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Abstract

High-quality precipitation forecasts are key to ensure the public and economic safety

during severe precipitation events, and the process of validating these forecasts is a con-

tinuous effort. But with Norway’s varied climate and landscape, this can pose a challenge.

In this thesis, the precipitation forecast data from the post-processed AROME-MetCoOp

model were validated against observational data over a period from 1. December 2019

- 31. April 2022 in these six locations: Bergen, Oslo, Trondheim, Tromsø, Kristiansand

and Nesbyen.

The results were split into a climatology part and verification part. For climatology,

Bergen and Tromsø forecasted way too little total precipitation, with the biggest deviation

during summer for Bergen and winter for Tromsø. This was not due to a bias on mean

precipitation amount in the model, but it could be due to the model underestimating the

orographic enhancement. The model predicted a bit too much winter precipitation Oslo,

Kristiansand and Nesbyen, which could be related to wind-induced undercatch of solid

precipitation, although more research is needed.

Precipitation distribution seemed to be somewhat narrow overall, forecasting too many

low-intensity precipitation events, but struggling to forecast enough extreme precipita-

tion. For verification results, forecast quality remained fairly constant with increasing

forecast lengths (up to +48h ahead), and improved slightly with longer accumulation

lengths (also up to 48h). It looks like the model performs better when the (high) hourly

variability gets averaged out.

All in all, Kristiansand was the best-performing location, while Tromsø saw the poorest

results.
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Chapter 1

Introduction

Precipitation forecasts are very important in areas like hydropower companies, agricul-

ture, weather warnings, and society in general, and it is therefore crucial to make them

as accurate as possible (Køltzow et al., 2020). Over the past decades, forecast quality

has greatly improved, and a 7-day forecast is now roughly as good as a 5-day forecast 20

years ago (Figure 1.1) This is mainly due to better models, more data available, better

data assimilation (like 4D-Var), and more computational power (Bauer et al., 2015).

Norway spans about 1700 km from the northernmost to southernmost tip, covering several

different climate zones. In addition to its long coastline, Norway’s topography is varied,

complex and highly irregular, with numerous fjords, mountain ranges, valleys but also

some flatter areas. All these factors contribute to large local variations in weather, which

poses an extra challenge for weather forecasts (including precipitation) in Norway (Müller

et al., 2017).

Norway is also unusually warm compared to other places at the same latitude. The two

main reasons for this are the Gulf Stream transporting warm water across the North

Atlantic towards the Norwegian Sea and beyond, and low-pressure systems frequently

bringing warm and moist air towards the Norwegian mainland. This makes Norway one

of the wettest places in Europe, and much wetter than other regions at similar latitudes.

(Seager et al., 2002; Villa, 2021).

Figure 1.2 illustrates pretty nicely the differences in annual precipitation amount across

Norway. The map on the left uses the current climate normal (1991-2020), while the

map on the right shows the relative difference from the old normal (1961-1990). The

western coast receives the most precipitation, up to 3000-4000 mm in some places, while

1



Chapter 1. Introduction 2

Figure 1.1: Forecast skill improvements (500 hPa height) through history for 3-10 day
range forecasts over the extra-tropical northern (NH) and southern hemispheres (SH).

From the early 2000s, the use of satellites measurements vastly improved the SH
forecast skill (Bauer et al., 2015).

Nordland county is also quite wet. The driest places are the most inland parts of Eastern

Norway and Finnmark county. It is clear Norway has gotten wetter overall since the last

climate normal, and in fact the annual precipitation the last 100 years has increased by

18% (Hanssen-Bauer et al., 2015).

It is the Norwegian Meteorological Institute (MET Norway) who is responsible for provid-

ing weather forecasts in Norway and releasing them to the public. They currently use the

regional high-resolution AROME-MetCoOp numerical weather prediction (NWP) model

when forecasting within the Nordic region, and the AROME-Arctic model for Svalbard

and the Norwegian mainland above the Arctic circle.

Publications on previous AROME-MetCoOp precipitation validations seem to mostly be

confined to various MET Norway reports, which are written and published on a quarterly

basis. Although their structure are more informational and less analytical than a typical

science article, consisting mostly of a short written summary along with lots of figures

and tables. Køltzow et al. (2020) did a study on verification of solid precipitation in

Norway with focus on wind-induced undercatch (too low precipitation measurements

than reality in windy and snowy conditions), and found this had a substantial impact on

the verification results.
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Figure 1.2: Annual precipitation in Norway from 1991-2020 (left) and the relative
difference (%) from 1961-1990 (right). Figure from Norwegian Climate Service Center.

The main goal of this thesis is to validate the post-processed AROME-MetCoOp pre-

cipitation forecast against observed measurements from weather stations in these six

locations: Bergen, Oslo, Trondheim, Tromsø, Kristiansand and Nesbyen. Data is taken

from 1. December 2019 - 31. April 2022. The validation process will be divided into

two parts, climatology and dichotomous forecast verification results. For climatology,

the objectives are to find any anomalies in total precipitation amount (both overall and

seasonal), precipitation distribution (how good is the forecast at predicting dry, light rain

and heavy rain hours), as well as validating both the forecasted frequency and amount for

extreme precipitation events. Verification results look at how well AROME-MetCoOp is

able to correctly predict the precipitation at the right time, and this is done with various

verification methods, forecast lengths, and accumulation lengths.

The thesis structure going forward is as follows: Chapter 2 contains theory of vari-

ous forecast verifications methods, along with precipitation types. Chapter 3 lists all

the methods used to obtain and process the forecasted and observed precipitation data.

Chapter 4 contains the most important climatology and dichotomous forecast verification

results. Chapter 5 discusses the main findings from these results (and Appendix results)

in greater detail, and Chapter 6 conclude the work with a brief summary of the results

at each location, and where the model performed the best overall.



Chapter 2

Theory

This chapter starts with defining what is considered a good forecast, before outlining

the various methods of forecast verification. Finally, the main precipitation formation

processes are listed.

2.1 Forecast Verification

2.1.1 What is a good forecast?

Before we want to validate a forecast, we need to establish what the desired outcome

should be first. The understanding of what counts as a good forecast is not entirely clear,

and the answer given depends on who you ask. A forecaster may say the goodness comes

from similarities between the forecaster’s judgement and the observations, while the user

could be more concerned about whether or not the forecast leads to favourable outcomes

of their decisions.

Murphy (1993) discussed three types of goodness: Consistency (type 1), quality (type 2)

and value (type 3). High forecast consistency is achieved when there is correspondence

between the forecast and the forecaster’s best judgement derived from their knowledge

base. As an example, a weather forecaster might intentionally overstate the seriousness

of a storm (poor consistency) because they think people would otherwise under-prepare.

4
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Table 2.1: Forecast quality attributes (Murphy, 1993; cawcr, 2015).

Attribute Description

Accuracy Level of agreement between the forecast and observations

Association Strength of the linear relationship between the forecasts and obser-
vations

Bias Correspondence between the mean forecast and mean observation

Discrimination 1 Correspondence between the conditional mean forecast and condi-
tioning observation, averaged over all observations

Discrimination 2 Difference between the conditional mean forecast and unconditional
mean forecasts, averaged over all observations

Reliability Average agreement between the forecast values and the observed
values

Resolution Ability of the forecast to sort or resolve the set of events into subsets
with different frequency distributions

Sharpness Tendency of the forecast to predict extreme values

Skill Relative accuracy of the forecast over some reference forecast

Uncertainty Variability of the observations. The greater the uncertainty, the
more difficult the forecast will tend to be

High forecast quality is achieved when the forecast matches the observed conditions at the

time it was forecasted, and is probably the most intuitive goodness type. If the predicted

storm turns out to be less severe than anticipated, then the forecast has poor quality.

High forecast value is achieved when the forecast allows the user to make the best decisions

for increased economic, safety and/or other benefits. Although the storm turned out to

be less serious, lives and properties were saved because people were more prepared than

what they otherwise would have been (good value). A forecast can also be high quality

but have little to no value. For instance, a forecast never predicting hurricanes to form

would likely get close to 100% accuracy, but in the rare occasions where such an even do

happen, the consequences could be devastating and this forecast would be of no value to

the public.

In this thesis, it is the forecast quality that is validated, although forecast value is also

of importance when choosing the locations. Murphy (1993) describes ten attributes that

contribute to the quality of a forecast, listed in Table 2.1.
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Figure 2.1: Schematic representations of the various spatial verification methods
(except point verification) (Gilleland et al., 2009).

2.1.2 Spatial verification methods

When verifying a forecast, an important decision to make is whether the model grid point

corresponding to an observation source (weather station, buoy etc.) should be influenced

by nearby grid points, and in that case how this should be done.

Point verification is the simplest form for spatial verification, and is the method used in

this thesis. Only one model grid point is validated against observations at a time, without

considering nearby grid points. It is a well known and fairly straight-forward method to

produce forecast verification results, although it is also generally more error-prone and

may provide incomplete information about the forecast quality. If a forecast feature is

displaced slightly in space but is otherwise correct, it can still yield poor verification

results. Moreover, as horizontal model resolution increases over time, the model needs to

hit within a smaller range (Gilleland et al., 2009).

Neighbourhood is a filter-based method where a smoothing filter is applied to the

forecast field and sometimes also the observed field. The field is upscaled by averaging
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the values of neighbouring grid points within a certain radius of each other. The result is

a smoothed version of the original field. Most filters than can be applied preserve peak

values, which is important in capturing extreme event features.

Scale separation/decomposition is another filter-based method where each field is

decomposed using some type of spatial bandpass filter, e.g. Fourier transforms. By

isolating the various forecast features by scale (like large-scale frontal systems or small-

scale convective showers), it is now easier to find which scale the main sources of error

originate from, and assess the capability of the forecast to reproduce the observed scale

structure in the observations.

Features-based approach identifies individual structures/features within a field and

analyse these structures separately, finds the best matches of features across these fields,

and compares these matched features based on various attributes (spatial displacement,

orientation, size, average intensity, etc.)

Field deformation verification attempts to manipulate the forecast field to resemble the

observed field in the best possible way (for instance by minimizing the accuracy or bias

score difference). The resulting product is a vector field that describes which adjustments

were made, that are then evaluated either diagnostically (why the field looks like it does)

or analytically (Gilleland et al., 2009, 2010).

Schematics of these spatial verification methods can be seen in Figure 2.1.

2.1.3 Deterministic forecast verification

A forecast is said to be deterministic when there is only one possible solution, e.g. it will

precipitate 2 mm tomorrow. If the forecast contains continuous variables (can be any

value within a physically realistic range), the goal is to measure how the forecast values

differ from the values of the observations.

Two common verification metrics in this category are Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE).

MAE =
1

N

N∑
k=1

|Fk −Ok| (2.1)
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RMSE =

√√√√ 1

N

N∑
k=1

(Fk −Ok)2 (2.2)

Fk and Ok are forecast and observations, respectively, of a given pair number k with N

total values. Their score ranges from 0 to ∞, with a perfect score of 0 (no deviation for

any k). Both seek to find the average magnitude of the forecast errors, although neither

of them indicate the direction of the deviations. Since the values are squared for RMSE,

it is more sensitive to major errors than MAE, which can be very useful if large errors

are particularly undesirable. RMSE will always be equal to or larger than MAE, and the

relative difference can say something about if the forecast is dominated by small or larger

errors.

2.1.4 Dichotomous forecast verification

A deterministic forecast can be reduced to a binary (dichotomous) forecast where there

are only two possible outcomes for an event: Yes, it did happen, or no, it did not happen.

The boundary between these is determined with a specific threshold value, for instance

all hourly forecast and observed values above 0.1 mm/h counts as rain events, while those

under it are considered no rain events. With two datasets (forecast and observation) as

well as two outcomes (yes and no), we can set up a 2 x 2 contingency table which shows

the occurrence of all possible outcomes, seen in Table 2.2.

Table 2.2: A 2 x 2 Contingency table.

Observed

Yes No

Forecast
Yes Hit False alarm

No Miss Correct negative

This contingency table acts as a basis for several different verification scores. While each

have their own strengths and weaknesses, they are able to give a quite coherent forecast

verdict when combined. The ones presented below will be part of the dichotomous forecast

verification results later on.

Accuracy is the overall fraction of forecasts that were correct. Score ranges from 0 to 1,

with 1 as the perfect result. It is a simple measure of forecast quality, although it can be
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misleading in situations with very rare events, where correct negatives would completely

dominate the contingency table outcome.

Accuracy =
Hits+ Correct negatives

Total
(2.3)

Bias frequency says something about the forecast frequency of ”yes” events compared to

the observed frequency of ”yes” events. Score ranges from 0 to ∞, with 1 as the perfect

result. This metric indicates whether the forecast has a tendency to overforecast (score

> 1) or underforecast (score < 1) events, e.g. if the number of forecasted rain hours is

higher or lower than the total observed rain hours. Bias does not measure how well the

forecast events correlate with the observation events, only relative frequencies.

Bias frequency =
Hits+ False alarms

Hits+Misses
(2.4)

Hit rate gives the fraction of observed ”yes” events that were correctly forecast. Score

ranges from 0 to 1, with 1 as the perfect result. It is sensitive to hits, but ignore false

alarms, and thus is best applied together with the false alarm ratio below. It is also quite

good for rare events, since only observed yes events are considered.

Hit rate =
Hits

Hits+Misses
(2.5)

False alarm ratio provides the fraction of observed ”yes” events that actually did not

occur. Score ranges from 0 to 1, with 0 as the perfect result. It is sensitive to false

alarms, but ignore misses.

False alarm ratio =
False alarms

Hits+ False alarms
(2.6)

Success ratio represents the fraction of forecasted ”yes” events that were correctly ob-

served. Score ranges from 0 to 1, with 1 as the perfect result. Success ratio is also equal

to 1 - False alarm ratio.

Success ratio =
Hits

Hits+ False alarms
(2.7)
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2.1.5 Probabilistic forecast verification

The opposite of deterministic is a probabilistic forecast, which expresses the chance of an

even occurring, e.g. there is a 40% chance it will precipitate at least 2 mm tomorrow. The

effect of this can be two-fold: On one hand, a probabilistic forecast allows the forecaster

to better express the inherent uncertainly all weather forecasts have. On the other hand,

it is only probabilistic up until the time of the observation, which (in these settings) are

always deterministic. It also requires longer periods of data to verify these forecast to

make sure if the forecasted probabilities turned out right.

Brier score (BS) is the probabilistic equivalent of mean squared error, and seeks to find

the magnitude of the probability forecast errors. It is therefore defined as

BS =
1

N

N∑
k=1

(fk − ok)2 (2.8)

where fk is the forecast probability, while ok is observed. k is the number of the N total

forecast event pairs. Score ranges from 0 to 1, where a perfect score is 0.

In our case, the post-processed AROME-MetCoOp forecast is deterministic, which means

fk and ok can only either be 0 or 1. If both are 0 (correct negative), the bracket number

is 0 for that pair number k, and the same is true if both are 1 (hit). This means the

only non-zero options left are miss and false alarm, where the value inside the bracket

equals one for that pair number. With this information, we can derive a simplified BS

for dichotomous forecasts.

BS =
Miss+ False alarm

Total
(2.9)

Brier Skill Score (BSS) evaluates the relative skill of the forecast over that of climatology

(BSref ), in terms of predicting whether or not an event occurred, and is defined as

BSS =
BS −BSref

0−BSref

= 1− BS

BSref

(2.10)

Score ranges from −∞ to 1, where a perfect score is 1. BSS = 0 indicates a forecast with

no skill over the reference/climatology forecast (BS = BSref ), and a negative BSS would

tell it is better to trust the climatology than looking at the forecast. Climatology could
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for instance be the average observed temperature on a given day over the last 30 years

(continuous), or the probability of rainfall on a given day based on observations over the

last 30 years (probabilistic) (cawcr, 2015).

2.2 Precipitation formation

Precipitation formation can be divided into three categories: Frontal precipitation, con-

vective precipitation and orographic precipitation. These are not mutually exclusive and

may occur at the same time.
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2.2.1 Frontal precipitation

Figure 2.2: Illustrations of a warm front (top) and cold front (bottom) (Ahrens, 2014).

A front is the boundary between two air masses of different densities (temperature and

humidity), and is associated with a moving cyclone (low pressure system). In the front of

the cyclone, a warm front causes advancing warm and moist air to slowly rise above the

retreating cold and dry air, since warm air is lighter than cold air. This causes relatively

moderate and uniform precipitation in quite a large area ahead of the front.

Further back in the cyclone, there is a cold front advancing much quicker, where the cold

air undercuts and displaces the warm air ahead. The resulting sharp inclination (slope)

at the front usually leads to more intense precipitation, or even thunderstorms in extreme

cases. If the cold front catches up to the warm front (which often happens), the end result
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is an occluded front (Rafferty, 2012). Figure 2.2 illustrates both a warm front (top) and

cold front (bottom). Frontal precipitation is the most common precipitation type at our

latitudes.

2.2.2 Convective precipitation

Figure 2.3: Illustration of convective precipitation (Stuart-Haëntjens, 2018).

Convective precipitation occurs when the surface is heated, causing a shallow layer of

air above to warm up and rise (convection) due to higher buoyancy (Figure 2.3). If the

heated air is moist and the vertical transport is strong enough, it will gradually cool down

due to lower pressure, and the water vapour will condense, form clouds and eventually

precipitate (Ahrens, 2014). These rain shower can be quite local and very intense, but

usually dissolve after a few hours. In Norway, convective precipitation is most common

during hot summer days in the afternoon, after the sun has heated up the ground for

several hours. These conditions are most favourable in the eastern part of Norway. During

winter, convective showers may also happen when very cold air is advected over relatively

warm water and heated up.
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2.2.3 Orographic precipitation

Figure 2.4: Illustration of orographic precipitation (Sahay, 2022).

Orographic precipitation happens when moist air is forced upwards by mountains, causing

the air to cool and eventually form clouds (Figure 2.4). Precipitation usually falls on the

windward side, although for lower mountain ranges it is possible for some precipitation

to be carried over to the leeward side. With little moisture left, the air mass reaching

the leeward side is very dry, causing it to heat up faster when descending than the rate it

cooled on the way up. The leeward side is often called the rain shadow due to experiencing

vastly less precipitation than the windward side (Ahrens, 2014). Orographic precipitation

tends to occur during a low pressure and then acts as orographic enhancement of front

precipitation. These conditions are very common in Western Norway, and is one of the

main reasons why the precipitation map in Figure 1.2 looks the way it does.



Chapter 3

Methods

This chapter describes some general properties of a weather station and the various

instruments used in precipitation measuring, the AROME-Met-CoOp numeric weather

prediction model, how, where and which data from these sources were obtained, and how

they were processed to output the results in this thesis. All data were downloaded and

processed in Matlab® R2021b.

For the record, the terms precipitation, rain, rainfall and similar will be written inter-

changeably for the sake of variety, although in all cases these always refer to precipitation

as a whole, all types included.

3.1 Observations

3.1.1 Measuring precipitation at weather stations

There are roughly 200 professional weather stations in Norway, largely owned and oper-

ated by MET Norway (Nipen et al., 2020). While manual weather stations that required

on-site personnel to operate and send in data were the norm in the past, more and more

Automatic Weather Stations (AWS) have replaced them in later years. These are mea-

suring precipitation every hour (and sometimes every minute), in contrary to manual

stations where precipitation is usually measured 1-4 times per day (snl, 2020).

The use of private weather stations have gotten increasingly more attention lately, as

15
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they vastly outnumber MET Norway’s own stations by a factor of about 50. Some of

these stations are produced by Netatmo, a french company specialising in smart home de-

vices, and where local weather data recorded from each individual station can be shared

online and pooled together in their Weathermap service (MET Norway, 2018). Even

though their data quality are highly variable due to not following the World Meteorolog-

ical Organization (WMO) standards for weather observations (WMO, 2018) and lack of

information about how they are maintained, their inclusion in weather forecasting have

shown to improve overall forecast quality, especially for short-term temperature forecasts

(Nipen et al., 2020). Bárdossy et al. (2021) found that using private weather stations

(with sufficient quality control) could improve temporal precipitation interpolation.

Pluviometres (commonly referred to as rain gauges) are the standard way of measuring

precipitation intensity, which is the amount of precipitation measured over a certain

period. For manual stations, the rain content is poured into a graduated cylinder and

measured to give the total rainfall (in case of snow, the content is first melted then

measured). For automatic stations, several different methods are currently used. One

of them is weighing rain gauges, where the weight of the collected water is measured

(typically by a weight cell or a string of vibrating wire) as a function of time and converted

into rainfall depth. (AMS, 2012; snl, 2017).

A low-cost but more inaccurate alternative is tipping bucket rain gauges, where a funnel

collects and channels the precipitation into a seesaw-like container. Once a pre-defined

amount of precipitation falls, the lever tips, emptying the container in the process, and

an electric signal is sent indicating a rainfall increase. However, these gauges are less

accurate than weighing rain gauges, since rainfall may stop before the lever has tipped,

and the stored water would then give the next rain period a ”head start” by only requiring

a tiny amount of rain to tip the lever and thus indicate more rain has fallen than the

actual amount. During intense rain, some moisture may be lost between the time it takes

from the lever to tip until a new bucket is ready to collect rain. They also struggle with

measuring snowfall as it may just cover the funnel like a blanket, and installing a heater

to melt the snow will lose too much moisture to evaporation for the measurement to be

accurate (Groisman and Legates, 1994).

Disdrometres and hotplates precipitation gauges are more modern instruments which uses

other techniques than collecting rainfall. Disdrometres measure drop size distribution

and falling velocity of precipitation, which can be used to estimate kinetic energy of

raindrops and thus their potential effect on soil erosion and pollution in surface water

flows. That said, measurements tend to be more error-prone during heavy rainfall and
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when measuring very large droplets, as well as in windy conditions (ARM; Kathiravelu

et al., 2016).

Hotplates consist of two thermally isolated aluminium plates (one facing upwards and one

facing downwards) which are heated up with electricity to about 75◦C. Precipitation rate

is estimated by calculating the power required to either melt snow, evaporate snow, or

evaporate rain on the upward-facing plate, compensated for wind effects by subtracting

out the power on the lower, downward-facing plate. Hotplates provide wind speed, tem-

perature and precipitation intensity data every minute, making them ideal for real-time

applications like aircraft de-icing and road weather conditions. They are also considered

low-maintenance (albeit quite power hungry) and very accurate even in windy and snowy

conditions. Although, they struggle a bit more in conditions with hail and graupel as

the ice pellets tend to bounce off the plates before they can be melted (Rasmussen et al.,

2011).

Images of various pluviometre types can be seen in Figure 3.1.

3.1.2 Obtaining observational data

Naturally, it is not feasible to perform a full-scale point verification for all Norwegian

weather stations, meaning only the stations deemed the most relevant and impactful

were picked based on a few criteria. First, places assumed to give the highest forecast

value were looked at, i.e. the biggest cities in the country. Next, places with different

geographic and climatic features (coastal, inland, mountain etc.) were desired, since some

of the major cities like Oslo/Drammen, or Stavanger/Sandnes are very close to each other

and experience mostly the same weather. And lastly, if there were more than one AWS

within these regions, the one with the most complete time series was chosen so that the

validation results were as accurate as possible.

As such, we chose six AWS based on these criteria, where all of them having weighing

rain gauges installed. Figure 3.2 shows where these stations are located in Norway, and

Table 3.1 lists their location data, how long they have been operating, and missing data

(if any). Hourly observed precipitation data for the analysis period (1. December 2019 to

31. April 2022, or 882 days/21168 hours in total) were downloaded at each station from

https://seklima.met.no/. Resolution of observed precipitation data was 0.1 kg m−2

(equivalent to millimetre rain).

https://seklima.met.no/
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Figure 3.1: Images of different pluviometre types: a) Weighing rain gauge, b) Tipping
bucket rain gauge (upper - exterior, lower - interior), c) Optical disdrometre, and d)

Hotplate precipitation gauge.
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Figure 3.2: Location of all six weather stations used.
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Table 3.1: Local topography maps and meta data for the chosen weather stations.

Bergen (Florida) Oslo (Blindern) Trondheim (Lade)

Model latitude 60.3824◦ N 59.9414◦ N 63.4465◦ N

Model longitude 5.3391◦ E 10.7216◦ E 10.4409◦ E

Model altitude 9 m 93 m 25 m

Station latitude 60.3830◦ N 59.9423◦ N 63.4428◦ N

Station longitude 5.3327◦ E 10.7200◦ E 10.4428◦ E

Station altitude 12 m 94 m 13 m

Operational since 1949 1931 2004

Missing observation

values
0 of 21168 (0%) 0 of 21168 (0%)

461 of 21168

(2.18%) over 5

periods

Tromsø

(Vervarslinga)

Kristiansand

(Kjevik)
Nesbyen (Todokk)

Model latitude 69.6566◦ N 58.2009◦ N 60.5640◦ N

Model longitude 18.9456◦ E 8.0731◦ E 9.1332◦ E

Model altitude 77 m 9 m 173 m

Station latitude 69.6537◦ N 58.2000◦ N 60.5670◦ N

Station longitude 18.9368◦ E 8.0767◦ E 9.1323◦ E

Station altitude 100 m 12 m 166 m

Operational since 1895 1939 2003

Missing observation

values

7 of 21168 (0.03%)

over 1 period

592 of 21168

(2.80%) over 3

periods

0 of 21168 (0%)
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3.2 AROME-MetCoOp

3.2.1 Introduction to AROME

AROME-MetCoOp is a high-resolution NWP model operated by Meteorological Cooper-

ation on Operational Numerical Weather Prediction (MetCoOp), and is based on Appli-

cations of Research to Operations at Mesoscale (AROME-France) model by Météo-France

(Seity et al., 2011; Müller et al., 2017). MetCoOp started in 2010 as a collaborative effort

between the Norwegian Meteorological Institute (MET Norway) and Swedish Meteoro-

logical and Hydrological Institute (SMHI), and since when AROME-MetCoOp became

operational in 2014, the departments have benefited from operating, developing and moni-

toring the same weather model. Finnish Meteorological Institute (FMI) joined MetCoOp

in 2017, and the Baltic countries Estonia, Lithuania and Latvia is set to join in 2022

(Kristiansen and Blaauboer, 2018; MET Norway).

AROME-MetCoOp domain covers the Nordic countries as well as the North Sea and

Baltic Sea (see Figure 3.3) with a 2.5 x 2.5 km horizontal resolution and 65 vertical lev-

els, where the vertical resolution decreases by height up until the vertical boundary layer

located at roughly 33 km altitude. The model is forced by the lateral and upper bound-

ary conditions of the large-scale European Center for Medium-Range Weather Forecast

(ECMWF) model (Müller et al., 2017).

To improve scenarios less suited for deterministic forecasts, like resolving the stochastic

nature of rapidly-growing convective cells (Müller et al., 2017), an ensemble version of

AROME-MetCoOp named MEPS (MetCoOp Ensemble Prediction System, operative

since 2016) is currently used. As of 2022, it contains 30 ensemble members; one control

member (AROME-MetCoOp with unperturbed initial and boundary conditions), while

the rest are perturbed members. The control member is updated every 3 hours, with a 66-

hour forecast produced every main cycle (00, 06, 12, 18 UTC). The 3-hour intermediate

forecasts (03, 09, 15, 21 UTC) are used for data assimilation for the following main cycle

(Frogner et al., 2019; Homleid et al., 2021).

The raw forecasts are then post-processed (also known as the MET Nordic dataset), which

takes a limited number of surface variables from MEPS and perform bias corrections

based on real-time observations from Netatmo stations, WMO-stations from MET and

FMI, non-WMO stations in Norway, and radar. Unlike MEPS, the output product is

deterministic (only one solution), and it is also downsized to 1 km horizontal grid spacing.
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MET Nordic forms the basis of operational forecasts delivered by MET Norway, like

https://www.yr.no (MET Norway NWP Wiki).

The cloud microphysics is based on the Kessler scheme for warm (liquid) processes, and

the three-class ice parametrization (ICE3) scheme for cold processes. ICE3 includes cloud

ice, snow and graupel, and more than 25 processes are parametrized by the scheme (Pinty

and Jabouille, 1998). AROME-MetCoOp contains some modifications to ICE3, mainly

to account for its weaknesses during winter season, e.g. T2m being too low due to low-level

clouds decaying too quickly in cold conditions (Müller et al., 2017).

For simplicity, AROME-MetCoOp and by its extension MEPS will just be denoted as

AROME going forward.

https://www.yr.no
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Figure 3.3: Model domain of MEPS (green square), post-processed (red square) and
AROME-Arctic (blue square) (MET Norway NWP Wiki).
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Table 3.2: Forecast hours and accumulated precipitation lengths used in the verification
results. For example, forecast hour +4 from a 00:00 UTC run denotes the accumulated

precipitation predicted from 03:00 until 04:00.

Accumulation length Forecast hours

1 hour +4h, +13h, +48h

6 hours +4h-9h, +13h-18h, +25h-30h

24 hours +4h-27h, +13h-36h, +25h-48h

48 hours +1h-48h

3.2.2 Obtaining post-processed AROME forecast data

Post-processed hourly forecast precipitation data (from MEPS version cy43) were ob-

tained from https://thredds.met.no/thredds/catalog/metpparchive/catalog.html,

a public site ran by MET Norway with readily available data as NetCDF files. Then,

we chose the closest available model grid point to each station’s location. Resolution of

forecast precipitation data was at least 0.0000001 kg m−2, or 1 000 000 times higher than

for observed data, which is way more than needed for all practical purposes.

While the main cycle of the AROME model is ran every 6 hours, only forecasts ran

at 00 and 12 UTC were used here, reducing the size of downloaded forecast data by

half. This resulted in 1764 unique forecasts considering an 882 days long analysis period

(1. December 2019 to 31. April 2022). For climatology results, the first 12 forecast

hours were used to ensure no overlapping forecast periods when comparing with observed

data, while Table 3.2 shows the various forecast hours and accumulation lengths chosen

for the dichotomous forecast verification. Forecast hours ranging from +49h to +66h

often contained missing data, which was the main reason these times were discarded.

Nevertheless, picking different accumulation lengths taken at different forecast hours is a

key part to determine if the model quality changes with forecast length, and if verification

results for individual precipitation hours differs from accumulated rainfall over several

hours.

https://thredds.met.no/thredds/catalog/metpparchive/catalog.html
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3.3 Processing the data

3.3.1 Missing values

Both forecasted and observed datasets were sometimes incomplete, and these missing

values were treated as not-a-number (NaN) to make sure there were no ”holes” in the

datasets and all precipitation values appeared at their correct time stamps. NaN-values in

observed data were displayed in Table 3.1, whereas 19 of the 1764 forecasts were missing

from the MET database and thus filled with NaN. This was true for all six locations.

NaN values in general need to be dealt with properly to avoid flawed results. In this case,

a ”zero-tolerance policy” was conducted to be on the safe side: If any section of a dataset

contained at least 1 NaN value, then the whole section was considered as NaN and ignored

from the calculations. A section could for instance refer to daily precipitation in climatol-

ogy (all 24 hourly values must be valid for that day to be accepted), or 48h accumulated

precipitation in verification results. The exception was for monthly precipitation where

NaN values were set to 0 instead to avoid entire months of data being overwritten and

lost. While this resulted in some months losing rainfall to NaNs and underestimating the

”real” precipitation amount, this applied both to forecasted and observed data, meaning

the relative difference between the two were not affected that much.

In addition, all neighbouring observation values part of any given 12-hour cycle (01:00 to

12:00, and 13:00 to 00:00) that contained at least one NaN value were replaced with NaN.

For example, the missing Tromsø data lasted from 09.02.2021 15:00 to 09.02.2021 21:00.

Following the rule above, all data from 13:00 including 00:00 the next day were filled with

NaN. This way, observed data can be considered as 1764 unique 12-hour sets where each

set solely contains either real or NaN values, which was identical to how forecast data

was structured except they contained 48-hour sets instead of 12-hour. It is not strictly

necessary to do it like this, but having both datasets on compatible formats makes them

easier to keep track of and compute the results later on. The downside is some more data

were lost, though it can be argued the relative increase in NaN values was small enough

to not have any noticeable effect.

� Tromsø: +5 NaN values, 12 in total

� Kristiansand: +31 NaN values, 492 in total

� Trondheim: +56 NaN values, 648 in total
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� Bergen, Oslo and Nesbyen are unaffected since they did not contain any NaN values

Lastly, NaN values occurring at different times in forecast and observed data were over-

lapped. For instance, if forecast data contained NaNs at 3. February 2021 while observed

data contained NaNs at 21. March 2020, both datasets would now contain NaN values at

both dates. This is important both for climatology results (same number of data points

when comparing rainfall amount) and forecast verification (guarantee that real values

from one dataset are never compared against NaN values from the other).

3.3.2 Precipitation thresholds

In cases where we only evaluated whether it precipitated or not (binary outcome), all

values ≥ 0.1 mm/hour (mm/h for short) or ≥ 0.1 mm/day were treated as precipitation,

and otherwise as no precipitation. Since forecast data resolution is way higher than

observed data, it is possible the accumulated forecast rainfall for a given duration indicates

precipitation, even though none of the individual hours gathered enough rain to pass the

threshold. Forecast values were only ever rounded down if hourly/daily precipitation was

still below 0.1 mm (treated as no rain for statistical purposes), and only in situations

where total precipitation amount was not being considered.

3.4 Custom-made forecasts

Part of the task in this thesis is to evaluate how well AROME performs against simple

custom-made forecast, both originating from AROME data itself and recent observations.

Three such forecasts were created:

� fcfix: Bias-corrected AROME forecast by taking the relative difference in forecasted

and observed mean value of all data points throughout the analysis period (1.

December 2019 - 31. April 2022). For example, if total forecasted precipitation

was 20% lower than total observed precipitation, then each hourly forecast value

was multiplied by a factor of 1/(1 − 0.2) = 1.25. Used in climatology, extreme

precipitation, and dichotomous forecast verification.

� fcday: Use yesterday’s hourly observations to forecast today’s weather for that

respective hour of the day. For example, if it rained 0.7 mm yesterday from 12:00
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to 13:00, then fcday will predict 0.7 mm precipitation today from 12:00 to 13:00.

Only used in dichotomous forecast verification.

� fcpersist: Use last hour’s observation and forecast that the weather will remain

unchanged the next 12 hours. Updated twice a day (two 12-hour periods). For

example, if it precipitated 1.6 mm from 23:00 to 00:00, fcpersist will forecast 1.6

mm rainfall every hour for the next 12 hours. Only used in dichotomous forecast

verification.

These forecasts served different purposes depending on how they were created. fcday and

fcpersist were made using available observations at the time, and acted as low-quality

benchmark forecasts that AROME is expected to outperform overall. fcpersist was also

used to examine how persistent the weather is at each location, and if the nowcasting

(first few hours into the forecast) of fcpersist can match or even outperform AROME.

Fcfix on the other hand is technically an improvement over AROME by removing the

bias of forecasting too little/too much total precipitation. That said, the main goal here

is not to create a better forecast than AROME, but to use fcfix as a tool to check if

AROME suffers from any mean precipitation bias.

3.5 Climatology

This section outline the methods of deriving a location’s climatology from forecasted and

observed data over the analysis period.

3.5.1 Weather persistence

This part was based purely on observed data, hence the step of overlapping NaN values

between forecast and observed data was not performed, as it would have lost some data

for no good reason.

Weather persistence says something about how often the weather changes at a given

location, i.e. weather stability. One way to approach this is to look at average rain

weather duration and average dry weather duration. To find these, we need two variables:

total rain/dry hours, and total rain/dry weather periods. The former was found simply

by evaluating all hourly observed precipitation values against the ≥ 0.1 mm/h threshold
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value, and count the number of occurrences for each outcome. The latter was found when

counting the amount of times it changed between rain and no rain between subsequent

hours/days, marking the end of a rain/dry weather period and the start of a new. A rough

schematic of this process can be seen in Figure 3.4. In this example, the average rain

weather duration would be 3.5 hours (7 rain hours divided by 2 rain periods). Average

rain/dry weather duration was calculated for hourly and daily precipitation data, both

with the same method of procedure.

Figure 3.4: Schematic of how rain/dry weather periods were counted.

In some instances, periods may start or end rather abruptly due to limitations in the

dataset. The first real value after an arbitrary long string of NaN values was always

considered to be the start of a new period. This was done because the number of changes

between dry/rainy weather (if any) is unknown to the observer, and to protect against

NaN periods that may last for weeks from erroneously increasing the perceived average

rain/dry weather duration. In our updated schematic (Figure 3.5), there is now an extra

rain period and one less rain hour. Notice how the average rain weather duration has

decreased from 3.5 hours to 2 hours just by substituting a rain hour with NaN.

When dividing the data into seasons, the first value for each season was also treated as a

new period. E.g. even if it precipitated on both 31. August 2020 and 1. September 2020,

they were considered as two separate precipitation periods since they belonged in two

different seasons. One rather obvious downside were the calculated total rain/dry weather

periods being slightly higher than ”reality”, with the most ”split-up” scenarios like daily
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precipitation divided by seasons being impacted the most (potentially generating an extra

period once every 90 data points or so). By adding up total rain rain/dry weather periods

for each season and compare that number to total periods without any seasonal division,

the increase came out to be roughly 2-5% for daily data, and >0.4% for hourly data.

Figure 3.5: Schematic of how rain/dry weather periods were counted if NaN values are
present.

3.5.2 Precipitation distribution

The next step was to look at the distribution of hourly and daily precipitation values to

tell something about a location’s precipitation pattern and whether it is dominated by

no rain, light rain or heavy rain. This time, observed precipitation distribution were also

compared against data from the AROME forecast and the custom-made fcfix forecast.

Precipitation values were sorted into various groups based on the quantity (frequency

distribution). Table 3.3 shows the specific values and intervals used. Values less than 0.1

mm were treated as no rain, and therefore displayed as 0 mm. 0.1-1 mm/h for instance

means 0.1 ≤ mm/h ≤ 1, while all other intervals listed, e.g. ”1-2 mm/h”, stand for 1 <

mm/h ≤ 2. NaN values were given their own separate section.

Other common statistical scores used were the mean value, precipitation intensity and

percentiles. The mean was calculated as the average precipitation amount when including

all non-NaN data points (all observed values, and the non-rounded values from the first

12 forecast hours from AROME and fcfix). Precipitation intensity is the average rainfall
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Table 3.3: Specific numbers and intervals used for frequency distribution and percentile
calculations

Hourly frequency distribution Daily frequency distribution Percentiles

0 mm/h 0 mm/day 25

0.1-1 mm/h 0.1-5 mm/day 50 (median)

1-2 mm/h 5-10 mm/day 75

2-3 mm/h 10-15 mm/day 90

3-4 mm/h 15-20 mm/day 99

4-5 mm/h 20-25 mm/day

5-6 mm/h 25-30 mm/day

6-7 mm/h 30-35 mm/day

7-8 mm/h 35-40 mm/day

>8 mm/h 40-45 mm/day

45-50 mm/day

>50 mm/day

amount when we only include rain hours/days (≥ 0.1 mm) and ignore the rest.

Percentile (also knows as k-th percentile) is the precipitation intensity value where a given

percentage k of all rain hour/day values are less than or equal to. E.g. if there were 5176

rain hours in total at one location, the 90 percentile rainfall amount would be rank 517 of

5176 (rounded down), and thus higher than 90% of all rainfall values. Table 3.3 displays

all percentiles used (identical for hourly and daily data).

3.5.3 Extreme precipitation

What counts as an extreme precipitation event can be a complex and subjective discussion

where not only the actual rainfall amount matters, but also the time- and spatial scale of

the event, intensity, return period/frequency, and any consequences for human life and

the surrounding wildlife and infrastructure (Barlow et al., 2019). Nevertheless, the total

measured precipitation should be seen in relation to the climatological normal (30 year

moving period, currently lasts from 1991-2020) for that area in order to decide if it could

qualify as an extreme event. For example, although 50 mm rain over 24 hours in Bergen

is uncommon, it is hardly enough to be seen as an extreme event on its own. However,

50 mm precipitation in 24 hours inside the polar desert at Longyearbyen, Svalbard, could

cause some truly devastating effects, because the frequency of such an event would be

extremely low, and the local landscape and society would very likely not be able to

withstand such amounts.
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One definition used for extreme precipitation is all days above the 99.5 percentile of rain

days from the current climatological normal for that area. With the ongoing climate

changes, this threshold value could change over time, pushing the boundaries of what

can be characterized as an extreme event. This is something that should be kept in mind

when designing infrastructure in the future (Sorteberg, 2012).

Using the 99.5 percentile with our dataset would only return 4 out of 882 daily values,

so to give ourselves a bit more data to work with we slackened this definition somewhat.

Instead, the mean value of top 10%, 1% and 0.1% of all hours, and top 10%, 5% and 1%

of all days were used to classify extreme precipitation events (including dry hours/days,

but excluding NaN hours).

While comparing these results between observed and forecast (plus fcfix) would give a

good indication on how accurately AROME can predict extreme precipitation AMOUNTS,

they do not tell anything about how good it is at forecasting extreme events at the correct

TIME. To do that, two new terms were introduced: Top x% shared extreme hours/days,

and top x% shared extreme hours with 6 hour tolerance.

For the first term, the wettest top 1% and top 0.1% of all hourly precipitation values

(top 5%/1% for daily values) were identified and ranked for both forecasted and observed

data, along with their recorded time and date of occurrence. These times were then cross-

checked between each dataset to find how many values they had in common within the

top rankings. In other words, how many of the forecasted extreme precipitation values

also turned out to appear among the top observed extremes? Any top x% ranking here

would suffice to count as a hit, meaning if the 14th wettest forecast hour didn’t end up

being the 14th wettest observed hour, it would still count as a hit as long as both hours

were within the wettest top x% of all hours. All hits were summed up and divided by

the total data points within the top x% bracket to get a ”hit rate” score ranging from 0

to 1, with 1 being perfect score. Figure 3.6 illustrates how this process was done.

Since these requirements of getting a hit are quite harsh (e.g. forecast extreme could be

off by only one hour and it would still count as a miss), especially during convective-

driven extreme precipitation events, a separate category with a 6 hour tolerance period

were also added for hourly data. I.e. forecasting the extreme event up to 6 hours too

early or too late would now be deemed as acceptable. A few rules needed to be set before

these new calculations could be made. First, each forecast/observed value could only be

used once. This was to prevent scenarios like forecasting extreme rainfall several hours

in a row but only one of them were observed, scoring several hits in the process as they
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technically all were within the 6 hour tolerance period. Second, the closest matching

hours were given priority in the following order: +0h (exact same time), +1h (forecasted

one hour too late), -1h (forecasted one hour too early), +2h, -2h and so on up until -6h.

While neither of these methods are able to tell the whole story on their own, they should

still complement each other well. If the model was extremely good at forecasting the

correct amount, but never at the correct time, it would be very noticeable by reading the

shared extreme hours results. Likewise, if the model always forecasted extreme events

right when it should, but consistently predicted way too little precipitation, the mean

extreme precipitation values would show a clear deviation.

Lastly, any seasonal variations in extreme precipitation events were looked at. We used

two parameters, mean extreme precipitation amount for top 1% of hourly values (top 5%

for daily values), and frequency of forecasted and observed extreme precipitation events

(return values). Considering some seasons contained more data points than others, and

extreme rainfall tend to be very season-dependant, using the above method of shared

extreme days could run into some issues at drier locations without any notable extreme

precipitation during certain seasons. The top x% ranks could get very ”muddy” with lots

of similar low-end values, making the hit rate requirements borderline unfair to overcome.

Instead, a frequency-based metric was selected, as it functions independent of sample size.

Seasonal return values for extreme precipitation were calculated by taking the top 1%/5%

of all hours/days and distribute them by which season they were recorded. This meant

the list of extreme precipitation events by each season could have varying lengths, where

the shorter lists could have some extra uncertainty due to low sample size.
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Figure 3.6: Schematic of how top x% shared extreme hours/days were calculated. In
this hypothetical example, the 10 wettest days constitute all values above the top 0.1%
threshold. Day means which day in the dataset the rainfall was recorded, with day 1
being 1. December 2019 and then counting upwards. Day 42 barely does not make the
cut for observed data and thus ends up as a miss. Overall, with 3 hits and 7 misses, this
location gets a score of 0.3. Also notice how the forecast consistently underestimates

the extreme rainfall amount.
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3.6 Dichotomous forecast verification

This section explains how the forecast verification methods outlined in Chapter 2.1 were

used to calculate the results of dichotomous forecasts. Using the various scenarios listed

in Table 3.2, a contingency table was created for each scenario (10 in total) and for each

location. This was done for both AROME and fcday forecasts. Given that fcday only

forecasts 24 hours into the future, only the +4h and +13h (1 hour accumulation length)

as well as +4h-9h and +13h-18h (6 hour accumulation length) were valid.

To produce a contingency table, each individual precipitation forecast (AROME and

custom-made) was compared against its respective observed precipitation value to de-

termine if that forecast was a hit, miss, correct negative or false alarm based on the

0.1 mm threshold value (same for all accumulation lengths). Each outcome was added

up and sorted into its own category, with NaNs as a 5th, unused category for all fore-

casts/observations containing at least one NaN value. This meant for longer accumulation

lengths like 24h and 48h, some more data were lost as NaN since the longer the accumu-

lation length is, the more likely it is to overlap with at least one NaN value.

For fcpersist data, this process was done slightly different. Since this forecast is only 12

hour long, a contingency table was made for each of the 12 forecast hours, in addition

to two accumulated forecasts from +1h-6h and +7h-12h forecast hours (14 scenarios

in total). This was done to more accurately analyse the hourly evolution of fcpersist

forecast quality compared to AROME (which also received the same treatment). The 6

hour accumulation forecasts served to reduce the variance between each individual hour.

After all contingency table outcomes were summed up to get the total number of hits,

misses, false alarms and correct negatives for each scenario (NaNs excluded), these were

used to calculate the various verification methods explained in Chapter 2.1. In the case

of Brier skill score, we needed to make a new contingency table for a ”background” or

”climatology” forecast to function as the reference Brier score (BSref ) in order to compare

its relative skill with AROME, fcday and fcpersist. One alternative would be to randomly

guess the occurrence of rain and no rain, and in a binary forecast setting with only two

possible outcomes, this reference forecast would be correct 50% of the time, resulting in

a BSref score of 0.5.

Instead, the reference forecast was set to always predict the most common outcome of

rain or no rain based on the observed data for a given scenario, thus lowering the BSref
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score and making it harder to beat. Using the reduced version of Brier score in Equation

2.9, we get two possible solutions. The first solution is where the reference forecast always

predicts rain, resulting in all misses converting to hits (observed rain), and all correct

negatives would be changed to false alarms (no observed rain). With miss being an

impossible outcome, the Brier score equation is reduced to Equation 3.1.

BS1 =
False alarm

Total
(3.1)

Likewise for the second solution, in scenarios where no rain was observed most often,

the reference forecast would always predict dry weather. All hits/false alarms would be

converted to misses/correct negatives respectively, and with no false alarms left, we get

Equation 3.2.

BS2 =
Miss

Total
(3.2)

The chosen BSref was set to whichever the lowest value of BS1 and BS2 was at a given

scenario, and is always between 0 and 0.5.
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Results

This chapter will present the most important results found in this thesis. Given the

sheer amount of data involved and the numerous methods used, this chapter’s figures

will mostly be limited to hourly data, since with a sample size of over 20 000 hours they

should generally be more accurate. Other results like for daily data will also be covered,

though mostly by referring to tables and figures in the Appendix. For the most part,

daily data results show the same pattern as hourly results.

The structure in this chapter is mostly the same as the last part of Methods chapter,

starting with climatology which includes weather persistence, precipitation distribution

and extreme precipitation, followed by dichotomous forecast verification results.

4.1 Climatology

Table 4.1 shows the total recorded precipitation for AROME forecast and observed data

during the analysis period at each location, as well as their ratio. Keep in mind this is

accumulated precipitation after NaN values from the two data sets were overlapped with

each other (as explained in section 3.3.1), meaning the actual observed rainfall is a little

bit lower. For example, Bergen (Florida) recorded 6386.6 mm, thus roughly 50 mm rain

was removed to provide a fair basis of comparison with forecasted precipitation.

36
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Table 4.1: Total recorded precipitation for AROME forecast (using first 12 forecast
hours) and observed data from 1. December 2019 to 31. April 2022. The ratio listed on
the right is the same ratio fcfix uses to bias-correct the mean forecast precipitation, and

thus the total fcfix precipitation is equal to observed.

Total forecasted
precipitation

Total observed
precipitation

fcfix ratio

Bergen 4924.3 mm 6336.0 mm 0.777

Oslo 2076.2 mm 1914.9 mm 1.084

Trondheim 2482.5 mm 2171.2 mm 1.143

Tromsø 2431.5 mm 3090.7 mm 0.787

Kristiansand 3242.3 mm 3219.6 mm 1.007

Nesbyen 1287.1 mm 1059.6 mm 1.214

The main talking point is the AROME model in Bergen and Tromsø seem to substan-

tially underestimate the total rainfall, only recording 78% and 79% of observed rainfall,

respectively. Especially given the wet climate in Bergen, the AROME model generating

1400 mm less rain during a 2.5 year timespan is quite remarkable. Oslo, Trondheim and

Nesbyen on the other hand forecasts more precipitation that what was observed, but the

total quantity is not too far off. Nesbyen has the biggest discrepancy where AROME

predicts 21% too much rain, although Nesbyen is also by far the driest location here,

thus even a relatively small difference in absolute precipitation could have a big impact

on the ratio. Kristiansand almost gets a perfect match with only a 0.7% difference. This

means AROME and fcfix forecast will by all intents and purposes act as the same forecast

here and reflect as such in the figures below.

4.1.1 Weather persistence

Figure 4.1 presents the average rain/dry weather duration in hours for each location, both

overall and seasonal. The numbers themselves are listed in Figure A.1. When looking at

the overall duration, there seem to be three ”pairs” developing. The average rain weather

duration in Bergen/Tromsø is 4.5 hours, a bit less than 4 hours at Oslo/Kristiansand,

while Trondheim/Nesbyen experience the shortest rain periods, right above 3 hours on

average.

When examining the seasonal variance, it is clear summer rainfall is generally very brief,

while winter and especially autumn months experience longer sessions of precipitation,

with 5.5 hours on average in Bergen as the highest. This feature fits well with the per-

ception of autumn/winter being dominated by larger low-pressure systems precipitating
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Figure 4.1: Average rain/dry weather duration in hours for each location, separated by
season. Total is average of all seasons. Data from 1. December 2019 - 31. April 2022.



Chapter 4. Results 39

over a longer period of time, while summer rain often originates from short-lived convec-

tive systems. This is further backed up by the stations located in southern and eastern

part of Norway (Oslo, Nesbyen and Kristiansand), where convective precipitation is most

common, experiences the shortest rain weather durations during summer.

Since total rain/dry weather periods for a given location necessarily must be practically

identical, the average rain/dry weather duration is also directly proportional to the num-

ber of rain/dry hours. Interestingly, there only seem to be a weak correlation between

total precipitation amount and how long the average rain shower lasts. We can see Bergen

and Tromsø get about the same number of rain hours, despite Tromsø receiving less than

50% of Bergen’s total rainfall amount. Same story can be seen for Trondheim and Nes-

byen, where Trondheim recorded twice as much rainfall even though the average rain

weather duration is barely any longer than in Nesbyen.

The average dry weather duration do in some ways follows the opposite pattern of average

rain weather duration. Note the scale on the y-axis is different. Nesbyen tops the over-

all duration, expecting about 30 hours of dry weather between each rain shower, while

Tromsø and Bergen have to settle with only 10 hours on average. Spring sees a clear

distinction between the south-eastern locations and the rest of Norway, where Nesbyen

can anticipate almost 60 hours (2.5 days) of continuous dry weather on average before

any significant rain is recorded. These three locations also experience the highest sea-

sonal variation in general, whereas Bergen and Tromsø in particular see less variance in

weather stability through the year.

This data was also calculated for daily weather duration periods (Figure A.2 in the

Appendix), and the results mostly show the same features as for hourly data. Tromsø

experiences the longest rain weather duration by far during spring and summer, with

6.2 days during spring as clear stand-out point, being 2.5 days longer than Trondheim

in second place. Not surprisingly, Bergen sees the longest rain periods during autumn,

where it rains (more than 0.1 mm) for almost 9 days straight on average followed by only

2 days of dry weather.
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4.1.2 Precipitation distribution

Where Table 4.1 showed whether AROME predicted too little or too much rain over

the whole analysis period, the figures in this subsection will look at where the deviation

(if any) takes place when distributing by precipitation quantity, and if fcfix can fix this

deviation.

When looking at hourly data (see Figure A.3 in the Appendix), the majority falls into

the 0 mm category (ranging from 69% (Tromsø) to 90% (Nesbyen) of all observed hours).

0.1-1 mm sits in a clear second place (8% (Nesbyen) - 26% (Tromsø)), and generally

speaking, the more intense rainfall, the rarer they become. For instance, it rains less

than 1 mm/h in 98.8% of all non-NaN hours observed at Nesbyen, meanwhile the same

number for Bergen on the other side of the scale is 90.9%.

For values > 5 mm/h (heavy rainfall), Bergen observes by far the most cases, with 125

hours in total. Kristiansand observes 63 hours, while the others range from roughly 10-

30 hours. Tromsø is placed last with only 11 hours recorded, and none of them above

8 mm/h. Regarding Oslo, 10 out of 27 hours above 5 mm/h are also above 8 mm/h,

a fraction much higher than for the other locations. This shows the occurrence of very

heavy rainfall (even way higher than 8 mm/h) is more common relative to ”moderately”

heavy rainfall.

Figure 4.2 displays the ratio of total forecasted (AROME/fcfix) to observed precipitation

hours for each quantity bracket, where a ratio of 1 is the preferred outcome. Starting in

Bergen, AROME forecasts too many dry hours (+11%) and thus too few rain hours, and

fcfix is not able to reduce the amount of dry hours in a significant way. The same can

be seen in Tromsø, where the difference is 15%, or 2197 extra dry hours. Even with fcfix

increasing AROME precipitation by 27% for every single hour, this was still only enough

to convert 399 of the excess dry hours into rain hours.

Likewise, AROME severely under-predicts number of hours in the 0.1-1 mm bracket for

Bergen (30% less) and Tromsø (37% less), and again fcfix is not able to correct this in

any capacity, likely due to most of the extra hours gained from the 0 mm/h bracket were

pushed further into the 1-2 mm/h bracket, resulting in almost no net gain. Kristiansand’s

AROME forecast on the other hand seems to perform very well, staying close to the black

dashed line up until 6 mm/h, which accounts for >99.8% of all non-NaN hours.

Past the >4 mm/h brackets or so, the ratios start to become highly irregular, but most

of this should probably be blamed on the low sample size at such high intensities. Bergen
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Figure 4.2: Ratio of hourly precipitation distribution amount between forecast (AROME
(red lines) and fcfix (blue lines)) and observed data for each location. Black dashed line
highlights a ratio of 1, which is the ideal outcome where both forecasted and observed
data recorded the same number of hours within a specific quantity bracket. Tromsø has
one value off-chart at 3.2 (blue arrow) to keep the y-range consistent. Data from 1.

December 2019 - 31. April 2022. Forecast data taken from the first 12 forecast hours.
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fcfix seem to overcompensate quite significantly and shifts way too many hours from

lower brackets into the highest ones. This should also be quite reliable unlike for other

locations since heavy rain in Bergen is a relatively common event. The general pattern

for AROME during heavy rain seems to be a slight overall underestimation (although

with some uncertainty), and that fcfix, despite with the total precipitation forecast bias

removed, is not able to produce a reasonably more accurate precipitation distribution.

When looking at daily data (Figure A.4), the deviation seen between AROME and ob-

served hourly data in Bergen is now reduced for daily data (279 vs. 264 days), but very

much remains in Tromsø (286 vs. 242 days). AROME predicts way too few heavy rain

days (> 30 mm/day) in Bergen, but unlike with hourly data, fcfix now manages to correct

this underestimation quite nicely, and is all in all a very good precipitation distribution

forecast here. A rather peculiar fact that really showcases the variety in heavy rain days

across the country is that Bergen registers 31/46 of all observed days above 35 mm rain

across all locations, where not a single day comes from Tromsø or Nesbyen.

Figure 4.3 shows how the AROME and fcfix hourly forecasts perform compared to ob-

served data at various percentiles, as well as for overall precipitation intensity. The main

difference here is dry hours are ignored completely, meaning this figure only says some-

thing about the distribution whenever it rains. Broadly speaking, the higher the rainfall

amount is, the more trustworthy these ratios are, as dividing two small numbers with

each other may lead to wildly varying results.

AROME precipitation intensity is in general slightly higher than observed, but not too

far off. Kristiansand and Bergen have the highest observed intensity values with 1.04

mm/h and 1.02 mm/h, respectively (Figure A.5 in the Appendix). Tromsø receives the

least amount of precipitation when raining with only 0.49 mm/h on average. This can

be explained by being the location with the highest number of rain hours (dragging the

average down), while only getting a moderate amount of precipitation overall compared

to other locations.

25th percentile shows a very distinct spike almost everywhere, and many locations end up

with a ratio approaching 2. This however can largely be attributed to the low resolution

of observed data. As the Appendix results show, four of the six locations have a 25th

percentile of 0.1 mm, while Kristiansand and Bergen have 0.2 mm. Since percentiles only

look at a single value, it cannot know what the values around it are, and if the value
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Figure 4.3: Ratio of hourly precipitation intensity and various percentiles between
forecast (AROME (red lines) and fcfix (blue lines)) and observed data for each location.

Black dashed line highlights a ratio of 1, which is the ideal outcome where both
forecasted and observed data recorded the same rainfall amount for a given percentile.
Data from 1. December 2019 - 31. April 2022. Forecast data taken from the first 12

forecast hours.
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ranked above it (the 25.01th percentile if we want) happens to be 0.2 mm instead of 0.1

mm, this would obviously have a huge impact on the resulting ratio.

The general trend seems to be too high ratio at lower percentiles (forecast precipitation

higher than observed), but it decreases towards higher percentiles and even goes below

1 at some locations. This would suggest the model predicts a bit too much precipitation

during light rain, but at some locations may struggle to generate enough precipitation

during more extreme events. In other words, the overall AROME precipitation distri-

bution might be too narrow. Apart from the 25th percentile spike at Tromsø, the ratio

development towards higher percentiles in Bergen and Tromsø does not see much of a

change.

Fcfix results in general reflect the total precipitation ratios listed in Figure 4.1, where

Bergen and Tromsø see a relatively large adjustment, while AROME and fcfix forecasts

in Kristiansand once again show practically identical results. Fcfix adjusts the ratio in

the right direction (towards 1) in Oslo, Trondheim and Nesbyen, but worsens the ratio in

Bergen and Tromsø. This indicates the quantity distribution when raining is already quite

good for AROME Bergen and Tromsø despite predicting significantly less rain overall,

however AROME forecasting too few rain hours overall as seen above also plays a role

here.

Looking at daily data in Figure A.6, precipitation intensity appears to follow the fcfix

ratio pattern on total precipitation (i.e. too low values in Bergen and Tromsø). The

AROME ratio for these two locations tend to be too low for percentiles, but unlike with

hourly values, the extra precipitation in fcfix improves ratio closer to 1 rather than make

it worse. For the other locations the pattern seem to repeat itself with high ratio at

the 25th percentile (though not as spiky as for hourly data), before gradually decreasing

when approaching higher percentiles.

Figure 4.4 shows the monthly precipitation ratios between AROME/fcfix and observed

data, with Figure A.7 to A.9 displaying all the numbers. The singular high spikes during

spring in Oslo, Nesbyen and Kristiansand are a result of unusual dry months where only

a couple of millimetres difference can cause the ratio to sky-rocket. For instance, Oslo

registered 3.5 mm precipitation during the whole of March 2022, and while the forecasted

rainfall was only 8.5 mm too much, this nevertheless results in a very high ratio.
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Monthly precipitation ratios for AROME and fcfix forecasts compared to observed data

Figure 4.4: Monthly precipitation ratio between forecast (AROME (red lines) and fcfix
(blue lines)) and observed data for each location. Black dashed line highlights a ratio of
1, which is the ideal outcome where both forecasted and observed data recorded the

same rainfall amount for a given month. Note the y-axis range may vary. Data from 1.
December 2019 - 31. April 2022. Forecast data taken from the first 12 forecast hours.
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Even with some irregularities, Oslo and Kristiansand forecasts seem to perform the best,

with Nesbyen not too far off given the majority of these months only recorded about

10-30 mm. Trondheim ratios alter quite rapidly between each month, and this station

experiences enough months with rainfall surpassing ∼50 mm for the ratios to be relatively

trustworthy. AROME forecasts too little precipitation in 27/29 months in Bergen and

25/29 months in Tromsø, which is to be expected with the model not forecasting a

sufficient amount in the first place.

A recurring trend however is that AROME in most cases forecasts too much precipitation

during very dry months (ratio approaches 2-4), but very rarely underestimates it. Another

notable deviation is October 2021 in Bergen when the weather stations measures a record-

high 647 mm rain, but the AROME model only manages to predict 387 mm, a difference

of 260 mm or 40%.

As a side note, Trondheim (Lade) lost about 18 days in April 2020, and Kristiansand

(Kjevik) lost about 10 days in October and November 2021 due to missing observed data.

As explained in the Methods chapter, these values were also removed from forecast data

to provide parity. While this means we do not know the ”true” ratio for these months,

they should nevertheless have very little effect on the wider picture.

Figure A.10 in the Appendix lists the seasonal precipitation ratios. AROME forecasts

the least amount of rain during summer in Bergen, with only 66% of total observed

rainfall, closely followed by autumn. This pattern is also prevalent for the south-eastern

stations Oslo, Kristiansand and Nesbyen. In Tromsø however, AROME struggles the

most during spring (66% of observed precipitation) and winter, while getting fairly close

to the preferred ratio during summer and autumn. Trondheim’s pattern share some

similarities to Tromsø’s, but with less variation and all seasons having a ratio above 1.

4.1.3 Extreme precipitation

This subsection discusses how the AROME and fcfix forecasts perform during extreme

precipitation events, here defined as values within the top x% of all non-NaN data points.

This involves if forecasts are able to both predict the correct precipitation amount, and

do so at the correct time. Both of these parameters are particularly important to get right

to maximise the forecast value. If forecasters fail to announce an extreme precipitation

event due to the model missing it entirely, it may cause more serious damage than if local

authorities could react and implement safety features ahead of time. Correspondingly,

forecasting an extreme precipitation event either way too early or too late could catch

the public by surprise and hinder society’s ability to plan around the event.
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Figure 4.5: Hourly mean precipitation amount for top 10/1/0.1% of all values. Red
lines show the ratio of said precipitation between AROME/fcfix forecasts and observed
data, while blue lines display the actual precipitation amount for the various top x%

categories for AROME forecast and observed data (no fcfix). Black dashed line
highlights a ratio of 1, which is the ideal outcome where both forecasted and observed
data ended up with the same hourly mean extreme precipitation amount. Data from 1.
December 2019 - 31. April 2022. Forecast data taken from the first 12 forecast hours.
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Figure 4.5 is two-fold; the red graphs show the AROME/fcfix ratio, while the blue

graphs display the actual hourly mean extreme precipitation amount (top 10/1/0.1%)

for AROME and observed data (no fcfix). Keep in mind these results also include dry

hours, unlike with percentiles.

Starting with AROME ratios, the general downward trend towards higher rainfall levels

is prevalent here as it was in Figure 4.3, and all locations end up with a ratio below 1

for the top 0.1% bracket. Bergen and Tromsø are once again outliers here with a slightly

increasing ratio with higher rainfall levels. Oslo appears to achieve the best results, while

Bergen, Tromsø and partially Kristiansand underestimate hourly extreme precipitation

for all brackets.

Fcfix does not seem to improve the extreme precipitation forecast, but rather make it

worse. Bergen and especially Tromsø overshoots the black dashed line too much, and

Oslo, Trondheim and Nesbyen all remove precipitation compared to AROME which as

mentioned already struggles reaching very high precipitation values to some extent. This

suggests the general mean bias for AROME is not the main issue here.

When analysing the mean precipitation amount, the desired outcome is the blue solid

and dashed line overlapping each other, signifying no difference in AROME and observed

results. Oslo, Tromsø and Trondheim performs the best here, while Kristiansand takes a

somewhat surprising win with the highest top 0.1% mean observed precipitation amount

ahead of Bergen and Oslo. Tromsø in particular experiences fairly low extreme values,

together with by far the lowest 90th and 99th percentile values. This showcases a place

where it rains quite often, but very rarely reaches values that can reasonably be defined

as extreme precipitation events.

The steepness of the blue line and whether it is smooth or breaks midway, can say

something about the distribution of moderately (top 10%) to very extreme events (top

0.1%), because each bracket step reduces data volume by the same amount (90%). In

Bergen, the seemingly straight line indicates a very even distribution; lots of hours with

heavy rain that sort themselves pretty nicely. Oslo on the other hand measures relatively

low top 10/1% mean values, but a very high top 0.1% mean value. This implies the

extreme rainfall here is very ”top-heavy” and dominated by a small group of incredibly

wet hours, which is also consistent with the results found for precipitation distribution.

For daily extreme precipitation (Figures A.13 and A.14), the main findings are AROME

ratios for Kristiansand and Nesbyen are pretty much spot on, Bergen and Trondheim

fcfix the same, and the downward ratio trend in hourly extreme data is essentially gone.
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Figure 4.6 illustrates to which degree the AROME forecast is able to predict extreme

precipitation events at the correct time, by looking at the top 1/0.1% shared extreme

hours with observed data, both with and without a 6h tolerance window. In the top 1%

bracket, Nesbyen achieves the most hits and thus the highest score (0.63 with tolerance

and 0.39 without), closely followed by Kristiansand. In the no tolerance category, Tromsø

obtains by far the lowest score with 0.12, only getting 26 hits out of 211 values, less than

half the number of hits Trondheim in fifth place manages to get. Tromsø catches up

somewhat when including the tolerance window, but is still placed last with 83/211 hits

and a score of 0.39.

The top 0.1% bracket only consists of the 21 wettest hours recorded, and as such the

requirements for getting a hit is tougher. Oslo and Kristiansand achieve 3 hits each as

the two best performers in the no tolerance category, while Trondheim and Nesbyen (the

winner of the top 1% bracket) did not get a single hit. With tolerance, Oslo’s AROME

forecast delivers the most accurate extreme precipitation forecast at the appropriate time.

Tromsø performs quite well relative the top 1% category results, while Trondheim only

manages to get a single hit even with 6h tolerance. Given it also gets the second worst

score in top 1%, it can be argued AROME in Trondheim lacks some ability to forecast

hourly extreme events at the right time.

Daily data for top 5% shared extreme days (Figures A.13 and A.14) show all locations

perform very evenly, ranging from 25 to 32 out of 44 possible hits. For top 1% category,

5 of the 8 wettest days in Oslo share the same date for both AROME and observed

data, followed by Bergen and Trondheim at 4 hits each. Tromsø only has a single day in

common, and get the worst results for shared extreme days by also receiving the lowest

score in the top 5% category.

Figure 4.7 shows the seasonal variation in top 1% hourly mean extreme precipitation

amount for AROME and observed data (red lines), as well as return value of these extreme

events (blue lines). When comparing AROME and observational mean precipitation,

Trondheim displays the least deviation, while Bergen, Nesbyen and Kristiansand are

not forecasting quite enough precipitation to match the observed amount regardless of

season. If we focus on the seasons where extreme events appear most often (usually

summer and autumn), it is rather clear the AROME model slightly underestimates the

rainfall intensity pretty much everywhere.
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Figure 4.6: Top 1% (top) and 0.1% (bottom) shared extreme hours between AROME
forecast and observed data, with a 6h tolerance window (right side) and without (left
side). Bars show the number of hits for each location, and the black dashed lines

indicate score thresholds of 0.25 and 0.5. The ideal score is 1 (all 211 hits for top 1%
and all 21 hits for top 0.1%). For more details, see Figure 3.6. Data from 1. December

2019 - 31. April 2022. Forecast data taken from the first 12 forecast hours.
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Figure 4.7: Seasonal mean for the top 1% extreme precipitation hours (red lines), and
average number of hours (return value) between each occurrence of a top 1% extreme
event (blue lines) for both AROME forecast and observed data. Overlapping red/blue
solid and dashed line means forecast results match observed results, which is desirable.
Black dashed line indicates a return value of 100 hours, which is the average when
including all seasons. The higher the return value is, the more unlikely it is for an
extreme precipitation event to happen during that season relative to other seasons.
Data from 1. December 2019 - 31. April 2022. Forecast data taken from the first 12

forecast hours.
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Summer months see the highest mean extreme precipitation, and this is especially notable

in the south-eastern locations and Trondheim. This is likely the result of intense rain

showers from convective-driven extreme rainfall events. Bergen and Tromsø see less

seasonal variation, and Bergen is also the only location where observed extremes are

most intense during autumn with 6 mm/h on average.

When studying the return values, an important feature is the relative difference between

seasons, not necessarily the hourly return value in itself. Spring is by far the least likely

season to experience an extreme precipitation event (highest number of hours elapsed on

average per extreme event), and this is true for all locations.

Interestingly, observed values in Tromsø show almost no seasonal variation neither for

mean values nor return values. From Figure A.10 we saw AROME heavily underestimat-

ing spring precipitation here, and the effects of this can be seen again as a clear deviation

between AROME and observed results. Less forecasted spring precipitation overall leads

to lower mean extreme values, which again lowers the number of spring hours making the

top 1% cut, and ultimately increases the return value.

Nesbyen experiences the most drastic variations, where an observed extreme precipitation

event is about 15 times less likely to happen during spring than during summer and

autumn. While AROME argues a spring extreme hour should come about every 350

hours on average compared to 750 hours for observed data, this is another example

where low sample size can exaggerate the results. That said, while only 8 extreme hours

were observed during spring, the same number for AROME is 17 hours, which still can

be considered a significant difference.

Figure A.16 from the Appendix shows daily results for top 5% values (44 days), and share

many of the same main findings as for hourly data. For example, not a single extreme day

was observed during spring in Nesbyen (which also records by far the lowest mean values

of around 10-13 mm/day), and Bergen sees an extreme event (by our lenient definition)

every 9 days during the autumn months (average return value is 20 days). The biggest

difference is the prevalent hourly summer extreme events are all but gone from daily data,

where most locations now experiencing a much more even distribution.
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4.2 Dichotomous forecast verification

This subsection presents the forecast verification results as explained in Chapter 2.1 and

3.6. A total of nine different verification methods were used, and all results for the

various forecast hours and accumulation lengths are listed in Figure A.23 and onwards

in the Appendix.

Since there are a lot of numbers to be crunched, only the parameters deemed the most

important are present in the figures below, and only for 1h and 6h accumulated precip-

itation. The other results will only be discussed very briefly, in particular mean square

error (MAE) and root mean square error (RMSE) as the ratio between these can say

something about the average size of each precipitation error. If the values are relatively

close to each other (low ratio), the error are mostly small. If the values are far away from

each other (high ratio), then there are considerable amount of large errors.

� Accuracy - fraction of forecasts that are correct, and a way to describe the forecast

quality in itself.

� Bias frequency - ratio of forecasted rain events compared to observed rain events,

and shows whether the forecast has any bias towards too few or too many rain

events.

� Brier skill score - the relative skill of a forecast compared to the climatology, and

takes into account the difficulty of forecasting the weather at each location. For

instance, forecasting dry weather at a very dry location will most often be correct

and yield a high accuracy score, but that does not mean that forecast has high skill.

4.2.1 AROME, fcfix and fcday forecast verification

Figures 4.8 and 4.9 show the accuracy (red), bias frequency (blue) and Brier skill score

(yellow) for 1h accumulated precipitation at each location. There are three forecast

lengths for AROME and fcfix, and two for fcday. There is also an accompanying table

(Figure 4.10) where all numbers are listed.

The three south-eastern stations achieve the highest AROME +4h forecast accuracy with

around 0.90, followed by Trondheim (0.84), Bergen (0.82), while Tromsø gets the lowest

score with 0.79. Accuracy also seem to keep up fairly well as forecast lengths are increased,

with only a small reduction in the range of 0.02 - 0.04 (no reduction in Trondheim).
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Figure 4.8: Accuracy, bias frequency and Brier skill score verification results for 1 hour
accumulated precipitation at Bergen, Oslo and Trondheim. Forecast lengths were +4h,
+13h and +48h, using forecast models AROME, fcfix and fcday (no +48h forecast).

The ideal score for all parameters are 1, shown as a black dashed line. Brier skill scores
below 0 (black dash-dotted line) signify that the forecast model quality is worse than the
reference forecast based on climatology. Data from 1. December 2019 - 31. April 2022.
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Figure 4.9: Accuracy, bias frequency and Brier skill score verification results for 1 hour
accumulated precipitation at Tromsø, Kristiansand and Nesbyen. Forecast lengths were

+4h, +13h and +48h, using forecast models AROME, fcfix and fcday (no +48h
forecast). The ideal score for all parameters are 1, shown as a black dashed line. Brier
skill scores below 0 (black dash-dotted line) signify that the forecast model quality is
worse than the reference forecast based on climatology. Data from 1. December 2019 -

31. April 2022.
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Do fcfix increase the accuracy? Not really. There are only tiny differences to be seen,

and none of them are significant enough to warrant any attention. Fcday however reveals

itself as a very poor forecast (as expected), with a clear drop in accuracy for all locations,

with the biggest drop in Bergen (0.82 to 0.68).

Bias frequency results see some more fluctuations. Tromsø (0.68) and Bergen (0.72) have

a notably low bias score for +4h AROME forecast, showing a clear underforecast tendency

of rain events (negative bias). Nesbyen is the only location with a considerably high bias

score (1.33), indicating false alarm events are more prevalent than miss events. When

increasing the AROME forecast hours, the bias frequency tendency seems quite erratic

depending on location. Bergen sees a slightly less negative bias, Oslo has no bias any

more compared to +4h, Tromsø’s negative bias actually amplifies a bit, and Kristiansand

goes from a slight positive bias to a slight negative bias.

Fcfix bias share mostly the same patterns as AROME, without changing the numbers

much. Nevertheless, it seems to remove a little bit of the negative bias in Bergen and

Tromsø, which is likely related with the rather big increase in fcfix rainfall amount, and

therefore it gains some extra false alarms and fewer misses (AROME dry hour values

pushed over the 0.1 mm threshold). Fcday shows practically no bias whatsoever in any

location.

Brier skill score in Bergen and Tromsø display a clear falling trend towards higher fore-

cast hours, while the south-eastern stations (especially Nesbyen) show a rather interest-

ing pattern of highest BSS from the +13h forecast (highest skill) and lowest from +48h.

Trondheim’s AROME forecast is barely more skilful than the reference climatology fore-

cast, and Nesbyen’s +48h forecast is actually slightly worse overall than the climatology

forecast. Although to be fair, since Nesbyen is such a dry place, it makes the background

forecast really hard to beat. One can essentially never predict rain, and based on these

hourly data, it would produce an accuracy score as high as 0.90, which is higher than

many AROME forecasts elsewhere.

Looking at MAE and RMSE (see Figure A.23), their values are mostly proportional to

the total precipitation for each location, which makes senses since they look at the average

forecast error per event. Their values and therefore the average errors increase slightly

with longer forecast hours for about every location, which is to be expected. RMSE

to MAE ratio in Oslo is somewhat higher than places like Trondheim and especially

Tromsø. This indicates there are more severe forecast errors present here than in Tromsø,

which sees more low-value errors as the norm. This coheres with previous results giving
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Figure 4.10: Accuracy, bias frequency, and Brier skill score verification results (number
format) for 1h and 6h accumulated precipitation at each location. Forecast lengths were

+4h, +13h and +25/+48h, using forecast models AROME, fcfix and fcday (no
+25h/+48h forecast). Data from 1. December 2019 - 31. April 2022.

the notion of Oslo, while relatively dry, has a clear extreme precipitation structure, in

contrast to Tromsø where it tends to rain often but mostly with very low intensity.

Figure 4.11 and 4.12 also show the accuracy (red), bias frequency (blue) and BSS (yel-

low), but for 6h accumulated rainfall at each location. Overall, there is less accuracy

variation between stations compared to 1h rainfall, ranging from 0.89 (Nesbyen) to 0.80

(Tromsø) for +4h AROME forecast, and the accuracy also seem to hold up slightly better

with later forecast hours. This might be because having a 6h window reduces the vari-

ability somewhat when verifying the forecast, as each hourly value are of less importance

compared to 1h verification where the model only has one attempt to get it right.
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Figure 4.11: Accuracy, bias frequency and Brier skill score verification results for 6 hour
accumulated precipitation at Bergen, Oslo and Trondheim. Forecast lengths were +4h,
+13h and +25h, using forecast models AROME, fcfix and fcday (no +25h forecast).

The ideal score for all parameters are 1, shown as a black dashed line. Brier skill scores
below 0 (black dash-dotted line) signify that the forecast model quality is worse than the
reference forecast based on climatology. Data from 1. December 2019 - 31. April 2022.
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Figure 4.12: Accuracy, bias frequency and Brier skill score verification results for 6 hour
accumulated precipitation at Tromsø, Kristiansand and Nesbyen. Forecast lengths were

+4h, +13h and +25h, using forecast models AROME, fcfix and fcday (no +25h
forecast). The ideal score for all parameters are 1, shown as a black dashed line. Brier
skill scores below 0 (black dash-dotted line) signify that the forecast model quality is
worse than the reference forecast based on climatology. Data from 1. December 2019 -

31. April 2022.
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Furthermore, bias frequency also sees reduced variance across stations, i.e. values are

closer to 1. Trondheim’s overall negative bias for 1h precipitation has now changed to

a slight positive bias. Bergen and Tromsø show considerably less negative bias; while

number of misses and false alarms have not changed much, a sizeable chunk of correct

negatives are now converted into hits, since it only needs to rain at least one of the six

hours for that period to count as a rain event.

All in all, there are not a whole lot of differences for 6h verification results. Fcfix results

are by all means identical to AROME, meaning adjusting the total mean precipitation

essentially does nothing to improve AROME verification results. Increasing accumulation

length does not help fcday the slightest either.

Brier skill scores on the other hand show a substantial increase across the board, however

as the accuracy score highlights, this is not because the forecast in itself have improved

much, but the background forecast (BSref ) is now much easier to beat. When looking

at Bergen and Tromsø, the distribution of observed rain/dry events for 6h accumulated

rainfall is basically 50/50, thus it is like flipping a coin for the background forecast when

it tries to predict the correct outcome. Even fcday with a BSS of around 0.3 has no issues

beating it.

When studying 24h and 48h accumulation results (Figure A.25 and A.26), Bergen be-

comes the overall best performing station. This entails the highest accuracy score (0.89

for 24h and 0.92 for 48h), almost bias-free, very high hit rate and low false alarm ratio,

best Brier score as well as a decent BSS. Kristiansand takes a close second place, helped

among other things by a very respectable BSS (0.75 for 24h and 0.66 for 48h). Oslo and

Nesbyen seem to perform the worst, although it should be stated none of the locations

are showing particularly bad results.

In general, the longer the accumulation length is, the easier is it to forecast the correct

outcome. For instance, roughly 75% of 48h accumulated forecasts in Bergen are hits,

which after all only requires at least 0.1 mm rain in total for both data sets. And in

cases of correct negatives (no rain in either forecast or observed data), the weather has

to be stable enough for at least 48h straight to not precipitate, and the results show that

AROME is generally quite good in these situations and avoids predicting any rainfall.
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4.2.2 AROME and fcpersist forecast comparison

Figure 4.13 and 4.14 present the evolution of accuracy and Brier skill scores through the

first 12 forecast hours for AROME and fcpersist forecasts. The purpose with these figures

is pretty simple: Find how many hours into the forecast where the solid (AROME) and

dashed (fcpersist) graphs cross each other. The result marks the turning point where

AROME starts to outperform fcpersist.

To recap, fcpersist is the equivalent of watching the current weather outside and foresee

it is going to stay exactly the same for the next 12 hours. And due to there being

some slowness in the atmosphere, meaning it usually takes some time to switch from one

weather condition to another, fcpersist is actually a really good forecast initially, but only

for the first couple of hours before it falls off hard. As we already have seen with fcday,

basing the future weather solely on a single forecast gets (not surprisingly) less and less

accurate as time goes on.

After examining the figures and with the help from some interpolations, here are the

number of hours for each location after which one should stop looking out the window

and instead trust AROME to provide the best forecast.

� Bergen: 2.5 hours

� Oslo: 2 hours (2.5 for BSS, 1.5 for accuracy)

� Trondheim: 2 hours (although they follow each other closely until +4h)

� Tromsø: 3.5 hours

� Kristiansand: 1 hours (technically 0 hours since they are pretty much equal at +1h)

� Nesbyen: 1.5 hours

Another thing to notice is the modest score variability from hour to hour in the AROME

forecast. As the figures (and verification data in general) in the previous subsection use

very distinct forecast hours (+4h, +13h etc.), these figures show quite well how that

might have an effect on whether the forecast is perceived as good or not, and therefore

is something to be cautious about when analysing the results.
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Figure 4.13: Accuracy and Brier skill score verification result comparison between
AROME and fcpersist forecasts for 1 hour accumulated precipitation at Bergen, Oslo

and Trondheim. The 12 first forecast hours were used for both forecasts. The ideal score
for accuracy and Brier skill score is 1, shown as a black dashed line. Brier skill scores

below 0 (black dash-dotted line) signify that the forecast model quality is worse than the
reference forecast based on climatology. Data from 1. December 2019 - 31. April 2022.
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Figure 4.14: Accuracy and Brier skill score verification result comparison between
AROME and fcpersist forecasts for 1 hour accumulated precipitation at Tromsø,

Kristiansand and Nesbyen. The 12 first forecast hours were used for both forecasts. The
ideal score for accuracy and Brier skill score is 1, shown as a black dashed line. Brier
skill scores below 0 (black dash-dotted line) signify that the forecast model quality is
worse than the reference forecast based on climatology. Data from 1. December 2019 -

31. April 2022.
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Discussion

5.1 Climatology

5.1.1 Dataset properties

All climatology results uses the first 12 forecast hours from AROME, because that is

also the time span between each unique forecast starting point that was downloaded.

This also means forecast hour +13-48h only appear for verification results. The model

may take some time to ”spin up” and generate the right atmospheric state, which could

in theory affect the precipitation forecast the first couple of hours. Therefore, the total

precipitation when using forecast hours +13-24h, +25-36h and +37-48h were also looked

at.

No major deviation is found for any location, and the difference is mostly only a few

percentage points, which is not enough to alter the results in any significant way. There

also does not seem to be any clear precipitation amount trend for later forecast hours, and

some locations for example even received the highest rainfall amount for middle forecast

hours and a bit less for early and late hours.

The analysis period lasted 29 months, and while there is still a lot of data to process, it is

not really a long period of time on a climatic time-scale. A question that could be asked

is ”Were these data representative for the climate at each location?” Did the datasets

contain lots of unusual weather, events and similar that could have skewed the results in

any way compared to what they would have been in different weather?

64
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Honestly, it is not really meaningful to answer these questions, as the thesis’s main

objective is to verify AROME forecast against observations for this specific period. If

the results here are poor, then chances are this would be the case anyway if we chose

any other analysis period. If the model cannot reasonably handle all the various weather

conditions we typically see in Norway, then it is simply not a good forecast. Another

point is that AROME is updated and improved on a frequent basis, and starting the

analysis period (given all data were available) several years earlier would involve data

from older AROME versions. This would make it harder to objectively compare forecast

results between earlier and recent years.

This thesis deals with point verification (as explained in Chapter 2.1), which only consid-

ers forecasts and observations for that specific place. Given some areas experience high

local variation in weather, the results shown here does not really say anything about the

forecast quality of the immediate surrounding areas. For instance, a forecasted extreme

precipitation event might contain just the right amount of rainfall and appear at the

correct time, but the forecast location was just a few kilometres off. This could produce

some bad results since there was only a (small) spatial error, and the verification used

here only considers temporal and quantity errors.

The addition of other variables like temperature, wind speed, wind direction and geopo-

tential, as well as raw AROME forecast data could further help explaining the various

forecast deviations, though that was outside the scope of this thesis. In that case, it would

now be possible to determine in greater detail if the precipitation form (rain, snow, hail

etc.) and wind speed/direction has any correlation with forecast quality, and perhaps

identify certain conditions where AROME deviates the most from observed results. This

is either way a potential topic for further research.

5.1.2 Seasonal weather duration

In Chapter 3.5.1 about weather persistence, there was a section explaining how rain/dry

weather durations were counted when going from one season to another. The method

used was to always treat the start of a new season as the beginning of a new period,

no matter if the weather remained unchanged when switching into the new season. At

first glance this seemed like an obvious weakness, and it was shown this approach did

increase the number of total periods by 2-5% for daily data, and slightly lower the average

rain/dry weather duration as a result.

As such, an alternative approach could be to only let the start date of a rain/dry weather

period determine which season it belongs to, no matter how far into the next season it
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continues. However, this method could run into some issues with long spells of extremely

stable weather. Theoretically, there could be a drought beginning in late February (con-

sidered a winter dry weather period) and extend far into spring. All these dry hours would

still contribute to the average dry weather duration for spring, but not be considered as

a spring dry weather period since the drought started in February. We could now end

up with an extraordinary long winter dry weather period on paper even though most of

it took place during spring, and few to none spring dry weather periods although these

conditions had evidently been present.

To conclude, each method seems to have its advantages and disadvantages, but they both

appear to have a potential weakness for stable weather (most applicable to Nesbyen)

where the likelihood of a natural weather change right at a season boundary is very low,

splitting that period in two.

Nevertheless, the general features shown in Figure 4.1 turn out as expected. Dry weather

duration is highest during spring, (especially for the south-eastern stations), which from

monthly data also sees the least amount of precipitation overall. Spring usually sees less

low-pressure activity in the Atlantic Ocean due to lower latitudinal temperature gradient,

and the air is still not warm enough for significant convective systems to form, leading to

less overall rainfall in these months. Convective systems also depend on sufficient ground

heating from the sun for hot air to rise up and form clouds, but the sun during spring is

still fairly low on the horizon.

Nesbyen and Oslo are located in what is called the rainshadow of the major mountain

ranges in Southern Norway. Any moist air coming from the west need to rise and pass

over these first, and by doing so enough moisture is usually depleted from the air that

it is no longer able to precipitate when arriving in the eastern part of Norway. Bergen,

Trondheim and Tromsø on the other hand are all coastal cities facing the Atlantic, and

are surrounded by mountains with potential for orographic enhancement.

5.1.3 Variability in AROME precipitation distribution

Bergen and Tromsø are the clear outliers when it comes to AROME forecast climatology.

First, it does not predict enough rainfall with only 77% and 78% of observed rainfall. In-

terestingly, AROME forecasted 51 mm more total rainfall in Trondheim than Tromsø, yet

the observations say the actual difference is over 919 mm in favour of Tromsø. The stark

difference between Trondheim and Tromsø/Bergen is not immediately obvious, although

Trondheim is situated a bit further inland where the surrounding (mountainous) coastline

follows a southwest-northeast direction that might provide some extra rainshadow.
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Second, AROME precipitation distribution shows way too many 0 mm hours, and way

too few 0.1-1mm hours compared to what we see from observations. At the same time,

when it rains, the percentile value ratios are honestly quite good, albeit a tad too high.

Since the pool of AROME rain hours is much lower than the pool of observed hours,

the 50th percentile value (median) could be ranked at number 2500/21000 for AROME

and 3000/21000 for observed data. This works in favour of AROME for precipitation

intensity ratio, because even with less rain overall, there are less rain hours to divide

the precipitation between as well. This shows the under-prediction in total precipitation

mostly happens independent of quantities.

AROME predicts less summer rainfall relative to other seasons, although it is hard to

find a definitive pattern. For south-eastern stations, this is mostly due to too much win-

ter/spring precipitation, not necessarily too little summer rain. One possible explanation

could be AROME underestimating the rainshadow effect, and that less moisture crosses

the mountains than anticipated. Tromsø struggles particularly with forecasting enough

winter and spring precipitation, which normally falls as snow. This could indicate some

issues with AROME winter moisture generation in the Arctic, like in situations where

very cold air is heated above the relatively warm coastal sea, resulting in often short-lived

convective winter precipitation. This could also explain why Nesbyen, which has an inland

climate and thus does not experience these conditions, overestimates total winter/spring

precipitation instead.

There are actually not that many hours from post-processed AROME forecast data that

show exactly 0 mm, instead a fair share of them show trace amount of precipitation that

does not pass the 0.1 mm/h threshold (this is observed in real life too). While these

are included in the total precipitation calculations, they are nevertheless considered as

dry hours elsewhere. It could seem that AROME precipitation distribution is too narrow

when generating these hours with a trace of rainfall. In other words, not enough AROME

forecast hours with very light rain passes the threshold value, while in reality the variation

might be bigger and hence more values are likely to count as rain hours.

As mentioned, why this issue only seems to occur in Bergen/Tromsø and not anywhere else

is unclear (Oslo shows minor signs of this too, but on a much smaller scale). Orographic

effects not being fully resolved could be an option, where moisture advecting from the

ocean is more affected by the local topography than first anticipated.

Another option is the air (when approaching a mountain range) not being forced upwards

early enough due to the local high pressure anomaly that will form upstream. This would
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Figure 5.1: Net precipitation effect in Bergen city centre (red dotted area) by removing
Løvstakken (black-gridded area) from the model. Numbers are control member (reality)
minus no-mountain member, meaning positive values show a relative decrease in rainfall

when removing Løvstakken.

shift the model precipitation field closer to the mountain than what the observations tell.

Jonassen et al. (2013) showed that artificially removing Løvstakken (one of Bergen’s seven

mountain ranges, located west-southwest of the city centre) from their model would in

fact increase the precipitation amount on the leeward-side. This suggests Løvstakken

(with a summit of 477 m) creates a so-called spillover effect, where some of the extra

precipitation generated by orographic enhancements on the windward side is carried over

to the leeward-side (see Figure 5.1).

The purpose of fcfix is to check if removing the mean bias could improve AROME forecast

quality, and for Bergen/Tromsø (where the fcfix ratio is highest), this does not seem to

be the case. Fcfix is not able to do anything about the imbalance between dry and very

light rain hours, and instead for Bergen adds way too many heavy rain and extreme hours

and thus a too high mean extreme value. Having the same total precipitation amount as

observed data, but barely any more rain hours than AROME, results as seen in too high

percentile values.

Fcfix data for Bergen improves with daily results for precipitation distribution and per-
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centiles, though some of this could be explained by the nature of mean values. The longer

the time span is for each value, the better fcfix becomes. For total rainfall, it is a perfect

match with observed results. For monthly data, it is still a clear improvement, but it

cannot do (and is not designed to do) anything with the inherent monthly ratio variability

of AROME. And for daily data, we see it make a really good precipitation distribution.

When considering the hourly trace rainfall from above, chances are high they will pass

the 0.1 mm threshold when accumulated into 24 hours. Days that record less rainfall

than 0.1 mm would very often consist of relatively stable weather that does not offer

good opportunities for rainfall to form, which likely lowers the difficulty for AROME to

predict the correct daily forecast. With hourly variability getting evened out, the increase

in mean rainfall from fcfix becomes proportionally more important.

5.1.4 Underestimation of AROME extreme precipitation

As stated in the Results, the overall trend is the hourly forecast to observed ratio decreases

as precipitation events get more extreme, i.e. less sharpness. This could indicate an issue

with enough moisture generating and precipitating fast enough. The deviation is arguably

highest for autumn months in Bergen, which again could be linked to an underestimation

of orographic effects. AROME mean summer extreme values in Oslo and Trondheim on

the other hand matches observations quite well, and these events are also fairly common

with a return value below 100 hours which makes these results more reliable.

AROME also seems to improve a bit when the time interval is increased from hours

to days (except for Bergen), for instance the downward ratio trend with more intense

rainfall is mostly gone. Daily extremes are usually more variable, where not all 24 hours

are just as intense as others, and it could very well be some dry hours in there as well. If

AROME’s resolution (the ability to distribute precipitation into different categories) is a

bit too low overall, then increasing the time window could have the same effect as with

trace precipitation where the average rainfall matters more, and where the hard-to-predict

observed extreme peaks will be averaged out.

How distinct extreme precipitation values are for each location might explain some of

the results in Figure 4.6. In other words, areas where top extremes are rare but intense,

and not common but relatively moderate and thus blends inn with other medium rainfall

hours. Tromsø is definitely the best example here of the latter category, with plenty of low-

intensity rain hours but very few heavy rainfall hours. It is also the only Arctic location

included with the coldest weather overall, and it is known from Clausius-Clapeyron’s

equation that colder air can hold less moisture than warmer air.
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This should in theory make it harder to score hits for shared extreme hours if the boundary

for what and what does not count as an extreme event is hard to distinguish between.

Hence, only small variations in precipitation amount between forecast and observations

could see the forecast value ranked at 100th place plummet down to 600th place for

observed values and fall outside the top x% bracket. Tromsø basically sees no seasonal

variation in extreme precipitation either, meaning the time window for when such an

event may reasonably appear is spread out over the entire year, making it harder to

pinpoint the exact hour of the extreme. These are all plausible reasons why it is not

performing very well here.

5.2 Forecast verification

Overall forecast quality only sees a very small decrease for longer forecast hours, and

some of it might be due to the inherent variability from hour to hour seen in Figure 4.13

and 4.14. How AROME would perform as a medium or long-range forecast would be

interesting to witness, though the extra computational power needed for such a high-

resolution grid would be immense.

Not surprisingly, it is the south-eastern stations that performs best for 1h accumulated

precipitation, as less rain hours overall and relatively stable weather makes it easier to get

hits and correct negatives. Kristiansand perform really well here given it is the second

wettest place after all, with only a slightly worse accuracy and BSS than Oslo which

only receives about 60% of the total rainfall. It also achieved the second highest hit rate

(ability to forecast observed rain events), only behind Nesbyen.

Brier skill scores show the relative skill of a forecast compared to the climatology, and

is directly related to the difficulty of forecasting at a location, in this case the ratio of

rain and dry hours. Bergen earns the highest BSS (0.42) as it is a rather difficult place

to forecast (high uncertainty), and although the climatology results are not particularly

great, AROME delivers a reasonably good forecast verification result compared to the

reference forecast. Tromsø’s AROME forecast show about the same relative skill as

Kristiansand, but this does not take into account how Kristiansand’s climatology forecast

is much harder to beat. Trondheim and Nesbyen’s BSS scores are barely positive. For

Nesbyen, this is sort of understandable consider how ”easy” it to get a high accuracy

score there, whereas for Trondheim it is a rather poor result, as only Bergen and Tromsø
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got an easier BSref to beat.

Increased accumulation lengths (especially +24h and +48h) see an overall increase in

accuracy and BSS, which again shows how hourly forecasts are by far the hardest to get

right. Interestingly, Bergen, Tromsø and Trondheim are now among the top performers

for accuracy, while Oslo and Nesbyen show a clear decrease. This has to do with how the

ratio of rain/dry hours shift with longer accumulation length. Where dry places like Oslo

and Nesbyen approach a 50/50 split (harder to get a high accuracy score and hit rate,

and a low false alarm ratio), other stations start to see a clear majority of rain events.

BSS takes this into account, and shows that AROME in Kristiansand delivers the most

skilful forecast, with Tromsø in a definitive last place.

Fcday forecast was made as a low-quality challenger to AROME, and it is safe to say it has

very little to contend with. It performs significantly worse than AROME in pretty much

every verification metric, and shows that the weather in Norway is just too unstable

to rely on yesterday’s observations as the sole method to forecast the future weather.

Much of the same can be said about fcpersist, however it also played an important role

in quantifying after how long AROME becomes better than purely relying on current

observations. Both fcday and fcpersist are based solely on observations, which is why

they show no bias at all against observed data.

As with hourly climatology results, fcfix does not really change much regarding verifi-

cation results, which shows the hourly forecast variability is far more important than

removing the bias on mean precipitation.

5.3 Choosing the precipitation threshold

Depending on the precipitation distribution of your data, the chosen precipitation thresh-

old value could be important for the results. This thesis uses a threshold value of 0.1

mm/h and 0.1 mm/day, but especially the daily limit is quite forgiving since 0.1 mm pre-

cipitation over 24 hours really is not much. For instance, thresholds like ≥ 0.2 mm/h and

≥ 1 mm/day are often used as well, the latter one is the definition of a wet day in WMO’s

guidelines on calculating climate normals (WMO, 2017). Increasing the threshold value

adds an extra buffer and reduces some variability from the very light rain hours.
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Tromsø would arguably be the most interesting location to look at if threshold values

were increased to those above, since it experienced a very high amount of light rain hours

and a very low fcfix ratio. To give an idea, Tromsø observed 6325 rain hours in total.

1807 of those (28.6%) were exactly 0.1 mm, while 1079 (17%) recorded 0.2 mm. This

means close to half of all observed rain hours only recorded 0.2 mm or less. If the hourly

precipitation threshold was ≥ 0.2 mm, the total number of rain hours would now be

2992 (AROME), 3376 (fcfix) and 4518 (observed), which is an AROME vs. observed

rain hours ratio of 0.66. This is almost identical to the 0.1 mm/h ratio (0.65), showing

that increasing the threshold would not have any significant impact here. If we do the

same experiment for daily data with a new threshold of ≥ 1 mm, the new AROME vs.

observed rain days ratio is 92.5%, slightly down from 93%.

Oslo also forecasts a bit too few rain hours as seen in Figure 4.3, but the new threshold

values from above are now pretty close to 1, which could have some follow-up effects

on percentiles. Either way, keeping the threshold at 0.1 mm allows us to better spot

precipitation distribution anomalies, and provides more information about very light

rain hours since less of them are ”lost” as dry hours.

5.4 How trustworthy are observed data?

All precipitation observations have associated uncertainties with them (see Chapter 3.1.1),

which makes it harder to assess the true forecast quality. Køltzow et al. (2020) found that

wind-induced undercatch of solid precipitation in cold regions in Norway has a significant

impact on verification results, and that the verification process ideally should be split

between liquid and solid precipitation. A transfer function was applied to counteract the

undercatch, and increase the observed measurements closer to the ”true” value, although

this process also brings its own uncertainties.

Since neither wind data nor temperature data is included in this thesis, it is not really

possible to determine when it rains and when it snows. That said, an estimate can still

be made by taking the general climate for each location into consideration. The most

relevant data to look at is winter precipitation ratio between AROME and observed data

(Figure A.10 in the Appendix), particularly in Tromsø, Oslo and Nesbyen.
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Figure 5.2: A sequence of
observed precipitation
hours in Tromsø. It was
not uncommon see one or
two low-intensity rain

hours right in the middle
of longer dry weather

periods.

As mentioned before, Tromsø forecasts way too little winter

precipitation (ratio of 0.67), which gives the opposite effect of

precipitation undercatch. This does not mean no undercatch

is present here (if it is, the true ratio would be even lower),

just that it is unlikely to be the main reason why AROME

underperforms during winter. Oslo and Nesbyen looks more

promising, as the winter ratios are among the highest for

any season, and well above 1. Although neither of them

are known for being very windy during winter months, it

is definitely possible there could be some undercatch issues,

but that remains as speculations for now.

Figure 5.2 is an example of a small section of observed hourly

precipitation values in Tromsø. It shows two single low-

intensity rain hours among lots of dry hours, and none of

these hours contained any rainfall in the forecast. This pe-

culiar pattern is found rather commonly in observed data,

and it might look a bit strange for single hours with very

light rain to appear seemingly out of nowhere before vanish-

ing the next hour. This does not mean these observations are

wrong, but it would be interesting to see if nearby stations on

Tromsøya (e.g. at Langnes airport and Tromsø Holt) show

a similar pattern. In fact, these rain hours do add up quite

a bit over time, and are also the cause of many rain days.
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Conclusion

The goal of this thesis was to validate the AROME precipitation forecast at specific

locations deemed to provide the best forecast value. Both post-processed AROME and

observed precipitation data were downloaded, with an analysis period from 1. December

2019 to 31. April 2022, before being processed to produce a series of climatology and

verification results. Based on these results and their discussion, here is a list ranking the

overall AROME forecast quality from best to worst location, including their reasoning.

1. Kristiansand - Some really solid results for almost all parameters. Virtually no

fcfix ratio deviation, and close to ideal precipitation distribution and percentile

ratios for almost all values. Some monthly rainfall ratio disparity is present, but is

still among the best performers. A bit too low top 0.1% mean extreme precipitation

ratio overall (though this was the case everywhere) and during summer, but achieves

one of the best results for shared extreme hours. It is also among the top accuracy

and BSS scores performers for every accumulation length, which is really strong as

the second wettest location. On par with fcpersist even after just one hour.

2. Oslo - Pretty good fcfix ratio with 1.08. Decent precipitation distribution ratio

other than extreme values, though low percentile ratios are way too high and high

percentiles ratios a bit too low. Reasonably good monthly ratio. Perhaps the best

overall mean extreme precipitation ratio, and one of few locations that get the

average summer extreme rainfall right. Third place for top 1% shared extreme

hours, but wins the top 0.1% category. Solid verification results all around.

3. Nesbyen - Somewhat too high fcfix ratio, however it is also the driest location

by far. Precipitation distribution ratio is rather variable, and with a downward

74
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trend towards higher values. Decent percentile results, but with the same trend.

Some very notable spikes for monthly ratio results, but this is mostly due to very

low precipitation values. Too low mean values for the highest extremes (for all

seasons), but pretty much spot on for daily mean extremes. Best hit rate of all

stations for top 1% shared extreme hours. Highest accuracy for 1h accumulated

precipitation, however BSS tells us the relative skill is not that high.

4. Trondheim - Fcfix ratio a bit too high (1.14). Forecasts too many mid-intensity

rain hours but to few extremes, although percentiles ratios are quite good apart from

25th. Highly variable monthly ratio. Quite good overall mean extreme precipitation

ratio, albeit with the same downward trend as the others. Arguably the best forecast

for seasonal mean extreme ratios, but quite poor score for shared extreme hours.

Mediocre 1h accuracy, and BSS shows it is barely better than reference forecast.

Pretty decent results for longer accumulation lengths.

5. Bergen - Way too low fcfix ratio given how wet Bergen is, and generally too

few forecasted rain hours overall (and too many dry hours). Very good percentile

ratios, but because the low total precipitation amount is offset by the low total

rain hours. Monthly ratio is generally irregular and too low. Also too low mean

extreme precipitation ratios, both overall and seasonal. Average performance in

shared extreme hours. Low accuracy and bias frequency, but fairly high BSS. Both

accuracy and bias improves greatly with longer accumulation lengths.

6. Tromsø - Very low fcfix ratio, way too few rain hours and likewise way too many

dry hours. Precipitation distribution ratio for heavy rain hours is highly variable

(although low sample size). Quite good percentile ratios apart from 25th. Decent

mean extreme ratio, but AROME adds more seasonal extreme variation than ob-

served. By far the worst results for top 1% shared extreme hours, but decent for

top 0.1%. Very low accuracy and bias frequency, BSS is not that good either, and

verification results remain quite poor also for longer accumulation lengths.

As for future work, including other variables like wind and temperature data could help

getting an even more detailed forecast validation for more locations, and better quality

control of observed data. This might also give more definitive answers to how and why

AROME seem to underperform in some areas. Another point is to cross-check Tromsø

observed data with other nearby stations, and by its extension figure out why AROME

is not able to produce enough winter precipitation here.
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Figure A.1: Total rain/dry weather periods as well as average rain/dry weather
duration in hours for observed data at each location.
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Figure A.2: Total rain/dry weather periods as well as average rain/dry weather
duration in days for observed data at each location.
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Figure A.3: Distribution of hourly precipitation amount for AROME, observed and fcfix
data at each location.
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Figure A.4: Distribution of daily precipitation amount for AROME, observed and fcfix
data at each location.
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Figure A.5: Mean, precipitation intensity and various percentiles for hourly AROME,
observed and fcfix data at each location. Ratio is forecast divided by observed data.
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Figure A.6: Mean, precipitation intensity and various percentiles for daily AROME,
observed and fcfix data at each location. Ratio is forecast divided by observed data.
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Figure A.7: Monthly precipitation for AROME, observed and fcfix data at Bergen and
Oslo. Ratio is forecast divided by observed data.
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Figure A.8: Monthly precipitation for AROME, observed and fcfix data at Trondheim
and Tromsø. Ratio is forecast divided by observed data.
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Figure A.9: Monthly precipitation for AROME, observed and fcfix data at Kristiansand
and Nesbyen. Ratio is forecast divided by observed data.
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Figure A.10: Total seasonal precipitation for AROME, observed and fcfix data at each
location. Ratio is forecast divided by observed data.



Appendix A. Data 91

Figure A.11: Hourly mean precipitation amount for top 10/1/0.1% of all non-NaN
hours, in addition to top 1/0.1% shared extreme hours with and without 6h tolerance
for AROME, observed and fcfix data at Bergen, Oslo and Trondheim. Ratio is forecast

divided by observed data. Top forecast extreme is the highest forecasted rainfall
amount in one hour (using the first 12 forecast hours), with the corresponding observed

value for that hour below. Vice versa for top observed extreme.
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Figure A.12: Hourly mean precipitation amount for top 10/1/0.1% of all non-NaN
hours, in addition to top 1/0.1% shared extreme hours with and without 6h tolerance
for AROME, observed and fcfix data at Tromsø, Kristiansand and Nesbyen. Ratio is
forecast divided by observed data. Top forecast extreme is the highest forecasted

rainfall amount in one hour (using the first 12 forecast hours), with the corresponding
observed value for that hour below. Vice versa for top observed extreme.
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Figure A.13: Daily mean precipitation amount for top 10/5/1% of all non-NaN days, in
addition to top 5/1% shared extreme days for AROME, observed and fcfix data at

Bergen, Oslo and Trondheim. Ratio is forecast divided by observed data. Top forecast
extreme is the highest forecasted rainfall amount in one day (using the first 12 forecast
hours), with the corresponding observed value for that day below. Vice versa for top

observed extreme.
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Figure A.14: Daily mean precipitation amount for top 10/5/1% of all non-NaN days, in
addition to top 5/1% shared extreme days for AROME, observed and fcfix data at
Tromsø, Kristiansand and Nesbyen. Ratio is forecast divided by observed data. Top

forecast extreme is the highest forecasted rainfall amount in one day (using the first 12
forecast hours), with the corresponding observed value for that day below. Vice versa

for top observed extreme.
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Figure A.15: Mean of the top 1% hourly forecasted/observed extremes, and average
hours between each occurrence of a top 1% extreme precipitation event for forecast and

observed data at each location. Data is divided into seasons.



Appendix A. Data 96

Figure A.16: Mean of the top 5% daily forecasted/observed extremes, and average days
between each occurrence of a top 5% extreme precipitation event for forecast and

observed data at each location. Data is divided into seasons.
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Figure A.17: Contingency table results for 1h accumulated precipitation for AROME,
fcfix and fcday against observed data.
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Figure A.18: Contingency table results for 6h accumulated precipitation for AROME,
fcfix and fcday against observed data.
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Figure A.19: Contingency table results for 24h accumulated precipitation for AROME
and fcfix against observed data.
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Figure A.20: Contingency table results for 48h accumulated precipitation for AROME
and fcfix against observed data.
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Figure A.21: Contingency table results for 1h accumulated precipitation at each for the
first 12 forecast hours, for AROME and fcpersist against observed data.
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Figure A.22: Contingency table results for 6h accumulated precipitation for AROME
and fcpersist against observed data.



Appendix A. Data 103

Figure A.23: Forecast verification results for 1h accumulated precipitation for AROME,
fcfix and fcday against observed data.
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Figure A.24: Forecast verification results for 6h accumulated precipitation for AROME,
fcfix and fcday against observed data.
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Figure A.25: Forecast verification results for 24h accumulated precipitation for AROME
and fcfix against observed data.
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Figure A.26: Forecast verification results for 48h accumulated precipitation for AROME
and fcfix against observed data.
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Figure A.27: Forecast verification results for 1h accumulated precipitation at each for
the first 12 forecast hours, for AROME against observed data.
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Figure A.28: Forecast verification results for 1h accumulated precipitation at each for
the first 12 forecast hours, for fcpersist against observed data.
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Figure A.29: Forecast verification results for 6h accumulated precipitation for AROME
and fcpersist against observed data.
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