of
the Arctic34, the Kara and Laptev seas are relatively fresh, receiving
50% of the freshwater runoff to the Arctic Ocean35. During winter,
winds predominantly drive sea ice northwards from the Siberian
coastline in the Kara and Laptev seas (Fig. 1b), opening up perennial
flaw leads/polynyas, where open water separates landfast ice from
mobile pack ice. Sea ice forms rapidly in these polynyas, and a
number of studies have sought to quantify the contribution to the
Arctic sea ice budget made by these regions36–41. The occurrence of
wind patterns that increase the advection of sea ice away from the
Siberian coasts thus intensifies sea ice production in these regions,
and increases the fraction of (relatively thin) sea ice in the Arctic
basin originating in the Kara and Laptev seas42,43. High rates of
freezing in these shallow seas are also thought to help bolster the
cold halocline (salinity-dominated stratification) of the Arctic
Ocean44,45. Sea ice produced in the Kara and Laptev seas freshens
the ocean surface of the Eurasian Basin and northern Barents Sea
upon melting during summer, helping to maintain the stratification
that limits upwards heat fluxes from Atlantic Waters. The stability
of the Arctic halocline has emerged as a key climate change
indicator46, in light of episodic collapses of the winter halocline
in the Eurasian basin and northern Barents Sea47,48, which lead to
the shoaling of Atlantic Waters and increased heat fluxes to the
surface49.

In this study, we develop a simple linear model for ice produc-
tion that is informed by the physics of sea ice growth. The simple
model can successfully explain both the rise and fall of ice produc-
tion in the Kara and Laptev seas, as represented in the historical
simulations and projections of a state-of-the-art global climate
model. Our linear model thus offers insight into the competing
processes at play under climate change. We further apply our linear
model to observation-based data to estimate historical ice produc-
tion. This estimate of historical ice production suggests that, as in
the global climate model, the Kara and Laptev seas may presently be
passing peak ice production.

Fig. 1 | TheKara andLaptev seas: ice factoriesof theArcticOcean. aWinter (Oct-
Apr) mean ice production for the period 1979--2020 in the ensemble mean of
CESM-LE. The Kara and Laptev seas study region is outlined in blue. Bathymetric
contours (100m, 500m, 1000m) from CESM-LE shown in white. b Mean sea ice
velocities during 1979--2020 as recorded by the Polar Pathfinder v4.1 product,

griddedat 25 × 25 kmresolutionand inweeklymeans88. Onlyperiodswhen sea ice is
present are considered in the mean value for each grid cell. Shading indicates the
magnitudeof themean velocities. Arrows are omitted in the Barents Sea, Baffin Bay
and Greenland Sea, where velocities are significantly higher (colourscale saturates)
and flow is generally southwards.
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Results
Shrinking growth season, rising growth rate
In our analysis of ice production in the Kara and Laptev seas we use 40
ensemblemembers fromCESM-LE. Each ensemblemember consists of
a 20th Century run (20C) from 1920 to 2005 that employs historical
external forcing and a ‘high-emissions’ RCP8.5 run from 2006 to 2080.
Ensemble members are initialised in 1920 with small differences in
atmospheric properties, which cause the simulations to evolve differ-
ently through time. We use this internal variability (the deviations of
each ensemble member from the ensemble mean) across all 40
ensemble members to develop our linear model.

During the summer melt season, large areas of open water
develop in the Kara and Laptev seas as the sea ice edge retreats
towards the pole (Fig. 2a). The winter refreeze, however, begins along
the Siberian coastline50. In CESM-LE, the newly formed ice along the
Siberian coastline reconnects with the sea ice of the interior Arctic
Ocean in an hourglass shape that becomes progressively pinched, and
occurs later, through the 21st Century (Fig. 2).

On average, this refreezing in the early winter is the most pro-
ductive period for winter ice growth (Fig. 3), and is linked to the areal
expansion of sea ice (Fig. 2). After an initial peak, ice production in the
ensemble mean gradually curtails through the winter—as ice and
overlying snow cover thicken—before diminishing more steeply in
April. As the climate warms in CESM-LE, however, October ice pro-
duction rapidly falls, approaching zero by the 2030s (Fig. 3). Initially
this trend is compensated by a rapid recovery and a higher sea ice
production peak in November, connected to the refreezing of a larger
open water area (c.f. Fig. 2). The peak in sea ice production shifts later
in the year after the 2010s, continuing to increase in magnitude until
the 2040s, before falling rapidly to mid 20th Century levels by
2080 (Fig. 3).

The overall trend is one of progressively delayed freezing onset,
followed by ice production that is more intense in the mid-winter
throughout RCP8.5 than it is in the 20thCentury. Thegraph-area under
the ice production curves in Fig. 3 represents the total winter ice
production, our quantity of interest. In the ensemble mean, total ice
production rises gently from approximately 1970 to 2010, before
falling from 2020 onwards (Fig. 4a).

Examining the causes behind this rise and fall, we start by recog-
nising that sea ice production is limited by the (location-dependent)
duration of the freezing season, and the rate of growth where and
when it is freezing. Indeed, we can decompose total ice production
into these two components (Fig. 4). Firstly, the spatio-temporal dura-
tion of freezing, expressed as the number of freezing area days
(Fig. 4b). To extend the ice factorymetaphor, this can be viewed as the

Fig. 2 | Changing sea ice extent during freeze-up. Decadal mean winter sea ice extent from the CESM-LE ensemble mean from 1920 to 2080, in (a) September, (b)
October, (c) November and (d) December. Study region outlined in black. Ice edge defined at 15% concentration. Grey line marks the mean 2020s sea ice extent.
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“usage” of the ice factory: the area and time over which it is producing
sea ice (Eq. 1). Secondly, themean growth rate over the regions where,
and times when, sea ice is growing (Fig. 4c). In the ice factory meta-
phor, this is the “efficiency” of the ice factory where and when it is “in
use”, and we calculate it simply as the total winter ice production
divided by the number of freezing area days following Eq. 1:

Ice factory production ðm3Þ = usage ðm2sÞ × efficiency ðms�1Þ ð1Þ

The decomposition reveals quite different trends. The mean
number of freezing area days (or ice factory usage), begins to decline
from the 1990s onwards, and then accelerates after 2050 (Fig. 4b). The
mean growth rate (or ice factory efficiency), on the other hand, is
relatively elevated during the RCP8.5 run in comparison to the 20C run
(Fig. 4c). Growth rate rises from approximately 1970 to 2030, before
declining from approximately 2040 through to 2080.

Physically, the ice factory usage during Oct-Apr is controlled
principally by the (location-dependent) time taken to cool the upper
ocean to the freezing temperature (approximately −1.8 °C). Heat
accumulates in the upper ocean during summer due to penetrating
solar radiation, and is sequestered within and often below the mixed
layer. In the early winter, ice growth is limited by upwards oceanic heat
fluxes as mixing removes heat from the (deepening) mixed layer. A
simple regression model, using the mean Sep surface ocean tem-
perature as a single explanatory variable, captures the internal varia-
bility in the number of freezing area days with R2 = 0.74 during the 20C
run, and with R2 = 0.46 during the RCP8.5 run. The mean surface air
temperature during Oct-Dec helps to control the heat flux from ocean
to atmosphere as a result of the temperature difference across the
ocean-atmosphere interface. Including this climate variable as a sec-
ond regressor improves the fit in the 20C run to R2 = 0.78 and to
R2 = 0.61 in the RCP8.5 run.

The growth rate of sea ice on the other hand is controlled—in the
absence of incoming shortwave radiation—by the balance of heat
fluxes at its base51. The growth of sea ice of thickness,hi through time, t
depends on a greater conductive heat loss to the atmosphere through
the ice, Fc than heat flux from the ocean at its base, Fw, as shown in

Eq. 2, where ρi is the density of ice, Li is the latent heat release/uptake
on freezing/melting, and fluxes are positive upwards.

ρiLi
dhi

dt
= Fc � Fw ð2Þ

As sea ice thickens, the conductive heat fluxes Fc through the ice
diminish, bringing the growth rate down towards zero, depending on
the size of the oceanic heatflux, Fw. Other factors besides ice thickness
also control Fc, including the air temperature and snow cover.
Assuming a layer of snow with thickness, hs overlying ice with thick-
ness, hi, with corresponding thermal conductivities λs and λi, respec-
tively, and linear temperature profiles through both layers, the
conductive heat flux is

Fc =
ΔT

1
k + hi

λi
+ hs

λs

ð3Þ

where k is an effective heat transfer coefficient between the snow/ice
surface and the atmosphere, and ΔT = Tw − SAT; in which Tw is the
freezing temperature of water and SAT is the surface air temperature.
Combining Eqs. 2, 3 and rearranging yields

dhi

dt
=

ΔT
1
k + hi

λi
+ hs

λs

� Fw

0
@

1
A=ρiLi ð4Þ

In the Arctic Ocean, the strong surface stratification suppresses
upwards heatfluxes from the relativelywarmAtlanticWater layer: Fw is
generally low during the freezing season, of order 1Wm−2 or less in the
basin interiors, but sometimes higher directly over the Atlantic Water
boundary current or over rough topography52. Unlike in the Southern
Ocean, where Fw is on the order several tens of Wm−2, these low heat
fluxes are generally no impediment to the growth of first year ice51,53.
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Fig. 4 | Decomposing winter ice production. Winter ice production (a) and
decomposition into freezing area days (b) and growth rate (c). All 40 ensemble
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seven month winter period in days.
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A linear model for ice production using internal variability
By revealing that the number of freezing area days and mean winter
growth rate exhibit quite different characteristics, the decomposition
in Fig. 4 offers a high-level insight into the competing processes gov-
erning ice production changes. We now seek to isolate a set of
observable variables that can capture the physics of these processes.
We then explain the changes in ice production through time with a
linear model involving these variables.

As discussed above, variability in the number of freezing area days
during Oct-Apr is dominantly captured by variation in the Sep sea
surface temperature. The mean growth rate, meanwhile, must be
controlled by the variables affecting the heat fluxes Fw and Fc (Eq. 2).
We can diagnose Fw directly from CESM-LE and observations (though
the latter are sparse), but we seek to capture Fc in terms of readily
observable climate variables, using insight from Eq. 3.

The conductive heat flux is inversely dependent on snow and ice
thicknesses (Eq. 3). Since snow is much more insulating than ice
(λs≈0.1λi), even a thin layer of snow may significantly affect the con-
ductive heat flux51. Equation 3 also shows that as surface air temperatures
rise—and ΔT lessens—the conductive heat flux decreases in linear rela-
tion, as does the growth rate (Eq. 4). Identified positive correlations
between surface air temperatures and growth rate32 rest on a causality in
the opposite direction: increased growth rates and attendant upwards
heat fluxes serve to boost surface air temperatures locally. We must
therefore include the effect of air temperature in a way that explicitly
captures its causal impact on sea ice growth.Wedo this bymimicking the
growth rate equation: we includeΔT as a factor in each of our regressors.

The sea ice thickness hi features on both sides of the growth rate
equation (Eq. 4) due to its involvement in Fc. To avoid circular logic we
must not include the time evolution of hi during winter in the regres-
sors of the linear model. However, we can consider initial conditions
from which hi evolves. These initial conditions can be both the ice
thickness at the start of the season, and occasions during the season
when hi is set to zero (by divergence) as an initial condition for growth.
The minimum sea ice area (usually occurring in September) deter-
mines the area overwhichhi = 0 at the start of the season: the Sepopen
water area. In addition, open water is created near-continually
throughout the freezing season by divergence. Under tension, ice
cracks in a brittle manner rather than thinning; the open water area is
equal to the area diverged.

Divergence of the Arctic ice pack is spatially and temporally
complex, and to understand its effect on thermodynamic growth we
must also consider the role of convergence, which thickens ice
through ridging and rafting, andmay partially balance divergence that
occurs in a given area. Because the growth rate of ice is an inverse
function of its thickness (Eq. 3), and because ice cracks under tension—
thus setting hi =0 in the diverged area—we can expect the effects of
convergence and divergence on growth rate to be asymmetric. We
must therefore separately consider not only net divergence over the
region, but also divergence that is balanced by convergence elsewhere
within the region: we term this the “compensated” divergence.

We thus classify three settings inwhich openwater ismade available
for ice growth: the Sep open water, created by summer melting and ice
advection; the open water area due to net divergence; and the open
water area due to compensated divergence. The sea ice growth in open
water areas will be linearly related to ΔT and to the area that has been
opened. In our linear model, we neglect the timing of divergence and
simply use the total area diverged during thewinter season in both cases.

We can include the effect of snow asΔT/hs, as per Eq. 3, wherehs is
the mean winter snow depth wherever ice is present. Gathering toge-
ther these terms, our linear model for total winter ice production,
including regression coefficients, βn is then:

Ice Prod = β1ΔT=hs + β2ΔTASep + β3ΔTAnet + β4ΔTAcomp + β5SSTSep ð5Þ

Where ASep is the open water area available in September, Anet is
the net area diverged integrated over the winter season, Acomp is the
compensated area diverged integrated over the winter season, SSTSep

is the Sep sea surface temperature (the top 10 m ocean temperature),
and ΔT is the difference between the freezing temperature of seawater
and the surface air temperature. We neglect the ocean-to-ice heat flux
term, Fw, simply because when it is included as an additional term in
this multiple linear regression, the resulting regression coefficient is
statistically insignificant (standardised β =0.0006 and p value = 0.26
over the full run): Fw has no significant impact on ice production in the
Kara-Laptev region in CESM-LE.

We perform multiple linear regression across all ensemble
members of CESM-LE to determine βn, using the departures of
regressors and regressands in each ensemble member from
ensemble-mean values, i.e. the internal variability, during the 20C
run, RCP8.5 run and the full timeseries (Fig. 5). We plot standardised
coefficients, by dividing by 20C run standard deviation values for
each regressor. This indicates which regressors have the largest
effect on ice production in terms of the natural range of variability in
the 20C run. We preserve this standardisation in the plots for the
RCP8.5 run and the full timeseries coefficients in order to compare
absolute magnitudes. The variance in the CESM-LE internal varia-
bility of ice production explained by the linear model is consistently
high: 81% during the 20C run, 76% during the RCP8.5 run and 78%
over the full run (Fig. 5b, c, d). All p values for the different terms are
<10−30 and the p values for the linear model solutions as a whole
are <10−300.

We limit the dataset to individual ensemble members (grey
points, Fig. 5) to estimate the uncertainty associated with these coef-
ficients. Themeans of these clusters (blackpoints) are very close to the
values computed using the whole ensemble (bars). The one standard
deviation windows of the individual ensemble estimates are indicated
with black whiskers and provide an estimate of the uncertainty asso-
ciated with each regression coefficient.

The coefficients from the 20C, RCP8.5 and full timeseries show
overlapping uncertainty windows in all cases, and unanimous agree-
ment in sign. The absolute magnitude of the β1 coefficient is remark-
ably similar between runs (Fig. 5), suggesting that the role of ΔT/hs in
determining ice production is relatively unchanging. While there are
differences inmagnitude in other coefficients, the relative consistency
under the different climate conditions presented by 20C and
RCP8.5 suggests that the linear model is physically robust.

Three regressors are dominant in their contribution to the inter-
nal variability: net divergence ×ΔT (β3), Sep open water ×ΔT (β2), and
inverse snow depth ×ΔT (β1). This reinforces the important role of
variability in wind-driven sea ice divergence in explaining year-to-year
changes in ice production in the Kara-Laptev region36.

Explaining forced changes in ice production
Having seen that our linear model can explain a large fraction of the
internal variability in winter sea ice production across all ensemble
members of CESM-LE, we now ask whether it can explain the forced
changes in sea ice production associated with climate change, and, in
doing so, help us to understand the process at play. The linear model
reconstruction of these forced changes is determined by the trends in
the ensemble-mean values of the climate variables used (Fig. 6) and the
corresponding regression coefficients, whichwe take from the internal
variability (Fig. 5).

We construct timeseries of ice production using the regression
coefficients calculated from internal variability in (a) 20Cdata only, (b)
RCP8.5 data only and (c) the full timeseries (Fig. 7a). All three solutions
for sea ice production successfully reconstruct the overall shape and
interannual variability in the ensemble mean over the full period. The
reconstructions also accurately capture the timing of the turning point
from rising to falling ice production.
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In light of the success of the linearmodel at reconstructing forced
changes in sea ice production, we can next interrogate the contribu-
tionsmade by each term in the linearmodel (Fig. 7b). Interpretation of
these trends should critically consider that each regressor, except for
Sep SST, contains the product of surface air temperatures (as ΔT) and
another climate variable. The trends of the underlying timeseries
(Fig. 6) provide useful context.

The greatest contribution to increasing ice production up to 2020
comes from the β2ΔTASep term. This term can be interpreted as ice
produced in the open water available at the start of the freezing sea-
son. As the Sep open water area increases during 1970–2020 (Figs. 2a,
6b), this term contributes increasing ice production, despite SAT
warming. As the ensemble mean Sep sea ice area approaches zero at
around 2020 (Fig. 6b), this negative feedback on sea ice loss approa-
ches a limit. From this point, the open water area, ASep is fixed to the
total study areabecause the region is ice free.Meanwhile,ΔT continues
to fall (as SAT rises), resulting in a negative trend in the ice production
attributable to the Sep open water setting.

Decreasing snow thickness on sea ice also provides an important
contribution to rising iceproductionbetween approximately 1990 and
2010 (Fig. 7b). While snow continues to thin to 2080 (Fig. 6f), after c.
2030 changes in the β1ΔT/hs term are dominated by warming SAT,
leading to a decline in ice production from this term in spite of the
thinning snow cover.

While the ΔTAnet regressor has the largest standardised coeffi-
cient (β3, Fig. 5a) and is therefore the leading contributor to internal
variability, the balance between the forced trends in ΔT and Anet in
the CESM-LE ensemble-mean result in a modest contribution to
the forced changes in ice production from this term. Similarly,
β4ΔTAcomp shows little contribution to forced changes. In both cases,
this balance between warming and increasing divergence holds out
until the mid-21st Century, before warming air temperatures begin
to dominate, leading to a decline in ice production attributable to
these terms.

The β5SSTSep term, though showing the weakest standardised
regression coefficient in the internal variability space, is the dominant
driver of the forced decline in ice production. Indeed, Sep SST exhibits
a clear warming trend in the RCP8.5 run that rapidly departs from the
range of 20C internal variability (Fig. 6e). There is evidently, then, a
strong role for ocean heat derived from summer heat uptake in
delaying the freezing season and thus decreasing ice production. But is
there a role for ocean heat in changing growth rate or ice production
once the freezing season has begun? Ocean-to-ice heat fluxes (Fw) in
the region are generally low inCESM-LE: the ensemble-mean values are
c. 0.5 W/m2 during 20C, rising throughout RCP8.5 to nearly 2 W/m2 by
2080. This, however, does not appear to noticeably impede ice growth
in CESM-LE: Fw is statistically insignificant when included as an addi-
tional regressor in the linear model for ice production.

Application to the observed Arctic
We next estimate changes in ice production in the Kara-Laptev region
over recent decades (Fig. 8) by applying our linear model to
observation-based estimates of the relevant climate variables (which
can be seen in Fig. 6). We use regression coefficients derived from
internal variability over all ensemble members of CESM-LE (details in
Methods). The approach is therefore based on the assumption that ice
production in the Kara-Laptev region has similar sensitivity to the five
regressors in our linear model as it does in CESM-LE.

The resulting estimate of ice production based on observation-
based climate data can be assumed to contain both internal and forced
variability (Fig. 8a). Internal variability may be present on a range of
timescales, but ismost obvious on the interannual timescale, on which
we may identify causes for the variation through examination of the
regressors and individual climate variables; e.g. the recent warm win-
ters of 2015/2016 and 2016/201713,29,30 trigger relatively low ice pro-
duction. The 10-year running mean (Fig. 8b), however, exhibits similar
features to the ensemble-mean trend in CESM-LE: reconstructed win-
ter ice production increases by 150–200 km3 from 1983 to 2000. From
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about the mid-2000s, ice production appears to show a slight decline.
While uncertainty is difficult to constrain from the underlying
observation-based estimates, we note that the reconstruction is
somewhat sensitive to the choice of product for SST, especially from
2006/2007 onwards.

Unlike inCESM-LE, theβ2ΔTASep term is not thedominant driver of
the increase in estimated ice production. We can reconcile this by
noticing the anticorrelation (R = −0.77) between the Sep SIA and SAT
timeseries (Fig. 6a, b). Both timeseries show marked jumps in the
winter 2005/2006—these changes act in opposing directions in terms
of ice production and thus tend to cancel one another out. Given that
the Sep open water area has already reached a maximum (as Sep SIA
has declined to zero in recent years),we can expect future atmospheric
warming to yield a negative ice production trend from this term, as
per Fig. 7b.

Examining the trends from the other terms, we see that Sep SSTs
exert a negative influence on ice production from c. 2010. The β1ΔT/hs
term causes marked interannual variability and a strong positive trend
in ice production: snow thinning outcompetes warming over this
period.

The contributions to ice production from the two terms invol-
ving divergence exhibit the strongest increases relative to the first
year of the timeseries, out-competing atmospheric warming, before
plateauing or shallowly declining in the final c. 15 years. These terms

play a larger role than in the forced changes seen in CESM-LE
(Fig. 7b). This is related to the steeper trends in ‘net’ and ‘compen-
sated’ divergence from Polar Pathfinder over the observational win-
dow than the CESM-LE ensemble mean (Fig. 6c, d; SAT also plays a
part in these terms).

Discussion
CESM1.1 is a highly complex coupled climatemodel; however, we have
shown that we can understand internal variability and forced trends in
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iceproduction in theArcticOcean’s “ice factories" using a simple linear
model. The linear model, which uses insight from the growth rate
equation, captures a very high degree of variance in the internal
variability of ice production across CESM-LE, is robust to a range of
climate conditions, and successfully reconstructs the forced rise-then-
fall behaviour of ice production in the Kara-Laptev region in this
model. Previous studies have identified rise-then-fall behaviour and
corresponding changes in the statistical relationships between ice
production and climate variables. Our study builds on this by
explaining both the rise and the fall in ice production in terms of
consistent underlying physical processes. Our analysis shows that a
number of negative feedbacks to ice loss—increasing Sep open water
area, increasing divergence, reducing snow depth—contribute to a
gradual rise in ice production in CESM-LE from c. 1970–2010, but are
increasingly outcompeted by atmospheric warming through the 21st
Century under the RCP8.5 emissions pathway (Fig. 8b). Together with
an important contribution from increasing upper ocean temperatures
at the end of summer, this leads to a decline in ice production. A
greater reservoir of oceanic heat at the end of summer requires more
time to cool, thus shortening the freezing season (reducing the “usage”
of the ice factory). Sep upper ocean temperatures can be expected to
continue to rise as a result of increasing absorption of solar radiation
(due to reducing summer sea ice concentration), increasing radiative
forcing, and increasing (and warming) river runoff 54,55.

In CESM-LE, ice production in the Kara-Laptev region passes a
peak around 2020. Our analysis shows that the timing of peak ice
production is primarily set by the timing at which Sep sea ice area in
the Kara-Laptev region approaches zero. At this point, one of the
leading negative feedbacks on the loss of ice—the expansion of the Sep
open water area—has reached a limit and can no longer contribute
additional ice production in this region. Continued atmospheric
warming then ensures a decrease in the ice production attributed to
this setting. In observational data, the expansion of the Sep openwater
area has also reached a limit in recent years. As such, we have good
reason to expect ice production in the Kara and Laptev seas to decline
in the coming decades under continued greenhouse forcing. As it is,
our estimate of historical ice production suggests that ice production
is currently passing a peak in the Kara-Laptev seas, andwe can expect a
marked fall in ice production to follow under further climate warming.

Declining ice production in the Kara-Laptev seas raises a number
of wider implications. Sea ice from the Kara and Laptev seas carries
sediment, pollutants, trace elements and gases into the central Arctic
and beyond36,56,57. Falling sea ice production in the regionwill therefore
affect redistribution of biogeochemical matter in the Arctic Ocean,
with implications for primary production and biodiversity56. Shifting
patterns of ice production also raise important questions for the sta-
bility of the Arctic halocline, which limits upwards heat fluxes from
Atlantic Waters and restricts the depth of water that is convectively
cooled prior to and during sea ice growth58. High rates of freezing in
the Kara and Laptev seas strengthen the cold halocline of the central
Arctic basins via advective interleaving of cold shelf waters, densified
by brine rejection, into the halocline of the Eurasian Basin44,59. Another
mechanism affecting the halocline involves the injection of cold and
fresh waters into surface waters of the interior basins in summer from
themelting of shelf-derived sea ice, which renew the cold halocline via
a ‘convective mode’ during winter convection45,60. Both mechanisms
may operate in different seasonal and spatial contexts38,61,62, and both
depend on ice production on the shelves. Meanwhile, increasing ice
production and brine rejection in the Eurasian basin interior may
weaken the halocline by encouraging vigorous convection, allowing
heat fromtheAtlanticWaters to reach the surface47,49. Our linearmodel
provides good reasons to expect that ice production in the interior
basins may yet rise further before falling: as the Sep sea ice edge
progressively retreats through the central Arctic (Fig. 2a), we can
expect year-on-year increases in Sep open water area and sea ice

divergence, and decreases in snow depth in these regions—all of which
drive increasing ice production. Indeed, in CESM-LE, the share of Kara-
Laptev ice production in the Arctic Ocean (excluding Barents Sea)
declines from 25% in the 20C run to 19% by 2080 (it comprises 16% of
the area). Reduced ice production in the Kara and Laptev seaswill alter
the physical and biogeochemical makeup of the Arctic Ocean, and we
suggest that future work should address the profound impact of these
foreseeable changes.

A strength of the linearmodel is that it is simple, yet still captures
the vast majority of variance in internal variability in CESM-LE, and is
robust over a range of climate conditions. This simplicitymakes it easy
to extend the linear model to other sources of data, such as from
observations or other climate models, and provides clear physical
insight. Adding complexity, by e.g. considering the timing of diver-
gence events, or analysing spatial variations, could add further skill,
and further increase the robustness to different climate conditions.
However, it would come at the expense of simplicity.

Our methodology could be applied to other regions in the polar
oceans and other climate models. While much of the process-based
understanding we have developed for the Kara-Laptev region is
transferable to other areas, there are important differences in the
mean sea ice state and oceanic setting that affect the balance of Fc and
Fw. As ice is generally thin in the Kara and Laptev seas, owing to the
wind-driven time-mean divergence of sea ice, and because little ice
survives the summer, Fc is comparatively large (Eq. 3). On the other
hand, once the excess heat stored in the upper ocean has been
removed to the atmosphere, Fw is low. In theKara andLaptev polynyas,
winter convection may propagate to the seafloor33,40, but because
AtlanticWaters rarely upwell into these shallow areaswhere freezing is
most intense, future increases in Fw are likely to be limited, though
Atlantic Waters may warm halocline waters that intrude onto the
shelf 63. While in our linear model for CESM-LE Fw is an insignificant
term in the Kara-Laptev region, it may be significant in other areas of
thepolaroceans (andperhaps in othermodels in the same region), and
could be included as an additional regressor. Sea-ice thicknesses at the
start of winter (as an initial condition) can additionally be included as
an additional regressor (as ΔT/hi). We did not include this term
because observational estimates of sea ice thickness are much more
time-limited than the other variables we use, precluding a multi-
decadal observation-based estimate of ice production. Further, its
inclusion only marginally increased the skill of the linear model.
However in other regions this term may be more important. Applica-
tion of this technique to other regions and models will help to build
physical understanding of the controls on sea ice production, and
motivate understanding of the impact of future changes in ice
production.

Methods
Regional and methodological choices
There is observational evidence for an Arctic-wide increase in ice
production. Here, however, we focus on one region which shows this
rise-then-fall behaviour in CESM-LE. Note, however, that other climate
models may not necessarily show a rise-then-fall in ice production in
this same region. We adopt a regional perspective because the growth
conditions of sea ice across the Arctic are highly regionally variable,
and focus on one region with fairly consistent characteristics: the Kara
and Laptev seas. Moreover, these shelf seas have special status due to
their outsized contribution to Arctic sea ice production.

Analysis of ice production from satellite data is possible with a
combination of sea ice thickness, concentration and velocity data.
However, we do not perform it here for two main reasons: a) the
satellite record of sea ice thickness is very short, precluding the
development of robust statistical relationships; b) there is a large
amount of uncertainty in sea ice thickness measurements where ice is
thin64,65, precluding the regional investigation we undertake here,
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though not undermining the Arctic-wide evidence for increasing sea
ice production described in the Introduction.

Climate model
To analyse the forced response of sea ice production in the Kara and
Laptev seas to climate change, we use data from all 40 ensemble
members of the Community Earth System Model Large Ensemble
(CESM-LE)66. A large ensemble such as CESM-LE permits investigation of
forced responses to climate change in the context of internal climate
variability66. We require an ensemble approach in our methodology in
order to develop a linear model based on internal variability that we
then use to reconstruct forced changes. CESM-LE is based on the fully
coupled model CESM1.1, and comprises the Community Atmosphere
Model, version 5 (CAM5); the Parallel Ocean Programme, version 2
(POP2); the Community LandModel, version 4; and the Los Alamos Sea-
Ice Model CICE, version 4 as its sea ice component. The version of CICE
used features improvements to shortwave radiation interactions,
including the effects of melt ponds and aerosol deposition on ice67. The
spatial resolution of the CESM1.1 ocean and sea ice models is nominally
1° × 1° longitude by latitude, while the atmospheric model is 0.9° × 1.25°.

All CESM-LE ensemble members are forced by the same external
forcing data, separated into two runs. Firstly, a run from 1920 to 2005
forced by historical external forcing data68 that we refer to as the 20C
run; secondly, from 2006 to 2100, a high-emissions RCP8.5 run69,
leading to over 4 ∘C warming by 2100. The ensemble spread is entirely
generated by simulated internal climate variability originating from
very small, randomdifferences in the initial air temperature fields. Here
we rely on monthly data between 1920–2080, sufficient time to assess
major forced changes in ice production in the Kara and Laptev seas.

Although recent emissions have tracked the RCP8.5 emissions
scenario70,71, the Intergovernmental Panel on Climate Change (IPCC)
consider it a scenario of low likelihood in their sixth assessment report
(AR6), due to recent developments in the energy sector72; in the con-
text of currently pledged climate and energy policies more plausible
scenarios project between 2 °C and 3 °C by 210073. Despite this, the
RCP8.5 emissions scenario retains great value for fundamental science:
it provides a large warming signal, which is useful for interpreting
climate dynamics and relationships in the climate system in the pre-
sence of noise.

Coupled climate models of the CMIP5 and CMIP6 generations
exhibit substantial biases in aspects of their representations of the
Arctic Ocean, particularly in the temperature of the Atlantic Water
layer, and the salinity of the halocline and surface fresh layer74,75. While
CESM1.1 and CESM-LE have their own biases, they have been used in a
broad swathe of Arctic climate studies and generally show a service-
able correspondence to (sparse) observations32,76–83. Arctic sea ice
thickness in CESM-LE broadly corresponds in spatialmean pattern and
trend during 1980–2015 with PIOMAS84. On an Arctic-wide basis it
exhibits thicker (order several 10 cm) sea ice than PIOMAS, though the
differences versus PIOMAS are smaller and vary either side of zero
spatially in the Kara-Laptev region32,85. Although the satellite record of
sea ice thickness is short, CESM-LE compares well with estimates of
inter-seasonal thickness changes and interannual variability32. Declin-
ing Arctic sea ice concentration and extent in CESM-LE has been more
comprehensively compared to observations, which fit within its
ensemble spread and compare well across all seasons77,80,81. The
changing open water season also shows correspondence with satellite
observations, including in the Laptev Sea81.

Climate variables computed
To capture winter thermodynamic sea ice production, we usemonthly
data from October to April, inclusive, as per Petty et al.32. In contrast
with Petty et al. we analyse freshwater exchanges with the ocean,
rather than changes in ice thickness, to explicitly isolate thermo-
dynamic changes. Sea ice production is calculated as the sum of only

the ocean-to-ice part of thermodynamic ice-ocean freshwater fluxes (it
does not include melting).

Our calculation of freezing area days using CESM-LE data is
an approximation, dependent on the spatial discretisation of the
ocean and sea ice components (nominally 1° × 1°), temporal
averaging (monthly) and number of ensemble members used
(40). The mean winter growth rate in all such freezing grid cells is
given by the total winter ice production divided by the number of
freezing area days.

Climate variables are either explicitly taken in September (SST
and open water area), or calculated as a mean (snow depth, surface air
temperature) or sum (divergence) throughout the winter period of
October to April. All variables are computed within the study region
shown in Fig. 1 and are appropriately area-weighted using the relevant
cell areas. The Kara-Laptev region is defined by the coastline and the
following (lat,lon) vertices: (72.5, 70), (82, 70), (82, 110), (78, 110), (78,
150), (72, 150).

The variables that contribute to the regressors are as follows. (1)
Winter mean snow depth on sea ice, averaged over all cells with more
than <15% sea ice. (2) Sep sea ice concentration, converted to sea ice
area using grid cell areas. (3) Sea-ice area diverged throughout the
winter, (a) summed over all grid cells where ice is present (net diver-
gence), (b) summed over cells in which cells are divergent only (posi-
tive divergence). (4) Winter mean surface air temperatures over the
whole oceanic region. (5) Sep ocean temperatures averaged across the
whole oceanic region in the top (10 m thick) grid cell.

We investigate two types of sea ice divergence. Firstly, the net
divergence, which is area-integrated divergence, including con-
vergence.We are also interested in divergencewithin the region that is
compensated by convergence somewhere else in the region; this
divergence can open or expand leads but still not lead to net diver-
gence. To capture this compensated divergence, we record the
“positive divergence”, which is counted only over cells where the
divergence is positive. The compensated divergence is then found as
compensated div = positive div − net div. There is therefore no double
counting between net and compensated divergence. The two are
therefore only weakly correlated—preferable for the purposes of
building a linear model. The divergence measures are converted to
areas diverged before inclusion in the linearmodel for ice production.

Surface air temperature is converted to ΔT by taking the differ-
ence between the freezing temperature of seawater, −1.8 °C, and the
surface air temperature. Thus, the colder the surface air temperature,
the larger and more positive ΔT. Sep open water area is derived by
taking the difference between the total oceanic area of the region and
the Sep sea ice area.

Data are plotted according to the second year in each winter, e.g.
winter 2015/2016 is labelled 2016. The variables extracted from the
observation-derived estimates are computed in a consistentmanner to
their equivalents from CESM-LE.

Deriving the linear model regression coefficients
We derive the regression coefficients for the linear model by using the
internal variability in all 40 ensemble members of CESM-LE. The
regressand is total winter ice production in the Kara and Laptev seas,
and the regressors are: (1) ΔT/hs (2) ΔTASep (3) ΔTAnet (4) ΔTAcomp (5)
SSTSep. In each case these are deviations from the ensemble mean for
each year, such that the linear model is centred around zero. Through
multiple linear regression, we derive the associated regression coeffi-
cients, βn thatminimise the least squares difference of the linearmodel
to the original ice production values. In Eq. 6, the superscript e indi-
cates that the variable is taken from all ensemblemembers, and for all
years under consideration.

Ice Prode = β1ΔT
e=he

s + β2ΔT
eAe

Sep + β3ΔT
eAe

net + β4ΔT
eAe

comp + β5SST
e
Sep ð6Þ
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The standardised values of the coefficients are shown in Fig. 5. We
construct the model three times, based on data from the 20C run, the
RCP8.5 run, and the combined 20C and RCP8.5 runs (‘full’).

Uncertainty estimates
Whilewecanfind the rootmean square error associatedwith the linear
model, we view a more useful estimate of uncertainty as that derived
from the spread of estimates when limiting the dataset to single
ensemblemembers. This connects themethodology to the constraints
of a single climate realisation, which is all we may observe, and all we
have frommany climate models. To do this, we subtract the ensemble
mean fromeachmodel realisation for each climate variable (thoughwe
note that a decadal moving mean could alternatively be used when
there is no ensemble mean to compare against). We then compute the
regression coefficients asbefore, butwith adataset that is 1/40thof the
size of the whole ensemble estimates. All 40 resulting versions of each
regression coefficient are displayed as grey dots in Fig. 5a. We take the
mean of these 40 estimates and plot it as a black dot, and plot the one
standard deviation window using black whiskers. The mean estimates
of the ensemble of estimates are very close to the estimate from the
whole ensemble. Note that the root mean square errors associated
with the linear regression using the whole ensemble are significantly
smaller than the one standard deviation windows derived from the
spread of individual ensemble member estimates.

Reconstructing ice production
To reconstruct the ensemble-mean ice production in CESM-LE, we use
regression coefficients derived from internal variability across the
whole ensemble, but use climate variables from the ensemble mean.
This is illustrated in the equationbelow: β coefficients arederived from
internal variability across the whole ensemble as per Eq. 6, whereas
superscript m denotes that the variable is from the ensemble mean.
Superscript m recon indicates that the ice production timeseries is a
reconstruction of the ensemble mean.

Ice Prodm recon = β1ΔT
m=hm

s + β2ΔT
mAm

Sep + β3ΔT
mAm

net

+ β4ΔT
mAm

comp + β5SST
m
Sep + const

ð7Þ

As our linear model is trained on internal variability, which
numerically is comprised of deviations either side of zero because we
subtract the ensemble mean, we add a constant to compare the
reconstruction with the original ice production data. We choose the
constant such that themeanof the reconstruction and themeanof the
original ice production timeseries are the same.

Observation-based estimates
We process the climate variables from observation-based sources for
application with the linear model in the same manner as climate vari-
ables from CESM-LE.

We use monthly-mean 2 m temperatures from the ERA5 global
reanalysis86, gridded at 0.25 ∘ ×0.25 ∘ resolution. ERA5 is the fifth gen-
eration of atmospheric reanalyses from the European Centre for
Medium-RangeWeather Forecasts (ECMWF).We use the terms surface
air temperature and 2m temperature interchangeably here. Surface air
temperatures from ERA5 generally perform well in the Arctic relative
to in situ observations, however consistently show warm biases of
order several degrees over sea ice in winter months87. Our analysis of
these data spans the winters 1979/1980 to 2019/2020.

To plot mean sea ice velocities and calculate sea ice divergence,
we make use of the National Snow and Ice Data Centre (NSIDC) Polar
Pathfinder v4.1 product, gridded at 25 × 25 km resolution and inweekly
means88. Polar Pathfinder data are masked during processing to only
provide vectors where ice concentration is >15%.We analyse data from
Polar Pathfinder encompassing the winters 1979/1980 to 2019/2020.

Todocument changes in sea ice area,we use sea ice concentration
data frompassivemicrowave satellite retrievals, prepared by theNASA
Goddard Space Flight Centre (NASA GSFC). We use the ‘merged’ data,
which combine data derived from the Bootstrap and Nasa Team
algorithms89, and compare well with other estimates90,91. We use data
spanning the winters 1978/1979 to 2018/2019.

For snowdepth,weuse the output of a Lagrangian snowevolution
model, SnowModel-LG, which provides daily data on a 25 km× 25 km
grid. SnowModel-LG is forced by the MERRA-2 atmospheric
reanalysis92 and the Polar Pathfinder ice motion vectors described
above. The snow depth data are observations-based in the sense they
are produced by observationally-informed atmospheric reanalysis and
ice motion products. However we note that the snow depth data
themselves should not be treated as observations. SnowModel-LG
output compareswell to observational data sets in spatial and seasonal
variability of snow depth and density93. The data span winters 1981/
1982 to 2018/2019. Consistent with our snow depth acquisitions from
CESM-LE, we present snow thickness on sea ice where present.

For sea surface temperatures, we use the Met Office Hadley
Centre’s sea ice and sea surface temperature (SST) data set, HadISST94.
The monthly data are provided on a 1° × 1° grid. We use data spanning
the winters 1961/1962 to 2019/2020. The SST data are taken from the
Met Office Marine Data Bank (MDB), as well as data from the Com-
prehensive Ocean-Atmosphere Data Set (COADS) (now ICOADS)
where there were no MDB data. The sea ice data are taken from a
variety of sources including passivemicrowave retrievals and digitised
sea ice charts. Additionally, we use monthly-mean SST data at a 1° × 1°
resolution from theNational Oceanic and Atmospheric Administration
Optimum Interpolation Sea Surface Temperature v2 (NOAA OISSTv2)
dataset95. We use NOAA OISSTv2 data from the winters 1981/1982 to
2019/2020.

To estimate historical ice production (superscript o estimate), we
utilise our linear model and the observation-based climate variables
(superscript o), as per

Ice Prodo estimate = β1ΔT
o=ho

s + β2ΔT
oAo

Sep + β3ΔT
oAo

net

+ β4ΔT
oAo

comp + β5SST
o
Sep + const

ð8Þ

In order to just have one central estimate and one set of uncer-
tainty windows, we pool all 40 estimates of the regression coefficients
across the 20C, RCP8.5 and ‘full’ runs, and evaluate the linear model
with each, yielding 120 estimates. We take the mean as the central
estimate, and display the one standard deviation envelope associated
with each term and the total ice production estimate (Fig. 8). The
uncertainty associated with the 10-yr running mean (Fig. 8b) increases
when the number of years averaged over is limited by the end of the
time series. As Fig. 8b is a running mean of Fig. 8a, the timeseries do
not begin on 0.

Data availability
The CESM-LE data66 used in this study are accessible at the NCAR/
UCAR CESM website: https://www.cesm.ucar.edu/projects/
community-projects/LENS/data-sets.html. ERA5 data86 are accessible
via the Copernicus Climate Change Service portal (https://cds.climate.
copernicus.eu/). Polar Pathfinder sea ice motion data88 are accessible
at the NSIDC website (https://doi.org/10.5067/INAWUWO7QH7B). The
NASA GSFC sea ice concentration data89 are accessible at the NSIDC
website (https://doi.org/10.7265/N59P2ZTG). SnowModel-LG data92,93

are available at the NSIDC website (Liston, G. E., J. Stroeve, and P. Itkin;
Lagrangian Snow Distributions for Sea-Ice Applications; https://doi.
org/10.5067/27A0P5M6LZBI). HadISST data94 were obtained from
https://www.metoffice.gov.uk/hadobs/hadisst/and are ⓒ Crown
Copyright, Met Office, 2003, provided under a Non-Commercial
Government Licence http://www.nationalarchives.gov.uk/doc/non-
commercial-government-licence/version/2/. The NOAA OISSTv2
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dataset95 is provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado,
USA, and accessible at their website (https://psl.noaa.gov/data/
gridded/data.noaa.oisst.v2.html).

Code availability
Codes used in this paper are available at https://github.com/
samcornish/IceFactories.
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