
University of Bergen
Department of Informatics

Overlapping Community
Detection using Cluster
Editing with Vertex

Splitting

Author: Gard Askeland
Supervisor: P̊al Grøn̊as Drange, Co-supervisor: Ahmad Hemmati

November 2022

Abstract

The problem Cluster Editing with Vertex Splitting models the task of overlapping
community detection by yielding a cluster graph wherein a vertex of the input
graph may be split so that it is present in several clusters. Cluster Editing
with Vertex Splitting is previously proved to be in FPT with a quadratic size
kernel. In this thesis we apply techniques from the fields of metaheuristics and
hyperheuristics in order to develop heuristics for the problem. These heuristics
prove to be robust, to scale linearly with a factor of 2.1 · 10−3 per additional
edge in the input graph and to enable the study of high-quality solutions of
CEVS for much larger graphs than what is possible with currently known exact
methods. Furthermore, CEVS-score is introduced as a ground truth independent
measure for comparing solutions to the overlapping community detection task,
and communities found by the CEVS-heuristics are compared to communities
found by other algorithms solving the overlapping community detection task
with results favoring the CEVS-heuristics.

1

Acknowledgements

I wish to thank my supervisors P̊al Grøn̊as Drange and Ahmad Hemmati for
all the good advice, and Jakob Kallestad for inspiration, discussion and gaming
sessions contributing to the thesis. Also thanks to my family and friends for all
the love and support they have given me. Special thanks to Anders and Johan
Magnus for being wonderful flatmates.

Gard Askeland

21.11.2022

2

Contents

1 Introduction 5
1.1 Community detection . 8
1.2 Cluster editing . 13
1.3 Metaheuristics and hyperheuristics 14
1.4 Parallelization . 14
1.5 Organization of thesis . 15

2 Preliminaries 16
2.1 General definitions . 16
2.2 Problem definition . 16
2.3 Parameterized complexity . 18
2.4 Parallel algorithms . 19
2.5 Metaheuristics and hyperheuristics 19

2.5.1 Adaptive Large Neighborhood Search (ALNS) 19
2.5.2 Uniform Random Agent (URA) 20
2.5.3 Deep reinforcement learning hyperheuristic (DRLH) . . . 20

2.6 Metaheuristic framework . 22
2.7 Terminology for implementation details 22

3 Implementation of heuristics 24
3.1 Datastructures . 24
3.2 Operators . 26

3.2.1 Suggestive operators . 28
3.2.2 Assertive operators . 28
3.2.3 Operators with poor performance 29
3.2.4 Selection heuristics . 30
3.2.5 Parallelization of operators 30

3.3 Reduction using critical cliques 31
3.4 ALNS . 32
3.5 DRLH . 34

4 Algorithms to solve CEVS parameterized by maximum vertex
degree 36

3

5 Solving CEVS on complete bipartite graphs with formula 38

6 Results 41
6.1 Data sets used in experiments . 41
6.2 Robustness of AHC . 41
6.3 Compare URA, ALNS and DRLH 43
6.4 Running time scaling . 46
6.5 Running time of operators . 47
6.6 Parallelization of operators . 52
6.7 Properties of solution communities with comparison to other

algorithms . 52

7 Conclusion 61

4

Chapter 1

Introduction

Along with the growth of computational power and the subsequently improved
capabilities of gathering data, the scientific community has taken a keen interest
in graph networks. One much studied property of such graphs is their community
structure, leading to development of algorithms for community detection. The
task of community detection on graphs has a wide range of applications, for
example in biology, social science and data mining [69, 56]. Most attention has
been given to the problem of disjoint community detection, where each vertex
of a graph is assigned only one community. In the last twenty years, the more
complicated problem of overlapping community detection, where one vertex
can be in several communities, has also been examined. Arguably, overlapping
community detection represents a more realistic scenario in many cases, for
example in social networks where most people can be said to be part of several
communities, for example one family community and one work community [50].

Although the idea of a community in a network is intuitive, the work on
community detection has so far not yielded an agreed-upon best way to define
communities in networks. Instead, researchers in the field have explored a
wide range of approaches using both statistical methods and decision problems
to define communities with desirable properties, resulting in quality measures
that are prevalent in the literature [69, 48, 50]. Accordingly, benchmarking
experiments have been performed in order to compare community detection
algorithms on these measures [69, 56].

In this thesis we examine a suggested approach to the overlapping community
detection task using the decision problem Cluster Editing with Vertex
Splitting (CEVS) [3]. The problem is a variation on the much-examined
Cluster Editing problem, and both Cluster Editing and CEVS belong to
the category of algorithmic problem known as graph modification problems [43,
23]. CEVS implicitly yields a defined least cost for each graph G, which is the
lowest integer k for which an input of G and k to the decision problem gives a
positive answer. A not necessarily unique community structure corresponding
to such a lowest k is then interpreted to be a community structure of highest
possible quality for the input graph G. The problem defines four operations

5

named do nothing, edge addition, edge deletion and vertex split, where the latter
removes one vertex and adds two vertices to the graph so that the union of the
neighborhoods of the new vertices equals the neighborhood of the removed vertex.
A sequence of k of the four kinds of operations applied to the input graph G
that yields a cluster graph confirms that the instance of (G, k) is a yes-instance,
where a cluster graph is a graph in which every connected component is a clique
we call a cluster. Cluster Editing is different from CEVS only in that there
is no split operation, this making Cluster Editing model disjoint community
detection rather than overlapping community detection. When stating this,
we disregard the ”do nothing” operator which is included in the definition by
Abu-Khzam et al. [3] for convenience with regard to proofs and can be ignored
in practice.

In the sequence of operations applied to G we may split vertices that are
created by the split operator, this creating new vertices that we may split again
and so on. This implies a series of splits, all originating from one vertex split. In
Section 2.2 we define the first vertex being split in this series to be the original
ancestor of the other vertices in the series, with the other being descendant
vertices of the original ancestor. Each vertex in cluster graph G′ created by
applying the sequence of operations to G is either a descendant vertex or a vertex
that has not been split. Let Sv be the set of all vertices in G′ that have v ∈ V (G)
as original ancestor. CEVS models a solution to the overlapping community
task as such: Each cluster in G′ models a community, and if a cluster contains a
vertex of Sv, the community corresponding to the cluster contains v. Also, |Sv|
gives the number of overlaps for vertex v. If v ∈ V (G) is in V (G′) as well, v has
not been split and is in one cluster and community only.

There are two variations of the split operator, known as inclusive and exclu-
sive vertex split, where the exclusive split adds the restriction of the two new
vertices having disjoint neighborhoods. Both splits are reasonable approaches
to modelling overlapping community detection, but with slightly different con-
sequences. We may argue that inclusive vertex split is preferred to exclusive
vertex split from studying Figure 1.1. Here it may make sense for vertex 3 to
belong to two clusters including vertices {2′′, 4} and {1, 2} respectively, and if
we use an exclusive vertex split as shown in graph c in the figure, we need to add
an edge between 2” and 3 to make these clusters, while the inclusive vertex split
can duplicate the edge between 2 and 3 and therefore skip this edge addition.
CEVS with inclusive vertex split is the main focus in this thesis, and CEVS can
be assumed to refer to the problem defined with inclusive vertex split unless
otherwise is stated. Since splits can be assumed to be executed after all edge
additions (see Section 2.6), we can assume that the two vertices resulting from
a split ends up in different clusters and that two vertices originating from the
same split operation never have an edge to each other.

The exclusive vertex split was first introduced as an operation on graphs
by Eades and Mendonça [18] with the purpose of improving graph drawings by
removing a vertex, adding two new vertices and distributing the set of edges
incident to the removed vertex between the two new vertices (equivalent to
exclusive vertex split). Then Figueiredo and Mendonça proved that the following

6

1 2

3

4

(a) Original graph

1 2’

3 2”

4

(b) Valid split

1 2’

3 2”

4

(c) Valid split

1 2’

3 2”

4

(d) Invalid split

Figure 1.1: Example showing different ways to apply the splitting operation of
CEVS to a single vertex.

problem using the same splitting operation is NP-complete [20]:

Input: Graph G and nonnegative integer k
Parameter: k
Question: Decide if it is possible to obtain a planar graph by applying

at most k splitting operations to graph G

Splitting number

Planar graphs [5] were targeted as they are easy to make clear visualizations of.
To our knowledge this is the only other area of interest than CEVS in which the
splitting operation has been applied.

CEVS was introduced and proved to be in FPT with a quadratic size kernel by
Abu-Khzam et al [3]. It is not known whether the problem is NP-hard [3]. Given
the NP-completeness of Cluster Editing [29], it is reasonable to assume that
CEVS is NP-hard, motivating the study of heuristics for the problem. Heuristic
approaches are frequently preferred over exact algorithms for intractable problems
on large instances because of their simplicity and robustness [31], and examining
solutions provided by heuristics may inform the study of the complexity of the
problem. It is noted by Abu-Khzam et al. [3] that it is not obvious how to prove
NP-hardness of CEVS by reducing Cluster Editing to CEVS. Abu-Khzam et
al. [2] give a heuristic for the variation on CEVS with exclusive vertex split.

In this thesis we attempt a heuristic approach to solve CEVS, with the goal
of finding presumably optimal and near-optimal solutions to larger input graphs
than what the currently known exact methods allow. We examine a range of
approaches to heuristics, using Adaptive Large Neighborhood Search from the
field of metaheuristics, the recently introduced Deep Reinforcement Learning
Hyperheuristic [36] and a preprocessing on the input derived from Lemma 8
in Abu-Khzam et al. [3]. Eventually, the solutions found by the heuristics are
compared to results found by other algorithms solving the overlapping community

7

1

2

3

4

5

6 7

8

9

10

(a) Input graph

1

2

3

4’ 4”

5’ 5”

6 7

8

9

10

(b) Cluster graph of solution

Figure 1.2: Optimal solution for a graph by using two splits

detection task on canonical measures in the literature.

1.1 Community detection

Community detection endeavours to identify groups of vertices called communities
in graphs. In the literature there is general consensus that in each community
there should be more connections (edges) between vertices in the community
than there are connections to vertices not in the community [16, 69]. However,
there is as yet no agreed-upon definition of a community [16]. Initially the task of
disjoint community detection was given most attention, while in the last twenty
years, overlapping community detection has received a great amount of attention
also [69].

Several quality measures for evaluating communities assigned to graphs
have been introduced, and a few are pervasive in the literature on overlapping
communities.

One such measure is Overlapping Normalized Mutual Information (ONMI),
introduced by Lancichinetti, Fortunato and Kertész [40] and based on Newman’s
modularity for evaluating the quality of disjoint communities [49]. The version
of ONMI used in this thesis is one with a slightly different normalization, as
described by McDaid, Greene and Hurley [48]. ONMI calculates a score for

8

goodness of overlapping communities by comparing the clustering to a ground
truth for the graph the communities apply to. The score given is between 0 and
1 where a score closer to 1 indicates a closer match between the clustering and
the ground truth.

Another measure called extended modularity (EQ) [50] instead compares
the communities to a null-model, which is a graph where the probability of any
edge being present between vertex u and v is given based on the degrees of u
and v in the original graph. More edges being present in a limited area of the
graph than in the null model contributes to a larger EQ and is interpreted to
indicate modularity in the area. Thus, EQ provides an evaluation of the quality
of communities regardless of whether a ground truth for the graph examined
is available. Just like ONMI, this measure is given between 0 and 1. Here 1
indicates optimal modularity.

In this thesis both ONMI and EQ will be used to evaluate clusters found by
the metaheuristic algorithms. Other measures from the literature that are not
covered here include F1-score [21], omega-score [12], BCubed [4] and “within
cluster average distance” [2].

Many algorithms for finding good communities have been suggested. Some
researchers have approached the problem using node-clustering, edge-clustering
and combinations of these two techniques [16, 56]. Other approaches use matrix
factorization [73], graph partitioning [44], greedy local optimization [40] and
edge betweenness [24]. Cluster Editing and CEVS are exact approaches
formulated as decision problems, aimed at solving the disjoint and overlapping
community detection tasks respectively.

With the large amount of quality measures and algorithms available, there
is a vast diversity in approaches to solve, define and assess results for the one
task of overlapping community detection. Several papers argue that there is not
necessarily a best way to do the task, and that the results of each algorithm owe
more to the algorithm itself rather than some innate property of overlapping
communities in undirected graphs [69, 54]. Moreover, Peel, Larremore and
Clauset [54] prove and emphasize that the no free lunch theorem applies to
algorithms for community detection tasks, so that there is no best algorithm for
the task, but possibly classes of algorithms that work better for data structured
in certain ways. From this perspective, developing new approaches to overlapping
community detection may result in methods that gives better detection for some
classes of data, motivating the study of CEVS.

9

0

1

2

3

4
5

6

7

8

1
0

1
1

12
13

1
7

1
9

2
1

3
1

3
0

9

2
7

2
8

3
2

1
6

3
3

14
15

1
8

2
0

2
2

2
3

2
5

2
9

2
4

2
6

F
ig
u
re

1
.3
:
V
is
u
a
li
za
ti
o
n
o
f
th
e
o
ri
g
in
a
l
ka
ra
te

g
ra
p
h
[7
4
],
in
cl
u
d
ed

fo
r
co
m
p
a
ri
so
n
to

th
e
v
is
u
a
li
za
ti
o
n
s
o
f
so
lu
ti
o
n
s
o
f
C
E
V
S

fo
r
th
e
ka
ra
te

g
ra
p
h
o
n
th
e
n
ex
t
p
a
g
es
.
T
h
e
v
er
ti
ce
s
a
re

co
lo
re
d
a
cc
o
rd
in
g
to

cl
a
ss

m
em

b
er
sh
ip

in
th
e
g
ro
u
n
d
tr
u
th
.
T
h
is

v
is
u
al
iz
at
io
n
w
as

m
ad

e
u
si
n
g
G
ra
p
h
v
iz

[1
9
].

10

a
,
3
b
,
3

c,
4

d
,
6

e,
4

f,
3

g,
4

h
,
4

i,
3

j,
3

k
,
4

l,
2

m
,
2

n
,
3

o
,
1

p
,
1

2
6

2
9

3
3

3
2

2
8

3
1

1
7

2
1

7
13

4 1
0

6 1
6

8 30
14

22

2
3

2
7

2
5

2
4

1
5

1
8

9

1
9

12
2
0

1
1

0

1

2

3

5

F
ig
u
re

1.
4:

V
is
u
al
iz
at
io
n
of

a
m
in
im

u
m

so
lu
ti
on

of
C
E
V
S
fo
u
n
d
b
y
ex
ec
u
ti
on

of
A
H
C

on
th
e
ka
ra
te

gr
ap

h
.
A
ll
ed
ge
s
in
cl
u
d
ed

ar
e
th
os
e
o
cc
u
rr
in
g
in

th
e
or
ig
in
al

gr
ap

h
.
O
ve
rl
ap

p
in
g
ve
rt
ic
es

ar
e
d
ra
w
n
ou

ts
id
e
th
e
cl
u
st
er
s,

co
lo
re
d
ac
co
rd
in
g
to

th
e
n
u
m
b
er

of
cl
u
st
er
s
th
ey

o
cc
u
r
in

an
d
h
av
in
g
th
ic
k
,
re
d
ed

ge
s
to

ve
rt
ic
es

th
ey

sh
ar
e
a
cl
u
st
er

w
it
h
.
E
ac
h
cl
u
st
er

is
la
b
el
ed

(a
,k

)
w
h
er
e
a

is
a
u
n
iq
u
e
cl
u
st
er

la
b
el

an
d
k
is

th
e
n
u
m
b
er

of
ve
rt
ic
es

in
to
ta
l
in

th
e
cl
u
st
er
.
T
h
e
co
st

of
th
e
so
lu
ti
on

is
43

,
w
h
ic
h
co
n
si
st
s
of

22
ed
ge

d
el
et
io
n
s,

5
ed
ge

ad
d
it
io
n
s
an

d
1
6
ve
rt
ex

sp
li
tt
in
g
s.

T
h
is

v
is
u
a
li
za
ti
o
n
w
a
s
m
a
d
e
u
si
n
g
G
ra
p
h
v
iz

[1
9
].

11

a
b

c

d

e

f

g

h

i
j

k

l

m

n
o

p

3
3

3
3

33

3
3

3
3

3
2

3
2

0

0

0

2

3

7
13

4
5

1
0

1

1

5 6 1
6

3
1

2 9

19

1
2

3

26 29

33
3
2

2
8 3
1

0

1

17
21

8

1
1

3
0

2
7

1
4

2
2

2
3

2
52
4

1
5

1
8

2
0

F
ig
u
re

1
.5
:
A
lt
er
n
a
ti
v
e
v
is
u
a
li
za
ti
o
n
o
f
a
m
in
im

u
m

so
lu
ti
o
n
o
f
C
E
V
S
fo
r
th
e
ka
ra
te

g
ra
p
h
,
th
e
sa
m
e
so
lu
ti
o
n
a
s
in

F
ig
u
re

1
.4
.
H
er
e
th
e
cl
u
st
er
s
co
n
ta
in

th
e
sa
m
e
v
er
ti
ce
s
a
s
in

th
e
cl
u
st
er

g
ra
p
h
co
rr
es
p
o
n
d
in
g
to

th
e
so
lu
ti
o
n
,
a
n
d
th
e
b
la
ck

ed
g
es

a
re

u
n
iq
u
e
ed

ge
s
of

th
e
in
p
u
t
gr
ap

h
.
S
p
li
t
ve
rt
ic
es

re
p
re
se
n
ti
n
g
th
e
sa
m
e
or
ig
in
al

ve
rt
ex

h
av
e
th
ic
k
,
re
d
ed

ge
s
to

on
e
an

ot
h
er
.
T
h
is

v
is
u
al
iz
at
io
n
w
as

m
ad

e
u
si
n
g
G
ra
p
h
v
iz

[1
9
].

12

1.2 Cluster editing

As pointed out previously, CEVS is a variation on the problem of Cluster
Editing. It is formulated as such:

Input: Graph G and nonnegative integer k
Parameter: k
Question: Decide if it is possible to obtain a cluster graph, a graph

where each component is a complete graph, by modifying
graph G by removing and adding at most k edges.

Cluster Editing

The problem is NP-complete [67] and has received much attention from
the field of parameterized complexity, yielding a linear kernel of at most 4k
vertices [29]. Fomin et al. [22] give a lower bound depending on the exponential

time hypothesis1 [33] of 2o(
√
pk) · nO(1), where p is the maximum number of

cliques in the resulting cluster graph and p = O(kσ) where 0 < σ < 1.
Furthermore, Cluster Editing was the problem chosen for the PACE-

challenge of 2021, a yearly competition wherein researchers in the field of
algorithms compete to implement both exact and heuristic solvers for a specific
problem [37]. In the heuristic track the best solvers for Cluster Editing
used various metaheuristics, and this work has informed the approach taken for
developing heuristics for CEVS in this thesis, for example by using Adaptive
Large Neighborhood Search [60] and operators inspired by label propagation [28,
58].

Cluster Editing is applicable to the problem of correlation clustering [7].
In this problem, a graph G with edges labeled either plus or minus is given,
and the goal is to partition the graph into clusters so that the partition either
maximizes the number of plus-labeled edges between vertices in the same cluster
or the number of minus-labeled edges between vertices in different clusters.
Correlation clustering is motivated by the practical machine learning problem
where one is given a set of n documents and their pairwise correlation defined
by a classifier and wants to partition the documents into categories that agree
with the classifier as much as possible [7]. An interpretation of the vertex
splitting operation in CEVS applied to correlation clustering is that the splitting
operation models identification of two erroneously merged documents and models
their separation, where the documents for example could have been merged by
mistake while hashing documents. Another interpretation is that a document
that belongs to several categories can be split so that it can be in several clusters,
each representing a category.

Additionally, Cluster Editing has found applications in computational
biology [10]. The literature in the field frequently utilizes Weighted Cluster
Editing, a version of Cluster Editing where the edges are weighted by the

1Informally: There exists no 2o(n) algorithm for 3-SAT and no O∗((2− ϵ)n) algorithm for
CNF-SAT [22]. See Cygan et al. [15] for a closer explanation.

13

correlation of vertices, with the vertices representing genes, proteins or other
biological entities. For more information on applications of Cluster Editing
in biology, see Böcker and Baumbach [9]. In some problems in computational
biology, for example the study of metabolic pathways, there is a high degree
of interconnection and therefore overlap between clusters [71], which suggests
CEVS may be applicable.

1.3 Metaheuristics and hyperheuristics

In a recent survey on metaheuristics by Dökeroglu et al. [17], the term meta-
heuristics is said to describe “higher level heuristics that are proposed for the
solution of a wide range of optimization problems”. Thus, such heuristics work
as guidelines for making heuristics for solving different optimization problems.
Techniques from the field are particularly useful to solve NP-hard problems [68],
frequently finding optimal solutions faster than exact algorithms and in cases
where exact algorithms are impractical yielding the best known solutions to
problem instances [30, 70, 17].

Since metaheuristics have been applied to Cluster Editing previously, it
is reasonable to assume that techniques from the field can be applied to the
relatively similar problem of CEVS. In this thesis the metaheuristics Uniform
Random Agent (URA) and Adaptive Large Neighborhood Search (ALNS) are
applied to CEVS. Our implementation of ALNS for solving CEVS will be referred
to as AHC , an abbreviation of ALNS-based heuristic for solving CEVS . Note
that both URA and ALNS are similar to simulated annealing [38], and that
simulated annealing therefore is not considered in much depth in this thesis.

A hyperheuristic is “a heuristic search method that seeks to guide the selection
or generation process of heuristics in order to more efficiently solve combinatorial
optimization problems” [36]. The field overlaps with metaheuristics, with for
example the metaheuristic ALNS being a selection-based hyperheuristic. In
this thesis the hyperheuristic Deep Reinforcement Learning Heuristic (DRLH)
described and implemented by Kallestad, Hemmati and Hasibi [36] will be
compared to URA and ALNS on their performance in terms of running time
and objective when applied to CEVS.

1.4 Parallelization

With the stagnation of performance improvement for sequential processors,
difficult computational tasks have moved on to the realm of several processes
and parallelization [64]. Modern processors have several threads and make
parallelization of everyday computing tasks viable, while the emergence of big
data urges the development of algorithms that use parallelization in order to
enable analysis of larger data sets in less time [64]. In this thesis the possibilities
and challenges of parallelizing AHC are examined, and experiments are run on a
parallel implementation of AHC using shared-memory parallel computing with

14

OpenMP [51]. The results show that the attempted approach to parallelization
yields only a modest speedup.

1.5 Organization of thesis

The thesis is divided into seven chapters. In Chapter 2 we define the problem
CEVS and terminology for presenting the material in the thesis, and we introduce
the different meta- and hyperheuristics we use for solving CEVS. Then, we
present an overview of the implementations of heuristics to solve CEVS in
Chapter 3. We give a branching algorithm to solve CEVS exactly parameterized
by maximum vertex degree in Chapter 4, and in Chapter 5 we give a conjecture
about the possibility of finding exact solutions of CEVS on complete bipartite
graphs. Chapter 6 presents results showing robustness of AHC, compares the
performance of ALNS on CEVS to the performance of URA and DRLH, examines
scaling and parallelization of AHC and compares results obtained by AHC to
results obtained by other community detection algorithms. Finally, a conclusion
summarizing the thesis is found in Chapter 7.

15

Chapter 2

Preliminaries

2.1 General definitions

The following assumes familiarity with the subject of graphs. All graphs examined
in the thesis can be assumed to be simple graphs unless otherwise is stated. For
a simple graph G = (V,E), let V (G) indicate the vertex set of the graph and let
E(G) indicate the edge set. Also, |V (G)|= n and |E(G)|= m.

Let the open neighborhood of a vertex u in a graph G be N(u) = {v |
uv ∈ E(G)}, and let deg(u) = |N(u)|. The closed neighborhood of vertex u is
defined as N [u] = N(u) ∪ {u}. For a set S let the open neighborhood of S be
N(S) =

⋃
v∈S N(v)\S, and let the closed neighborhood of S be N [S] = N(S)∪S.

Also, let a neighborhood set of a vertex u be a set S so that u /∈ S and for some
v ∈ N(u), v ∈ S. We let ∆(G) denote the maximum degree of any vertex in a
graph G.

Let an induced subgraph G′(S) of a graph G where S ⊆ V (G) be a graph so
that V (G′(S)) = S and E(G′(S)) = {uv | u, v ∈ S, uv ∈ E(G)}. A clique is an
induced subgraph G′(S) on a set S ∈ V (G) such that G′(S) is a complete graph,
which means every vertex in G′(S) has an edge to every other vertex in G′(S).
Then a cluster graph is a graph in which every connected component is a clique,
and we may refer to such a clique as a cluster . Let an induced path in graph G
be a path in G that is an induced subgraph of G, emphasizing that vertices not
adjacent in the path do not have an edge to each other. Then, let any induced
path on three vertices in a graph be called a P3. A graph is a cluster graph if
and only if it has no P3 [59].

The notation O∗(f(n, k)) will be used to denote asymptotic running time for
parameterized algorithms without polynomial factors and addends.

2.2 Problem definition

We first formulate the problem as a decision problem, similar to the definition
given by Abu-Khzam et al. [3]:

16

Input: Graph G and integer k
Parameter: k
Question: Decide if there is a cluster graph G′ so that G can be changed

into G′ by applying a sequence of operations e1, e2, ..., ek
to G. A new graph is created each time an operator is ap-
plied, and this yields the graph sequence G0, G1, G2, ..., Gk

corresponding to the sequence of operations, where G = G0

and G′ = Gk. Let 1 ≤ i ≤ k. Each operation ei is one of
the following:

1. do nothing

2. add an edge to E(Gi−1)

3. delete an edge from E(Gi−1)

4. split v ∈ V (Gi−1) by deleting v and adding two new
vertices v1, v2 with edges so that N(v1) ∪ N(v2) =
N(v).

Cluster Editing with Vertex Splitting

Note that for the split operation, the neighborhoods of the added vertices do
not necessarily need to be disjoint. This makes the split an inclusive vertex split.
As previously mentioned, an alternative approach to CEVS uses an exclusive
vertex split instead, such that N(v1) and N(v2) are a 2-partitioning of N(v).

In this thesis we introduce the following new formulation of CEVS that
emphasizes optimization by minimizing k.

Input: Graph G and objective k
Question: Minimize k so that there is a sequence of operations

e1, e2, ..., ek that changes G into a cluster graph G′, where
each operation in the sequence is one of the operations
allowed in CEVS.

CEVSopt

The split operation yields a tree structure of vertices that are added and
removed by the split operation, and we introduce terminology to describe this
tree structure. For the split operation, let v1 and v2 be descendants of v.
Furthermore, any vertices added to the graph by splitting descendants of v are
also descendants of v, and v is the original ancestor of its descendants.

In Abu-Khzam et al. [3] the following lemma is given, here somewhat modified
to fit the definitions used in this thesis:

Lemma 1. [3, Lemma 7] For a graph G = (V,E) there is a computable bijection
between pairs of cluster graphs G′ = (V ′, E′) and equivalence classes of sequences

17

of operations. A minimum-length sequence corresponding to G′ can be computed
in O((|V ′|−|V |)∆(G) + |V |+|E|+|V ′|+|E′|) time.

Equivalence classes of sequences of operators are defined so that when two
sequences applied to a graph G yield the same graph G′, the sequences are
considered equivalent. The lemma implies that there is a computable minimum
sequence ϕ of operations from CEVS that can be applied to G in order to
obtain G′.

Let a solution to CEVS for graph G be a family of sets F so that F contains
one set SC for every connected component C in cluster graph G′. Here SC

contains the original ancestors of every vertex in C as determined by the minimum-
length sequence ϕ of operators applied to G in order to obtain G′. Then let the
length of ϕ be the CEVS-score of the solution. Note that giving a solution F for
a graph G thus implies a unique CEVS-score for the solution.

Each set in F can be interpreted as a community of the original graph G.
Let a solution to the community detection task on graph G, as found by any
algorithm, be given by a family of sets F that is a solution to CEVS.

2.3 Parameterized complexity

The three following definitions are adapted from Cygan et al. [15].

Definition 1. A parameterized problem is a language L ⊆ Σ∗ ×N, where Σ is a
fixed, finite alphabet.

For Cluster editing with Vertex Splitting, L′ ∈ Σ∗ is the encoding
of a simple graph and the parameter k ∈ N is the editing cost. If a pair
(L′, k) ∈ Σ∗ × N, the graph of the problem instance (L′, k) can be made into a
cluster graph by using at most k of the allowed operations.

Definition 2. A parameterized problem L ⊆ Σ∗ × N is called fixed-parameter
tractable (FPT) if there exists an algorithm A, a computable function f : N −→ N
and a constant c such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly
decides whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The complexity
class containing all fixed-parameter tractable problems is called FPT.

Definition 3. A kernelization algorithm, or simply a kernel, for a parameterized
problem Q is an algorithm A that, given an instance (I, k) of Q, works in
polynomial time and returns an equivalent instance (I ′, k′) of Q. It is required
that there is a computable function g : N −→ N so that |I ′|+k′ ≤ g(k).

Frequently the instance (I ′, k′) is referred to as the reduced instance, and the
kernel A as a reduction. Abu-Khzam et al. [3] give a polynomial time reduction
for CEVS.

Theorem 1. [15, Lemma 2.2] A decidable problem admits a kernel if and only
if it is fixed-parameter tractable.

Since a kernel was given for CEVS by Abu-Khzam et al. [3], CEVS is in
FPT.

18

2.4 Parallel algorithms

According to Sipser [68], an algorithm is informally “a collection of simple
instructions to carry out some task”. A formal definition is given by the Church-
Turing thesis where algorithms are equated to algorithms that can be run on
a Turing machine [68]. Let a sequential algorithm be an algorithm whose
instructions are executed in a specific order, and let a processing element or a
thread be a unit than can run a sequential algorithm. Then a parallel algorithm
is an algorithm that is designed to run on more than one processing elements
simultaneously.

Let running time be the time in seconds that a program takes to execute
when run once on a computer. Let p be the number of processing elements or
threads that are used by algorithms and programs. Thus, p may be used in
an expression describing the running time of an algorithm. For algorithm A,
let tseq(A) denote the sequential running time of A and let tpar(A,p) denote the
parallel running time of A with p processing elements. Then the speedup of A
executed on p processing elements is defined as:

s(A, p) =
tseq(A)

tpar(A,p)

2.5 Metaheuristics and hyperheuristics

2.5.1 Adaptive Large Neighborhood Search (ALNS)

Adaptive Large Neighborhood Search is a metaheuristic that was initially in-
troduced by Ropke and Pisinger [60] in 2006, then applied to the problem of
Pickup and Delivery Problem with Time Windows (PDPTW). A neigh-
bor solution to a solution for a problem is another solution for the problem
which is marginally different, and the neighbor solutions of a solution constitute
the solution’s neighborhood. The metaheuristic assumes a pool of heuristics
or operators used to modify a solution, where at least some of the operators
search in a large pool of neighbor solutions, justifying the word large in the
name of ALNS. The algorithm works by picking an operator from the pool in
each iteration, and is finished after having executed an integer imax iterations.
Each operator is assigned a weight that is adjusted intermittently depending on
the performance of the operator, and the weights determine the probabilities of
the operators to be chosen in an iteration. The weight adjustment makes ALNS
adaptive, as it can adapt the probability distribution of its operator choices
depending on the effectiveness of operators on a given data set.

The metaheuristic specifies that a search occurs in segments of a given
number z iterations, where the weights of each operator are adjusted after each
segment. Let w1, w2, ..., wp be the weights of the p operators O1, O2, ..., Op in
the pool and let σ1, σ2, ..., σp be the scores given to the operators in a given
segment. Oj is scored by adding to σj each time operator Oj is chosen in an
iteration, where the scoring may depend on any given criteria as specified in a

19

reward function. At the end of the segment the score is updated as such:

wj ← wj · (1− r) + r · σj

θ
(2.1)

Here r is a real number between 0 and 1 giving the rate of change and θ is∑j=p
j=1 σj for the segment.
Additionally, there is an acceptance criteria deciding whether a new solution

found by an operator should be accepted. An example of a criteria that can be
used for ALNS is the one described in the subchapter on simulated annealing
in Kleinberg and Tardos [38], where better solutions are always accepted while
worse solutions are accepted with a certain probability. This is the acceptance
criteria that is used for ALNS in this thesis, and it is explained in the following.

Let s be the old solution and s′ be the new one. If the cost of s′ is less than
the cost of s, we accept s′. Else, s′ is accepted with probability

g(s, s′, T) = e−(f(s′)−f(s))/T (2.2)

where f(s) gives the cost of solution s and T is a temperature that decreases
over the execution of the search. Note that this means that it is less likely to
accept a solution s′ the larger its cost is compared to s and that it is less likely
to accept a worse solution the closer the search is to its final iteration.

In the ALNS implementation for CEVS in this thesis the above blueprint for
ALNS has been used since it is not specific to PDPTW and can be adapted to
other optimization problems. However, not all aspects of ALNS for PDPTW are
reasonable to bring along, specifically the split of operators into insertion and
removal heuristics so that each operator picks one heuristic from each category.
This division is not meaningful for CEVS since vertices can be in several sets in
the solution representation at the same time, so that insertion without removal
and vice versa is possible.

2.5.2 Uniform Random Agent (URA)

Uniform Random Agent is a metaheuristic that picks operators from a pool
each iteration over a number of iterations and therefore can replace ALNS in
an algorithm. The operators are chosen by uniform randomness and so that it
is equally likely that any operator is picked in any iteration. URA provides a
baseline to compare ALNS and DRLH against, showing whether the adaptivity
of ALNS and the training of DRLH lead to better results than what one would
get with random choices of operators.

2.5.3 Deep reinforcement learning hyperheuristic (DRLH)

DRLH was first introduced by Kallestad, Hemmati and Hasibi [36] and provides
a general hyperheuristic selection framework to be used for choosing heuristics
to solve combinatorial optimization problems, effectively being an alternative
to ALNS. The framework uses deep reinforcement learning to make choices

20

depending on an observed state and what it has learned from training on data,
referred to as its policy, and it proved to find better results than ALNS on four
different combinatorial optimization problems, with its performance increasing
compared to ALNS for larger problem sizes. Also, its performance did not worsen
with an increasing number of available operators as is observed to occur with
ALNS. In this thesis DRLH is once again compared to ALNS, but on the graph
modification problem CEVS instead of the scheduling and routing problems
studied by Kallestad, Hemmati and Hasibi [36].

A closer explanation of the relation of DRLH to the pool of operators is
warranted. In reinforcement learning there is an agent , for example DLRH, that
acts on an environment, which in the case of this thesis is the metaheuristic
framework detailed in the implementation section. The environment will at a
given time t have a state st that is specificically designed to be used by the agent
and is separate from for example a solution state. The agent observes this state
and uses its policy , a probability distribution π(a|st), to decide which action a
to take. The environment then gives a reward to the agent depending on the
quality of the action taken, which is determined by a reward function. The agent
uses this to update its policy with the goal of optimizing reward granted for
each action taken. The policy is usually not updated for every action taken, but
at the end of a series of actions called an episode. The agent may in addition to
the reward function utilize a value function that takes expected future reward
resulting from action a into account, so that the agent uses input from both the
reward function and the value function when optimizing its policy. For DRLH
the policy is a type of neural network called a multilayer perceptron (MLP) [27]
that is optimized using a policy gradient method known as proximal policy
optimization [65]. The optimal policy is found by adjusting the parameters of
the neural network.

Thus, in each iteration of a solver using DRLH, the DRLH agent makes a
decision about what operator to use by using its policy that considers the current
state, obtains feedback from a reward function and a value function and stores
this information, which in time is used to update the policy at the end of an
episode. Note that the DRLH agent does not consider the data instance and
current solution when making decisions and updating its policy unless these in
some capacity are included in the state. In our implementation of DRLH for
CEVS, we use the objective of the current solution only indirectly (see Section
3.5).

From the above it is clear that DRLH takes the same role as ALNS in a
solver, similarly making decisions and receiving feedback. However, DRLH needs
training data while ALNS can be used directly on the data instance one aims
to solve, meaning that using DRLH demands a larger amount of available data
sets than using ALNS. A benefit of DRLH is that it can be used for discovering
good operators among a possibly large pool of implemented operators. This may
speed up the process of figuring out which operators are effective and therefore
should be included in the operator pool of the final algorithm [35].

When referring to an implementation of state we use the term state repre-
sentation.

21

2.6 Metaheuristic framework

In order to solve CEVS, the above methods from the fields of metaheuristics and
hyperheuristics are applied. To use these methods, a general framework that can
be used together with ALNS, URA and DRLH is needed. This framework should
work so that changes can be applied to solutions that have a corresponding
objective given by an objective function. The meta- and hyperheuristics then
chooses which changes to apply to the solution representation with the goal of
obtaining a solution of minimal objective. A solution can be said to be feasible if
it is a valid solution to the problem and infeasible if it is not, where the definition
of a valid solution is entirely dependent on the definition of the problem. In the
following a solution representation and an objective function for CEVSopt is
given.

As solution representation we use a family F of subsets where F ⊆ 2V , the
power set of the vertices of G. Then a set S ∈ F corresponds to a component
in the cluster graph G′, just as explained in Section 2.2. A solution is feasible
as long as

⋃
S∈F S = V (G), since it is a consequence of the definition of CEVS

that for every vertex in V (G), either itself or one of its descendants has to be
present in at least one clique in the cluster graph implied by the solution.

Now for the objective function. Abu Khzam et al. [3, Theorem 1] prove that
any sequence of operations can be rewritten to another edit sequence of equal or
smaller length without “do nothing” operations so that all edge additions are
done before all edge deletions and all edge deletions are done before all vertex
splittings. This suggests an algorithm for the objective function for a solution F
that can be calculated as follows:

1. Initialise cost variable c = 0.

2. Edges are added as such: For each u ∈ V (G), iterate over all vertices v so
that u, v ∈ S for some S ∈ F . If uv /∈ E(G), add 1 to c. We make sure
not to count any edge twice.

3. Edges are deleted as such: For each vertex u ∈ V (G), if there is an edge
uv ∈ E(G) and there is no S ∈ F so that u, v ∈ S, add 1 to c. We make
sure not to count any edge twice.

4. Vertices are split as such: For each u ∈ V (G) we find the number du of sets
in F that contain u, that is du = |{S | u ∈ S, S ∈ F}|. Then add du − 1
to c as this is the number of vertex splitting operations that is required for
vertex u.

5. Return c.

2.7 Terminology for implementation details

Now for terminology that is specific to the implementation covered in this thesis.
The solution representation is stored in a solution object together with other

22

datastructures that are convenient for developing well-performing heuristics.
A change to the solution representation is called an action. In order to find
actions to execute we use operators , which are functions that use the information
encoded in the solution object to find and store actions and make changes to the
solution object. The agent is the higher-level program choosing which operators
to call, e. g. when a metaheuristic like ALNS decides to apply an operator to
the solution object, the metaheuristic is the agent.

Furthermore, the cost of an operator is the change in objective function after
applying the action found by an operator to the solution object. An operator
may return an integer giving the cost of an action that is ready to be executed,
and a lower cost gives a better objective function after applying the action. Note
that the cost is negative if an action decreases the result of the objective function,
zero if the result stays the same and positive if the result increases.

A vertex is said to be touched in an iteration if it is added to a set S ∈ F
or removed from a set S ∈ F , and a set S is said to be touched in an iteration
if there is a change in elements of the set. When a vertex or set has not been
touched over a number of iterations it is said to be untouched .

23

Chapter 3

Implementation of heuristics

Recall that we refer to the heuristic algorithm solving CEVS using ALNS as
ALNS-based Heuristic for CEVS, abbreviated as AHC. The implementation
that uses a deep reinforcement learning agent rather than the adaptive agent of
ALNS is referred to as Deep Reinforcement Learning Hyperheuristic for CEVS,
or DHC.

In this chapter we discuss the implementation details of AHC and DHC. The
implementation of AHC used for the experiments in Chapter 6 is available at
GitHub [6].

3.1 Datastructures

All of the following datastructures are stored in the solution object in the
implementation.

Red-black search trees [66] are used to build a couple of the datastructures.
This datastructure is similar to binary search trees [66] in that it consists of nodes
that have a key and a value, or a value that works as a key, and that the nodes
are placed in the tree so that one can traverse it by moving from parent-node to
child-node recursively or iteratively. However, the tree is self-balancing so that
we avoid some branches of the tree being significantly longer than others, this
giving O(log(n)) complexity for insertion, deletion and query of the datastructure
rather than the average O(log(n)) for these operations for binary search trees.
If the nodes in the red-black search tree consist of key-value pairs we call the
datastructure a red-black search tree map.

The datastructure storing F , the family of sets used as solution representation,
is a red-black search tree map where each node in the tree has an integer as its
key and a red-black search tree as its value. These red-black search trees as values
act as sets and have integer values indicating vertices of the graph G as nodes.
Thus, the outer tree map corresponds to F , and the inner trees corresponds
to sets S ∈ F . This datastructure for F was chosen in order to enable flexible
exploration of different strategies and operators during development, in particular

24

with regard to enable efficient addition of sets to F and deletion of sets from F
and enabling iteration of the sets of F in order. Using sets implemented with
hash tables [66] instead of red-black search trees could likely give shorter running
times, but would prohibit in-order iteration of the sets of F . In the case where |F |
is fixed, which is not further examined in this thesis, an array could be used for F .
Since arrays can be accessed in O(1) time rather than the required O(log(n))
for red-black search trees and since arrays benefit more from caching than red-
black search trees because of related data being closer in memory, solving the
problem for fixed |F | is likely more efficient than for non-fixed |F | in practice.
The implementations of red-black search tree and red-black search tree map we
use for implementing F are the set and map containers in the C++ standard
library [34].

In addition to F , there are other datastructures that are derived from F and
are updated when F are updated. One of these is a set F ′ where |F ′|= n with
one set for each vertex in G so that each set Su ∈ F, 1 ≤ u ≤ n, contains the
keys of the sets in F that contain vertex u. This enables us to obtain a list of
the sets of F than contain vertex u with time complexity O(log(n)), instead of
in time Ω(n) which one would get by looking through the entirety of F every
time. The set F ′ is implemented with nested red-black search trees in the same
way as F .

Another datastructure derived from F is a co-occurrence matrix. This is
implemented as a red-black search tree map with a pair of integer indices as key
and an integer as value of each node, but it is accessed though an interface that
gives it the functionality of a matrix. Each entry (i, j) in the matrix contains a
non-negative integer that corresponds to the number of sets of F which contains
both i and j. The operators frequently have to check if vertices i and j appear
together in some set in the solution when calculating the cost of an action.
For example, we often check if there is an edge between i and j in the cluster
graph encoded in the solution prior to executing the action. Then if i and j did
have such an edge in the solution and we add vertex i to a set with vertex j,
we know not to include the addition of the edge ij in the cost of the action.
This datastructure enables retrieving this information in O(log(n)) (O(1) if
implemented with a matrix) instead of checking if j is in any of the sets i are in,
which is O(n · |F |).

Finally, segment trees [32] are used to store which vertices and sets have
been touched in an iteration. This information is used by operators that act on
vertices and sets that have not been touched in a certain number of iterations
(with at most one operator executed per iteration). Specifically, the segment
trees enable O(log(t)) time queries of which vertices and sets have been moved
in the last k iterations, where integer t is the total number of iterations of the
algorithm.

Note that the datastructures of the solution object may be modified even
though no action is executed. For example, some of the operators touch sets and
vertices during calculation, causing the segment trees to be updated. Furthermore,
some operators, in particular the intermittent scan operators introduced below,
have assigned datastructures that are modified when the operators are called

25

regardless of whether the actions the operators find are executed.

3.2 Operators

We define two types of operators to be used by AHC: Suggestive and assertive
operators.

The suggestive operators use the graph and the datastructures in the solution
object to find an action to apply to the solution. Then the operators store the
action in the solution object without executing it and return the cost if the
action is executed. Thus, the program calling the operator can decide whether or
not it wants to execute the action depending on the cost, for example according
to an acceptance criteria. When suggestive operators are called they may not
find a valid action. To inform the program calling the operator about this,
the operator returns an integer implementation of the optional class template
from C++, which we use so that it contains no integer when no valid action is
found.

The assertive operators find an action and return the cost of executing it
just as the suggestive operators, but differ in that they also execute the action
before returning. Thus, the program calling the operator cannot choose whether
or not to execute the action found by the operator after the operator call.

Several of the operators of both types work by picking a vertex, set or vertex-
set pair that has been deemed good from a sorted array and then finding an action
to do for the chosen vertex, set or vertex-set pair. Let such operators be called
intermittent scan operators. Algorithms 1 and 2 show how a suggestive version
of such an operator works when targeting vertices, and we give a corresponding
textual explanation in the following paragraph.

The first time the operator is called, the variable refillCounter is set to
a positive integer r, where r decreases by 1 each time the operator is called,
and goodVertices is filled with vertices sorted by the cost of the best possible
valid action for each vertex. Until refillCounter reaches 0, the program picks
the first vertex in goodVertices that has not been picked since the last refill.
The action the operator chooses for the vertex is not necessarily the same as
the one giving the cost of the vertex in goodVertices because of changes to
the solution object. When refillCounter reaches 0 or goodVertices is empty,
refillCounter is reset and goodVertices is refilled in the same way it was
initialized. By using this refill pattern in the operators we utilize that it is likely
to find several good actions to execute when searching the whole graph and that
this information is useful for executing more than one action, so that the next r
times the operator is called we benefit from picking actions from the sorted
array instead of expensively searching the entire graph each time. Note that the
pseudocode given in Algorithms 1 and 2 display programming patterns and that
the implementation of the function findBestActionOnVertex varies between
operators the patterns are applied to, so that pseudocode for this function is not
given.

Following are descriptions of the different operators. The ones listed under

26

Algorithm 1 Pseudocode for suggestive intermittent scan operator

if refillCounter = 0 || goodVertices.size = 0 then
refillGoodVertices()

end if
if goodVertices is empty then

return None

end if
u = goodVertices.pop()

cost, operation = findBestActionOnVertex(u)

store operation

refillCounter -= 1

return cost

Algorithm 2 Pseudocode for refillGoodVertices()

reset array goodVertices

for u=0; u < n; u++ do
result = findBestActionOnVertex(u)

if result is None then
continue

end if
append result to goodVertices

end for
sort goodVertices by cost of actions

reset refillCounter

27

suggestive and assertive operators were deemed of high enough quality to be
used in the final version of AHC, while some operators that did not perform well
even though their ideas are intuitive are included in Section 3.2.3. Any operator
that checks which vertices or sets have not been touched in the last k iterations
uses the segment trees in the solution object to obtain this information.

3.2.1 Suggestive operators

• Add vertex to set: The action of this operator is to add a vertex u to a
set Si. It is an intermittent scan operator that stores good pairs (u, Si)
to act with during the intermittent scan and picks from these in order of
increasing cost.

• Add vertex to untouched set: Chooses a set that has not been changed
in the last 5n iterations and adds a vertex to it in the same manner as
Add vertex to set.

• Move vertex: Uses intermittent scan. During the scan, for every vertex u
it finds the lowest-cost pair of sets (S1, S2) so that u can be taken from
one set and put into the other. Putting the vertex into an empty set is
considered, with this adding a set to F if executed. Otherwise, pairs of
sets so that N [S1] ∩ S2 = ∅ are not considered. The operator only stores
the minimum cost of moving the vertex between any pair (S1, S2) for every
vertex, and when the vertex is chosen for an action, the attempted action
uses the current lowest-cost pair of sets, which may not be the same pair
of sets found for the vertex during the scan. This operator is inspired by
the label propagation operator used by Gottenbüren et al. [28, 58]

• Move untouched vertex: Chooses a random vertex from the vertices
that have not been moved in the last 5n iterations. The vertex is moved
in the same way as for Move vertex.

• Remove 3 then add 3: This operator chooses a random P3 in the graph,
removes the vertices in the P3 and then greedily inserts them back in the
same order as they were removed, each vertex inserted into the current
minimum-cost set for the vertex to be inserted into. Only neighborhood
sets of the vertices and their original sets are considered. Recall that a
graph is a cluster graph if and only if it is has no P3, with this motivating
the creation of the operator.

3.2.2 Assertive operators

• Add vertex to neighbors: This intermittent scan operator adds a chosen
vertex u to each of the neighbor sets of u if the change in cost is not positive
when adding. Let add(u, Si) be an action where vertex u is added to the
set Si. Then the operator does the following set of actions:

28

{
add(u, Si) | cost(add(u, Si)) ≤ 0, Si ∈ [Sj | v ∈ Sj ∧ v ∈ N(u)]

}
.

• Add untouched vertices to neighbors: This operator picks a vertex
that has not been moved in the last 5n iterations and adds it to sets in
the same manner as Add vertex to neighbors.

• Remove vertex: This is an intermittent scan operator that picks a
vertex u and removes it from as many sets as possible so that the cost
for removing any vertex by itself is not positive. The sets are examined
in label order. If all vertices are removed from a set, the set is deleted
from F .

3.2.3 Operators with poor performance

• Merge: This suggestive operator checks the cost of merging any pair of
sets Si, Sj ∈ F and puts these results in a priority queue sorted by cost.
Each time the operator is called it checks which sets in F have been changed
and updates the priority queue with this information, before picking a
pair with low cost to merge. To check which sets have been changed since
the last time the operator was called, a segment tree storing which sets
are changed in which iterations is used. The operator was chosen few
times by the adaptive agent when used together with other operators, and
performance of AHC improved when removing this operator with regard
to both running time and objective. It is worth noting that this operator is
computationally much more expensive than the simpler operators adding,
moving and removing single vertices while its performance is worse.

• Split: The first time this suggestive operator is called, the inner cost
defined as

|[uv | uv /∈ E(G), u, v ∈ Si]|
|Si|

is calculated for each set Si. For later calls of the operator the inner cost
is updated for each set that has been changed since the last time the
operator was called, where checking which sets have changed is done by
using the same segment tree as was used for the merge operator. The
information is put in a priority queue sorted by inner cost so that a
set which contains many pair of vertices without edges in E(G) can be
picked. The operator splits this set using the Karger’s algorithm, which is
a randomized algorithm that gives the minimum cut in polynomial time
with high probability [38]. As for merge, the running time and performance
of AHC proved to be worse when including this operator, and the operator
was assigned little weight by the adaptive agent. Therefore, this type of
operator was excluded from the final version of AHC.

29

3.2.4 Selection heuristics

An important part of every operator is its choice of which parts of the graph to
act on. In the final version of AHC, selection heuristics like intermittent scan
and picking vertices that have been untouched for a while are used, as these have
been judged to yield the best performance of the selection heuristics that were
tried. Other selection heuristics that were implemented but later abandoned are
briefly described in this section.

One way of picking sets to change is to look at statistical properties of
the sets. An example is the inner cost used by Split as explained previously,
as well as a measure counting outgoing edges from vertices of a set used by
Merge. Generally this kind of measure turned out be computationally expensive
compared to using the cost of executing an action on for example a vertex as
a measure, where the latter approach is both simpler and more accurate with
regard to the problem at hand.

Other attempted selection heuristics acted on several vertices for the same
call of the operator. This selection heuristic is similar to the one used for the label
propagation operator in the heuristic for Cluster Editing by Göttenbüren et
al. [28], inspiring an early version of Move vertex. In this version, each vertex
in the graph is moved to its best position in a neighbor set, with the vertices
being moved in a random order. Compared to operators based on intermittent
scan, this selection heuristic resulted in much more expensive operators that
yielded similar or worse performance in terms of objective. Thus, intermittent
scan was used instead in all cases in the final version of AHC.

For some of the operators, weighted randomness was used to select which
of the best vertices or sets to act on. For example when choosing which vertex
to move in a variation on Move vertex, a logarithmic function is used to
assign 50% probability of picking the vertex of least cost, 25% probability to the
second vertex and so on up to limit. For array length l, max allowed index i,
random number r and logarithm base b, the weighted random function can be
written as such:

max(0, k − ⌊logb((r mod bmin(i,l)) + 1)⌋ − 1) (3.1)

Note that adjusting the logarithm base affects the probability with which indices
are chosen. The case where there is 50% chance to pick the first index, 25% to
pick the second and so on uses b = 2.

3.2.5 Parallelization of operators

Some of the operators have been parallelized in order to examine the viability of
parallelizing AHC. The pattern used for every parallelized operator distributes
computational tasks done for every vertex of the graph between the available
threads and uses prefix sum to merge the results into an array, similar to the
prefix sum used in shared-memory BFS [64]. This pattern is applied to the
scan of intermittent scan operators and the check of whether a vertex has been

30

used in the last integer i iterations, a check which is done in operators moving
untouched vertices.

When dividing computation between all the vertices of the graph one could
expect a speedup of p where p is the number of threads used by the algorithm.
However, several factor prohibit this. One of these is that AHC uses datastruc-
tures that are not optimized for parallelization, like red-black search trees, which
use links between nodes in the trees and thus cause elements closely located in
the datastructure to not necessarily be closely located in memory. This results
in poor utilization of cache, which is a well-known issue that may occur when
writing parallel programs [64]. Usually one gets larger speedup when one is able
to use arrays as datastructures, which is troublesome for CEVS where we want
to be able to add and delete sets labeled with specific keys. An algorithm for
CEVS with fixed cardinality of F could utilize arrays more and thus be more
amenable to parallelization. Another factor is that parallelization is initiated
each time the parallel part of an operator is reached, where both initializing new
threads and synchronizing them once they are done are expensive procedures.
Working around the frequent initiation would require more synchronization and
threads that are inactive for large amounts of time, which makes this not seem
like a viable approach. Finally, significant parts of the algorithm run sequentially
and can therefore not be sped up with parallelization. As shown in the results,
the best speedup achieved using the approach to parallelization described above
is somewhat less than 2.

3.3 Reduction using critical cliques

We now consider using Lemma 8 from Abu-Khzam et al. [3] in order to reduce the
size of the graph before applying metaheuristics. This lemma uses the definition
of a critical clique graph CC(G), a graph which can be made from every graph G
so that each vertex in CC(G) is derived from vertices of G that have the same
closed neighborhood in G. Then, the vertices that share closed neighborhoods
are said to form a critical clique and are mapped to a single common vertex
in CC(G). Let any set of vertices that share a closed neighborhood in G be
called S(v) for v ∈ CC(G). Two vertices u, v ∈ CC(G) have an edge if some
vertices w ∈ S(u) and w′ ∈ S(v) have an edge to each other in G, and because
of the shared closed neighborhoods then every vertex in S(u) and S(v) have
edges to one another in E(G). It is proved by Lin, Jiang and Kearney [42] that
each vertex of V (G) is present in only one critical clique.

The lemma states the following:

Lemma 2. [3, Lemma 8] Any solution F = (S1...Sl) to CEVS for a graph G
that minimizes k will always satisfy the following property: for any u ∈ G,
v ∈ CC(G), u ∈ S(v) and for any Si ∈ F , either S(v) ⊆ Si or S(v) ∩ Si = ∅.

Thus, every optimal solution of CEVS on G consists only of sets that are
unions of sets corresponding to vertices of CC(G).

31

Graph Running time of reduction Average running time of AHC
FARZ test 0 0.245 21.779
FARZ test 1 0.236 130.901
FARZ test 2 0.267 122.954
FARZ test 3 0.209 3.638
FARZ test 4 0.269 195.076
FARZ test 5 0.256 163.185
FARZ test 6 0.228 28.315
FARZ test 7 0.236 96.665
FARZ test 8 0.237 63.972
FARZ test 9 0.233 43.625

Table 3.1: Experiments comparing the running time for the reduction using
critical cliques and the average running time of AHC. Time is given in seconds.
Run on Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz.

Abu-Khzam et al. [3] use this fact to give a kernel, but since we here consider
heuristics, a simpler application is possible. Since every vertex of CC(G) is a
subset of a set in an optimal solution of CEVS, we can execute the heuristics
on CC(G) instead of G. In order to make this work the vertices of V (CC(G))
are given the weight of the number of vertices in V (G) with equal closed
neighborhoods they correspond to, and the edges uv are given the weight of
|S(u)|·|S(v)|, corresponding to the number of edges between the vertices of S(u)
and S(v) in E(G). Then the operators can be applied to CC(G) like they are
applied to G, with the only difference being that it costs the weight of a vertex
to split the vertex and the weight of an edge to add or remove the edge.

This reduction gives a new graph with fewer or the same number of vertices
and edges. Guo [29] shows that a critical clique graph for input graph G can be
found in O(n+m) time, suggesting that the running time of the reduction is
low compared to the running time of AHC, which experimental results in Table
3.1 confirm. Since the operators use the same number of calculations on an
undirected graph as on a vertex- and edge-weighted graph, as weights of edges
and vertices simply are relabelled from 1 to other integers, this reduction could
enable more efficient execution of the operators by virtue of the operators being
run on a smaller graph. In this thesis we run an experiment comparing the
performance of AHC using this reduction to AHC not using this reduction.

3.4 ALNS

The versions of AHC used for experiments in the results in Chapter 6 use these
eight operators: Add vertex to neighbors, Add untouched vertices to
neighbors, Move vertex, Move vertex with a weighted randomness selection
heuristic used to pick from the array of goodVertices, Move untouched
vertices, Remove vertex, Add vertex to set and Remove 3 then add 3.

32

The adaptive agents use a segment size of z = 300 iterations between weight
changes with a rate of change r = 0.5.

Now for the acceptance criteria we have used (see Section 2.5.1). We use
the function Ti = Ti−1 · α for some number 0 < α < 1 to find temperature Ti

of acceptance criteria g(s′, si, Ti). Here si is the solution that an operator is
executed on in iteration i and s′ is a solution that may be accepted, resulting
from an action found by an operator executed in iteration i. Variable α is set
once over the execution of the algorithm, using a warm-up sequence. This is
a sequence of 1000 iterations where any action with positive cost is accepted
with 0.8 probability and the average cost of actions with positive cost is calculated.
The average cost is used to set T and α so that there is 0.8 probability that
an action with positive cost is accepted in the first iteration after the warm-up
sequence, and so that Timax = Tend for some end temperature Tend in the last
iteration of the algorithm execution, giving a negligible probability of accepting
an action with positive cost. Written with formulas, the temperature Tstart is
set to

Tstart = −Cw ·
1

ln(0.8)

where Cw is the average difference between new worse solutions and previous
solutions calculated during the warm-up sequence. Note that substituting Cw

for f(s′)− f(s) and Tstart for T in the acceptance probability formula in Equa-
tion 2.2 gives a probability of 0.8 of accepting a new solution that has an objective
that is Cw more than the previous solution. Then, we derive from

Tend = αimax−istart · Tstart

that α should be set to

α =
Tend

Tstart

1
imax−istart

where istart is the first iteration after the warm-up sequence and imax is the final
iteration.

For some versions of AHC we have used a slightly unorthodox reward function.
An operator is awarded 7 points if it finds a solution that has not been found
previously in the algorithm execution, 2 points if the solution it finds is better
than the previous solution and 5 points if it finds a new best solution. Here
each reward condition is evaluated independently, so that one solution may
gain 7 + 2 + 5 = 14 points if it fulfills all conditions. Let this function be named
the 725-function. A more conventional approach would be a function that gives
a small amount of points for finding a new solution, some more points for finding
a solution that is better than the last and the most points for finding a new
best solution, which for example was done by Hemmati et al. [30]. Let the
123-function be a function that gives respectively 1, 2 and 3 points for each

33

Graph Avg objective 725 Avg objective 123 Running time 725 Running time 123

val 10.txt 561.2 561 40.26 33.45
val 11.txt 1483.2 1486.4 153.45 121.50
val 12.txt 2383.8 2384.2 187.7 157.25
val 13.txt 1010.2 1012 40.03 32.88
val 14.txt 1811.8 1813 127.12 113.314
val 15.txt 1066.2 1069 40.67 33.80
val 16.txt 303.4 303.2 22.95 17.91
val 17.txt 498.4 498.6 13.77 11.66
val 18.txt 1052.6 1055.6 27.16 21.26
val 19.txt 682.6 683.8 34.79 26.63

Table 3.2: Comparing reward functions used with ALNS. The two left columns
show average CEVS-score of the found solutions, and the two right columns
show the corresponding average running time in seconds. Run on AMD Ryzen 5
3600.

725-function 123-function
5.491 · 10−3 4.309 · 10−3

Table 3.3: Percent average improvement versus URA for ALNS with different
reward functions.

scoring criteria in the previous sentence, but gives score for satisfying the criteria
with highest assigned score only.

Experiments show that choosing the 725-reward function over the 123-function
yields marginally better results, although it requires a slightly longer running
time (see Tables 3.2 and 3.3). Note that the variation in running time can
be attributed to the fact that some operators are more time consuming than
others (see Section 6.5). As the 725-reward function is more diversifying than
the 123-function, with more reward given for a new solution, this suggests
that emphasizing diversification leads to better performance for this ALNS-
implementation and the pool of operators that is used. However, using the 123-
function and increasing the number of iterations is also a reasonable approach.
In the interest of keeping to a fixed number of iterations for comparison, the 725-
function is used for the experiments in the Section 6 unless otherwise is stated as
this is the function that gave the best results in terms of CEVS-score for AHC
with 100’000 iterations in these preliminary experiments.

3.5 DRLH

DHC uses an acceptance criteria similar to that described for AHC, with a
warm-up sequence of 1000 iterations. Two types of reward functions have been
tried, this being the same two functions used for AHC. We run the algorithm
with 100’000 iterations, and the agents are trained on 100, 1000 and exclusively
for DHC with 123-function 2000 training sets. The state used by the agent stores

34

the following properties:

• Reduced distance: The change in cost after an iteration.

• Distance from minimum: The difference in cost from the current
solution to the minimum-cost observed solution over the course of the run.

• No improvement: Stores the number of iterations since last iteration
wherein the cost of the solution improved.

• Index step: Stores the iteration number i, where 0 ≤ i ≤ imax = 100′000.

• Was changed: Boolean indicating whether the solution changed in the
last iteration.

• Unseen: Boolean indicating whether the current solution has been seen
in a previous iteration, using hashes of solutions to compute this.

The chosen properties are a subset of those in the state representation used
by Kallestad, Hemmati and Hasibi [36], and the above is a suggested state
representation in the DRLH framework that they have developed, which is used
for DHC.

The preceding configurations for DRLH were chosen in order to present
results representative of what DHC achieved during experiments and highlight
issues with DHC. We take this approach as the results yielded by DHC were
subpar compared to those obtained by AHC.

35

Chapter 4

Algorithms to solve CEVS
parameterized by maximum
vertex degree

Recall that a graph without any P3 is a cluster graph, so that eliminating every
P3 from a graph yields a cluster graph and therefore a solution to CEVS. The
following algorithms aim to solve CEVS for a graph by finding P3s in the graph
and eliminating them by branching on the possibilities of adding an edge, deleting
one of two edges or splitting the middle vertex in a number of ways limited
by the maximum vertex degree of any vertex in the input graph.1 We give
algorithms for both CEVS with inclusive split and CEVS with exclusive split,
with running time parameterized by maximum length of sequence of operations k
and maximum vertex degree of any vertex in the input graph d.

Consider the case of inclusive vertex split. For each of the two vertices
created, there are at less than

1 +

(
d+ k

1

)
+

(
d+ k

2

)
+ · · ·+

(
d+ k

d+ k

)
= (1 + (d+ k))(d+k)

choices of edges adjacent to the deleted vertex to include. The maximum vertex
degree in a branching step is d+ k since the splitting operation can duplicate
edges, adding one to the degree of a vertex in the neighborhood of both the
new vertices, and also since the addition operation adds edges. Thus, there
are O((d+k)2(d+k)) possible splits. Since it is possible to find a P3 in polynomial
time2 and since one can only branch k times while using one of 3+O((d+k)2(d+k))
operations for each branch, this results in an O∗((d+ k)2(d+k)k) exact algorithm.

A better upper bound running time is obtained for CEVS with exclusive
split since there are fewer cases to consider when splitting. Specifically, represent

1See Cygan et al. [15] for an overview of the topic of branching algorithms.
2For every vertex in the graph, check every pair of adjacent vertices and see if they have an

edge to each other.

36

Graph Vertices Edges AHC best Optimal AHC running time Exact running time

gr 0.txt 10 13 4 4 0.093 3.189
gr 1.txt 8 11 6 6 0.163 578.0
gr 2.txt 8 19 2 2 0.071 1.82
gr 3.txt 8 7 4 4 0.132 0.232
gr 4.txt 8 13 5 5 0.161 1996.6

Table 4.1: Comparison of AHC and the exact branching algorithm finding optimal
solutions for CEVS on small graphs. Run on Intel(R) Core(TM) i5-8250U CPU
@ 1.60GHz. Running time is given in seconds. AHC best and optimal refer to
the objective of CEVSopt.

each splitting operation of a vertex with degree d′ as a binary string of length d′

where 0 corresponds to edges belonging to the first new vertex and 1 corresponds
to edges belonging to the second new vertex. The vertex degree of any vertex
may also here increase to d+ k because of edge addition. Clearly, this gives us
an O∗(2(d+k)k) algorithm.

The branching algorithm for CEVS with inclusive split is used to find optimal
solutions of CEVS on set of small graphs we have created by hand. Table 4.1
shows that AHC uses less time than an implementation of this exact algorithm
to find optimal solutions for these graphs. Note that the time given for the
branching algorithm sums the time the algorithm uses for several inputs of k, for
example for k = 4 (returning NO) and k = 5 (returning YES) when the optimal
solution is 5.

37

Chapter 5

Solving CEVS on complete
bipartite graphs with
formula

Complete bipartite graphs present a challenge for non-bipartite clustering al-
gorithms like CEVS since they are dense1, leading to slower execution times,
and since there are edges only between the two bipartite sets and not between
vertices within the sets, making clustering algorithms yield results that do no
match the bipartite sets. We also note that a graph with community structure
should have many cycles of length three, e. g. three people knowing each other
in a social network, while bipartite graphs have no odd cycles [5]. Investigating
algorithms to solve CEVS on bipartite graph are interesting since it could inform
the discovery of a crown decomposition for CEVS, which would yield a linear
size kernel [15].

By running AHC on complete bipartite graphs we found that the minimum
solutions showed a pattern which we describe in the following and have named
c-d-form. In these solutions each edge has both endpoints in the same set of F
so that there is no edge deletion operation in the minimal sequence of operations
corresponding to the solution. Also, the vertices of each bipartite set are split
in groups of equal size with an error of one, these groups being present in one
or several sets of F and never together with any other group from the same
bipartite set. The integers c and d give how many groups the two bipartite sets
respectively should be split between. See Figure 5.3 for a visualization. We
proceed with a larger degree of formalism.

Definition 4 (c-d-form). A solution of CEVS F ⊆ 2V for a complete bipartite
graph G = (V,E) with bipartition (A,B), A,B ⊆ V, |A|⩽ |B| is on c-d-form if
|F |= cd for integers 1 ⩽ c ⩽ |A| and 1 ⩽ d ⩽ |B| and each vertex of A and B is

1I. e. many edges per vertex.

38

Figure 5.1: K3,6, (c, d) = (1, 3) Figure 5.2: K5,6, (c, d) = (2, 2)

Figure 5.3: Visualizations of solutions on c-d-form. The upper vertices and lower
vertices correspond to sets A and B of the complete bipartite graphs respectively.
We have not drawn the edges since they are the same as those in the complete
bipartite input graph and would clutter the drawings. The ellipses and rectangles
indicate which vertices belong to the same sets.

in exactly d and c of the sets of F respectively. Furthermore, for any two sets
S1, S2 ⊆ F , |S1 ∩A|−|S2 ∩A|⩽ 1 and |S1 ∩B|−|S2 ∩B|⩽ 1.

Let a group be a set of vertices either exclusively from A or exclusively from
B so that a vertex u in a group co-occurs with another vertex v from the same
bipartite set in a cluster in the resulting cluster graph if and only if u and v are
in the same group. The integers c and d correspond to how many groups the
vertices in A and B respectively are distributed between. Since each set of F
has the same cardinality within an error of 1, either ⌊|A|/c⌋ or ⌈|A|/c⌉ vertices
in each set are from A and ⌊|B|/d⌋ or ⌈|B|/d⌉ vertices in each set are from B.
A consequence of the definition is that each vertex in A is split d− 1 times, and
each vertex in B is split c− 1 times.

Conjecture 1. The following formula gives the minimal objective of CEVSopt
on complete bipartite graphs with bipartition (A,B) where |A|= s > 1, |B|= t >
1, |A|≤ |B|:

min
1≤c≤s,1≤d≤t

h(c, d) (5.1)

where c and d are integers such that 1 ≤ c ≤ s and 1 ≤ d ≤ t, and h is defined
as such:

h(c, d) = s(d− 1) + t(c− 1) + (s (mod c))

(
s/c

2

)
+ (c− (s (mod c))

(
s/c− 1

2

)
+ (t (mod d))

(
t/d

2

)
+ (d− (t (mod d))

(
t/d− 1

2

) (5.2)

Also, h(c, d) returns the objective of a solution on c-d-form.

39

Conjecture 1 gives the cost of splitting vertices so that they can be in several
sets in F and adding edges between all vertices in the same group for every
group. The first addend of Equation 5.2 gives the cost of splitting the s vertices
of A (d− 1) times so that each of the vertices can share presence in a set of F
with every vertex of B, the s vertices of A being present in d sets each. The
second addend gives the converse for the t vertices of B. Next, note that for
vertices in a group C, we need to add

(|C|
2

)
edges between the vertices of C

for C to be part of cluster in the resulting cluster graph. This explains the four
last addends of Equation 5.2, with the two first corresponding to adding edges
between vertices in A and the two last corresponding to adding edges between
vertices in B. We need to split the calculations for each bipartite set into two
addends since c and d do not necessarily divide s and t respectively, yielding
groups with cardinalities different from each other by at most 1.

An experiment were conducted where AHC was run five times on all complete
bipartite graphs where the cardinality of each bipartite set was at least 2 and
at most 19. The best solutions found had the same objective as that predicted
by conjecture 1 for all but the following set cardinalities (|A|, |B|) for bipartite
sets A and B: (12, 18), (13, 13), (14, 14), (14, 15), (14, 19), (15, 15), (15,
18), (16, 17), (16, 18), (16, 19), (17, 17), (17, 18), (17, 19), for which the least
objective found by AHC was slightly larger. This suggests that Conjecture 1
is correct, and that AHC does not find these presumably optimal solutions on
larger graphs. Note that AHC is optimized with regard to solving CEVS for
graphs with data in clusters and therefore should not be expected to perform as
well when applied to bipartite graphs.

We believe that Conjecture 1 can be proved by induction from base step K2,2,
and we leave this as an open problem.

40

Chapter 6

Results

6.1 Data sets used in experiments

The experiments in this section are run on both artificial and real-world data sets.
We used the benchmark generators LFR [40] and FARZ [57] to generate artificial
graphs with given attributes like size in terms of vertices and edges and maximum
vertex degree, where both generators provide ground truth communities with
each generated graph. The real-world data sets have been downloaded from the
online networks catalog Netzchleuder [55]. These real-world data sets are used
with no preprocessing with exception of eu airlines, which has been converted
from a directed graph to an undirected graph by considering each directed edge
as an undirected edge. We run most of the experiments on a data set we name
the test data set. This data set consists of 9 real-world graphs and 10 artificial
graphs generated using FARZ, and the names we have given these graphs can
be read in Table 6.1.1

6.2 Robustness of AHC

Initially we examine the robustness of AHC by running the algorithm 5 times on
the graphs in the test data set. The results in Table 6.1 show that AHC finds the
same objective or objectives only slightly larger every time on the smaller graphs,
and that the distance between best and average objective increases with the size
of the graph in terms of vertices and edges. Also, the average objective is never
more than a percent off from the best objective, suggesting AHC is robust when
it comes to finding high quality solutions of CEVS. The fact that the same best
objective is found every time for some of the smaller graphs suggests that these

1The names of the real-world graphs and corresponding references are listed here:
cs department [45], eu airlines [11], facebook friends [46], football [25], game thrones
[8], jazz collab [26], karate78 [74], law firm [41], revolution [39], social circles [47] and
lastfm asia [63].

41

Graph name Vertices Edges Best objective Avg. objective Avg. time
cs department 61 353 140 140.2 9.04334
eu airlines 450 2953 1712 1715.8 90.6118
facebook friends 362 1988 759 764.6 31.5495
football 115 613 268 268.6 6.14791
game thrones 107 352 174 174 12.7105
jazz collab 198 2742 618 620.2 62.7093
karate78 34 78 43 43 2.71692
law firm 71 1008 406 408 37.1806
revolution 141 160 150 150 21.9954
FARZ test 0 405 1302 846 846.4 21.7785
FARZ test 1 258 3296 1864 1868.8 130.901
FARZ test 2 313 5507 1936 1942.4 122.954
FARZ test 3 36 186 65 65 3.63799
FARZ test 4 243 5524 2181 2186.8 195.076
FARZ test 5 250 5577 1827 1833.4 163.185
FARZ test 6 444 1651 1160 1162 28.3153
FARZ test 7 295 3056 1833 1835.4 96.6649
FARZ test 8 380 2556 1778 1779.4 63.9715
FARZ test 9 411 2024 1403 1406 43.6251

Table 6.1: Demonstrating the robustness of AHC when run 100’000 iterations 5
times. Run on AMD Ryzen 5 3600. Running time is given in seconds.

Graph name Vertices Edges Best objective Avg. objective Avg. time
social circles 4039 88234 33347 33459 1134.86
lastfm asia 7624 27806 18746 18792.8 575.82

Table 6.2: Demonstrating the robustness of AHC when run 100’000 iterations 5
times on a couple of larger graphs. Run on Intel(R) Core(TM) i5-8250U CPU @
1.60GHz. Running time is given in seconds.

42

Graph name URA ALNS ALNS with CC
cs department 140.2 140.2 140.8
eu airlines 1713.4 1715.8 1717.8
facebook friends 764.6 764.6 766.4
football 268 268.6 268.6
game thrones 174 174 174
jazz collab 621.2 620.2 619
karate78 43 43 43
law firm 413 408 408.8
revolution 150 150 150
FARZ test 0 847 846.4 847.8
FARZ test 1 1878 1868.8 1866
FARZ test 2 1986.4 1942.4 1942.4
FARZ test 3 65 65 65
FARZ test 4 2223.6 2186.8 2185.4
FARZ test 5 1882.8 1833.4 1833
FARZ test 6 1162.2 1162 1162
FARZ test 7 1846.4 1835.4 1834.2
FARZ test 8 1785.6 1779.4 1781.6
FARZ test 9 1405.8 1406 1405.4

Table 6.3: Average objective over 5 runs using 100’000 iterations with different
agents. Run on AMD Ryzen 5 3600.

objectives may be optimal. We also run the experiment on a couple of larger
graphs to demonstrate that AHC is robust for these as well (see Table 6.2).

6.3 Compare URA, ALNS and DRLH

Then we compare the performance of the ALNS agent with URA. Thus, URA
provides a baseline that can be used to evaluate the performance of the ALNS
agent. The results in Tables 6.4 and 6.5 show that ALNS give slightly better
results than URA, with an average of 5 · 10−3 percent improvement in objective.
However, the running time is in the worst case about 17% longer for ALNS
than for URA, which likely can be attributed to URA picking computationally
cheaper operators more frequently than ALNS. For the graphs with largest
CEVS-score, ALNS gives better results than URA, suggesting that the difference
in performance between ALNS and URA increases for larger data sets.

Furthermore, the performance of ALNS with and without using the critical
clique reduction is examined. ALNS with reduction obtains a marginally worse
objective than ALNS without the reduction, and using the reduction increases
the running time for every graph in the test data set. This suggests that the
reduction is not useful in general, although the poor results may be attributed
to few occurrences of critical cliques in the graphs in the test data set.

43

Graph name URA ALNS ALNS with CC
cs department 7.924 18 9.043 34 9.403 27
eu airlines 76.0735 90.6118 100.646
facebook friends 23.2923 31.5495 31.8812
football 7.067 75 6.147 91 6.893 47
game thrones 9.822 84 12.7105 13.9336
jazz collab 45.8752 62.7093 68.5939
karate78 3.134 96 2.716 92 3.196 35
law firm 35.6836 37.1806 42.3237
revolution 18.8828 21.9954 26.0216
FARZ test 0 15.3862 21.7785 26.439
FARZ test 1 110.28 130.901 149.161
FARZ test 2 99.4255 122.954 127.255
FARZ test 3 5.101 04 3.637 99 4.806 17
FARZ test 4 183.816 195.076 198.036
FARZ test 5 139.6 163.185 167.498
FARZ test 6 20.8094 28.3153 31.1387
FARZ test 7 83.9227 96.6649 112.404
FARZ test 8 50.528 63.9715 74.4324
FARZ test 9 33.0601 43.6251 45.6797

Table 6.4: Average running time over 5 runs using 100’000 iterations of different
metaheuristics. Run on AMD Ryzen 5 3600.

ALNS ALNS with CC
Objective Running time Objective Running time
4.741 · 10−3 −0.1669 4.358 · 10−3 −0.2953

Table 6.5: Average improvement in objective and running time vs URA for
ALNS with and without utilizing the critical clique graph. Observe that the
average objective is better while the average running is worse for both programs
compared to URA.

44

DHC yielded overall worse results than both AHC and URA when run on
the artificial graphs in the test data set. Table 6.6 shows that the results became
worse with a larger training set for the 725-reward function, suggesting that
the reinforcement learning agent is able to abuse the rules of DRLH so that it
obtains reward for choosing actions that do not give improvement in objective
for CEVS. We see some of the same for the 123-reward function, although this
does better for 1000 training sets because it uses more expensive operators (like
Remove 3 then add 3), indicated by the comparatively larger running time.

A possible explanation for the poor performance of DRLH could be that the
operators in the pool are complex and involve too much randomness and storing
of future operations for DRLH to efficiently evaluate when it is reasonable to use
an operator. The most successful operators for the pick-up and delivery problems
examined by Kallestad, Hemmati and Hasibi [36] were heuristics that removed
a part of the solution and inserted it somewhere else, trying all possibilities of
removal and insertion and picking the best or one of the best possibilities. This
is a direct and simplistic approach compared to intermittent scan, which most
of the operators used for CEVS rely on and which performed well together with
both ALNS and URA. Future work could try to use a different pool of simpler
operators for solving CEVS and compare the performance of ALNS and DRLH
when using this pool.

Another explanation could be the fact that CEVS is a less structured problem
than pick-up and delivery problems. Whereas a solution to CEVS for a graph G
only has the constraint of being a family of sets F so that each vertex in V (G) is
in some set in F , the pick-up and delivery problems consists of many constrains
like vehicles with limited capacity, packets of a certain size that can only be
delivered by certain vehicles, time-windows for delivery, distance between delivery
destinations and more. These constraints could be beneficial for DRLH and
make it so that DRLH performs better than ALNS for these problems, while
the lack of constraints in CEVS makes DRLH perform worse for the problem
than ALNS does.

Graph 725, t=100 725, t=1000 123, t=100 123, t=1000 123, t=2000
FARZ test 0 851.4 874.2 856.2 875.6 883.2
FARZ test 1 1892.8 1928.8 1929.4 1880.6 1927.4
FARZ test 2 1972 2030 2020 2076.8 2020
FARZ test 3 65 65 65 65 66
FARZ test 4 2214.6 2259 2278.8 2201.4 2241.6
FARZ test 5 1869 1915.4 1919.2 1844.2 1902.8
FARZ test 6 1173 1207.8 1183 1219.6 1211.4
FARZ test 7 1859.8 1893.6 1911 1847.4 1901.8
FARZ test 8 1803.6 1836.4 1857.6 1824.6 1854
FARZ test 9 1420.8 1455.8 1457.8 1447.4 1469.4

Table 6.6: Average objectives of DRLH run 5 times with 100’000 iterations, run
on AMD Ryzen 5 3600. The variable t gives the size of the training set.

45

Graph 725, t=100 725, t=1000 123, t=100 123, t=1000 123, t=2000
FARZ test 0 191.58 197.94 181.18 363.65 194.08
FARZ test 1 116.00 173.76 84.80 114.18 145.89
FARZ test 2 102.36 156.87 61.85 628.45 110.23
FARZ test 3 36.71 37.98 35.15 45.16 37.47
FARZ test 4 144.67 258.36 97.67 153.78 184.78
FARZ test 5 117.98 189.91 77.11 127.06 135.13
FARZ test 6 67.74 73.67 53.33 577.05 68.16
FARZ test 7 103.39 132.72 65.14 93.61 122.47
FARZ test 8 89.39 106.91 54.64 255.48 99.50
FARZ test 9 77.82 89.70 55.25 237.52 85.02

Table 6.7: Average running time of DRLH run 5 times with 100’000 iterations,
run on AMD Ryzen 5 3600. The variable t gives the size of the training set.

6.4 Running time scaling

Calculating the theoretical worst-case running time of AHC is a difficult exercise
because of the non-determinism and randomness of the execution. Neither is it
particularly useful as the agent in AHC is unlikely to pick the most expensive
operators every time. A more fruitful and informative approach is to investigate
how the running time scales for graphs of different sizes and attributes.

Before executing scaling experiments it is prudent to examine which features
of a graph that are reasonable parameters to scale. In order to achieve this,
we execute experiments with AHC with 10’000 iterations run 5 times on 117
graphs. The number of vertices, the number of edges, the number of P3s, the
difference between best and average solution and the average running time are
recorded, and we make a covariance matrix included in Figure 6.1 using these
results. From the matrix it is clear that the running time correlates strongest
with the number of edges in the graph, and almost as strong with the number
of P3s. From these results we conclude that the number of edges is the best
parameter to use to scale graphs for the scaling experiments, both because of
the high correlation with running time and because it is a simpler measure than
the possible alternative of amount of P3s.

Accordingly, AHC is run on graphs with increasing amounts of edges and
similar amounts of vertices in proportion to the number of edges. Figure 6.2
indicates running time growth linear in the number of edges in the graph with a
growth rate of approximately 2.1 · 10−3 per added edge, or one second added
per 500 edges. This is promising with regard to executing the algorithm on
larger graphs than those we have examined in this thesis.

Furthermore, we investigate the scaling of running time of AHC with max-
imum vertex degree. Here the LFR benchmark generator is used to generate

46

Figure 6.1: Covariance matrix derived from running AHC with 10’000 iterations 5
times on 117 graphs.

artificial graphs with increasing allowed maximum degree of vertices and other-
wise similar attributes. The results are visualized in Figure 6.3 and Table 6.9
and suggest that the running time of AHC scales with the maximum allowed
vertex degree in the graphs. Included in Figure 6.3 is the average running time
plotted against the number of edges, which shows that scaling of running time
with number of edges in the graph is less obvious than scaling with maximum
degree.

6.5 Running time of operators

We include this subsection in order to give an impression of the variation in
running time between the operators, and the distribution of the running times
of a single operator when it is executed several times during a run of AHC.
Figure 6.4 and Table 6.10 show statistics related to the operators gathered over
the course of 1 run with 100’000 iterations of AHC on the graph jazz collab.
The boxplot in Figure 6.4 shows that all operators have time-consuming outliers.
Remove 3 then add 3 has the largest outliers, which likely occurs when a P3

with vertices with many neighborhood sets are chosen. Also, this operator has

47

Figure 6.2: Results of scaling experiments of AHC with 10’000 iterations run 5
times on Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz, 7.9.2022

the largest median and average, indicating that this is the most time-consuming
operator in general. For the intermittent scan operators (the five furthest to the
left in Figure 6.4) the outliers can be explained by the refill-sequences where
scans of the entire graph are performed, while most executions of these operators
only consider actions for a single vertex or set. All operators have a set of outliers
right above Q3 + 1.5 · IQR2, suggesting that some procedures common to all
operators make the operators slower in relatively few cases.

2Q3 is the value at the top of the boxes in the plot, so that 75% of the data points have
values below. Q1 is the value at the bottom of the boxes with 25% of the data points below.
Then IQR (Interquartile range) is (Q3−Q1), and the whiskers of the boxplot are drawn at
the values Q3 + 1.5 · IQR and Q1− 1.5 · IQR respectively.

48

Graphs Edges Average running time
FARZ scale 0 900 3.19937
FARZ scale 1 2051 6.32058
FARZ scale 2 3647 10.1416
FARZ scale 3 5769 13.919
FARZ scale 4 8330 19.3919
FARZ scale 5 11315 27.6948
FARZ scale 6 14818 35.4722
FARZ scale 7 18866 46.088
FARZ scale 8 23288 50.4095
FARZ scale 9 28232 57.6458

Table 6.8: Results of scaling experiments of AHC with 10’000 iterations run 5
times on Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz, 7.9.2022. Corresponds
to Figure 6.2.

Graphs Edges Maximum degree Average running time
LFR scale maxdeg 0 4500 30 17.967
LFR scale maxdeg 1 4483 35 19.5749
LFR scale maxdeg 2 4557 40 14.1715
LFR scale maxdeg 3 4521 45 17.6336
LFR scale maxdeg 4 4449 50 18.2918
LFR scale maxdeg 5 4423 55 16.1843
LFR scale maxdeg 6 4456 60 19.0757
LFR scale maxdeg 7 4407 65 20.3491
LFR scale maxdeg 8 4362 70 30.7944
LFR scale maxdeg 9 4486 75 31.4222
LFR scale maxdeg 10 4894 80 32.5607
LFR scale maxdeg 11 4472 85 31.6595
LFR scale maxdeg 12 4461 90 31.0689
LFR scale maxdeg 13 4477 95 31.0299
LFR scale maxdeg 14 4319 100 34.0613
LFR scale maxdeg 15 4571 105 31.3374
LFR scale maxdeg 16 4505 110 52.7346
LFR scale maxdeg 17 4530 115 39.7545
LFR scale maxdeg 18 4404 120 37.7999
LFR scale maxdeg 19 4258 125 36.9591
LFR scale maxdeg 20 4560 130 47.3889
LFR scale maxdeg 21 4260 135 33.5064
LFR scale maxdeg 22 4479 140 45.704
LFR scale maxdeg 23 4361 145 40.486

Table 6.9: Results of scaling experiments of AHC with 30’000 iterations run 5
times on Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz, 7.9.2022. The number
of vertices (300) is the same for all graphs, and the average degree of vertices
(30) is approximately the same. Corresponds to Figure 6.3.

49

Figure 6.3: Results of scaling experiments of AHC with 30’000 iterations run 5
times on Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz, 7.9.2022. The number
of vertices (300) is the same for all graphs. The above plot demonstrates scaling
with maximum degree in the graph, while the bottom plot in comparison to the
above plot indicates that increase in running time is better explained by increase
of maximum degree than increase of number of edges.

50

F
ig
u
re

6.
4:

B
ox
p
lo
t
sh
ow

in
g
th
e
d
is
tr
u
b
u
ti
on

of
th
e
ru
n
n
in
g
ti
m
es

of
th
e
op

er
at
or
s
of

A
H
C

ov
er

1
ru
n
w
it
h
10
0’
00
0
it
er
at
io
n
s

of
A
H
C

on
th
e
gr
ap

h
ja
zz

co
ll
ab

.
N
o
te

th
a
t
th
e
y
-a
x
is

is
lo
g
a
ri
th
m
ic
.

51

Operator Min Max Median Average Picked
Add vertex to neighbors 0 62.877 0.104 2.021 16618
Move vertex 0 198.611 0.244 0.983 9347
Remove vertex 0 5.469 0.013 0.103 17900
Add vertex to set 0.006 37.341 0.014 0.396 10557
Move vertex wr 0 184.743 0.255 0.888 8567
Move vertex u 0.012 3.755 0.132 0.208 7878
Add vertex to neighbors u 0.018 1.613 0.085 0.118 14872
Remove 3 then add 3 0.157 1868.3 0.668 2.796 14261

Table 6.10: This table corresponds to Figure 6.4. Shows statistics for the running
times of the operators of AHC during 1 run with 100’000 iterations of AHC on
the graph jazz collab. The middle four columns display statistical measures of
the running time of the operators given in milliseconds, and the column Picked
shows the amount of times each operator was picked by the adaptive agent over
the course of the run. Weighted randomness is abbreviated as wr.

6.6 Parallelization of operators

In these experiments we use a version of AHC with 6 parallelized operators
and no non-parallelized operators. These operators are Move vertex, Move
untouched vertex, Add vertex to set, Add vertex to neighbors, Remove
vertex and Add untouched vertices to neighbors. AHC is run five times on
three different graphs for a varying number of processors on the shared-memory
parallel computer Brake3 owned by the University of Bergen. The running times
and the speedup are plotted in Figure 6.5, showing that we achieve a speedup of
about 1.5 for the examined graphs, except for one run on FARZ 200 40 which
yields a speedup of 1.8. This demonstrates that parallelization is applicable to
heuristics for solving CEVS.

In Figure 6.6 we have plotted the speedup of the operators calculated using
the average running time used each time an operator is called during a run.
These results show that certain operators benefit more from parallelization than
others.

6.7 Properties of solution communities with com-
parison to other algorithms

In this section we aim to examine the performance and solution characteristics
of AHC compared to other algorithms also solving the task of overlapping
community detection. The algorithms chosen for comparison are BIGCLAM [73,
62], Demon [13, 14, 61], SLPA [72, 1] and CFinder [52, 53]. These were
picked because they have previously been used for such comparisons [69] and
because implementations are available online. As suggested by Vieria et al. [69],

3Consists of 80 Intel® Xeon® CPU E7-4850 2.00GHz processors.

52

Figure 6.5: Running time and speedup for parallel AHC with different amount
of threads.

optimizations towards an objective function yields an implicit assumption about
“the characterization of an overlapping community structure”. This implies that
each algorithm examined here, including AHC, yields solutions with certain
characteristics. By evaluating the solutions using ONMI, EQ and CEVS-score,
we attempt to discover such characteristics.

The running times of the algorithms on the nine real-world graphs in the test
data set are plotted in Table 6.11. It is clear that AHC is significantly slower
than the other algorithms, except CFinder which for larger graphs may be even
slower than AHC.

One characteristic in which solutions found by different algorithms are dif-
ferent is in the distribution of the sizes of communities. In Figure 6.7 we plot
this distribution for solutions of highest EQ found on several graphs by different
algorithms. AHC frequently yields more communities and a higher number of
small communities compared to the other algorithms, whose solutions overall

53

Figure 6.6: Average running time in milliseconds and speedup of parallelized oper-
ators of AHC using a varying amount of threads, run on the graph FARZ 200 50.

54

Graph AHC BIGCLAM Demon SLPA CFinder
cs department 9.043 0.203 0.051 0.067 0.085
eu airlines 90.612 1.476 0.659 0.615 177.222
facebook friends 31.550 1.119 0.362 0.377 1.624
football 6.148 0.347 0.073 0.116 0.080
game thrones 12.711 0.319 0.045 0.072 0.051
jazz collab 62.709 0.635 0.665 0.494 9.076
karate78 2.717 0.101 0.009 0.017 0.018
law firm 37.181 0.230 0.216 0.167 5.435
revolution 21.995 0.413 0.019 0.044 0.009

Table 6.11: Average running times in seconds of the algorithms of AHC and
algorithms used for comparison. For CFinder one run finds several solutions, so
the time one run takes is reported here instead of the average running time.

have a few larger communities and some smaller. We exclude CFinder in these
plots since CFinder does not put every vertex in a community, so that the
definition of community size distribution for solutions found by CFinder are
different and therefore would be misleading to include in the plots.

In order to examine the solutions with regard to CEVS-score and EQ, these
measures are plotted against each other for solutions for different real-world
graphs. Each point in Figure 6.8 corresponds to a solution found by one of the
algorithms. Solutions that are farther up and left in the plot may be considered to
be better, as they have lower CEVS-score and higher EQ. For AHC, two solutions
found by two runs of the algorithms are plotted, and for BIGCLAM, Demon and
SLPA the solutions come from runs with different parameters. CFinder finds
several solutions for each run, and these solutions are used.

In general it looks like the solutions of highest EQ have middling CEVS-
score when considering all plotted solutions, and that the solutions with best
CEVS-score, not surprisingly found by AHC since it uses this as objective for
optimization, have a middling EQ. Some of the other algorithms manage to
find solutions with low CEVS-score for some of the graphs, suggesting that the
characteristics the algorithms search for in some cases agree with the charac-
teristics of solutions with low CEVS-score. On the other hand, frequently the
algorithms find solutions with both high CEVS-score and high EQ. Therefore it
seems unlikely that either of CEVS-score and EQ can serve as a general measure
for quality of a solution to the overlapping community task.

It is worth noting that EQ and CEVS-score seems to evaluate different
aspects of solutions. In the literature, most papers on overlapping community
detection use EQ as the only ground truth independent quality measure. With
Figure 6.8, the possibility of also using CEVS-score for this purpose is introduced.
As remarked by Abu-Khzam et al. [3], CEVS-score can be calculated in running
time that is practically linear in the number of vertices and edges, this making
CEVS-score applicable to evaluate solutions found by any algorithm for the
overlapping community detection task.

55

Figure 6.7: Boxplot of community distribution of solutions found by different
algorithms on the graphs cs-department, eu airlines, football, and jazz collab.
The bars show the number of communities, the boxplots show the distribution
of community sizes.

56

Figure 6.8: CEVS-score and EQ of solutions plotted for different graphs and
algorithms. Lower CEVS-score and higher EQ indicate better solutions.

57

Figure 6.9: CEVS-score plotted against ONMI for solutions for different artificial
data sets found by different algorithms. Lower CEVS-score and higher ONMI
indicate better solutions.

58

We also plot CEVS-score against ONMI (see Figure 6.9). Artificial graphs
are used for these plots as there are few real-world graphs with ground truth with
overlapping communities available. Here AHC in most cases gives the solutions
with best ONMI and best CEVS-score. However, the poor performance of the
other algorithms than AHC on ONMI suggests that the characteristics of the
ground truth communities decided by FARZ do not conform to the characteristics
of the community structures the other algorithms search for. Nevertheless, the
plots give further evidence that CEVS-score is a reasonable quality measure for
solutions to the overlapping community detection task.

Also of interest is the number of splits in solutions, telling us about the
degree of overlap in solutions. With a split we mean the number of times the
split operator has been applied to an original ancestor vertex in the input graph
or one of its descendants, indicating how many communities contain the vertex.
The number of splits of representative solutions are visualized for the real-world
graphs in the test data set in Figure 6.10. AHC seems to find solutions with
more splits than the other algorithms, with some exceptions. In the experiments,
BIGCLAM yielded solutions with no overlapping sets exclusively. Demon, SLPA
and CFinder frequently found some solutions with and some solutions without
splits for the same data set.

59

Figure 6.10: Number of splits in solutions to the overlapping communities task
found by different algorithms for different graphs. The solutions are interpreted
as solutions to CEVS and the number of splits in the solutions is defined
accordingly. Solutions found by different algorithms are plotted in seperate
columns for visibility. A vertex being split several times indicate that several
communities overlap by containing that vertex.

60

Chapter 7

Conclusion

In this thesis we presented the algorithm AHC that uses metaheuristics to
solve CEVS. The running time of the algorithm scales linearly with a factor
of 2.1 · 10−3 with the amount of edges in the input graph when controlling
other graph parameters, and the algorithm is able to find low-cost solutions of
CEVS on much larger graphs than what is viable with currently known exact
algorithms. Parallelization of parts of the algorithm is investigated and yields
modest but worthwhile improvements in running time. As AHC does not search
for a solution with a specific number of clusters, it uses datastructures that are
easy to change the size of but may be slower than necessary to access and alter,
in particular red-black search trees. Further implementations of heuristics for
CEVS could attempt to solve the problem for a fixed |F | while using arrays for
the datastructures, exploring which gains in running time this may yield and
which limitations it imposes. This approach could also be used to investigate
whether local minima for CEVS occur around certain values of |F |.

The selection heuristic of intermittent scan is likely applicable when solving
other problems heuristically, in particular for problems where there is some
distance between objects of interest (e. g. vertices) in the data so that several
worthwhile actions may be discovered when considering a subset of all possible
actions. The idea of using segment trees to store which vertices have been moved
recently should also be generally applicable.

Experiments using DRLH in place of ALNS yielded comparatively poor
results. This leaves an open problem of whether DRLH for CEVS can yield
results matching or better than those of ALNS when a different pool of operators
and possibly different state representation and parameters are used. The difficulty
of using DRLH to solve CEVS suggests that CEVS presents hurdles for DRLH,
and that the identification of these hurdles would lead to a better understanding
of DRLH.

It remains unknown whether CEVS is NP-complete. We put forth the
conjecture of a polynomial-time algorithm for solving CEVS on complete bipartite
graphs as an open problem, which if expanded upon could inform results helpful
for applying a crown decomposition [15] to CEVS, giving a linear kernel and

61

thus a preprocessing step to be used in conjunction with both exact algorithms
and heuristics. It is worth noting that the notion of using a crown decomposition
for CEVS with exclusive vertex split is put forth in Abu-Khzam et al. [2].
As seen in the results regarding the reduction utilizing critical cliques, the
current combinatorial results on CEVS are not helpful in practice, urging further
endeavours in this direction.

Our comparison of solutions found by AHC to solutions found by other
algorithms for solving the overlapping community detection task indicates that
solutions with low CEVS-score found by AHC frequently have better ONMI than
solutions found by the other algorithms, as well as a decent EQ. However, AHC
requires significantly larger computational resources than the other algorithms.
The observation that high EQ does not necessarily imply low CEVS-score
justifies the idea of using a two-dimensional scatter plot of EQ and CEVS-score
of solutions to evaluate the quality of overlapping communities. This tool may
capture more of the features of overlapping communities than what the earlier
use of only EQ for this purpose has done. We also considered the community
distribution and number of splits of solutions, with our results indicating that
the solutions of lowest CEVS-score have more and smaller communities than
solutions found by the other algorithms optimizing other criteria, and also that
solutions with low CEVS-score have relatively more splits. This suggests AHC
could be applied to real-life community detection problems in which communities
exhibit similar structure to low-CEVS solutions and where other algorithms
do not yield useful results. We believe that collection and wider availability of
real-world graphs with ground truths that are overlapping communities would
be useful for further study of the overlapping community detection task.

62

Bibliography

[1] kbalasu (github-username). SLPA. Accessed: 29.9.2022. 2013. url: https:
//github.com/kbalasu/SLPA.

[2] Faisal N. Abu-Khzam, Joseph R. Barr, Amin Fakhereldine, and Peter
Shaw. “A Greedy Heuristic for Cluster Editing with Vertex Splitting”.
In: 4th International Conference on Artificial Intelligence for Industries,
AI4I 2021, Laguna Hills, CA, USA, September 20-22, 2021. IEEE, 2021,
pp. 38–41. doi: 10.1109/AI4I51902.2021.00017. url: https://doi.
org/10.1109/AI4I51902.2021.00017.

[3] Faisal N. Abu-Khzam, Judith Egan, Serge Gaspers, Alexis Shaw, and
Peter Shaw. “Cluster Editing with Vertex Splitting”. In: Combinatorial
Optimization. Ed. by Jon Lee, Giovanni Rinaldi, and A. Ridha Mahjoub.
Cham: Springer International Publishing, 2018, pp. 1–13. isbn: 978-3-319-
96151-4.

[4] Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. “A
comparison of extrinsic clustering evaluation metrics based on formal
constraints”. In: Inf. Retr. 12.4 (2009), pp. 461–486. doi: 10.1007/s10791-
008-9066-8. url: https://doi.org/10.1007/s10791-008-9066-8.

[5] Ian Anderson. A First Course in Discrete Mathematics. Springer, 2001.

[6] Gard Askeland. Accessed: 11.11.2022. 2022. url: https://github.com/
gardaskeland/CEVS_heur.

[7] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. “Correlation Cluster-
ing”. In: Mach. Learn. 56.1-3 (2004), pp. 89–113. doi: 10 . 1023 / B :

MACH.0000033116.57574.95. url: https://doi.org/10.1023/B:
MACH.0000033116.57574.95.

[8] Andrew Beveridge and Jie Shan. “Network of Thrones”. In: Math Horizons
23.4 (2016), pp. 18–22. doi: 10.4169/mathhorizons.23.4.18. eprint:
https://doi.org/10.4169/mathhorizons.23.4.18. url: https:
//doi.org/10.4169/mathhorizons.23.4.18.

[9] Sebastian Böcker and Jan Baumbach. “Cluster Editing”. In: The Nature
of Computation. Logic, Algorithms, Applications. Ed. by Paola Bonizzoni,
Vasco Brattka, and Benedikt Löwe. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 33–44. isbn: 978-3-642-39053-1.

63

https://github.com/kbalasu/SLPA
https://github.com/kbalasu/SLPA
https://doi.org/10.1109/AI4I51902.2021.00017
https://doi.org/10.1109/AI4I51902.2021.00017
https://doi.org/10.1109/AI4I51902.2021.00017
https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1007/s10791-008-9066-8
https://github.com/gardaskeland/CEVS_heur
https://github.com/gardaskeland/CEVS_heur
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.4169/mathhorizons.23.4.18
https://doi.org/10.4169/mathhorizons.23.4.18
https://doi.org/10.4169/mathhorizons.23.4.18
https://doi.org/10.4169/mathhorizons.23.4.18

[10] Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke
Truß. “A Fixed-Parameter Approach for Weighted Cluster Editing”. In:
Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008,
14-17 January 2008, Kyoto, Japan. Ed. by Alvis Brazma, Satoru Miyano,
and Tatsuya Akutsu. Vol. 6. Advances in Bioinformatics and Computational
Biology. Imperial College Press, 2008, pp. 211–220. url: http://www.
comp.nus.edu.sg/%5C%7Ewongls/psZ/apbc2008/apbc050a.pdf.

[11] Alessio Cardillo, Jesús Gómez-Gardeñes, Massimiliano Zanin, Miguel Ro-
mance, David Papo, Francisco del Pozo, and Stefano Boccaletti. “Emer-
gence of network features from multiplexity”. In: Scientific Reports 3
(2013). Article number: 1334. doi: 10.1038/srep01344.

[12] Linda M. Collins and Clyde W. Dent. “Omega: A General Formulation of
the Rand Index of Cluster Recovery Suitable for Non-disjoint Solutions”. In:
Multivariate Behavioral Research 23.2 (1988). PMID: 26764947, pp. 231–
242. doi: 10.1207/s15327906mbr2302_6. eprint: https://doi.org/
10.1207/s15327906mbr2302_6. url: https://doi.org/10.1207/
s15327906mbr2302_6.

[13] Michele Coscia, Giulio Rossetti, Fosca Giannotti, and Dino Pedreschi.
“DEMON: a local-first discovery method for overlapping communities”. In:
The 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012. Ed. by
Qiang Yang, Deepak Agarwal, and Jian Pei. ACM, 2012, pp. 615–623. doi:
10.1145/2339530.2339630. url: https://doi.org/10.1145/2339530.
2339630.

[14] Michele Coscia, Giulio Rossetti, Fosca Giannotti, and Dino Pedreschi.
“Uncovering Hierarchical and Overlapping Communities with a Local-First
Approach”. In: ACM Trans. Knowl. Discov. Data 9.1 (2014), 6:1–6:27.
doi: 10.1145/2629511. url: https://doi.org/10.1145/2629511.

[15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2016.

[16] Zhuanlin Ding, Xingyi Zhang, Dengdi Sun, and Bin Luo. “Overlapping
Community Detection based on Network Decomposition”. In: 6 (2014).
doi: https://doi.org/10.1038/srep24115.

[17] Tansel Dökeroglu, Ender Sevinç, Tayfun Kucukyilmaz, and Ahmet Cosar.
“A survey on new generation metaheuristic algorithms”. In: Comput. Ind.
Eng. 137 (2019). doi: 10.1016/j.cie.2019.106040. url: https://doi.
org/10.1016/j.cie.2019.106040.

[18] Peter Eades and Candido Ferreira Xavier de Mendonça Neto. “Vertex Split-
ting and Tension-Free Layout”. In: Graph Drawing, Symposium on Graph
Drawing, GD ’95, Passau, Germany, September 20-22, 1995, Proceedings.
Ed. by Franz-Josef Brandenburg. Vol. 1027. Lecture Notes in Computer
Science. Springer, 1995, pp. 202–211. doi: 10.1007/BFb0021804. url:
https://doi.org/10.1007/BFb0021804.

64

http://www.comp.nus.edu.sg/%5C%7Ewongls/psZ/apbc2008/apbc050a.pdf
http://www.comp.nus.edu.sg/%5C%7Ewongls/psZ/apbc2008/apbc050a.pdf
https://doi.org/10.1038/srep01344
https://doi.org/10.1207/s15327906mbr2302_6
https://doi.org/10.1207/s15327906mbr2302_6
https://doi.org/10.1207/s15327906mbr2302_6
https://doi.org/10.1207/s15327906mbr2302_6
https://doi.org/10.1207/s15327906mbr2302_6
https://doi.org/10.1145/2339530.2339630
https://doi.org/10.1145/2339530.2339630
https://doi.org/10.1145/2339530.2339630
https://doi.org/10.1145/2629511
https://doi.org/10.1145/2629511
https://doi.org/https://doi.org/10.1038/srep24115
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1007/BFb0021804
https://doi.org/10.1007/BFb0021804

[19] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North,
and Gordon Woodhull. Graphviz and Dynagraph – Static and Dynamic
Graph Drawing Tools. Accessed: 21.10.2022. url: https://graphviz.org/
documentation/EGKNW03.pdf.

[20] L. Faria, C.M.H. de Figueiredo, and C.F.X. Mendonça. “splitting number is
NP-complete”. In: Discrete Applied Mathematics 108.1 (2001). Workshop
on Graph Theoretic Concepts in Computer Science, pp. 65–83. issn: 0166-
218X. doi: https://doi.org/10.1016/S0166-218X(00)00220-1. url:
https://www.sciencedirect.com/science/article/pii/S0166218X

00002201.

[21] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern Recognit.
Lett. 27.8 (2006), pp. 861–874. doi: 10.1016/j.patrec.2005.10.010.
url: https://doi.org/10.1016/j.patrec.2005.10.010.

[22] Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and
Yngve Villanger. “Tight bounds for parameterized complexity of Cluster
Editing with a small number of clusters”. In: J. Comput. Syst. Sci. 80.7
(2014), pp. 1430–1447. doi: 10.1016/j.jcss.2014.04.015. url: https:
//doi.org/10.1016/j.jcss.2014.04.015.

[23] Fedor V. Fomin, Saket Saurabh, and Neeldhara Misra. “Graph Modification
Problems: A Modern Perspective”. In: Frontiers in Algorithmics. Ed. by
Jianxin Wang and Chee Yap. Cham: Springer International Publishing,
2015, pp. 3–6. isbn: 978-3-319-19647-3.

[24] M. Girvan and M. E. J. Newman. “Community structure in social and
biological networks”. In: Proceedings of the National Academy of Sciences
99.12 (2002), pp. 7821–7826. doi: 10.1073/pnas.122653799. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.122653799. url:
https://www.pnas.org/doi/abs/10.1073/pnas.122653799.

[25] M. Girvan and M. E. J. Newman. “Community structure in social and
biological networks”. In: Proceedings of the National Academy of Sciences
99.12 (2002), pp. 7821–7826. doi: 10.1073/pnas.122653799. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.122653799. url:
https://www.pnas.org/doi/abs/10.1073/pnas.122653799.

[26] Pablo M. Gleiser and Leon Danon. “Community Structure in Jazz”. In: Adv.
Complex Syst. 6.4 (2003), pp. 565–574. doi: 10.1142/S0219525903001067.

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[28] Lars Gottenbüren, Tobias Heuer, Thomas Bläsius, Philipp Fishbeck, Michael
Hamann, Jonas Spinner, Crhistopher Weyand, and Marcus Wilhelm.
KaPoCE: A Heuristic Cluster Editing Algorithm. 2021. url: http://
algo2.iti.kit.edu/heuer/kapoce/kapoce_heuristic.pdf.

65

https://graphviz.org/documentation/EGKNW03.pdf
https://graphviz.org/documentation/EGKNW03.pdf
https://doi.org/https://doi.org/10.1016/S0166-218X(00)00220-1
https://www.sciencedirect.com/science/article/pii/S0166218X00002201
https://www.sciencedirect.com/science/article/pii/S0166218X00002201
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.jcss.2014.04.015
https://doi.org/10.1016/j.jcss.2014.04.015
https://doi.org/10.1016/j.jcss.2014.04.015
https://doi.org/10.1073/pnas.122653799
https://www.pnas.org/doi/pdf/10.1073/pnas.122653799
https://www.pnas.org/doi/abs/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://www.pnas.org/doi/pdf/10.1073/pnas.122653799
https://www.pnas.org/doi/abs/10.1073/pnas.122653799
https://doi.org/10.1142/S0219525903001067
http://www.deeplearningbook.org
http://algo2.iti.kit.edu/heuer/kapoce/kapoce_heuristic.pdf
http://algo2.iti.kit.edu/heuer/kapoce/kapoce_heuristic.pdf

[29] Jiong Guo. “A more effective linear kernelization for cluster editing”. In:
Theoretical Computer Science 410.8 (2009), pp. 718–726. issn: 0304-3975.
doi: https://doi.org/10.1016/j.tcs.2008.10.021. url: https://
www.sciencedirect.com/science/article/pii/S0304397508007822.

[30] Ahmad Hemmati, Lars Magnus Hvattum, Kjetil Fagerholt, and Inge
Norstad. “Benchmark Suite for Industrial and Tramp Ship Routing and
Scheduling Problems”. In: INFOR Inf. Syst. Oper. Res. 52.1 (2014), pp. 28–
38. doi: 10.3138/infor.52.1.28. url: https://doi.org/10.3138/
infor.52.1.28.

[31] Kashif Hussain, Mohd. Najib Mohd. Salleh, Shi Cheng, and Yuhui Shi.
“Metaheuristic research: a comprehensive survey”. In: Artif. Intell. Rev.
52.4 (2019), pp. 2191–2233. doi: 10.1007/s10462-017-9605-z. url:
https://doi.org/10.1007/s10462-017-9605-z.

[32] Nabil Ibtehaz, M. Kaykobad, and M. Sohel Rahman. “Multidimensional
segment trees can do range updates in poly-logarithmic time”. In: Theor.
Comput. Sci. 854 (2021), pp. 30–43. doi: 10.1016/j.tcs.2020.11.034.
url: https://doi.org/10.1016/j.tcs.2020.11.034.

[33] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which Prob-
lems Have Strongly Exponential Complexity?” In: J. Comput. Syst. Sci.
63.4 (2001), pp. 512–530. doi: 10.1006/jcss.2001.1774. url: https:
//doi.org/10.1006/jcss.2001.1774.

[34] ISO. Working Draft, Standard for Programming Language C++. 2017.
url: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2017/n4659.pdf.

[35] Jakob Kallestad. Private communication. 2022.

[36] Jakob Kallestad, Ahmad Hemmati, and Ramin Hasibi. Developing an
Intelligent Hyperheuristic for Combinatorial Optimization Problems using
Deep Reinforcement Learning. 2021. url: https://bora.uib.no/bora-
xmlui/bitstream/handle/11250/2827078/Master_Thesis___Jakob_

Kallestad_3.pdf?sequence=1&isAllowed=y.

[37] Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche.
“The PACE 2021 Parameterized Algorithms and Computational Exper-
iments Challenge: Cluster Editing”. In: 16th International Symposium
on Parameterized and Exact Computation, IPEC 2021, September 8-10,
2021, Lisbon, Portugal. Ed. by Petr A. Golovach and Meirav Zehavi.
Vol. 214. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021, 26:1–26:18. doi: 10.4230/LIPIcs.IPEC.2021.26. url: https:
//doi.org/10.4230/LIPIcs.IPEC.2021.26.

[38] John Kleinberg and Éva Tardos. Pearson New International Edition:
Algorithms Design. First. Pearson, 2014.

66

https://doi.org/https://doi.org/10.1016/j.tcs.2008.10.021
https://www.sciencedirect.com/science/article/pii/S0304397508007822
https://www.sciencedirect.com/science/article/pii/S0304397508007822
https://doi.org/10.3138/infor.52.1.28
https://doi.org/10.3138/infor.52.1.28
https://doi.org/10.3138/infor.52.1.28
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1016/j.tcs.2020.11.034
https://doi.org/10.1016/j.tcs.2020.11.034
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
https://bora.uib.no/bora-xmlui/bitstream/handle/11250/2827078/Master_Thesis___Jakob_Kallestad_3.pdf?sequence=1&isAllowed=y
https://bora.uib.no/bora-xmlui/bitstream/handle/11250/2827078/Master_Thesis___Jakob_Kallestad_3.pdf?sequence=1&isAllowed=y
https://bora.uib.no/bora-xmlui/bitstream/handle/11250/2827078/Master_Thesis___Jakob_Kallestad_3.pdf?sequence=1&isAllowed=y
https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.4230/LIPIcs.IPEC.2021.26

[39] Jérôme Kunegis. “KONECT: The Koblenz Network Collection”. In: Pro-
ceedings of the 22nd International Conference on World Wide Web. WWW
’13 Companion. Rio de Janeiro, Brazil: Association for Computing Machin-
ery, 2013, pp. 1343–1350. isbn: 9781450320382. doi: 10.1145/2487788.
2488173. url: https://doi.org/10.1145/2487788.2488173.

[40] Andrea Lancichinetti, Santo Fortunato, and János Kertész. “Detecting the
overlapping and hierarchical community structure in complex networks”.
In: (Mar. 2009). url: https://arxiv.org/pdf/0802.1218.pdf.

[41] Emmanuel Lazega. The Collegial Phenomenon: The Social Mechanisms
of Cooperation Among Peers in a Corporate Law Partnership. Oxford
University Press, Sept. 2001. isbn: 9780199242726. doi: 10.1093/acprof:
oso/9780199242726.001.0001. url: https://doi.org/10.1093/
acprof:oso/9780199242726.001.0001.

[42] Guo-Hui Lin, Tao Jiang, and Paul E. Kearney. “Phylogenetic k -Root and
Steiner k -Root”. In: Algorithms and Computation, 11th International Con-
ference, ISAAC 2000, Taipei, Taiwan, December 18-20, 2000, Proceedings.
Ed. by D. T. Lee and Shang-Hua Teng. Vol. 1969. Lecture Notes in Com-
puter Science. Springer, 2000, pp. 539–551. doi: 10.1007/3-540-40996-
3_46. url: https://doi.org/10.1007/3-540-40996-3%5C_46.

[43] Yunlong Liu, Jianxin Wang, and Jiong Guo. “An overview of kernelization
algorithms for graph modification problems”. In: Tsinghua Science and
Technology 19.4 (2014), pp. 346–357. doi: 10.1109/TST.2014.6867517.

[44] Ulrike von Luxburg. “A tutorial on spectral clustering”. In: Stat. Comput.
17.4 (2007), pp. 395–416. doi: 10.1007/s11222- 007- 9033- z. url:
https://doi.org/10.1007/s11222-007-9033-z.

[45] Matteo Magani, Barbora Micenkova, and Luca Ross. Combinatorial Anal-
ysis of Multiple Networks. 2013. arXiv: 1303.4986. url: http://arxiv.
org/abs/1303.4986.

[46] Benjamin F. Maier and Dirk Brockmann. “Cover time for random walks
on arbitrary complex networks”. In: CoRR abs/1706.02356 (2017). arXiv:
1706.02356. url: http://arxiv.org/abs/1706.02356.

[47] Julian J. McAuley and Jure Leskovec. “Learning to Discover Social Circles
in Ego Networks”. In: Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States. Ed. by Peter L. Bartlett, Fernando C. N. Pereira,
Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger. 2012,
pp. 548–556.

[48] Aaron F. McDaid, Derek Greene, and Neil Hurley. “Normalized Mutual
Information to evaluate overlapping community finding algorithms”. In:
(Oct. 2011). arXiv: 1110.2515. url: http://arxiv.org/abs/1110.2515.

67

https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://arxiv.org/pdf/0802.1218.pdf
https://doi.org/10.1093/acprof:oso/9780199242726.001.0001
https://doi.org/10.1093/acprof:oso/9780199242726.001.0001
https://doi.org/10.1093/acprof:oso/9780199242726.001.0001
https://doi.org/10.1093/acprof:oso/9780199242726.001.0001
https://doi.org/10.1007/3-540-40996-3_46
https://doi.org/10.1007/3-540-40996-3_46
https://doi.org/10.1007/3-540-40996-3%5C_46
https://doi.org/10.1109/TST.2014.6867517
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://arxiv.org/abs/1303.4986
http://arxiv.org/abs/1303.4986
http://arxiv.org/abs/1303.4986
https://arxiv.org/abs/1706.02356
http://arxiv.org/abs/1706.02356
https://arxiv.org/abs/1110.2515
http://arxiv.org/abs/1110.2515

[49] Mark Newman and Michelle Girvan. “Finding and Evaluating Community
Structure in Networks”. In: Physical review. E, Statistical, nonlinear, and
soft matter physics 69 (Mar. 2004), p. 026113. doi: 10.1103/PhysRevE.
69.026113.

[50] V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri. “Extending the
defintion of modularity to directed graphs with overlapping communities”.
In: Journal of Statistical Mechanics: Thory and Experiment 2009 (2009),
P03024.

[51] OpenMP Architecture Review Board. OpenMP Application Program In-
terface Version 5.0. 2018. url: https://www.openmp.org/wp-content/
uploads/OpenMP-API-Specification-5.0.pdf.

[52] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. “Uncovering
the overlapping community structure of complex networks in nature and
society”. In: Nature 435 (July 2005), pp. 814–818.

[53] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. CFinder:
Overlapping clusters/communities in networks. Accessed: 29.9.2022. url:
https://www.cfinder.org/.

[54] Leto Peel, Daniel B. Larremore, and Aaron Clauset. “The ground truth
about metadata and community detection in networks”. In: Science Ad-
vances 3.5 (2017), e1602548. doi: 10.1126/sciadv.1602548. eprint:
https://www.science.org/doi/pdf/10.1126/sciadv.1602548. url:
https://www.science.org/doi/abs/10.1126/sciadv.1602548.

[55] Tiago P. Peixoto. The Netzschleuder network catalogue and repository.
Accessed: 14.9.2022. 2020. url: https://networks.skewed.de/.

[56] Alexander Ponomarkenko, Leonidas Pitsoulis, and Marat Shamshetdinov.
“Overlapping community detection in networks based on link partitioning
and partitioning around medoids”. In: PLOS ONE 16 (2021). doi: https:
//doi.org/10.1371/journal.pone.0255717.

[57] Reihaneh Rabbany. FARZ - Benchmark for Community Detection Algo-
rithms. Accessed: 13.9.2022. url: https://github.com/rabbanyk/FARZ.

[58] Nandini Raghavan, Réka Albert, and Soundar Kumara. “Near Linear Time
Algorithm to Detect Community Structures in Large-Scale Networks”. In:
Physical review. E, Statistical, nonlinear, and soft matter physics 76 (Oct.
2007), p. 036106. doi: 10.1103/PhysRevE.76.036106.

[59] H. N. de Ridder et al. Information System on Graph Classes and their In-
clusions (ISGCI). https://www.graphclasses.org. Accessed: 3.10.2022.
Feb. 2022.

[60] Stefan Ropke and David Pisinger. “An Adaptive Large Neighborhood
Search Heuristic for the Pickup and Delivery Problem with Time Windows”.
In: Transp. Sci. 40.4 (2006), pp. 455–472. doi: 10.1287/trsc.1050.0135.
url: https://doi.org/10.1287/trsc.1050.0135.

68

https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.cfinder.org/
https://doi.org/10.1126/sciadv.1602548
https://www.science.org/doi/pdf/10.1126/sciadv.1602548
https://www.science.org/doi/abs/10.1126/sciadv.1602548
https://networks.skewed.de/
https://doi.org/https://doi.org/10.1371/journal.pone.0255717
https://doi.org/https://doi.org/10.1371/journal.pone.0255717
https://github.com/rabbanyk/FARZ
https://doi.org/10.1103/PhysRevE.76.036106
https://www.graphclasses.org
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1287/trsc.1050.0135

[61] Guilio Rosetti. DEMON. Accessed: 29.9.2022. 2021. url: https://github.
com/GiulioRossetti/DEMON.

[62] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. “Karate Club: An
API Oriented Open-source Python Framework for Unsupervised Learning
on Graphs”. In: Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM ’20). ACM. 2020,
pp. 3125–3132.

[63] Benedek Rozemberczki and Rik Sarkar. “Characteristic Functions on
Graphs: Birds of a Feather, from Statistical Descriptors to Parametric
Models”. In: Proceedings of the 29th ACM International Conference on In-
formation and Knowledge Management (CIKM ’20). ACM. 2020, pp. 1325–
1334.

[64] Peter Sanders, Kurt Melhorn, Martin Dietzfelbinger, and Roman Demen-
tiev. Sequential and Parallel Algorithms and Data Structures. Springer,
2019.

[65] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.
06347. url: http://arxiv.org/abs/1707.06347.

[66] Robert Sedgewick and Kevin Wayne. Algorithms. Fourth. Addison-Wesley,
2011.

[67] Ron Shamir, Roded Sharan, and Dekel Tsur. “Cluster graph modification
problems”. In: Discret. Appl. Math. 144.1-2 (2004), pp. 173–182. doi:
10.1016/j.dam.2004.01.007. url: https://doi.org/10.1016/j.dam.
2004.01.007.

[68] Michael Sipser. Introduction to the Theory of Computation. Third Interna-
tional Edition. Cengage Learning, 2013.

[69] Vińıcius da Fonseca Vieira, Carolina Ribeiro Xavier, and Alexandre
Gonçalves Evsukoff. “A comparative study of overlapping community detec-
tion methods from the perspective of the structural properties”. In: Applied
Network Science 5 (2020). doi: https://doi.org/10.1007/s41109-020-
00289-9.

[70] Stefan Voß and Andreas Fink. “A hybridized tabu search approach for
the minimum weight vertex cover problem”. In: J. Heuristics 18.6 (2012),
pp. 869–876. doi: 10.1007/s10732-012-9211-9. url: https://doi.
org/10.1007/s10732-012-9211-9.

[71] Hsiang-Yun Wu, Martin Nöllenburg, and Ivan Viola. “Multi-Level Area
Balancing of Clustered Graphs”. In: IEEE Trans. Vis. Comput. Graph.
28.7 (2022), pp. 2682–2696. doi: 10.1109/TVCG.2020.3038154. url:
https://doi.org/10.1109/TVCG.2020.3038154.

69

https://github.com/GiulioRossetti/DEMON
https://github.com/GiulioRossetti/DEMON
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/https://doi.org/10.1007/s41109-020-00289-9
https://doi.org/https://doi.org/10.1007/s41109-020-00289-9
https://doi.org/10.1007/s10732-012-9211-9
https://doi.org/10.1007/s10732-012-9211-9
https://doi.org/10.1007/s10732-012-9211-9
https://doi.org/10.1109/TVCG.2020.3038154
https://doi.org/10.1109/TVCG.2020.3038154

[72] Jierui Xie, Boleslaw K. Szymanski, and Xiaoming Liu. “SLPA: Uncover-
ing Overlapping Communities in Social Networks via a Speaker-Listener
Interaction Dynamic Process”. In: Data Mining Workshops (ICDMW),
2011 IEEE 11th International Conference on, Vancouver, BC, Canada,
December 11, 2011. Ed. by Myra Spiliopoulou, Haixun Wang, Diane J.
Cook, Jian Pei, Wei Wang, Osmar R. Zäıane, and Xindong Wu. IEEE
Computer Society, 2011, pp. 344–349. doi: 10.1109/ICDMW.2011.154.
url: https://doi.org/10.1109/ICDMW.2011.154.

[73] Jaewon Yang and Jure Leskovec. “Overlapping community detection at
scale: a nonnegative matrix factorization approach”. In: Sixth ACM In-
ternational Conference on Web Search and Data Mining, WSDM 2013,
Rome, Italy, February 4-8, 2013. Ed. by Stefano Leonardi, Alessandro
Panconesi, Paolo Ferragina, and Aristides Gionis. ACM, 2013, pp. 587–596.
doi: 10.1145/2433396.2433471. url: https://doi.org/10.1145/
2433396.2433471.

[74] W. W. Zachary. “An information flow model for conflict and fission in small
groups.” In: Journal of Anthropological Research 33 (1977), pp. 452–473.
doi: 10.1086/jar.33.4.3629752. url: https://doi.org/10.1086/jar.
33.4.3629752.

70

https://doi.org/10.1109/ICDMW.2011.154
https://doi.org/10.1109/ICDMW.2011.154
https://doi.org/10.1145/2433396.2433471
https://doi.org/10.1145/2433396.2433471
https://doi.org/10.1145/2433396.2433471
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752

Index

P3, 16

acceptance criteria, 20
adaptive, 19
agent, 21, 23
AHC, 32
AHC (see ALNS-based heuristic

for solving CEVS)
ALNS, 32
ALNS - Adaptive Large

Neighborhood Search, 19
ALNS-based heuristic for solving

CEVS, 14
assertive operator, 26

CC(G) - Critical Clique graph (of
graph G), 31

CEVS - Cluster Editing with
Vertex Splitting, 13, 17

CEVS-score, 18
cluster, 16
Cluster editing, 13
cluster graph, 16
community, 18
community detection, 8
cost, 23
critical clique, 31

deep reinforcement learning
hyperheuristic for CEVS,
24

descendant, 17
DHC (see deep reinforcement

learning hyperheuristic for
CEVS)

disjoint community detection, 8
DRLH - Deep Reinforcement

Learning Hyperheuristic,
14, 20

EQ - Extended modularity, 9
exclusive vertex split, 17

FARZ benchmark generator, 41
feasible solution, 22
FPT - Fixed-parameter tractable,

18

hyperheuristic, 14

inclusive vertex split, 17
inner cost, 29
intermittent scan operator, 26

kernel, 18

LFR-benchmark generator, 41

metaheuristic, 14

neighborhood, 16
neighborhood set, 16

objective function, 22
ONMI - Overlapping Normalized

Mutual Information, 8
operation, 17
operator, 19, 26
operators, 23
original ancestor, 17
overlapping community detection, 8

PACE-challenge, 13
parallel algorithm, 19

71

parallelization, 14
policy, 21
processing element, 19

red-black search tree, 24
red-black search tree map, 24
reduction, 18
reward function, 20, 33
running time, 19

segment, 19
segment tree, 25
simulated annealing, 14
solution, 18

solution object, 22
solution representation, 22
speedup, 19
state representation, 21
suggestive operator, 26

temperature, 20
thread, 19
touched, 23

untouched, 23
URA - Uniform Random Agent, 20

weighted randomness, 30

72

	Introduction
	Community detection
	Cluster editing
	Metaheuristics and hyperheuristics
	Parallelization
	Organization of thesis

	Preliminaries
	General definitions
	Problem definition
	Parameterized complexity
	Parallel algorithms
	Metaheuristics and hyperheuristics
	Adaptive Large Neighborhood Search (ALNS)
	Uniform Random Agent (URA)
	Deep reinforcement learning hyperheuristic (DRLH)

	Metaheuristic framework
	Terminology for implementation details

	Implementation of heuristics
	Datastructures
	Operators
	Suggestive operators
	Assertive operators
	Operators with poor performance
	Selection heuristics
	Parallelization of operators

	Reduction using critical cliques
	ALNS
	DRLH

	Algorithms to solve CEVS parameterized by maximum vertex degree
	Solving CEVS on complete bipartite graphs with formula
	Results
	Data sets used in experiments
	Robustness of AHC
	Compare URA, ALNS and DRLH
	Running time scaling
	Running time of operators
	Parallelization of operators
	Properties of solution communities with comparison to other algorithms

	Conclusion

