
Appendix 4: Code for plotting normalized MCC data

This code was run in a python notebook on a windows PC. Linux PCs seem to have an issue with

the code.

import csv

import matplotlib.pyplot as plt

Surfaces, image scales and case numbers for the plot titles

surfaces = ["Q0","Q1","Q2","Q3","Q4"]

zooms = ["200","100","050","025","010","005","001"]

cases = ["01","02","03","04","05","06","07","08"]

Headers for the "total averages" CSV file

total_average = [["Complete average"] + zooms]

Importing the file created in the downscalign script

with open('Hits.csv', 'r', encoding='utf-8-sig') as readFile:

 # Creating a list of the data

 reader = csv.DictReader(readFile)

 reader_list = list(reader)

 # Headers for the "case averages" CSV files

 case_averages = [["Averages"] + zooms]

 # Creating a tally and total for average values in total

 values_total = {"200":0,"100":0,"050":0,"025":0,"010":0,"005":0,"001":0}

 numbers_total = {"200":0,"100":0,"050":0,"025":0,"010":0,"005":0,"001":0}

 # Itterating over each case

 for case in cases:

 # Start of a new line for "case averages" CSV

 average_newline = [case]

 # Headers for the "case-by-case" CSV files

 table = [["case " + case] + zooms]

 # Creating a tally and total for average values per case

 values = {"200":0,"100":0,"050":0,"025":0,"010":0,"005":0,"001":0}

 numbers = {"200":0,"100":0,"050":0,"025":0,"010":0,"005":0,"001":0}

 # Itterating over possible surfaces

 for surface in surfaces:

 # Start of a new line for "case-by-case" CSV

 new_line = [surface]

 # Itterating over possible zoom levels

 for zoom in zooms:

 # Itterating over all data points

 for lines in reader_list:

 # Finding correct data point throuhgh case, zoom and surface

 if zoom == lines["Zoom"] and surface == lines["surface"] and case == lines["Case"]:

 # Checking for error values

 if lines["MCC_observe"] != "Error" and lines["X95_MCC"] != "Error":

 # Calculating normalized MCC

 calibrated_MCC = float(lines["MCC_observe"])-float(lines["X95_MCC"])

 # Updating tallies and totals

 values[zoom] += calibrated_MCC

 values_total[zoom] += calibrated_MCC

 numbers[zoom] += 1

 numbers_total[zoom] += 1

 # Adding data point to the new "case-by-case" CSV line

 new_line.append(calibrated_MCC)

 else:

 # An error is added if there was no MCC

 new_line.append("Error")

 # Line is added to the "case-by-case" CSV

 table.append(new_line)

 # "case averages" average is calculated per scale

 # (the average over all horizons is calculated)

 for zoom2 in zooms:

 average_newline.append(values[zoom2]/numbers[zoom2])

 # The "case-by-case" CSVs are created

 with open(table[0][0]+' table.csv', 'w+', newline='') as newfile:

 writer = csv.writer(newfile, quoting=csv.QUOTE_ALL)

 writer.writerows(table)

 # Line is added to the "case averages" CSV

 case_averages.append(average_newline)

 # The "case averages" CSVs are created

 with open(case_averages[0][0]+' table.csv', 'w+', newline='') as newfile:

 writer = csv.writer(newfile, quoting=csv.QUOTE_ALL)

 writer.writerows(case_averages)

Start of a new line for "total averages" CSV

total_average_newline = ["Average"]

"total averages" average is calculated per scale

(the average over all horizons and cases is calculated)

for zoom3 in zooms:

 total_average_newline.append(values_total[zoom3]/numbers_total[zoom3])

Line is added to the "total averages" CSV

total_average.append(total_average_newline)

The "total averages" CSV is created

with open(total_average[0][0]+' table.csv', 'w+', newline='') as newfile:

 writer = csv.writer(newfile, quoting=csv.QUOTE_ALL)

 writer.writerows(total_average)

Making sure the figure is empty

plt.clf()

Defining the X-axis values

X = ["1:200","1:100","1:50","1:25","1:10","1:5","1:1"]

Opening the "case averages" data and the "total averages" data

with open('Averages table.csv', 'r', encoding='utf-8-sig') as file_a, open('Complete average table.csv',

'r', encoding='utf-8-sig') as file_b:

 # making a list of the "case averages"

 reader = csv.DictReader(file_a)

 reader_list = list(reader)

 # making a list of the "total averages"

 reader_b = csv.DictReader(file_b)

 reader_list_b = list(reader_b)

 # Defining plot types

 plots = ["Frequency","Elastic properties","Illumination","All cases"]

 # Hard coding the Y-axis ranges per plot type

 plot_yscale = [[-0.7, 0.3],[-1.3,0.4],[-0.8,0.3],[-1.3,0.4]]

 # Defining wether to add the "total average" per plot type

 plot_avg = ["No","No","No","Yes"]

 # Defining what cases to plot per plot type

 plots_cases =

[["01","02","03"],["01","06","07","08"],["01","04","05"],["01","02","03","04","05","06","07","08"]]

 # Defining the unit of the feature of interest per plot type

 case_features =

[["30Hz","60Hz","90Hz"],["Standard","Low","High","Contrast"],["45°","25°","15°"],["Case 1","Case 2","Case

3","Case 4","Case 5","Case 6","Case 7","Case 8"]]

 # Itterating over plot types, plot count to determine the features of the plots

 for plot_count, plot_name in enumerate(plots):

 # Fetching Y-axis range

 plt.ylim(plot_yscale[plot_count])

 # Defining plot titles, labels and style

 plt.style.use('ggplot')

 plt.title(plot_name +"\n A) Dolomite threshold: 8%")

 plt.xlabel("Scale factor")

 plt.ylabel("MCC normalized on the 99.5th percentile")

 # Generating file name

 filename = case_averages[0][0] + " " + plot_name

 # Fetching and itterating over cases to plot

 for case_count, case_name in enumerate(plots_cases[plot_count]):

 # Itterating over all data points

 for lines in reader_list:

 # Finding case number for data point

 case = list(lines.values())[0]

 # Checking wether to plot the case

 if case == case_name:

 # Fetching data points

 Y = list(map(float,list(lines.values())[1:]))

 # Plotting data points

 plt.plot(X,Y, label = case_features[plot_count][case_count])

 # Checking whether to plot the "total average"

 if plot_avg[plot_count] == "Yes":

 # Plotting the "total average"

 plt.plot(X,list(map(float,list(reader_list_b[0].values())[1:])),"k--", label = "Average")

 # Plotting the X-axis

 plt.plot(["1:200","1:1"],[0,0], "k")

 # Adding a legend

 plt.legend(loc = 'lower right')

 # Saving the plot to a png and cleaning the plot

 plt.savefig("Results_chart/" + filename + "_plot.png", bbox_inches="tight", dpi=300)

 plt.clf()

