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In the dense metal-organic framework Na½MnðHCOOÞ3�, Mn2þ ions (S ¼ 5
2
) occupy the nodes of a

“trillium” net. We show that the system is strongly magnetically frustrated: the Néel transition is suppressed
well below the characteristic magnetic interaction strength; short-range magnetic order persists far above
the Néel temperature; and the magnetic susceptibility exhibits a pseudo-plateau at 1

3
-saturation magneti-

zation. A simple model of nearest-neighbor Heisenberg antiferromagnetic and dipolar interactions accounts
quantitatively for all observations, including an unusual 2-k magnetic ground state. We show that the
relative strength of dipolar interactions is crucial to selecting this particular ground state. Geometric
frustration within the classical spin liquid regime gives rise to a large magnetocaloric response at low
applied fields that is degraded in powder samples as a consequence of the anisotropy of dipolar interactions.

DOI: 10.1103/PhysRevLett.128.177201

Geometrically frustrated magnets are of fundamental
interest because their macroscopic ground state degener-
acies give rise to a number of exotic effects [1–4]. The
suppression of magnetic ordering to temperatures far below
the dominant magnetic interaction energy scale means that
small perturbations can have a profound effect on both the
magnetic ground state and its excitations [1]. For obvious
reasons, a common motif in the interaction network of
frustrated materials is the presence of odd-membered rings
—especially triangles. Yet despite the large number of
relevant topologies, much of the field has focused on the
relatively small set of structure types that are common
among ceramic materials; e.g., the pyrochlore, triangular,
kagome, and face-centred cubic nets. The study of frus-
tration on less common lattices may therefore allow for the
discovery of novel magnetic phases and their correspond-
ing physics [5–7].
The chemistry of metal-organic frameworks (MOFs)

allows rational design of network structures that can be
difficult to realize in conventional ceramics [8]. MOFs are
comprised of inorganic “nodes” and organic “linkers”; by
choosing the connectivity and geometry of each compo-
nent, the chemist has remarkable control over the topology
of the resulting network structure [9]. Likewise, the
particular combination of metal and ligand employed then
governs the relevant magnetic degrees of freedom, and the
strength and anisotropy of their interactions [10,11].

The trillium lattice is an obvious target for applying
MOF chemistry to frustrated magnetism: it is a chiral
network of corner-sharing triangles that is intrinsically
predisposed to geometric frustration [Fig. 1(a)] [12].
Remarkably few magnets are known to adopt this lattice,
but those that do—mostly intermetallics—exhibit a wide
range of interesting physics. In MnSi, for example, mag-
netic skyrmions arise from competition between ferromag-
netism and the Dzyaloshinskii-Moriya interaction [13,14];

FIG. 1. (a) The trillium lattice, shown here as a 2 × 2 × 2
supercell of the corresponding cubic unit cell [12]. Each site has
six neighbors, arranged at the vertices of a three-bladed propellor
(cf. the β-Mn net [19]). (b) Representation of the crystal structure
of Na½MnðHCOOÞ3�; Na, C, H, and O atoms shown as green,
black, white, and red spheres, respectively, and Mn coordination
environments shown as filled polyhedra [20]. The Mn atoms
decorate a trillium lattice.
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EuPtSi and EuPtGe are strongly correlated spin liquids [15];
and CeIrSi is an Ising trillium spin-ice candidate [16,17].
Theory tells us that even the simple nearest-neighbor
Heisenberg antiferromagnet (nnHAF) on this lattice should
support a classical spin-liquid (CSL) phase over a wide
temperature range [12], with 120° helical order (“Y” phase;
kord ¼ ½1

3
; 0; 0�) in the frustrated magnetic ground state [18].

To the best of our knowledge, there has not been any
experimental realization of this model system.
It was in this context that we developed an interest in

sodium manganese(II) formate, Na½MnðHCOOÞ3�: a dense
MOF in which magnetic Mn2þ (S ¼ 5

2
) ions decorate a

trillium lattice [Fig. 1(b)] [20]. The system crystallizes in
the chiral cubic space group P213 and has a nearest
neighbor Mn-Mn distance of ∼5.6 Å. Formate ions connect
neighboring Mn2þ cations to give the Mn–O–C–O–Mn
pathway that supports magnetic superexchange [21–24].
Bulk thermodynamic measurements have shown the sys-
tem to exhibit Curie–Weiss behavior—thus no sign of
magnetic ordering—for T > 2 K, with an antiferromag-
netic coupling strength J ∼ 1 K [25].
In this Letter, we show that Na½MnðHCOOÞ3� exhibits

three hallmarks of geometric frustration: (i) the suppression
of its Néel temperature TN far below the characteristic
energy scale of its magnetic interactions; (ii) the strongly
correlated disorder indicative of a CSL phase; and (iii) a
magnetization pseudo-plateau indicative of complex field-
dependent behavior. The magnetic ground state is different
than that expected for the trillium nnHAF model, but can be
rationalized by accounting for the weaker but ever-present
dipolar interactions (nnHAFþ D). We show that the
resulting nnHAFþ D model (i) accounts quantitatively
for the magnetic susceptibility above TN using an inter-
action strength J that is consistent with TN ; (ii) correctly
predicts both the short-range magnetic correlations of the
CSL phase and the magnetic ground state, as observed in
neutron-scattering measurements; and (iii) can be used to
rationalize the existence and temperature dependence of the
measured magnetization pseudo-plateau. A characteristic
magnetocaloric effect associated with this pseudo-plateau
emerges.
We begin by reporting the low-field magnetic behavior of

Na½MnðHCOOÞ3�, expanding on the earliermeasurements of
Ref. [25]. We prepared and characterized a sample (∼0.4 g)
of Na½MnðHCOOÞ3� as described in Ref. [26]. The low-field
magnetic susceptibility, measured for a 10mg fraction of this
sample, is shown as its inverse in Fig. 2(a). For T ≳ 2 K, the
magnetic behavior is Curie–Weiss-like and antiferromag-
netic; the corresponding fit over the range 2.0 < T < 4.5 K
gives ΘCW ¼ −2.3ð3Þ K, which is consistent with the value
obtained in Ref. [25]. A Néel transition—seen here for the
first time for this system—is observed atTN ¼ 0.223ð18Þ K.
The corresponding frustration parameter f¼jΘCWj=TN∼10
indicates strong frustration [2].

Evidence for strong magnetic correlations within the
CSL regime comes from the presence of structured mag-
netic diffuse scattering in polarized neutron scattering
measurements. We used the D7 instrument at the ILL
[34,35], operating in the XYZ polarization mode, to

FIG. 2. (a) Temperature dependence of the inverse magnetic
susceptibility of Na½MnðHCOOÞ3�. Data shown as black solid
circles; Curie-Weiss fit as a black line; and computed values for
the nnHAFþ D model as a red line. The inset highlights the
region near TN. (b) The magnetic diffuse neutron scattering
functions measured at 20 and 1.5 K; open and solid circles denote
data collected using neutron wavelengths of 3.1565 and 4.873 Å,
respectively. The 20 K values have been shifted vertically by one
unit, and the Mn2þ magnetic form factor is shown as a dashed
line. (c) Magnetic ordering in the nnHAFþ D model from MC
simulations. The degree of red or blue coloring is taken from the
strength of magnetic scattering associated with qord ¼ h1

2
; 0; 0i

and h1
3
; 0; 0i, respectively. Experimental TN and D=J values are

shown as vertical and horizontal lines. (d) The experimental
magnetic neutron scattering function at 100 mK (black markers)
and that calculated directly from nnHAFþ D simulations at
D=J ¼ 0.119 (red line). Blue and red tick marks denote the
allowed magnetic reflection positions for the Y and 2-k phases,
respectively. (e),(f) Representations of the (e) Y and (f) 2-k
magnetic structures.
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separate the magnetic scattering for a powder sample of
Na½MnðHCOOÞ3� from the nuclear and spin-incoherent
components. Our measurements at 20 (T ≫ J) and 1.5 K
(T ∼ J) are shown in Fig. 2(b), where we have placed the
scattering intensities on an absolute scale by Rietveld
refinement of the nuclear scattering. At 20 K, the magnetic
scattering function SmagðQÞ is featureless and follows
closely the Mn2þ magnetic form factor [36]. By contrast,
within the CSL regime at 1.5 K we observe clear oscillations
in SmagðQÞ characteristic of short-range magnetic order.
The magnetic scattering at 100 mK (T < TN ≪ J)

reflects long-range magnetic order, but the magnetic
Bragg diffraction pattern cannot be indexed in terms of
the kord ¼ ½1

3
; 0; 0� ordering vector expected from theory

[Figs. 2(d) and 2(e)] [12,18]. Hence the physics governing
selection of this magnetic ground state must be more
complex than accounted for by the simple nnHAF model
of Refs. [12,18].
An obvious omission of this model is consideration of

the always-present magnetic dipolar interactions; note that
no significant single-ion anisotropy is expected for the
high-spin Mn2þ (d5) configuration in an octahedral crystal
field. Using the crystallographic Mn…Mn separation and
taking S ¼ 5

2
for Mn2þ, the relevant dipolar energy scale in

Na½MnðHCOOÞ3� is D ¼ 0.118 K. Since D ≪ J, one
might ordinarily have expected the nnHAF ground state
to be robust to this additional interaction. Yet, in the
absence of the corresponding theory (to the best of our
knowledge), it fell to us to test this assertion by introducing
dipolar interactions into the nnHAF model.
In this spirit, we carried out a series of classical

Monte Carlo (MC) simulations related to those of
Ref. [18] but with MC energies now calculated using
the nnHAFþ D expression

EMC ¼ J
X
hi>ji

Si · Sj þD
X
i>j

Si · Sj þ 3ðSi · r̂ijÞðSj · r̂ijÞ
ðrij=r1Þ3

:

ð1Þ

Here, Si represents the vector spin orientation at site i, r̂ij is
the unit vector pointing from spin i to spin j, and r1 is the
nearest-neighbor separation. The first sum is taken over
distinct nearest-neighbor pairs i, j. We used Ewald sum-
mation as implemented in Ref. [5] to treat the long-range
dipolar interactions. Here, as elsewhere, we subsume the
spin magnitude within the constants J and D. Our MC
configurations represented 6 × 6 × 6 supercells of the P213
unit cell shown in Fig. 1(a); full details of these simulations
and our methods for extracting physical observables are
given in the Supplemental Material [26].
The type of magnetic order driven by Eq. (1) at low

temperatures turns out to be surprisingly sensitive to the
value of D=J [Fig. 2(c)]. For D≳ 0.08J, the magnetic
ground state switches from the helical kord ¼ ½1

3
; 0; 0� order

of the nnHAF model to a 2-k state with kord ∈ h1
2
; 0; 0i

[Fig. 2(f)]. This sensitivity is evident also from mean-
field calculations (see Ref. [26]). The magnetic Bragg
diffraction pattern of this new 2-k ground state shows a
remarkable similarity to our 100 mK measurement for
Na½MnðHCOOÞ3� [Fig. 2(d)], which suggests that the
nnHAFþ D model may indeed capture the key physics
at play in this magnetic MOF.
In order to test the effectiveness of the model against all

our experimental measurements, we required an accurate
estimate of the Heisenberg exchange strength J. We found
that for D ≪ J, the behavior of Eq. (1) at T ≥ J=2 was
essentially indistinguishable to the nnHAF model (D ¼ 0;
see Ref. [26]). Consequently, we estimated J by determin-
ing the T ≥ J=2 susceptibility for the D ¼ 0 case, and then
carrying out a least-squares fit of J to best match experi-
ment (see Ref. [26]). In this way we obtain J ¼ 0.96ð2Þ K,
which is consistent with the estimate given in Ref. [25].
Moreover, the resulting relative energy scale D=J ¼ 0.119
locates Na½MnðHCOOÞ3� within the regime for which
2-k order is expected [Fig. 2(c)].
The results of our nnHAFþ D MC simulations carried

out using this combination of J and D are shown as the red
solid lines in Figs. 2(a) and 2(b). Considering first the
magnetic susceptibility data, our simulations capture at
once the Curie-Weiss behavior for T ≳ 2 K, the departure
from Curie-Weiss behavior for T ≲ 2 K, and the Néel
transition itself. We find TN ¼ 0.27ð1Þ K, in good agree-
ment with experiment. Likewise for our magnetic neutron
scattering data: the SmagðQÞ functions calculated directly
from MC configurations generated at the corresponding
temperatures [37] follow experiment closely (see the
Supplemental Material [26] for the corresponding spin
correlation functions). And, of course, the MC ground state
is a 2-k structure for which SmagðQÞ is consistent with the
100 mK neutron magnetic diffraction pattern [Fig. 2(d)].
So the nnHAFþ D Hamiltonian provides a good rep-

resentation of the spin physics at play in Na½MnðHCOOÞ3�.
Perhaps the largest discrepancy between experiment and
calculation is the small difference in TN [see inset to Fig. 2
(a)]. This discrepancy may reflect the relevance of yet
weaker interactions, such as single-ion anisotropy (usually
safely ignored for high-spin Mn2þ) and/or antisymmetric
exchange interactions, as allowed by the chiral crystal
structure. We have not explored either case here further. We
do note, however, that the dipolar interactions of our
nnHAFþ D model induce an Ising-like spin anisotropy
consistent with the crystallographic point symmetry of the
Mn site (cf. Ref. [5]; see Ref. [26]). Consequently, an easy-
plane single-ion term in an extended Hamiltonian may
compete with the dipolar interactions, in turn reducing TN .
Given the sensitivity of the nnHAF model to perturba-

tions in the zero-field limit, we might expect
Na½MnðHCOOÞ3� to be especially sensitive to an applied
magnetic field. To explore this point we carried out a series

PHYSICAL REVIEW LETTERS 128, 177201 (2022)

177201-3



of high-field magnetization measurements at finely spaced
temperatures within the ordered and CSL regimes (200 <
T < 350 mK) using applied fields 0 < μ0H < 1.5 T. Our
results are summarized in Fig. 3(a), where we plot the
susceptibility χm ¼ dðM=MsatÞ=dμ0H as a function of μ0H
and T. The most obvious feature we observe is a valley in
χm centred on μ0H ∼ 0.6 T that corresponds to a pseudo-
plateau in the field dependence of the magnetization at
M=Msat ¼ 1

3
[see inset to Fig. 3(a)]. This feature is strongest

at low temperatures, but persists with varying prominence
throughout the temperature range of our measurements. We
proceed to show that the origin of this feature is the
suppression of magnetic fluctuations within a new ordered
phase that is stabilized at finite field.

To help understand this field-dependant behavior, we
explored the effect of introducing a Zeeman term into the
original nnHAF model:

E ¼ J
X
hi>ji

Si · Sj þ μ0H ·
X
i

Si: ð2Þ

Here we are intentionally neglecting dipolar interactions for
two key reasons: (i) the corresponding energy scale in this
system is an order of magnitude smaller than that of
Heisenberg exchange, and (ii) our powder measurements
represent an average over crystallite orientations, the effect
of which is computationally difficult to take into account
when including anisotropic interactions. We will discuss in
due course the most important consequences of this
approximation. Nevertheless we carried out a new set of
MC simulations driven by the modified Hamiltonian (2),
focusing on the same range of μ0H and T values explored
experimentally.
The simulation results are shown in Fig. 3(b) and reflect

both similarities and differences to experiment. Perhaps
most importantly, the susceptibility minimum near
M=Msat ∼ 1

3
appears strongly for temperatures below

290 mK, which indicates that a magnetization pseudo-
plateau is intrinsic to the Hamiltonian (2). In the simu-
lations, this susceptibility “valley” is flanked by two sharp
maxima that demarcate a new phase region centered at
finite field. This phase is stable for temperatures beyond TN
to a critical value T� ∼ 290 mK. The susceptibility maxima
marking the phase boundary are not resolved in our
experimental data, but may have been washed out as a
result of orientational averaging. The zero-field nnHAF
Hamiltonian (2) is isotropic, which means the system’s
response is invariant to the direction of applied field and
hence there is no need to take into account crystallite
orientation; the presence of anisotropic dipolar interactions
in practice introduces an orientational dependence over
which our experimental measurements are integrated.
Inspection of our MC simulations shows the new field-

stabilized phase to be an “up–up–down” (UUD) state in
which the moments of two-thirds of the Mn2þ ions align
parallel to the applied field, and that of the other third opposes
the field. Complete UUD order givesM=Msat ¼ 1

3
, which is

why the susceptibility drops around this value. We note that
the field-dependent behavior ofHeisenberg antiferromagnets
on other tripartite lattices (e.g., triangular [38,39] and
Shastry-Sutherland [40]) are also known to involve a
transition from their zero-field ground state to an UUD
phase, such aswe see here [38–40]. The similarity to Shastry-
Sutherland physics turns out to be a geometric feature of the
trillium net; a discussion of the mapping between the two
systems is given in the Supplemental Material [26].
There is a special significance of the proximity of

(disordered) CSL and (ordered) UUD phases for
TN < T < T�. Within this regime, an applied field drives
a disorder to order transition, resulting in a sudden loss of

FIG. 3. (a) Experimental field and temperature dependence of
the magnetic susceptibility of Na½MnðHCOOÞ3�. The inset shows
the field-dependent magnetization at 100 mK; experimental data
in black and low-field linear fit in red. Note the pseudo-plateau at
M=Msat ≃ 1

3
. This feature corresponds to the horizontal blue

region at ∼0.6 T in the main plot. (b) Magnetic susceptibility
from MC simulations, with phase boundaries shown as solid
lines. (c),(d) The corresponding field-induced change in magnetic
entropy from (c) experiment and (d) MC simulations, which has a
local maximum within the UUD phase. Within the regime
TN < T < T�, it is possible to cycle between disordered and
ordered states under the application and removal of a low
magnetic field. Hence the cycling regime illustrated by white
circles in panel (d) offers a magnetocaloric cooling strategy.
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entropy to be expelled as heat—i.e., a magnetocaloric
effect [41]. Moreover, since the UUD state hasM=Msat ∼ 1

3
,

the field required to generate this entropy change is small
by comparison to that required to induce transitions in
conventional antiferromagnets. As such, we expect an
attractive low-field magnetocaloric entropy change in
Na½MnðHCOOÞ3�.
The magnitude of this magnetocaloric response was

calculated from both experiment and simulation according
to the relation [41]

ΔSmagðH; TÞ ¼ μ0

Z
H

0

∂MkðH0; TÞ
∂T dH0: ð3Þ

Here Mk is the magnetization parallel to the direction of
applied field. Our results are shown in Figs. 3(c) and 3(d).
For temperatures T > T�, the magnetic entropy change
behaves essentially as one expects for a paramagnet: field
increasingly reduces the magnetic degrees of freedom, such
that entropy reduces smoothly and monotonically. For
T < T�, however, there is a local maximum in magnetic
entropy change that coincides with UUD order. In our
simulations, the most negative value of ΔSmag we obtain
(viz −12 J kg−1K−1) is actually competitive with that of
systems used commercially for magnetocaloric cooling
[42,43]. The experimental value is less extreme by a factor
of about four because orientational averaging over crys-
tallite orientations makes the CSL → UUD transition
smooth. One expects a sharper transition in single-crystal
measurements that no longer integrate over crystallite
orientation, which in turn would amplify the magnetocaloric
entropy change attainable in this system. One way or the
other, the basic principlewould be to cycle betweenCSL and
UUD states by applying and removing field, dumping the
heat generated as entropy during the CSL → UUD transi-
tion, then forcing the system to cool its environment on
recovery of the higher-entropy CSL phase [Fig. 3(d)].
From a materials design perspective, avenues for optimiz-

ing trillium magnetocalorics are straightforwardly identified
—after all, the phase behavior we identify here depends only
on the magnitudes of S and J, and the trillium edge length,
which in turn influencesD. Because a largeD=J washes out
the magnetocaloric effect in powder samples, optimizing the
isotropic coupling J is likely better than optimizing S. One
possibility for doing so is to use an alternative bridging ion
(e.g., azide) with stronger superexchange.
We conclude by highlighting the importance of geometric

frustration within the CSL phase for generating a strong
magnetocaloric effect at relatively low applied fields. A
number of the most important magnetocaloric materials,
such as gadolinium gallium garnet, are also strongly frus-
trated [44–47], and we see our analysis here as providing a
robust link between frustration and this useful physical
property. A corollary is that non-magnetic frustration in
pseudospin systems may favor strong barocaloric responses

at low pressures, offering a new design strategy for efficient
solid-state cooling devices [48–50].
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