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Abstract

In this master thesis machine learning algorithms have been used in an effort to enhance
numerical weather prediction. The learning algorithms used are random forest to provide
a no precipitation/precipitation classification, and neural networks to predict the numeri-
cal value of hourly accumulated precipitation amount. Both algorithms has been trained on
numerical model output, specifically output from the numerical model MEPS (MetCoOp
ensemble prediction system) for two locations with distinctly different precipitation frequen-
cies, Florida, Bergen and Blindern Oslo. After the data was classified by the random forest
model, a neural network was trained for each individual class (i.e class 0: no precipitation,
class 1: precipitation). The neural network show promising results according to the ver-
ification metrics, which suggest an improvement compared to MEPS. When splitting the
forecast into categories of hourly accumulated precipitation amount (rain rates) the verifi-
cation metrics show a good performance of no rain and light rain, however, it revealed a
systematic underprediction of medium and heavy (hourly) rain rates at both locations. This
underprediction is even more severe for Blindern, Oslo than for Florida, Bergen, illustrating
the importance of enough data in machine learning. Though the algorithms was provided
many samples, not enough of these samples actually meet the threshold of hourly rain rate
RRhourly ≥ 0.1mmh−1, and thus there is not enough precipitation samples for the algorithms
to capture the true distribution of the observed precipitation. MEPS also struggles to capture
these hourly rain rates, though the numerical model manages to do so significantly better
than the neural networks. Hence, the verification metrics favors the neural networks for
RRhourly ∈ [0, 2.5⟩mmh−1, and MEPS for RRhourly ∈ [2.5,∞⟩mmh−1. Visual inspections
of plots of the predictions from the neural networks and MEPS, together with the observed
precipitation show the same underprediction, which for Blindern is severe enough that visu-
ally one can deem MEPS a better fit to the observations. For Florida however, it is not clear
which is better, and though the neural network is not obviously better by any means, it is
very much comparable to MEPS concerning light rain (RRhourly ∈ [0, 2.5⟩mmh−1), which
in itself is an accomplishment that yield promise for future research.
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Part I

Introduction

Today weather forecasts are a well integrated part of society, and is not only a tool used by
governments and industries, but is readily available for the general population. For many peo-
ple weather forecast is an important tool used to navigate their everyday lives, from choosing
appropriate outerwear to plan outdoor activities and chores. Furthermore, many industries are
heavily dependent on weather forecast in order to execute their operations, not only to prevent
economic losses, but to prevent damage to the environment and to ensure safety for humans
involved. In addition, weather forecasts are a crucial part of public safety, and is a tool that
enables government agencies to take sufficient preliminary actions and precautions when faced
with impending high-impact weather in order to both protect infrastructure and lessen the en-
dangerment of human lives.
Today, numerical weather prediction (NWP) are computed several times a day by solving the
governing equations numerically on supercomputers at an increasingly high resolution. However,
at the start of the 20th century the predictability of the atmosphere was just getting recognized.

Vilhelm Bjerknes proposed the idea that it was possible to predict the future state of the
atmosphere using the laws of physics and knowing the current state of the atmosphere. [Bjerknes,
1904] stated in his paper:

”If it is true as any scientist believes, that subsequent states of the atmosphere develop
from preceding ones according to physical laws, one will agree that the necessary and
sufficient conditions for a rational solution of the problem of meteorological prediction
are of the following:

• One has to know with sufficient accuracy the state of the atmosphere at a given
time.

• One has to know with sufficient accuracy the laws according to which one state
of the atmosphere develops from another.”

Bjerknes’ first point recognizes the need to observe current weather such that the future state
of the atmosphere can be treated as an initial value problem, given that the equations govern-
ing how the atmosphere evolve in time and space are known (as stated in the second item).
Though Bjerknes [1904] gave frameworks of what is needed to solve the system, both as far
as the equations, initial conditions and potential implications, it was Lewis Fry Richardson in
1922 who proposed solving the system numerically and also showed how this could be done in
practice [Kalney, 2006]. It took Richardson two years to complete the calculations manually and
produce a six hour forecast of pressure. The forecast predicted a pressure change of 146 hPa
when in reality there was little to no change, and his effort was at the time somewhat dis-
missed as optimistic. This overestimation of pressure change has in later years been attributed
to the fact that the initial conditions contained fast-moving gravity waves which obscured the
meteorological signal [Kalney, 2006]. Although Richardson’s forecast was incorrect, his work
illustrated how to solve the system proposed by Bjerknes, and was an important key in the
further developments in the field of numerical weather prediction. After further development in
dynamical meteorology, Charney et al. [1950] used one of the first electronic computers, ENIAC,
to compute a 24 hour forecast of pressure change at 500 hPa yielding promising results, and
in September 1954 Sweden deployed the first operational numerical weather prediction (NWP)
system, followed by the US six months later [Kimura, 2002, Kalney, 2006].
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Figure 1: The evolution of forecast skill from 1981-2015, for 3−, 5−, 7− and 10−day forecasts of the height
of the 500 hPa pressure surface [Bauer et al., 2015]. The thicker line shows the forecast skill for the Northern
Hemisphere (NH) and the thinner line represents the Southern Hemisphere (SH). 1999 marks a clear shift in the
forecast skill before and after, due to the improved utilization of satellite data.

The performance of numerical models have improved steadily since the first operational NWP
was launched in 1954, and this can be attributed to several reasons. This improvement is closely
related to the exceptional increase in computational power since the 1980s, which has made it
possible to operate with increasingly higher resolution. Higher resolution mean we can resolve
more processea within the grid, hence fewer parameterizations are needed. Resolution strongly
affects model performance, and usually higher resolution leads to better model performance
[Kalney, 2006].
In addition, the observational network needed to provide data about the current state of the
atmosphere has been greatly expanded worldwide, and improved methods of data assimilation
has resulted in initial conditions that resemble the actual state of the atmosphere more closely.
This is important because, as discovered by Edward Lorenz in the 1960s, the atmosphere is
chaotic, meaning that small changes in initial conditions can grow into vastly different systems
in a relatively short temporal span.
Figure 1 shows the evolution of forecast skill from 1981 until 2015, for the height of the 500hPa
pressure surface [Bauer et al., 2015]. The 3−, 5, 7− and 10−day forecasts are plotted in blue,
red yellow and gray respectively, and the thicker curve represents the skill for the Northern
Hemisphere (NH), while the thinner curve represents the Southern Hemisphere (SH). Prior to
1999 there is a significant difference in forecast skill between the two hemispheres. Although
this gap was slowly getting smaller in the years prior as well, the forecast skill in SH quickly
improved after 1999. This can be attributed to a combination of increasing satellite coverage
and better utilization of the massive amounts of data provided by these satellites, and as evident
in fig. 1, the forecast skill is today comparable between the hemispheres.

Even with finer resolution there is still sub-grid processes we need to parameterize in order
to represent in the numerical models. Precipitation is formed by microphysical processes which
happens on a much smaller spatial scale than the model resolution, and thus these microphysical
processes needs to be parameterized. Additionally, difference in local topography within a grid
cell results in difficulty predicting certain variables, such as precipitation which is enhanced by
orographic effects. Simplified microphysics and smoothed topography that remain unresolved
are why it is particularly difficult to forecast precipitation, not only when and where it will
precipitate, but particularly how much precipitation will fall. Convective precipitation, which
form from ascending air which has been heated by the adjacent surface and is common during
summer months, often result in local rain showers that is difficult to forecast when and where
ahead of time. Frogner et al. [2019] researched the predictability of MEPS forecast of hourly
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precipitation and found it was greatly reduced for scales smaller than 65km after the 6-h forecast
lead time.
As mentioned initially, weather forecasts are an important tool in today society, and this also
holds true for precipitation forecasts specifically. As for public safety and infrastructure it is
detrimental to forecast heavy, and especially extreme precipitation events sufficiently, as it can
result in land slides and flooding, potentially causing loss of lives and severe economic damage.
Furthermore, many industries need accurate forecast to execute their operations such as the
energy sector, especially the renewable. The hydro power industry for example, provide the
largest source of energy in Norway and constantly have to make decisions about production
based on precipitation forecasts. Other industries, like aviation, the oil industry and other mar-
itime industries also rely heavily on accurate forecasts in general to ensure safety and prevent
significant economic risk. Therefore, the work on further improving numerical weather predic-
tion is ongoing, and studies integrating machine learning (ML) into the process of NWP has
increases over the last years following this pursuit.

While numerical models bases the predictions on prognostic and deterministic equation, as
well as assumptions and initial conditions, machine learning algorithms produce output based
on the data itself by identifying patterns and relationship within the data provided in the train-
ing process [Gagne et al., 2017]. Machine learning (ML) is an interdisciplinary field, based
on concept from mathematics, statistics, information theory and computer science, to mention
some, and is not a new concept. It is based on similar statistical methods as the post-processing
techniques used in NWP for decades to produce the final forecast that is presented to the users,
by reducing biases and make the output more representative for local conditions [Kalney, 2006].
However, these statistical methods have to be manually programmed, while machine learning
algorithms are able to learn for the data, which means, following Mitchell [1997] definition, the
performance of the ML algorithm is improved by experience, and thus does not need to be explic-
itly programmed (this will be further explained in sec. 4). Another strength of ML algorithms
is that they can process large amounts of data quite quickly compared to traditional methods,
in addition to the ability to identify complex patterns and relationship that are unknown to
humans at the time [McGovern et al., 2017].

The concept of learning machines has intrigued humans since the invention of computers,
and the term machine learning was officially introduced by Samuel [1959]. As mentioned pre-
viously, machine learning is based on many concepts making it very much interdisciplinary and
is a sub-branch of the field of artificial intelligence (AI), which tries to emulate the processes
in the brain to simulate intelligence, logic reasoning and thinking in machines, just as seen in
humans. The field of AI has seen dramatic development in the last decades, and the majority
of this can be attributed to the developments within machine learning in particular [Goodfellow
et al., 2016]. One order of magnitude increase in computing power every five years since 1980,
with the massive amounts of data that has become available has contributed to the significant
breakthroughs, yielding promising results in many fields. This has resulted in an increasing in-
terest and popularity in the last decade, and many other fields has also realized what a powerful
tool ML can be, including the field of numerical weather prediction.

An increasing number of studies have been conducted trying to implement machine learning
into the process of numerical weather prediction. McGovern et al. [2017] demonstrated how
machine learning can be utilized in the predictions of different high-impact weather phenomena.
They used a random forest (RF) to classify different precipitation types and found a significant
improvement from the NWPmodel in the study, particularly for the minority classes of ice pellets
and freezing rain. Another study using random forest was conducted by Ahijevych et al. [2016],
whom tried to forecast the probability of initiation of a mesoscale convective system (MCS-I).
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The RF model was able to detect 99% of the initiation events, however, this was accompanied
by an significantly high false alarm rate because the model either detected the initiation pre-
maturely, or was unable to distinguish between an ongoing MCS-I event, and the initiation of
a new event. Gagne et al. [2017] used a combination of random forest and a regression model
to first classify a storm as either hail-producing or not, followed by predicting the hail size.
They found random forest to performed rather well at the classification part, while the regres-
sion model struggled to predict hail size with sufficient accuracy. When using RF to improve
radar-base precipitation nowcasting, Mao and Sorteberg [2020] found overall improvements in
the verification metrics of the RF model compared to the NWP and radar nowcasts in the study.

The objective of this thesis share similarities with the studies just presented, namely to re-
search whether machine learning methods can be used to enhance numerical weather prediction
(NWP), specifically predictions of hourly accumulated precipitation amount. The machine learn-
ing (ML) algorithms used are random forest and neural network, with both algorithms trained on
data from AROME-MetCoOp ensemble prediction system (MEPS). This study can be separated
into three distinct parts; feature selection, classification by random forest and regression using
neural networks. The random forest provide a classification of no precipitation/precipitation,
and two separate neural networks are trained (one for each class). After the random forest has
classified all the data, the data is then passed to the corresponding neural networks predicting
the hourly accumulated precipitation amount. This procedure is tested on data from two dif-
ferent location with distinctly different precipitation frequency; Florida, Bergen and Blindern,
Oslo. In addition, each location have several datasets with various sets of variables and forecast
lead times. The full overview of the different datasets used to train the ML models are provided
in sec. 5.
The research questions answered in this thesis is the following:

• How does the performance of the ML algorithms change with different forecast lead time
intervals and features available?

• Will training two different neural networks, one for samples classified as precipitation and
one for samples classified as no precipitation, lead the neural network (NN) to predict
fewer false negatives and false positives (i.e precipitation classified as no precipitation, and
no precipitation classified as precipitation)?

• How does the ML algorithms predictions compare to MEPS, and is it possible to improve
forecast skill with ML?

• How does the performance of the ML models differ between two locations with distinctly
different precipitation frequency?

The main text is structured in the following way; Part II provides theory of relevant con-
cept such as cloud formation and precipitation, numerical weather prediction, exploratory data
analysis and machine learning. In Part III the methods used in this study is presented, as well
as the data used. Results and discussions are presented in Part IV, with the different section
presenting the findings of feature selection, random forest and neural network. Because these
are subsequent steps, it is necessary to discuss and conclude the findings after each step. Lastly,
the conclusion and further work is presented in Part V.
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1 CLOUD FORMATION AND PRECIPITATION

Part II

Theory

1 Cloud formation and precipitation

In order to have precipitation, cloud formation must first occur. Clouds form in four ways;
convective, convergence, frontal and orographic lifting.

1.1 Orographic lifting

Orographic lifting, illustrated in fig. 2, occurs when an air parcel approaches orographic fea-
tures (i.e mountains etc), and on the windward side is forced upwards along the mountain side,
thus cooling the parcel adiabatically by expansion, and once the air parcel reaches the lifting
condensation level (LCL), it continues to cool following the pseudoadiabatic lapse rate, a cloud
starts forming and precipitation can occur. This is called orographic precipitation, and occurs
on the windward side of the mountain as the air parcel ascend over the mountain, permanently
removing moisture from the parcel. On the downwind side, the parcel moves back down the
mountain side. Because of the lower water content from the precipitation, as the parcel is com-
pressed during the descend, it warms following the dry adiabatic lapse rate. The dry adiabatic
lapse rate is greater than the pseudoadiabatic lapse rate, and thus the temperature of the air
parcel as it descends exceeds the original temperature of the parcel before it ascended over the
mountain on the windward side [Hakim and Patoux, 2018].

Figure 2: A parcel of moist air is forced by orographic lifting up the slope of the mountain, creating clouds
and precipitation on the windward side and a heating of the air on the leeward side (see text for further details).
Figure from Britannica.

1.2 Convective lifting

A process which lead to many weather phenomena is convection. As shown in fig. 3a, the air
parcel is heated by the surface, either from the surface adjacent to the parcel being heated by
solar radiation, or by the parcel itself moving over a warm surface. Because warm air has a lower
density, the parcel begins to rise, and at the LCL condensation begins and a cumulus cloud is
formed. The stability of the atmosphere will determine how far vertical reach the cumulus cloud
will have [Ahrens and Henson, 2018]. The farther vertical extent the unstable layer has, the
taller the cumulus can become.
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1.3 Lifting by convergence 1 CLOUD FORMATION AND PRECIPITATION

(a) (b)

Figure 3: Figure illustrates 3a convective lifting and 3b lifting by convergence. Figures from Ahrens and Henson
[2018]

1.3 Lifting by convergence

Another way clouds can form is from the lifting of air due to convergence. Convergence is when
air masses meet at a certain point in space, forcing some of the air to move upward (fig. 3b).
This allows for adiabatic cooling and cloud formation once saturation has been reached, and
in some instances, precipitation. This can typically occur when air masses flow over a body
of water and then reaches land. The air that reaches the land first will slow down due to the
increased friction of the surface. The air still moving over the body of water will continue with
the same speed, and at the boundary between land and water there will be a convergence as
faster moving air catches up to the slower moving air [Hakim and Patoux, 2018].

1.4 Frontal lifting

A front is the boundary between two air masses with different densities, mainly due to a notice-
able difference in temperature (and moisture content). There are two main fronts; warm front
and cold front. This is usually seen as part of a low pressure system.

A warm front is a warmer air mass moving towards colder air. Because the warmer air has
a lower density than the colder air, the warmer air will be forced to ascend over the colder air.
This ascending air produce nimbostratus clouds and precipitation, and because the warmer air
moves over the colder air (see fig. 4a), the cloud formation and precipitation occur prior to the
passing of the warm front.

A cold front on the other hand, consist of a colder, and thus denser air mass, and force the
warmer air mass to rise over the air mass of the cold front. As seen in a warm front, the rising of
the warmer air mass creates nimbostratus and precipitation, but in contrast to the warm front,
this occurs behind the cold front (see fig. 4b).
As mentioned, these fronts are typically a part of a low pressure system where the warm front
is ahead of the cold front (fig. 6b). Because the cold front moves slightly faster than the warm
front, the cold front eventually catches up with the warm front, and pushes this air upwards,
until all of the warmer air mass sits above the colder air mass [Strangeway, 2007], creating what
is called an occluded front.
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2 NUMERICAL WEATHER PREDICTION

(a) (b)

(c)

Figure 4: Figures show the characteristics of 4a a warm front and 4b a cold front. In the case of a warm
front, the precipitation occurs ahead of the approaching front, and in the case of a cold front, the precipitation
occur behind the front. Figures from Ahrens and Henson [2018]. Fig. 6b show a typical developing synoptic
low pressure system (cyclonic circulation), with the cold front behind the warm front, and the accompanying
precipitation band. Fig. from Wallace and Hobbs [2006].

2 Numerical weather prediction

In this section different aspects of numerical weather prediction will be presented, from the
governing equation and how they can be numerically solved, to data assimilation and ensemble
predicting.

2.1 The governing equations

Below is the governing equations, often referred to as Euler equations when not containing
friction F [Kalney, 2006]: The momentum equation defined as

Du

Dt
= −1

ρ
▽ p−▽ϕ− 2Ω× u+ F (1)

where D
Dt = ∂

∂t + u ∂
∂x + v ∂

∂y + w ∂
∂z , u = (u, v, w) is the three wind-components, and the first

term on the right hand side is the pressure gradient force, second term is the gravitational force,
third is the Coriolis force and last term is friction.
The continuity equation defined as

∂ρ

∂t
= −▽ (ρu) (2)

where ρ is density and u is the wind vector.
The state equation for an ideal gas is given by

p = ρRT (3)
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where p is pressure, ρ is density, T is temperature and R is the gas constant for air.
The conservation of energy equation is defined as

Q = Cp
DT

Dt
− 1

ρ

Dp

Dt
(4)

where Cp is the specific heat at constant pressure. The conservation of moisture is defined as

∂ρq

∂t
= −▽ (ρuq) + ρ(E − C) (5)

where q is the mixing ratio and E and C represent evaporation and condensation respectively.

2.2 Discretization of the governing equations

Because the governing equations cannot be solved analytically, it is necessary to discretize the
equations by finite-difference approximations of space and time in order to solve them nu-
merically [Warner, 2011]. To illustrate this, consider defining discrete values for x and t as
xj = j∆x, tn = n∆t, the advection equation ∂u

∂t = −c∂u∂x can be approximated by the finite-
difference equation

Un+1
j − Un

j

∆t
+ c

Un
j − Un

j−1

∆x
= 0, (6)

which is referred to as an upstream scheme, and for which both the spatial and temporal dis-
cretization is centered around the point (j∆x, n∆t) [Kalney, 2006]. The upstream scheme is
just one of many possible ways to discretize the governing equations.

2.3 Parameterization

Due to the discretization used to solve the equations numerically, some processes will be unre-
solved, meaning these processes occur on a smaller scale than the ∆x used in the discretization.
However, these subgrid-scale processes are still important in weather prediction and their ef-
fects need to be included in the model. This is achieved by parameterizations, i.e describing
their effects in the form of resolved processes instead. Figure 5 shows a schematic from Bauer
et al. [2015] of subgrid-scale processes that are important for weather prediction and need to be
parameterized. These subgrid-scale processes include, among others, molecular-scale processes
such as condensation, evaporation and all other microphysical processes involved in cloud for-
mation, and turbulent mixing in the boundary layer.

2.4 Data assimilation

In order to solve the equations presented above, which is an initial-value/boundary-condition
problem, one need to know the initial state of the atmosphere as accurately as possible. This
initial state is referred to as the analysis. The analysis is based on a short-range forecast and
observation, combined statistically using data assimilation [Kalney, 2006]. Data assimilation is
defined by Talagrand [1997] as ”the process through which all the available information is used
in order to estimate as accurately as possible the state of the atmospheric or oceanic flow”.
As mentioned, fig. 1 in Part I show the evolution of forecast skill from 1981 to 2015, with the
thicker line represents the forecast skill for Northern Hemisphere while the thinner represents
the Southern Hemisphere. Prior to 1999 there was a significant difference in skill between the
two hemispheres, however, after 1999 this difference is greatly reduced. This is due to the bet-
ter methods of data assimilation, as well as better use of satellite data in the process of data
assimilation [Bauer et al., 2015].
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Figure 5: A schematic presentation of unresolved processes which is represented by parameterization i numerical
weather prediction [Bauer et al., 2015].

2.5 Ensemble forecast

Traditional statistical methods is not sufficient to represent the uncertainty in NWP. Chaos
theory of Edward Lorenz in the 1960s showed how small perturbations in the initial conditions
can over time evolve into distinctly different trajectories (as illustrated by the Lorenz attractor
in fig. 6), and because of this, even with a perfect model and close-to perfect initial conditions,
there is a theoretical limit to the predictability of the atmosphere. In an effort to account for
this inherent uncertainty, ensemble forecasts are used. The base member in the ensemble (red
line in fig. 6a) is the numerical model run on the analysis provided by data assimilation. The
various ensemble members (blue lines in fig. 6a) are model runs which have been perturbed in
one way or another, for example by perturbing the initial conditions. The incentive of ensemble
forecasting is to capture the true trajectory of the observed system in the spread of the ensemble
members (gray area in fig. 6a).

(a) (b)

Figure 6: Figure 6a illustrates ensemble prediction. The red line marks the control, and the blue lines marks
the different members of the ensemble which is perturbed in some way. The lines show the temporal evolution of
the forecasts, illustrating how the different forecasts diverge as time increases. The gray-shaded area symbolizes
the forecast uncertainty, and the objective is to encompass the true event in the range of the ensemble. The left
figure shows how this ensemble prediction result in a probabilistic forecast of precipitation. [Bauer et al., 2015].
Figure 6 is a schematic of a Lorenz attractor, which illustrate how different initial conditions have different the
uncertainty, and might end up taking vastly different trajectories.

2.6 Forecast verification

In order to assess the usefulness of a forecast, it is necessary to define what constitutes a good
forecast. This can be somewhat challenging to define, as it can be quite subjective and one
forecaster’s assessment of goodness might not agree with another, or perhaps even more com-
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3 EXPLORATORY DATA ANALYSIS

monly, not reflect the end-users experience. In his attempt to define a clear definition of what
constitutes a good forecast, Murphy [1992] defined three different types of goodness. The first
type, termed consistency, refer to the agreement between the forecast and the forecaster’s better
judgment, meaning the forecast needs to align with the forecaster’s internal knowledge base. The
second type of goodness require the forecast to be in agreement with the matching observations,
and is termed as the quality of the forecast. Lastly, the forecast needs to be of value. This third
type of goodness takes the end-user’s experience of the forecast into consideration, and require
that the forecast must provide decision-makers with information providing economic or other
likewise societal benefits. Murphy [1992] argued that without a sufficient definition of goodness,
the actual usefulness of the forecast is undermined.

Forecast verification provide a quantification of how well the forecast corresponds with the
actual observations, and thus quantify type 2 goodness, i.e the quality of the forecast. The verifi-
cation measures used is dependent of the type of forecast. For deterministic forecasts of discrete
variables (i.e yes/no forecast) accuracy is commonly used, which measures how many times the
forecast predicted true positive compared to total number of positive instances (instances of
yes).
Deterministic forecasts of continuous variables on the other hand, uses verification measures
that provide information about how close the predicted numeric value is to the observed value,
for example the mean absolute error. For both forecasts of discrete and numeric values it is
useful to give an estimate of how well the forecast generally fit the observations, referred to as
the forecast’s mean error or bias. Another verification measure used in both types of forecasts
is skill. Skill is a measurement of the forecast’s performance relative to some reference forecast,
and is a measure that is particularly useful when comparing different models.

The high-resolution of today’s models have resulted in remarkable improvements of the fore-
cast of certain variables, however, this high-resolution also poses some challenges in the verifica-
tion process. The high-resolution of today’s models can provide detailed information about the
spatial distribution of the variable field, and though this looks very realistic, it can be difficult
to verify whether or not the model is correct because details about the actual observed vari-
able is often not available at such a high resolution. In addition, traditional verification is also
done in a point-to-point comparison between prediction and observation, often resulting in poor
verification scores that does not reflect the true quality of the forecast [Gilleland et al., 2009].
There are new verification methods developed to account for this, namely filtering methods and
displacement method, but this will not be further explained as this thesis utilizes data of one
grid cell only, while these methods require a variable field.

3 Exploratory data analysis

Feature engineering and selection is perhaps the most important step in the machine learning
process. As a part of this process, exploratory data analysis was done to get a better insight of
the relationships within the dataset, and also between the dataset and the observations.

3.1 Person correlation and Spearman rank correlation

In order to explore the relationship between two variables, x and y, one can look at the Pearson
correlation coefficient, which is defined by

rxy =
1

n−1

∑n
i=1[(xi − x)(yi − y)]

[ 1
n−1

∑n
i=1(xi − x)2]

1
2 [ 1

n−1

∑n
i=1(yi − y)2]

1
2

, rxy ∈ [−1,−1] (7)
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3 EXPLORATORY DATA ANALYSIS 3.2 The correlation matrix

where the numerator can be interpreted as the sample covariance of both variables over the
product of the standard deviation of both variables Wilks [2011]. A correlation of 1 means a
perfect positive linear association between the variables, i.e when one variable increases, the
other increase with an equal amount. In contrast, a correlation of −1 means a perfect, but
negative, linear association, meaning when one variable increases, the other decreases with an
equal amount (of absolute value). Two variables with no linear relationship would have a
correlation of 0.
One weakness of the Pearson correlation is that it might underestimate the relationship between
two variables if the relationship is not entirely linear. In these situations the Spearman rank
correlation coefficient would be better to use, which is calculated using the rank for the data pair
(xi, yi) (instead of the actual value) in equation 7. In other words, the data pair is transformed
from (xi, yi) where xi ∈ [min(x),max(x)], yi ∈ [min(y),max(y)] to (rankxi , rankyi) ∈ [1, n].
Because the rank of a specific data point is an integer between [1, n], the average of the rank is
(1 + n)/2 and the standard deviation n(n2 − 1/[12(n − 1)]) [Wilks, 2011], the Spearman rank
correlation can be found using

rrank = 1−
6
∑n

i=1D
2
n

n(n2 − 1)
(8)

where Di is the difference in rank between the two variables. Like the Pearson correlation, the
Spearman rank is also bounded by −1 and 1. However, though a Spearman rank of 1 also means
a perfect relationship between the two variables, it does not mean they will both increase with
an equal amount (as Pearson correlation indicates).

3.2 The correlation matrix

The statistical measures described above can only tell us something about the relationship
between two variables. In order to explore the relationship between≥ 3) variables, other methods
must be utilized. If you have a dataset with K variables, where K ∈ [3,∞⟩, The correlation
matrix show the correlations between all distinct parings of these K variables [Wilks, 2011],
as illustrated below. The matrix can be calculated using either the Pearson correlation or the
Spearman rank. The diagonal elements r1,1 . . . rK,K = 1 because this is the correlation of the
variables themselves. The matrix is symmetric, meaning r1,2 = r2,1, and we therefore only have
K(K − 1)/2 distinct pairings of these K variables.

R =


r1,1 r1,2 . . . r1,j
r2,1 r2,2 . . . r2,j
...

...
. . .

...
ri,1 . . . . . . ri,j

 (9)

3.3 Hierarchical clustering

Another method of exploratory data analysis is cluster analysis, where we try to divide the data
into smaller groups of unknown identities. One way to do this is by hierarchical clustering.
This is essentially done by first pairing the two variables closest together, then merging this
group together with another existing group. In more general terms, if we have a dataset with
n variables, the data will be divided into n − 1 groups at the initial step in the clustering. At
the next step, two of the existing groups will be merged, resulting in n− 2 groups. This process
is continued until two groups remain [Wilks, 2011]. The hierarchical clustering will hopefully
result in an informative split of the data at some of the intermediate steps.
In this thesis, Ward’s minimum variance method was used to decide which pair of groups to
merge at each step. Consider G+1 groups. The next step in the clustering is to merge the two
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groups which minimizes

W =
G∑

g=1

ng∑
i=1

||xi − xg||2 =
G∑

g=1

ng∑
i=1

K∑
k=1

(xi,k − xg,k)
2 (10)

In order to find the best merge, equation 10 needs to be calculated for all possible pairs of existing
groups. This process is recursively done until the data is divided into two groups. To illustrate
the hierarchical clusters found by Ward’s method one can use a Dendrogram, as illustrated in
fig. 7.

Figure 7: Schematic of a Dendrogram. At each step, two groups are merged. In this figure, at the start there
are 7 groups (A-G), and at the end there are only two. [Joseph, 2018].

4 Machine Learning

In this section a brief introduction about machine learning is presented. Machine learning is as
mentioned a sub-branch of artificial intelligence.
In traditional rule-based systems one must specify a manually defined program and input in
order for the computer to return an output, whilst in machine learning one specifies an input
and output and then the computer learns (and returns) the program itself (fig. 11). In other
words, the machine learning algorithm tries to learn patterns between the input and output, to
be able to predict future situations based on historic data. This is called inductive inference, and
is in the field of machine learning referred to as the learning algorithms ability to generalize. But
what does it mean for an algorithm to learn? Mitchell [1997] provided the following definition
of learning:

A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.
- Mitchell [1997]

The following sections will specify the terms used in this definition further.

4.1 Task, T: The purpose of the learning

What is the purpose of the machine learning algorithm, what need is it set to fulfill? The task
is not the learning itself. The learning is simply the mean to solve the task at hand. In this
thesis the task is two-fold, first to classify the data into no precipitation/precipitation, then to
predict a numerical value of hourly accumulated precipitation amount (for simplicity also re-
ferred to as hourly precipitation amount). These are examples of two different classes of tasks,

12
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Figure 8: Diagram of machine learning versus traditional rule-based systems [Goodfellow et al., 2016]. Here, a
traditional rule-based system is a program that has rules explicitly stated by a developer and from this predicts
an outcome, while machine learning learns these rules from the data itself.

namely classification and regression respectively. There are many different tasks one can utilize
machine learning to solve, such as anomaly detection, language translation and even generating
new samples similar to the provided training data (synthesis). Only classification and regression
will be further explained, as these are the classes of tasks to be solved in this thesis.

4.1.1 Classification

In classification tasks the algorithm is set to assign each sample to one of k classes, also often
referred to as a label (these terms will be used interchangeably). In this thesis specifically the
classification task is to classify the sample as either no precipitation or precipitation. In cases
like this where there are only two classes it is common to use binary labels such as [0, 1] or
[−1, 1], referring to no precipitation or precipitation respectively [Goodfellow et al., 2016].
Usually in such classification tasks with k classes, the algorithm has to approximate a function
f : Rn → 1, .., k, such that it is able to predict class y from input vector x, satisfying

y = f(x) (11)

It is worth mentioning that there are different subtypes of classification tasks, and in this par-
ticular classification task, the output is one class (of k classes). In other classification tasks
the algorithms may provide a probability distribution of the classes instead of one deterministic
class [Goodfellow et al., 2016].

4.1.2 Regression

Regression tasks are quite similar to classification, however, instead of predicting the class of
the sample, the algorithm has to provide a numerical value [Goodfellow et al., 2016]. Just as
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in classification, the task is to learn a function such that y = f(x), but in this case the desired
output y is a numerical value, and not a binary one, meaning f : Rn → R.
In this thesis in particular, the regression task is to provide the numerical value of hourly accu-
mulated precipitation amount.

4.2 Performance, P: How to evaluate learning

The performance is the evaluation of the algorithm’s ability to solve the task. The performance
measure must be appropriate for the task (for example accuracy for classification or mean ab-
solute error for regression).

4.2.1 Generalization error

The performance measure P calculated during the training process is referred to as the training
error. However, the training error does not tell us anything about how well the algorithm is
able to generalize, only how well it is able to fit the training data. In order to assess the algo-
rithm’s ability to generalize, new data (not seen in training) is needed to provide an unbiased
evaluation of the model’s performance. The performance measure P on the previously unseen
data (referred to as the test data) is called generalization error. When talking about evaluating
the model performance it is the generalization error that is referenced.

4.2.2 Overfitting and underfitting

The difference in training error and generalization error gives us valuable information about
how well the algorithm is able to learn. If the training error is low, but the generalization error
is significantly higher, the learning has resulted in overfitting. This means that the algorithm
has fit so well to the training data that it has not only learned the real patterns within the data,
but also the noise. Thus the algorithm is fit too closely to the training data, and generalizes
poorly.
On the other hand, if the training error is also high, we have a situation of underfitting the
data. This means that the algorithm is unable to learn efficiently, usually either because the
algorithm is too simple for the complexity of the task or the algorithm is not provided with
enough training samples to ensure learning.

4.3 Experience, E: Different types of learning

The experience the algorithm is using to learn from is the data itself, where each sample is a
learning experience. Variables within the dataset used in the training is referred to as predictor
(stems from statistics) or features, and is used interchangeably. The data used as experience is
referred to as the training data.

There are different ways the algorithm can experience the data, and thus learn. There are
mainly three ways of learning; supervised learning, unsupervised learning and reinforcement
learning. The learning style which is appropriate to use depends on the nature of task T.

4.3.1 Supervised versus unsupervised learning

In supervised learning the developer provide both input and output, and the learning algorithm
has to map a function (also referred to as a program) based on the provided input-output pairs.
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The end goal of supervised learning is to predict the next output when presented with new,
unseen input. The learning style utilized in solving both the task of classification and regression
in this thesis is supervised learning.

With unsupervised learning on the other hand, the developer provides the algorithm with
input only, and then it is up to the algorithm to make sense of the data. The task in unsu-
pervised learning is typically to find similarities between data and split the data into different
clusters based on these similarities.

Though these are distinct learning styles with supervised learning being more task driven
and unsupervised learning being more data driven, the line between them is blurry, and often
the learning can be a mix of both [Goodfellow et al., 2016].

4.3.2 Reinforcement learning

In reinforcement learning the algorithm has to learn by trial and error in an interactive environ-
ment without any input from a developer. An example of this is an AI (artificial intelligence)
learning to play a videogame without any initial guidelines of how the videogame works or what
the objective of the game is, but by trial and error from repeatedly running through the game
the algorithm will learn this. In other words, the algorithm learns by making mistakes.

4.4 Machine learning algorithms

4.4.1 Decision tree

Generally, a decision tree recursively partition the feature space based on certain thresholds,
resulting in a set of rectangles [Rúız et al., 2015]. There are different decision tree algorithms,
and CART and C4.5 is presented here. The essence of both is to search the feature space
and select the feature and associated threshold resulting in the highest information gain. This
process is recursively done until the stop-splitting criteria is met, which often is either the
maximum depth of the tree or minimal number of samples within the node (these criteria is
decided by the developer through defining the hyperparameters) [Kuhn and Johnson, 2003].
In other words, the objective is to select the feature to split that would result in the biggest
decrease of node impurity [Breiman et al., 1984]. Node impurity refers to the proportions of
the two classes within a node, with the highest impurity when there is an equal proportion of
both classes, and the smallest when there is only one class within the node (i.e the node is pure).

In order to assess which split would provide the highest information gain, and thus decrease
node impurity, it is necessary to implement a gain measure. In cases with two classes, p cor-
responds to the proportion of the second class and c(p) corresponds to the implemented gain
measure. Two gain measures for classification is the Gini index and information gain, the former
defined as

C(p) = 2p(1− p) (12)

and information gain(split) = entropy(before split) - entropy(after split), with entropy defined
as

C(p) = −p log p− (1− p) log (1− p) (13)

The Gini index and information gain is the gain measures used by CART and C4.5 respectively
[Rúız et al., 2015, Shalev-Shwartz and Ben-David, 2014].
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A decision tree is built from the top with a root node, which branches into either internal
nodes or leaf nodes. An internal node (often also referred to as child node or decision node)
is, like the root node, a test of a selected feature and each branch from this node corresponds
to a possible value of said feature (decided by the threshold). A leaf node provides the final
prediction. A sample will be passed down the tree, the path decided by the values of it’s spe-
cific features, and proceed further down the tree until it reaches a leaf node (i.e gets classified)
[Mitchell, 1997]. Figure 9 is a an example of a simple decision tree for playing an unspecified
sport activity, where the task is to classify whether the weather is suitable to do the unspecified
activity or not (P : positive instance, N : negative instance)[Quinlan, 1986]. The features in this
example are ’outlook’, ’humidity’ and ’windy’, and the possible values they can have is discrete.
In this example the root node is ’outlook’, which has three branches (one for each possible value
of ’outlook’). outlook = overcast leads directly to the leaf node of Positive instance (P), while
sunny and rain are internal nodes, and each provide a root node for its own subtree.

In the example presented above the possible values of each node is discrete, but this method
can also be used for numerical features. In these cases there will be two branches from each
root/internal node, and the sample will either move left or right (branch) depending on whether
the value of the sample is above or below a certain threshold of the numerical feature.

There are several advantages to such tree structured methods. To mention some, the trees
are not very affected by outliers or misclassifications in the learning data, in addition to their
output being easily interpreted and their structure intuitive to follow [Breiman et al., 1984].
However, there are also some weaknesses to the algorithm. One of these weaknesses is that de-
cision trees have a tendency to grow too large and thus overfit to the training data, i.e learning
relationships within the data that is essentially noise, resulting in a significantly higher gener-
alization error than training error. Another problem is instability and high variance, as small
changes can lead to very different splits, and thus very different tree structures [Rúız et al., 2015].

There are different ways to ensure the tree produced does not get too large. One of these
methods is called pruning. Pruning is an approach where the pruning algorithm start at the
bottom of the tree and walk through each node, replacing it with either one of its subtrees or a
leaf. The replacement is decided based on which of the alternatives minimize the performance
measure [Shalev-Shwartz and Ben-David, 2014]. This procedure will then hopefully return a
tree with a reduced size.

4.4.2 Random forest

The random forest algorithm was introduced by Breiman [2001], and is essentially an ensemble
of de-correlated decision trees. It is a further developed modification of bagging, which is is a
method where you train many noisy and approximate models, and average their output in an
effort to reduce variance [Rúız et al., 2015]. In classification this ensemble is a committee of trees
that vote for which class a given sample belongs to, with the final class being decided by the
majority vote. In regression tasks, the prediction of the sample is an average of the numerical
predictions from all ensemble members [Kuhn and Johnson, 2003].

This de-correlation of the trees are achieved by introducing randomness into the training.
The randomness is introduced in two ways. One way is by training the individual trees on
separate bootstrap datasets. This means we draw random samples from the original dataset
with replacement [Rúız et al., 2015]. In addition, for each node only a subset of the total
number of features are evaluated for the split. For a dataset with k features, the subset of
features evaluated for each split is often recommended to be

√
k, but this depends on the task
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Figure 9: Schematic of a decision tree from Quinlan [1986]. Here outlook marks the root node, and the the three
possible values of outlook (i.e sunny, overcast, rain) is branches from the root. While overcast lead directly to a
leaf node, sunny and rain lead to the internal nodes of humidity/windy, which marks the root node of their own
respective subtree.

at hand and is generally one of the hyperparameters that is tuned (more on this in sec. 4.5)
[Kuhn and Johnson, 2003].

4.4.3 Neural network

Artificial neural network (ANN), from this point forward only referred to as neural network, is
a learning algorithm which is based on the structure of the human brain, and tries to emulate
logic reasoning seen in humans. Feedforward neural networks, also called multilayer percep-
trons (MLP), is a type of neural network (NN) where information only flows forward through
the model. In other words, the output of the model is not fed back into the model as part of the
input for the subsequent step, i.e there is no feedback connections [Goodfellow et al., 2016]. Neu-
ral network which have these feedback connections are called recurrent neural network (RNN),
and is often used to predict the next value in time-series, or in language detection (as the next
letter in a sequence, i.e word, depends on the previous letters). As it is feedforward NN that is
used in this thesis, RNN will not be explained further.

Consider an input x and output y, where y can refer to either a class or a numerical value,
and assume we can approximate a function f∗ such that y = f∗(x). A feedforward neural
network would approximate f∗ by defining

y ≈ f∗(x; θ) (14)

where θ is parameters that needs to be learned in order to find the closest approximation of f∗.

A feedforward neural network is in practice structured by rather simple units referred to as
units or neurons, which are densely interconnected in a network [Mitchell, 1997, Rúız et al.,
2015]. Each neuron takes an input and produces an output. Figure 10 shows a schematic of an
(artificial) neuron, where x refers to the input to the neuron and w is the associated weights.
x and w are used to calculate the weighted sum, which is then passed through the activation
function g(·) to produce the neuron’s output [Shalev-Shwartz and Ben-David, 2014]. The acti-
vation function is in principle a nonlinear transformation [Goodfellow et al., 2016], and many
different functions can be used for this purpose. Two that are commonly used is rectified linear
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units (ReLU) and sigmoid σ, defined in eq. 15 and 16 respectively.

g(x) = ReLU = max(0, x) (15)

g(x) = σ(x) =
1

1 + exp(−x)
(16)

Input, x

Net input 
function

Activation 
function

x1

x2

xn

Output

Weights, 
w
w1

w2

wn

Figure 10: Schematic of an artificial neuron, based on Mitchell [1997] schematic of a perceptron. Each element
of x is assigned a respective weight w, and summed together. This weighted sum is then passed through the
activation function, resulting in the neuron’s output.

The neurons that make up the network are often structured in different layers, V0, .., VT ,
where the neurons in the tth layer Vt (where t ∈ [T ]) work in parallel, while interconnected to
neurons in the previous layer, Vt−1 and the subsequent layer, Vt+1, as shown in fig. 11. How
connected the neurons are between the layers are dependent on the type of neural network in
question, and will not be discussed any further in this thesis. While θ is used to refer to the
weights of the entire neural network, w is used to refer to the weights of a specific layer.

In order to get a better understanding of the concept of input and output of individual
neurons and the connectivity between the layers, a slightly modified example from Shalev-
Shwartz and Ben-David [2014] will be presented. Consider the ith of k neuron (where i ∈ [k])
within the tth layer Vt, i.e neuron vt,i ∈ Vt. Let E refer to these interconnections between the
neurons in Vt and the previous layer. vt,i input at,i(x) is defined as

at,i =
∑

r:(vt−1,r,vt,i∈E)

w((vt−1,r, vt,i))ot−1,r(x) (17)

where w((vt−1,r, vt,i)) is the weight between neuron vt−1,r and vt,i, and ot−1,r is the output from
the rth neuron in the (t − 1)th layer, Vt−1. In other words, the input to vt,i is essentially the
weighted sum of the output of the neurons from layer Vt−1 which has a connection to vt,i. The
output of vt,i is produced by passing input at,i through the activation function g and defined as

ot,i(x) = g(at,i(x)) (18)

Figure 11 illustrates this with three layers, V0, V1, V3 which have 4, 5 and 1 neurons in each
respective layer. Consider the input and output of the first neuron in layer V1, v1,1, would from
eq. 17 and 18 be

a1,1(x) =

4∑
r=1

w((v0,r, v1,1))o0,r(x), where x = [x1, x2, x3, constant] (19)
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o1,1(x) = g(a1,1(x)) (20)

The bottom layer of the network is called the input layer and often has the dimension of (p+1)
for data X containing p samples, where the additional unit is called a bias unit, and often set
to be 1 [Rúız et al., 2015].
For a fully connected neural network, all neurons of one layer is connected to all neurons in the
next, as seen in fig. 11. The diagram shows a feedforward neural network with one hidden layer.
These layers can be expressed as nested functions, thus f∗(x) can be expressed as

f∗(x) = f (3)(f (2)(f (1)(x))) (21)

Figure 11: Schematic of a feedforward, one hidden layer neural network [Shalev-Shwartz and Ben-David, 2014].
The process showed in fig. 10 is happening within every individual neuron v. The output from each neuron in
layer V0 (input layer) provide the input to each individual neuron in layer V1. For each neuron of layer V1, the
weighted sum of the input is passed through The activation function to create an output, which In turn will
provide the output layer (V2) with it’s input.

The the different components making up the neural network, such as number of neurons and
how these are organized in layers, as well as how each input and output unit is connected, is
part of what is referred to as the architecture of the network [Goodfellow et al., 2016].

Training neural networks Back-propagation is a procedure introduced by Rumelhart et al.
[1986] as ”repeatedly adjusting the weights of the connections in the network so as to minimize
a measure of the difference between the actual output vector of the net and the desired output
vector”. This is achieved by a two-step process; forward pass performs inference, and backward
pass performs learning. In the forward pass, the input moves through each layer of the network
with fixed weights until the network produces an output, ŷ, and the total error E can be
calculated. The total error E can be defined in many ways, however, a measure that is commonly
used is

E(θ) ≡ 1

2

∑
d∈X

∑
k∈outputs

(ŷd,k − yd,k)
2 (22)

where X is the training samples, ŷd,k is the output produced by the neural network and yd,k
is the target output in the supervised learning case [Mitchell, 1997]. The objective of back-
propagation, specifically the backward pass, is to minimize E by adjusting the parameters θ, i.e
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updates the weights such that the weight for the (t+ 1) pass is updated according to

θt+1 = θt − γt∇E(θt) (23)

where γt is the learning rate, a positive scalar determining the size of the step in the direction of
the negative gradient, and ∇E(θt) is the derivative of E [Goodfellow et al., 2016]. This update
is done by gradient descent and requires the computation of the partial derivatives of E with
respect to every weight wt,i (where t ∈ [T ] and i ∈ [k]) in the network [Rumelhart et al., 1986].
The vector derivative of E is thus defined by

∇E(θ) = [
∂E

∂θ0
, ...,

∂E

∂θn
] (24)

where n is the total number of weights. Consider the gradient ∇E(θ), which essentially is a
vector in weight space. As it is a vector, it points to a specific direction, more specifically, the
direction of the steepest increase in E [Mitchell, 1997]. Thus, in order to minimize E, we must
move in the opposite direction of the gradient, hence the −∇E(θt) in eq. 23.

One downside to gradient descent is that it can be slow to reach the local minimum and
computationally expensive as the number of training samples gets large, which is inconvenient
as we know that the models ability to generalize well is very much dependent on large amounts
of data. To account for this, one can compute noisy, approximate gradients instead of exact
ones. This is called stochastic gradient descent. In contrast to general gradient descent that first
update the weights after summing the error of all the training samples in X, stochastic gradient
descent performs the back-propagation after every individual training sample, or alternatively
sample a minibatch consisting of m training samples, and computing the gradient over these m
samples in the minibatch [Mitchell, 1997, Goodfellow et al., 2016].
As the number of weights increase, the weight space can contain many local minimum. Because
stochastic gradient descent takes steps in approximately the right direction, it may fail to fall
into any of the local minimum. In addition, because of the often high dimensions of the weight
space, the local minimum for one weight might not be the local minimum for another.

4.5 Hyperparameters in model selection

While some parameters are decided during the training process, others must be decide before the
training even begins. These are called hyperparameters and are used to constrict the algorithm’s
behavior and learning. Examples of hyperparameters for random forest is maximum depth of
the tree, number of estimators (i.e trees in the forest), learning rate and how many samples a
node must contain to be a leaf. In neural networks there are not only hyperparameters that
needs to be decided for each layer, such as activation function and learning rate, but also the
number of hidden layers and the number of neurons within these layers, i.e the architecture of
the network.
The hyperparameters can be optimized in a separate iterative algorithm before the training
begins. This process is called hyperparameter tuning. Most learning algorithms have a vast
number of possible hyperparameters, but usually only a select number of the hyperparameters
are actually tuned (the remaining will have default settings), and these are selected based on
the task at hand and the domain knowledge of the developer.
In order to evaluate which hyperparameters yield the optimized model, the performance of the
different combinations of hyperparameter-settings need to be evaluated on different data than
the training data. However, the evaluation of the final model requires previously unseen data,
i.e the test data and this can therefor not be used in the hyperparameter tuning. Because of
this, there is a need for another dataset, referred to as the validation data, which is specifically
intended for the hyperparameter tuning.
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Part III

Method

This part will describe the methods used in this thesis. Section 5 present the data, location
and a brief description of the numerical model MEPS. Section 6 will present the methods used
in feature selection, sec. 7 present the methods used in training and evaluation of the random
forest classifier and sec. 8 the training and evaluation of the neural network.

5 Data

Model output (from the control run of the ensemble) from all four main cycles of MEPS has
been selected for everyday of 2020 and 2021, in addition to January to August data for 2022,
meaning we have four 66h-forecast for each date. In this thesis, model output for two main lo-
cations has been selected; Florida, Bergen (latitude: 60.38, longitude: 5.33) and Blindern, Oslo
(latitude: 59.94, longitude: 10.72). Hanssen-Bauer and Førland [1998] defined 13 precipitation
regions by using comparative trend analysis, and these two locations was chosen on because
they belong to distinctly different precipitation regions. The defined precipitation regions was
recently updated, and Bergen and Oslo belong to the updated regions of RR5 (Vestland, in-
cluding the regions previously defined as RRX5 and RRX6) and RR2 (Østlandet, previously
defined as RRX2) respectively [Hanssen-Bauer et al., 2022]. While the RR2 region has an av-
erage yearly precipitation of 941mm (averaged over the period 1991-2020), the RR5 region has
an averaged yearly precipitation of 2605mm. The seasonal distribution of the precipitation also
differ between the two regions. RR2 has on average the highest precipitation during summer
(303 mm), while for the RR5 region winter has the highest precipitation (844 mm), followed
closely by autumn (835 mm). For RR2, the spring is on average the season with the lowest
precipitation of 167mm. For RR5 on the other hand, the rank as least precipitating season is
a tie between summer and spring, both with 479mm.

Florida, Bergen is on the west coast of Norway, where the climate is characterized by mild
winters and heavy precipitation due to orographic enhancement of frontal precipitation from
low pressure systems. The climate at coastal areas have typically milder winters than areas
further inland due to the heat capacity of the ocean, and this effect is even further intensified
on Norway’s west coast by the warm Gulf Stream, resulting in a yearly average temperature is
7.9◦C[Dannevig, a], with October having the highest monthly average precipitation, and May
the lowest.

The general climate of Blindern, Oslo is characterized by southerly winds in the summer and
northerly winds in the winter, resulting in relatively high summer temperatures, and cold winter
temperatures, with the exceptions of areas surrounding Oslofjorden which experience relatively
mild winters, and is also the area with the highest number of days with an average temperature
above 20◦C. The yearly mean temperature is 6.2◦C and the yearly mean precipitation for Oslo
i particular is significantly lower than Bergen with 755mm [Dannevig, b].

These locations was specifically selected because of their difference in yearly average pre-
cipitation amount, as it was of interest to see how the machine learning algorithms performed
on different precipitation distributions. Table 5 in sec. 5.3 will go further in detail about the
difference in the percentage of the observations which is classified as precipitation between the
two locations. All grid cells with an absolute distance of 3.5km from the main locations have
been pulled, resulting in data from seven grid cells for both Florida and Blindern. The x, y pair
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of each grid cell selected can be seen in tab. A.1 in App. A. In order to reduce noise, the data
for each location was averaged across these seven grid cells.

5.1 MEPS

The Meteorological Cooperation on Operational Numerical Weather Prediction (MetCoOp)
model is a convective-scale model operated by the national meteorological institutions of Nor-
way, Sweden and Finland in a bilateral effort. The model MetCoOp Ensemble Prediction System
(MEPS) produces a 66h forecast every 6 hours with nine perturbed members, at 00, 06, 12 and
18 UTC (referred to as the main cycles). In between these main cycles, the model is updated
every 3h to produce a short-term forecast which is then used as a background field in the up-
coming main cycle. MEPS has a horizontal resolution of 2.5km× 2.5km. As seen in fig. 12, the
model cover most of the Nordic countries, as well as part of the Atlantic ocean, the Nordic sea
and the Baltic sea [Müller et al., 2017].
MEPS is forced by ECMWF-IFS (European Centre for Medium-range Weather Forecasts Inte-
grated Forecasting System) at the lateral and upper boundaries, and is based on the HARMONIE-
AROME configuration of the ALADIN-HIRLAM system [Frogner et al., 2019].

Figure 12: Contoured land topography for the entire model domain of MEPS. [Müller et al., 2017]

One thing to note, is that there is an update in both model output and and filename after 4
February 2020 06 UTC. Prior to this point, the model data is stored as MEPS subset 2 5km
and includes the air temperature at lowest model level variable. After the update at 4 February
2020, the model output is stored as MEPS det 2 5km, and no longer explicitly includes the
temperature variable mentioned previously. The subset file contained the output from all en-
semble members in addition to the control run, while the det file only contain output from the
control run. In addition, a few new variables has been added, as seen in tab. 1.
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Table 1: This table gives an overview of changes in the variables included after the MEPS update on 4 April 2020. Only
changes of variables used in this thesis is included.

Convective Available Potential Energy (CAPE) Jkg−1

Atmosphere convective inhibition (CIN) Jkg−1

TOA SW net clear sky radiation Wm −2

Vertical wind pressure levels ms−1

Old variables not included after update Unit

Air temperature at lowest model level K

New variables included after update Unit

To accommodate for this change, the air temperature at lowest model level is pulled from the
lowest model level of the variable air temperature model level from 4 February 2020 12UTC and
beyond. The variables available after the update, has all been given NaN values for the time
period prior to 4 February 2020 12 UTC. For unknown reasons atmosphere convective inhibition
(CIN) is missing from the model output in a period expanding from 24 March 2021 12 UTC
until 20 May 12 UTC. This results in a slight increase of missing values in the dataset.

5.2 Datasets

In this thesis the machine learning algorithms have been trained on different datasets for com-
parison. Two different locations (Florida and Blindern), as well as two sets of features (referred
to as 01 and 02) included in the dataset and a variety of forecast length has been tested. An
explanation of the abbreviation used to reference these differences can be seen in the upper
panel of table 2. The lower panel shows the full list of the different names of all datasets, and
the datasets will be referenced by these names in the rest of the thesis.

Table 2: (upper panel) An overview and description of the abbreviations used for the different locations, dataset features
and forecast lenght. (Lower panel) An overview of the name of each dataset.

Location F, B Florida, Blindern

Set of variables Dataset 01 Features from MEPS only

Dataset 02 01 features + additional features calculated from the MEPS variables

Forecast length P01 Full forecast lead time [0, 66] hours)

P02 Dataset split into three subset depending on forecast lead time. The
three subsets is 0-6 hours, 6-12 hours and 12-66 hours. Referenced as:
P02-6h, P02-12h and P02-66h

Dataset overview F01P01 / B01P01 MEPS variables, forecast lead time: [0,66]h

F01P02 / B01P02 MEPS variables, forecast lead time: [0,6]h, [6,12]h,[12,66]h

F02P01 / B02P01 MEPS with additional calculated features, forecast lead time: 66h

F02P02 / B02P02 MEPS with additional calculated features, forecast lead time: [0,6]h,
[6,12]h,[12,66]h

Abbriviation Definition

One thing to note is that the P02 datasets (i.e F01P02, B01P02, F02P02, B02P02) is in prac-
tice three datasets each, and is thus referenced as P02-6h, P02-12h and P02-66h, corresponding
to the forecast lead time of [0, 6]h, [6, 12]h and [12, 66]h respectively.
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Table 3 shows an extensive overview over all variables included in dataset 01, while tab. 4
shows an overview of the additional variables included in dataset 02. A a reminder, dataset 02
is a combination of both sets of variables found in tab. 3 and 4.

F01/B01: MEPS
Table 3: Variables directly retrieved from MEPS

Air temperature at 2m K

Accumulated total precipitation kgm−2

Total accumulated solid precipitation
(snow+graupel+hail)

kgm−2

Mean Sea Level Pressure (MSLP) Pa

Screen level temperature K

Screen level relative humidity 1

Air temperature at lowest model level K

Zonal 10 meter wind ms−1

Meridional 10 meter wind ms−1

Accumulated surface SW downwelling radiation Wsm−1

Height of PBL m

Cloud cover of high clouds (HCC) 1

Cloud cover of low clouds (LCC) 1

Cloud cover of medium height clouds (MCC) 1

Total cloud cover (TCC) 1

Fog 1

Air temperature at pressure level 925hPa K

Air temperature at pressure level 850hPa K

Air temperature pressure levels K

Geopotential at pressure level 500 hPa m2s−2

Relative humidity at pressure level 925hPa 1

Relative humidity at pressure level 500hPa 1

Zonal wind at pressure level 925hPa ms−1

Zonal wind at pressure level 850hPa ms−1

Zonal wind at pressure level 500hPa ms−1

Meridional wind at pressure level 925hPa ms−1

Meridional wind at pressure level 850hPa ms−1

Meridional wind at pressure level 500hPa ms−1

Vertical wind at pressure level 925hPa ms−1

Vertical wind at pressure level 850hPa ms−1

Vertical wind at pressure level 500hPa ms−1

Convective Available Potential Energy (CAPE) Jkg−1

Atmosphere convective inhibition (CIN) Jkg−1

TOA SW net clear sky radiation Wm −2

Variable Unit
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F02/B02: Additional calculated variables
Table 4: Additional variables calculated from MEPS variables. Note that the variables relative humidity at 850/700hPa

and air temperature at 700hPa and all of specific humidity is direct MEPS output not part of dataset 01, but was
needed to calculate some of the variables in 02.

MEPS: Label, y 1

Relative humidity at 850hPa 1

Relative humidity 700hPa 1

Air temperature 700hPa K

Dewpoint temperature at 925hPa ◦C

Dewpoint temperature at 500hPa ◦C

Dewpoint temperature at 2m ◦C

Specific humidity at 925hPa kg
kg

Specific humidity at 500hPa kg
kg

Windspeed at 10m ms−1

Windspeed at 925hPa ms−1

Windspeed at 850hPa ms−1

Windspeed at 500hPa ms−1

Wind direction at 10m ◦

Wind direction at 925 ◦

Wind direction at 850 ◦

Wind direction at 500 ◦

Pressure of lifting condensation level Pa

Temperature of lifting condensation level ◦C

Absolute moisture flux at 925hPa kg m
kg s

Zonal moisture flux at 925hPa kg m
kg s

Meridional moisture flux at 925hPa kg m
kg s

Specific humidity at 2m kg
kg

Windspeed tendency 10m ms−1

hour

Windspeed tendency 925hPa ms−1

hour

Windspeed tendency 850hPa ms−1

hour

Windspeed tendency 500hPa ms−1

hour

Air temperature tendency 2m [dT/dt] K
hour

Relative humidity tendency 2m [dRH/dt] 1
hour

Zonal wind tendency 10m [du/dt] ms−1

hour

Meridional wind tendency 10m [dv/dt] ms−1

hour

Pressure tendency [dp/dt] Pa
hour

Zonal wind tendency at 925hPa [du/dt] ms−1

hour

Zonal wind tendency at 850hPa [du/dt] ms−1

hour

Zonal wind tendency at 500hPa [du/dt] ms−1

hour

Meridional wind tendency at 925hPa [dv/dt] ms−1

hour

Meridional wind tendency at 850hPa [dv/dt] ms−1

hour

Meridional wind tendency at 500hPa [dv/dt] ms−1

hour

Air temperature tendency at 925hPa [dT/dt] K
hour

Air temperature tendency at 850hPa [dT/dt] K
hour

Air temperature tendency at 500hPa [dT/dt] K
hour

Relative humidity tendency at 925hPa [dRH/dt] 1
hour

Variable Unit

Continued on next page
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5.3 Observations 6 FEATURE ENGINEERING

Table 4: Additional variables calculated from MEPS variables. Note that the variables relative humidity at 850/700hPa
and air temperature at 700hPa and all of specific humidity is direct MEPS output not part of dataset 01, but was
needed to calculate some of the variables in 02. (Continued)

Relative humidity tendency at 500hPa [dRH/dt] 1
hour

Dewpoint temperature at 700hPa ◦C

Dewpoint temperature at 850hPa ◦C

K index ◦C

Precipitable water mm

Variable Unit

5.3 Observations

In addition to the numerical model data, one must also provide the machine learning algo-
rithms the corresponding target of the training data (in supervised learning). In this thesis,
the classes in the classification task are defined as 0 : no precipitation and 1 : precipitation.
Hourly accumulated precipitation observations from each location have been used to decide
which class the training data will be assigned, as well as provide the target value of the re-
gression task. This observational data has been downloaded from Klimaservicesenter. At each
location there are several stations which could provide the observational data needed. Table 5
shows which stations the observational data has been pulled from, as well as the percentage of
the total number of samples which classify as precipitation. These stations were chosen because
they contain no missing data in the period 2020-2022. If the hourly accumulated precipitation
measured ≥ 0.1mmh−1 it was classified as 1 : precipitation, and as 0 : no precipitation otherwise.

Table 5: An overview of the stations used to find observations for both locations
for the year 2020, 2021 and 2022. An overview of number of observations,
number and percentage of observations classified as class 0 (no precipitation)
and class 1 (precipitation).

Blindern SN18700 22 754 12.7% 86.0%

Florida SN50540 22 754 28.7% 71.3%

Station name # of obs Precipitatin No precipitation

5.4 Handling missing data

As mentioned in section 5.1, there is a slight change in variables included in the MEPS output
after 4 February 2020. Because of this, the variables shown in table 1 contributes to a greater
percentage of NaN values within the dataset before 4 February 2020, compared to after. The
random forest classifier (RFC) from the Python package scikit-learn is used in the first machine
learning step (described further in sec. 7), and the algorithm is incompatible with NaN values
[Buitinck et al., 2013]. In order to accommodate for this all rows containing NaN values was
removed from the dataset. This reduced the dataset for Florida from 252724 samples to 217006
samples, and from 252 724 to 224 266 for Blindern. Although this results in a slightly smaller
dataset, the resulting dataset still contains a sufficient amount of samples.

6 Feature engineering

This thesis looks at two different sets of features. Dataset 01 (presented in tab. 3), which
contains features pulled directly from MEPS [The Norwegian Meteorological Institute (MET
Norway), 2022] (with the exception of the calculated variable hourly precipitation, which is
calculated using hourly precip = X(t) − X(t − 1), where X is total accumulated precipitation
amount from MEPS). Dataset 02 contains all the same variables as 01, but additional 50 vari-
ables (presented in tb. 4) was calculated using the original variables, resulting in a total of 80
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6 FEATURE ENGINEERING 6.1 Feature selection

features in Dataset 02. The overview of how the additional features was calculated is found in
App. A.2.

The data was split into training, validation and test data, with the training containing 60%
of the full dataset, and the remaining 40% split equally between the validation and test data.
Although it would be more ideal to split the data chronologically due to the auto-correlation
within the data [Schultz et al., 2021], the samples for the different subsets was originally pulled
at random. The reason for this was the limited data period. When splitting the data chronolog-
ically, the validation data was pulled exclusively from the summer months of 2021 (model data
was originally only from 2020-2021), meaning the test data was not representative as it was a
significant decrease in precipitation occurrence compared to the training set. Doing a random
split ensured an equal distribution of precipitation occurrence between the different datasets.
In order to split chronologically, one should preferably have many years of data to make sure
the training, validation and test set are all representative of the population it is drawn from.
Because of the limited data period a chronological split did not satisfy this, thus a random
split was favored. However, upon further inspection of the performance of the machine learning
algorithms on unseen 2022 data (as an extra step after model evaluation using the randomly
drawn test data) it was deemed necessary to redo the process with chronologically split data.
The reason for this will be further presented and discussed in sec. IV.

6.1 Feature selection

As mentioned in section 4, one of the most important aspects of training a machine learning
(ML) algorithm is to do proper feature selection/engineering. This section will go through the
steps taken in the selection process.

6.1.1 Exploratory data analysis

Exploratory data analysis was done using the methods described in section 3. This includes
calculating the Pearson correlation and Spearman rank between the ithe feature and the ob-
served precipitation measured at the location in question, as well as the correlation matrix (using
Spearman rank, thus will refer to as the rank matrix from this point forward). Using the rank
matrix, a Dendrogram was then plotted to visualize the hierarchical clustering of the features.

6.1.2 Base model and feature importance

Sklearn’s RandomForestClassifier (RFC) was the random forest algorithm used to classify the
samples into no precipitation and precipitation. The forest is built from many individual trees
trained on a bootstrap sample drawn from the training data, and for each node, only a subset
of the total number of features are searched to find the best split [Scikit-learn User-Guide, 2022,
chap. 1.11.2]. These two properties makes the forest more randomized and diverse, reducing
overfitting. The final prediction from the forest is given by the averaged predictions from each
tree. A small forest with strict, shallow trees was initiated with the hyperparameters shown in
table 6. This estimator will from this point forward be referred to as the base RFC. The base
RFC was then fitted on all features in the given dataset. Sklearn’s random forest algorithm
computes a property called feature importance, and Scikit-learn API Reference [2022] states
that this is the the total reduction of the chosen criterion brought by the particular feature
split. In other words, the higher the feature importance, the higher the gain measure is for the
particular feature. The feature importance is a value between 1 and 0, and the sum off the
feature importance of all features is 1. In practice this means that the feature importance’s of
dataset 02 (82 features) will have lower values than dataset 01 (33 features).
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7 RANDOM FOREST CLASSIFIER

Table 6: Table shows all hyperparameters used to initiate the base RFC. The following were the only hyperparameters
specified, the remaining settings were set to their default value (for full overview [see Scikit-learn API Reference,
2022, module: Random Forest Classifier])

True ’auto’ 0.5 150 500 True 0 ’gini’ 5 50

bootstrap max
fea-
tures

max
sam-
ples

min
sample
leaf

min
sample
split

oob
score

random
state

criterion max
depth

n esti-
mators

6.1.3 Recursive feature elimination

Another approach to feature selection is to do recursive feature elimination. In addition to the
steps described above, sklearn’s recursive feature elimination with cross-validation (RFECV) was
used. The RFECV algorithm performs recursive feature elimination by fitting the estimator to
the full set of features, looking at the feature importance’s and then pruning the least important
features from the dataset. This process is repeated on the pruned set, and this is recursively
done until the optimal number of features has been selected. The algorithm uses cross-validation
in order to decide the optimal number of features (from this point referred to as n [Scikit-learn
User-Guide, 2022, chap. 1.13.3]. From this, the objective used by the cross-validation as a
function of n was plotted to check whether the selected n was the most sensible choice, or if
the objective plateaued and achieved a sufficient performance at a lower n. In instances where
this plot indicated a lower n might be sufficient, sklearn’s recursive feature elimination (RFE)
algorithm was initiated. Instead of using cross-validation to find the optimal n, RFE takes n
as an input from the user, and repeats the process of recursive feature elimination in the same
manner as the RFECV algorithm, until (the user-specified) n features have been selected. The n
specified in the hyperparameter-settings of the RFE algorithm was found by a visual inspection
of the objective versus n plot (from the RFECV), as well as a comparison of the n found for
similar datasets.

6.1.4 Final feature selection

The last step of the feature selection process compares the verification metrics of the base RFC
(the base random forest classifier trained on all features), RFECV (base RFC trained on the
RFECV-selected features), and in the cases where relevant, the RFE (base RFC trained on
the RFE-selected features). The features selected by RFECV/RFE are also compared to the
Spearman rank and feature importance as a way of checking the validity of the algorithm’s
choices.

7 Random forest classifier

This section will go through every step of the process of training a random forest classifier
(RFC), from model selection to final model evaluation. This process is done on every individual
dataset.

7.1 Model selection and evaluation

7.1.1 Model selection

Deciding which hyperparameters to use for the machine learning (ML) algorithm of choice is
an important step. As mentioned in section 4, the ML algorithm will display different behav-
ior based on the choice of hyperparameters, and by extension this means the hyperparameters
also influence performance of the final ML algorithm. The process of finding the optimal hy-
perparameters for the given task is also referred to as model selection. In order to optimize
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7 RANDOM FOREST CLASSIFIER 7.1 Model selection and evaluation

the hyperparameters, sklearn’s GridSearchCV has been used, which is a algorithm used for hy-
perparameter tuning. The user decide which hyperparameters to search and different discrete
settings to try for each of the parameters of choice. This set of hyperparameters and their dis-
crete settings are referred to as the hyperparameter space. The GridSearchCV works by taking
a given algorithm and the hyperparameter space as input. It will search the hyperparameter
space to find the best combination by doing an exhaustive calculation of the objective of each
combination, and return the best performing model [Buitinck et al., 2013]. In order to calculate
the objective, the algorithm was set to use the cross-validation scheme, 5 -fold. Though the
objective is by default set to be the same as for the algorithm used as input, the user has the
option to specify a objective of their own choosing. The objective used in this thesis is balanced
accuracy and is defined as [Scikit-learn API Reference, 2022, chap. 3.3.2.4]:

Balanced accuracy =
a

a+c +
d

b+d

2
(25)

where a, b, c, d follow the definition in tab. 9 in sec. 2.6 The reason this objective was selected was
because of the unbalance of the classes. Traditional scoring like accuracy ((a+d)/(a+b+c+d))
is not the best choice when the data is unbalanced, as the model can perform very well by only
predicting the majority class. While balanced accuracy was used for all random forest classifiers,
a trial was done using the F-measure, F1, on the F01P01 dataset to see whether this particular
scoring would provide a better hyperparameter search. Better is here meant to mean more
aligned with the verification measured traditionally used in forecast verification, which will be
described later in sec. 8.3. Why this was deemed necessary will become clear in sec. 12.1). F1

is defined as [Scikit-learn API Reference, 2022, chap. 3.3.2.9]:

F1 =
2 ∗ a

a+c
a

a+b
a

a+c +
a

a+b

(26)

The hyperparameters used in the initiation of the grid search is shown in table 7, where
the gray highlighted marks the hyperparameter space, while the other parameters stay fixed for
each dataset.

7.1.2 Model evaluation

The final step in the process is to evaluate the random forest classifier (RFC) on unseen data
(i.e test data) using the metrics for deterministic, discrete forecast presented in section 8.3.

Table 7: Table shows all hyperparameters used in the model selection. Describtion is reproduced from [Scikit-learn API
Reference, 2022, module: Random Forest Classifier].

bootstrap True Bootstrap sampling is used when building the indi-
vidual trees

max features ’auto’ Maximum number of features to search at each split.
’auto’ corresponds to

√
n features

max samples 0.5 (Since bootstrap=True) The number of samples to
draw from the dataset for each tree.

min sample leaf 150 min(n samples) required to be a leaf node

min sample split 500 min(n samples) to split internal node

oob score True Use out-of-bag samples to estimate generalization
score.

random state 0 Set to control the randomness of drawing sampling
for Bootstrap (for reproducibility)

Hyperparameters Setting Description

Continued on next page
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8 NEURAL NETWORK

Table 7: Table shows all hyperparameters used in the model selection. Describtion is reproduced from [Scikit-learn API
Reference, 2022, module: Random Forest Classifier]. (Continued)

ccp alpha [0.0, 0.01, 0.015, 0.02] Pruning coefficient, where 0.0 means no-pruning. For
further explination, [see Scikit-learn API Reference,
2022, module: Random Forest Classifier]

criterion [’entropy’, ’gini’] The criterion used to decide the split. To view for-
mulas, see section 4.4.1

class weight [None, ’balanced’, ’balanced subsample’] None: all weights are set to 1.
’balanced’: y is used to calculate the frequency of
each class. The weights are then adjusted to be in-
verse of the frequency.
’balanced subsample’: same as ’balanced’, but the
freqency is found from the Bootstrap resample group,
not the full dataset.

max depth [5,10,25,50] Maximum depth of each tree

n estimators [50, 250, 500, 750] Number of trees the forest should consist of.

Hyperparameters Setting Description

8 Neural network

After using the random forest classifier (RFC) to classify the data into no precipitation and
precipitation, a separate neural network (NN) was trained for each of the classes to make a
deterministic forecast of the hourly accumulated precipitation amount. Because of the results of
the work described in sec. 7, it was decided to only train the neural networks on P01 datasets,
i.e the full forecast period.

8.1 Base NN

A base neural network was built containing one hidden layer using Tensorflow’s Keras package,
based on the Sequential model class. This basic neural network will be referred to as the base
NN from this point forward. The Sequential model is, just as the name attributes, a model built
by stacks of layers. After initiating the model, one can add the subsequential layers wanted,
with the type of layer dependent on what type of neural network one intends to build. In order
to build a basic neural network, the Keras Dense layer, which is a densely-connected layer [Ten-
sorFlow, 2015], was used to build both the base NN and the optimized neural network described
in the following sub-section.
The architecture for the base NN consist of an input layer with 64 neurons, a hidden layer
with 64 neurons, and an output layer with one neuron (due to it being a regression task). The
activation function for all layers was set to ReLu, which is defined in eq. 15 in sec. 4.4.3.

When fitting the base NN to the training data, the mean absolute error (MAE as described
later in sec. 8.3) was used to assess the loss, and the number of epochs was set to 100. Initially,
the same features selected for the random forest classifier (RFC) was used to train the base NN.
Because we have auto-correlated variables and the data structure not favorable for recurrent
neural networks, the tendency features calculated for the 02 dataset was introduced back into
the dataset for the base NN in an effort to encapsulate some of the temporal dependencies. An
overview of the additional features used in the neural network training is highlighted (gray) in
tab. 4.

8.2 Model selection

The base neural network (NN) was trained with the features selected in the recursive feature
elimination,both with and without the tendency variables. After assessing the performance
and whether to include the tendency features in the further training, a model selection was
done using KerasTuner from O’Malley et al. [2019]. KerasTuner RandomSearch algorithm
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8 NEURAL NETWORK 8.3 Forecast evaluation

was the search-engine used, which in each trial builds a model based on a randomly-selected
hyperparameter-combination from the search space, fits the model to the training data, be-
fore evaluating the model on the validation data. After all the trails have been executed, the
best model is selected based on the objective specified by the user (here validation MAE ), and
the optimal hyperparameters found from this. Because RandomSearch test a finite number of
hyperparameter-combinations (max trails argument, here set to 10), and not all possible com-
binations, it is not necessarily the best global combination of hyperparameters that is selected,
but a local.
The hyperparameters that was optimized includes number of hidden layers as well as the num-
ber of neurons of each layer, and table 8 shows the range of values being search. While the
activation function for the input layer and all hidden layers was set to ReLU, the output layer
had the option between ReLU and sigmoid, the latter defined in eq. 16 (sec. 4.4.3).

Table 8: The hyperparameters making up the search space. The upper panel shows the hyperparameters related to the
architecture of the network, i.e number of hidden layers and number of neurons making up each layer. The lower
panel shows the hyperparameter related to the output-layer specificly.

Architecture of the network

num layers min = 2,max = 12] Number of layers. The range starts at 2 in
order to get a minimum of one hidden layer, as
the first layer is the input layer.

units min = 32,max = 128], step = 32 Number of neurons in each layer.

Output layer

activation [’ReLU’, ’sigmoid’] Activation function

Hyper-parameter Setting Description

After the optimized structure and hyperparameters of the neural network was selected, the
neural network was retrained with both training and validation data, before the neural network
was evaluated using the unseen test data. Due to the results showing that the 01 datasets, both
with and without the tendency features, performed slightly better than the 02 dataset, further
forecast verification was only performed on the 01-based forecast.

8.3 Forecast evaluation

8.3.1 Deterministic forecast of discrete variables

In this thesis the classification of no precipitation/precipitation provided by the random for-
est classifier (RFC) is equivalent to a deterministic forecast of a discrete variable, where the
discrete variable is hourly accumulated precipitation ≥ 0.1 mmh−1. In order to evaluate this
forecast, certain scores must be calculated, as illustrated by the contingency table in tab. 9.
True positives, referred to as a in the contingency table, gives a measure of how many of the
predicted yes-events actually manifested, while false positives (d) measures how many of the
predicted yes-events failed to manifest. In contrast, false negatives (c) measures how many of
the observed yes-events the forecast failed to predict, and true negative (d) measures how many
predicted no-event occurred.
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Table 9: The contigency table show the four different
outcomes of a forecast of discrete variables.
Outcome a refers to a True positive, out-
come b refers to a False positive, outcome
c refers to False negative, while outcome d
refers to a True negative.

Yes No Total
F
o
re

c
a
st Yes a b a+ b

No c d c+ d

Total a+ c b+ d n = a+ b+ c+ d

Observed

The different measures provided in the contingency table can be used to calculate many
different verification metrics. The sum of true positives and true negatives divided by the total
number of events, n, result in the accuracy (ACC) measure (also referred to as proportion
correct, PC) defined as

ACC =
a+ d

n
(27)

The number of true positives divided by the total number of observed yes-events provide a
metric measuring the fraction of observed yes-events that is accurately predicted by the forecast,
and is referred to as the probability of detection (POD) or hit rate, H

POD =
a

a+ c
(28)

The counterpart of POD is namely the probability of false detection (POFD), and is a measure
of the fraction of observed no-events which are predicted as yes-events (i.e false positives), and
defined by

POFD =
b

b+ d
(29)

and can also be referred to as the false alarm rate. This should not be confused with the
verification metrics termed similarly as the false alarm ratio (FAR), which is a measure of the
fraction of predicted yes-events that fail to manifest

FAR =
b

a+ b
(30)

POD attributes equal weight to true positives and true negatives, and in instances where
one event occurs much more often than the other, which is the case of no precipitation and
precipitation, this unbalance is lost. When the no-events occur much more frequently than the
yes-events, the critical success index (CSI) or threat score, TS, defined as

CSI =
a

a+ b+ c
(31)

might be a better measure. sucess ratio (SR) is defined as

SR =
a

a+ b
(32)

(Multiplicative) Bias is defined as the total number of predicted yes-events over the total number
of observed yes-events,

B =
a+ b

a+ c
(33)
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where B = 1 is an unbiased forecast, B ≤ 1 means the forecast under-predicts the occurrence,
and B ≥ 1 means the forecast over-predict the occurrence.

In order to compare the performance of the machine learning algorithms with the perfor-
mance of MEPS, the skill score (SS) defined as

SSref =
ACC −ACCref

ACCperf −ACCref
(34)

is calculated, where ACCref is the accuracy achieved by guessing the majority class (no precip-
itation) for every sample, and ACCperf is the accuracy achieved by a perfect forecast, i.e 1.

8.3.2 Deterministic forecast of continuous variables

When evaluating the quality of a forecast of continuous variables, a metric commonly used to
measure accuracy is themean absolute error (MAE), which gives the averaged absolute difference
between the forecast and observations, defined by

MAE =
1

n

n∑
k=1

|yk − ok| (35)

where the forecast-observation pair (yk, ok), is the kth of a total of n pairs [Warner, 2011].

While the MAE gives the absolute difference, the mean-squared error provide the average
squared difference, and is defined as

MSE =
1

n

n∑
k=1

(yk − ok)
2 (36)

Because the forecast error is squared, large errors will give have an greater impact on the MSE
compared to the MAE.

The average difference between the forecast and the observation is termed the Mean error
and is defined as

ME = Bias = y − 0 (37)

This is also called (additive) bias, where bias = 0 refers to an unbiased forecast. Note that
this is in contrast to the (multiplicative) bias defined for discrete predictands (which is unbiased
when bias = 1).

The skill score for continuous variables is

SSref = 1− MAE

MAEref
(38)

where MAEref is the MAE of a reference forecast, in this thesis a reference forecast of only
guessing 0mmh−1.

8.3.3 Probabilistic forecast of discrete variables

In order to look further into the capabilities of the random forest classifier (RFC), the RFC
was set to predict the class probabilities. The probability of precipitation was then plotted in a
Relative Operating Characteristic (ROC) curve and a reliability diagram as described below.
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ROC curve The Relative Operating Characteristic (ROC) curve is a way to graphically dis-
play a forecast of discrete variables, with probability of false detection on the x-axis and proba-
bility of detection on the y-axis [Wilks, 2011]. The plot shows these two verification metrics for
different threshold probabilities. The threshold probability determines the required probability
to forecast precipitation, and is varied in the rang of [0, 1], where a threshold of 0 corresponds
to always forecasting precipitation, and 1 corresponds to always forecasting no precipitation.

Figure 13: Figure 14a shows a schematic of the ROC curve, with the POFD (probability of false detection) on
the x-axis (referred to as the False alarm rate F ) and POD (probability of detection) at the y-axis (referred to
as Hit Rate H ). The plot shows the POFD and POD for different threshold probabilities of precipitation. Figure
from Warner [2011]

Reliability diagram The reliability diagram consist of two parts, the reliability graph, shown
in fig. 14a, and a rank histogram as shown in fig. 14b. The reliability graphs have forecast
probability at the x-axis and observed frequency at the y-axis, meaning a plot centered around
the one-to-one line means the forecast has good calibration. A graph positioned below this line
means there is an overprediction bias, while on the other hand a graph above the line shows a
underprediction bias. The rank histogram, with forecast probability on the x-axis and frequency
at the y-axis, show if there is a systematic bias in the forecast. Plot (c) in fig. 14b show the
wanted result of rank uniformity.
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(a)

(b)

Figure 14: Figure 14a shows a schematic of a reliability graph, where the x-axis shows the forecast probability
and y-axis show observed probability. A graph centered at the one-to-one line refers to a forecast with good
calibration (c), while (a) and (b) show a systematic over- and underforecasting bias respectively. Fig. 14a.
Figures from Warner [2011].
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Part IV

Results and discussion

Due to the fact that this thesis has three distinct and subsequent steps it is necessary to dis-
cuss and conclude each step before presenting the results of the next. The structure of the
following part will thus be as follows; the results of the particular step in question will be pre-
sented, discussed and concluded before moving onto the next one. As described in the method
in sec. III, the steps are in the following order; feature selection, classification of no precipi-
tation/precipitation by random forest classifier (RFC, see sec. 7) and lastly predicting hourly
accumulated precipitation amount by neural networks (NN, see sec. 8).

9 Different strategies for splitting data

As mentioned in sec. 6 it was decided to split the data randomly in order to get an even distribu-
tion of precipitation occurrences across the training, validation and test data. Feature selection,
model selection and model evaluation described in section III was executed using these randomly
split datasets in order to train a random forest classifier (RFC) and a neural network (NN). In
an effort to see how well the 2-step machine learning system perform on entirely new data, it
was used to make a hourly accumulated precipitation amount forecast using MEPS data (for
Florida) from January-August 2022. The results for this was rather inconsistent with the model
evaluation done using the randomly drawn test data (i.e unseen data not used in the training
of the model), and had an significantly poorer performance. See tab. D.16 and D.17 in App.
D.1 to see the full comparison in mean absolute error. The evaluation done on randomly drawn
test data showed a 20% reduction in mean absolute error (MAE) for class 0 (no precipitation)
for the NN compared to MEPS, while this same NN evaluated on 2022 data showed a 2.7%
increase in MAE for this class. An even greater difference is seen for class 1 (precipitation)
where the NN got a reduction in MAE of 30% in comparison with MEPS when evaluated on
randomly drawn test data. For the 2022 data however, the NN increased the class 1 MAE with
8.3% compared to MEPS. This illustrates just how optimistic the results can be when evaluated
on randomly drawn data, just as emphasized by Schultz et al. [2021]. The auto-correlation
within the data cause cross-contamination across the training, validation and test data, giving
overly optimistic results and thus make the final model performance poorer on entirely new data.

Because of this clear inconsistency of the model performance on the 2022 data, it was de-
cided to redo the steps of model selection, training og evaluation for both the random forest
(RFC) and neural network (NN) using chronologically split data. This time the January-August
2022 data was included in the entire process together with the original dataset for 2020-2021,
resulting in even more samples for the training process. The portion of data used for training
was still 60% as described in 6, and 20% for the validation and test dataset each. The redo was
only performed on F01P01 and B01P01 in the training of a random forest classifier and a neural
network (for reasons presented in the following section), thus the feature selection presented in
sec. 11 was reached using the randomly split data, and the datasets referred to in this sec-
tion is therefore randomly split. When discussing the results for RFCs and neural networks for
F01P01 and B01P01 specifically, it is the chronologically split data that is referred. However, in
any instances where these two datasets are compared to any of the other datasets (i.e F01P02,
F02P01, F02P02, B01P02, B02P01, B02P02) it is the results from the randomly split data that
is being discussed. It is recognized that this may not be optimal, however, it was not possible
to redo all the steps using the chronically split data due to the time limitations, and the results
obtained from the randomly split data can still provide important insight into the process of
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using machine learning techniques in numerical weather prediction.

10 Structure of datasets and result selection

This thesis started by looking at many different datasets as described by table 2 in section 5.2.
This included datasets of two different location, with two different sets of features for each of
these two locations. In addition, these four datasets was then split into full forecast length, 0-6h,
6-12h and 12-66h forecast length. This was done in order to see how model performance would
vary depending on how many features was included in the training process, as well as how the
results differ with forecast length. In the course of this thesis, it became evident that some of
these datasets was simply redundant, or that the process of splitting the data into different fore-
cast lead times did not gain enough skill to compensate for the extra steps required to train the
model for each forecast length. Because of this, the datasets used for each specific step within
the machine learning process got smaller with each subsequent step, and in the end resulted in
training an optimized neural network for F01P01 and B01P01 only (the datasets consisting of
the full forecast lead time and MEPS variables only, overview of variables in tab. 3 in sec. 5.2).
The process of narrowing in on the datasets used is illustrated in fig. 15, where the results of
the datasets marked in gray is found in the appendix, while the ones in blue (F01P01, B01P01)
is found in the main text.

11 Feature selection

11.1 Exploratory data analysis

Prior to doing the recursive feature elimination, some aspects of exploratory data analysis was
done in order to highlight potential relationship within the data. Firstly, the Spearman rank
between the variables and observed hourly precipitation was calculated using eq. 8. In addition,
a base random forest classifier (base RFC) was trained on each dataset in its entirety (i.e no
feature selection done), which then provided a feature importance calculated in the training
process (as described in section 6.1). An exhaustive overview of the Spearman rank (rrank) and
feature importance found for the 01 and the 02 datasets can be seen in table B.3 and B.4 in App.
B respectively. In this section, only the values for the selected features of F01P01 and B01P01
will be presented. In the two following subsections the rank matrix and hierarchical clustering
will be presented in a brief manner. The results found from these exploratory data analysis will
be further discussed in relation to the recursive feature elimination in the next section, 11.2.

Figure 16 shows the rank matrix for the 01 datasets of both Florida and Blindern. Equivalent
figures for 02 can be seen in figure B.1 in App. B. In order to illustrate the order of the rrank in
the same figure as the rank matrix, the datasets have been sorted by descending Spearman rank
before plotting the figure. Hence, when looking at the y-axis, the variables with the highest
rrank (in absolute terms) is at the top, while the lowest at the bottom.

Looking at figure 16a, one of the structures standing out is the blue area (equivalent to
positive rrank) in the upper left corner of the figure. This structure is made from the variables
with the highest rrank and include precipitation, relative humidity, cloud fractions, zonal wind,
CAPE, air pressure and surface downwelling shortwave radiation. The fact that these variables
are highly correlated with observed precipitation is not very surprising, considering the nature
of them. Zonal wind is of importance because of the topography of Bergen and orographic
enhancement. As expected, air pressure and downwelling shortwave radiation have a negative
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F01P02-12h
F01P02-66h

F02P02-06h
F02P02-12h
F02P02-66h

B01P02-06h
B01P02-12h
B01P02-66h

F01P01 B01P01

Select features by Recursive Feature Elimination (RFE)

B02P02-06h
B02P02-12h
B02P02-66h

Train a Random Forest classifier (RFC) using RFE-selcted features

F01P01 F02P01 B01P01 B02P01
F01P02-06h
F01P02-12h
F01P02-66h

F02P02-06h
F02P02-12h
F02P02-66h

B01P02-06h
B01P02-12h
B01P02-66h

B02P02-06h
B02P02-12h
B02P02-66h

Evaluate RFC model 

Train a Base Neural Network for the P01 datasets only and evaluate

Train a optimized neural network and perform final precipitation prediction

STEP 1:
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STEP 2:
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STEP 3:
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ACCUMULATED 
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Figure 15: Diagram showing the structure of the datasets included in the thesis. The thesis starts with a broad
set of datasets. Two distinct datasets with different variables, X01 and X02 (where X is either F - Florida or
B - Blindern). In addition, these two datasets are then also split into different forecast period, referred to as
full forecast-length (P01), 0-6 hours forecast lead time (P02-6h), 6-12 hours forecast lead time (P02-12h) and
lastly 12-66 hours forecast lead time (P02-66h). All datasets are included in the first and second step, marked as
feature selection and classification. From assessing the random forest classifiers (RFC), only the datasets with full
forecast-length (i.e P01) is brought along to the third step of neural networks (NN). By looking at the performance
of a base NN it was decided to only continue the training for F01P01 and B01P01 (both marked in blue), though
with an inclusion of tendency variables. The results from these datasets marked in blue is presented in the main
text below, while the results of the gray datasets is found in the appendix.
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rank with the others, as well as with the observed precipitation. In addition to being highly cor-
related with observed hourly precipitation, these variables also have a rather high rank among
themselves, indicating redundant information among the lot of them.

Figure 16b shows the rank matrix for Blindern, also sorted by descending Spearman rank.
Most of the variables found relevant for precipitation for Florida, is the same for Blindern. The
order of the Spearman rank of these variables vary somewhat, however, forecasted hourly pre-
cipitation and low type cloud area fraction proves to be ranked highest for both locations. One
thing to note is that while zonal wind has a high rrank for Florida, the meridional wind is more
important for Blindern, although at an overall lower rank than what we see for Florida, indicat-
ing that it is of greater importance for Bergen, due to the prevalence of orographic enhancement
from the forced lifting of the moist westerly air.

Figure 17 shows the hierarchical clustering found using Ward’s minimum variance method
as described in section 3.3. From fig. 17a it is evident that the data for Florida can be clustered
into five groups. The purple cluster is perhaps the most notable since it contains the variables
with highest rrank discussed above. Figure 17b shows the data is clustered into four groups
for Blindern. In this case, the yellow cluster contains the variables with the highest rrank, and
contains more variables then the purple cluster for Florida. The fact that the variables with
highest rrank also show high rank among each other may explain why they are grouped together
in the hierarchical clusters. The implications of this will be further discussed in the following
section.

11.2 Recursive feature elimination

Because the optimal number of features for each dataset is unknown, sklearn’s recursive feature
elimination with a 5-fold cross-validation (RFECV) was used, as described in sec. 6.1. The
RFECV was used on all datasets, and in some instances the optimal number of features (from
this point onward refereed to as n features) that were selected was notably higher than for
equivalent datasets. This was seen for F01P01, F01P02-66h and F02P02 (all forecast-lengths),
and tab. 10 shows an overview of the n features for all datasets. To investigate this further,
the objective used by the RFECV (here, balanced accuracy, see method 7.1 for further details)
was plotted against n features in order to have a closer look at how the performance of the
model behaved in relation to the number of features. These plots showed that for the instances
where a higher n features was selected as the optimum, the objective had in fact stabilized at
a lower number and the RFECV select the higher number because this provided the the global
maximum. In these cases, sklearn’s RFE was used as a second step, with n features set to a
reasonable number found by manually investigating the plots in question, as well as looking at
the number chosen for equivalent datasets. Figure 18 show such a plot for F01P01, and show
how there is a steep increase in the objective going from one to four variables, before a slower
increase as you reach ten variables. The RFECV selected n features to be 20, however, it is
clear from the plot that there is little difference in the objective of 10 variables compared to 20.
Also taking into consideration that for the equivalent dataset for Blindern the RFECV found n
features to be 9, it was reasonable to use the RFE for F01P01 with n features set to 10.

Figures showing plots for F01P02-66h and F02P02 can be seen in fig. B.4 in App. B.2.
The plot for F01P02-66h seen in fig. B.4a shows similar characteristics as the plot for F01P01,
and RFECV found n features to be 20 also in this instance. The objective seems to stabilize
at an even lower number than for F01P01, however, it is not a significant difference, and it was
therefore decided to run the RFE with n features set to 10 also in this case. Figure B.4b and
B.4c show the plots for F02P02-6h and F02P02-12h respectively. Both of these show similar
plots, with a small increase in objective after 10 features. Comparing to the number found for
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Figure 16: Figure shows the Spearman rank matrix for the 01 datasets for (a) Florida (F01) and (b) Blindern
(B01). The datasets have been sorted by descending Spearman rank (rrank) before plotting.
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Figure 17: Figure show a schematic representation of the hierarchical clustering for the 01 datasets. Fig. 17a
shows the clustering for Florida (F01), where the purple contains the variables with the highest rrank. Fig. 17b
shows the equivalent for Blindern (B01), where the yellow cluster contains the variables with the highest rrank.
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similar datasets such as F02P01, B02P01 and B02P02-66h, it was decided to run the RFE with
n features set to 30. The same was done for F02P02-66h (fig. B.4d)

One interesting finding is the general low number selected for B01P02-66h and B01P02-12h.
Considering the low percentage of the samples that actually can be classified as precipitation, it
is rather surprising that the RFECV only select one and two features (hourly precipitation for
both, and in addition accumulated precipitation amount for B01P02-12h). An initial thought
may be that the random forest only need MEPS precipitation forecast to do adequate and rea-
sonable classifications of the data. However, these numbers are vastly different for any similar
datasets, which raises the question whether the combination of significantly fewer samples and
the low percentage of precipitation occurrences within the observation, actually sway the model
towards classifying most samples as class 0, no precipitation. Although not done in this thesis,
this could be investigated further by looking at the model evaluation for each class individually.

Table 10: Optimal number of features, n, found by RFECV for each dataset. The n found for F01P01 and F01P02-66h is
considerably higher than the n found for similar datasets. The n found for F02P02 is many times higher than
those found for B02P02.

F01P01 20 F02P01 30 B01P01 9 B02P01 29

F01P02-6h 8 F02P02-6h 50 B01P02-6h 1 B02P02-6h 1

F01P02-12h 11 F02P02-12h 71 B01P02-12h 2 B02P02-12h 9

F01P02-66h 20 F02P02-66h 67 B01P02-66h 9 B02P02-66h 25

FB 24

n fea-
tures

n fea-
tures

n fea-
tures

n fea-
tures

Table 11 shows and overview of the selected features for each of the datasets F01P01 (left)
and B01P01 (right), and their respective rrank and feature importance. The ten features selected
by RFE for F01P01 includes precipitation, cloud and fog area fraction, relative humidity, CAPE
and zonal wind at 925 hPa and 850 hPa. This is very much in agreement with the variables
with the highest rrank as discussed in sec. 11.1. Comparing rrank and feature importance for
the selected features it is noteworthy that the three features with the highest rrank, specifically
hourly precipitation, low type cloud fraction and CAPE, also is assigned the highest feature im-
portance by the base RFC.

The features selected for B01P01 are many of the same as for F01P01. As was evident
from the order of the rrank, meridional wind, although only at 850 hPa, was selected instead
of zonal wind. The selected features with the highest rrank also corresponds to those assigned
the highest feature importance. The overall good agreement between the Spearman rank and
the assigned feature importance from the base RFC (random forest classifier) indicates that the
features selected by the RFECV/RFE algorithm are indeed reasonable. It is however interesting
to note that the RFECV/RFE selected features were grouped together in the Dendrogram and
also showed rather high rank among themselves (fig. 17 16). This of course raises the question
whether some of these features are redundant. This was only briefly looked at for F01P01, and
will be presented only as an anecdote in the following description. Several types of features was
evident from the RFECV selected data, and could be categorized into precipitation, cloud area
fractions, wind and humidity. One category of features (for example the different cloud area
fractions) was removed from the selected set of features, and then each individual variable of
this type was reintroduced to the dataset separately to assess the model objective. The variable
that gave the best objective was then kept in the dataset, while the others were discarded. This
was repeated for all the different categories, resulting in a quite small dataset. This yielded
poorer results than including all of the selected features found from RFECV, and this process
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was thus not repeated for any other datasets. Therefore, although there might be redundant
information across the selected features, it seems like they each contribute some information
gain which collectively adds up to a better model performance, though this could use further
research, as well as how much change in model performance one will tolerate in the exchange
for a more simplified model.

0 5 10 15 20 25 30
Number of features selected

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

C
ro

ss
 v

al
id

at
io

n 
sc

or
e 

(b
al

an
ce

d 
ac

cu
ra

cy
)

Optimal number of features : 20

Figure 18: Figure shows balanced accuracy plotted against number of features, n for F01P01. Each differently
coloured plot represents one of the 5-fold cross-validation used by the RFECV.

Table 11: An overview of the feature scores of the RFE-selected features for Florida (F01P01) on the left and the RFECV-s-
elected features for Blindern (B01P01) on the right. The term feature scores is here referencing the Spearman
rank, rrank, and feature importance obtained from the base random forest, which is is informative of the total re-
duction in the Gini Index brought by the feature [Scikit-learn User-Guide, 2022, 1.11.2.5]. (Accumulated) hourly
precipitation and low type cloud area fraction has the highest rrank and feature importance for both Florida and
Blindern.

precipitation amount acc 0.449 0.043 hourly precip 0.52 0.199

low type cloud area fraction 0.53 0.174 relative humidity 925 0.419 0.139

x wind 850 0.468 0.098 medium type cloud area fraction 0.409 0.09

fog area fraction 0.438 0.042 cloud area fraction 0.408 0.071

cloud area fraction 0.463 0.01 fog area fraction 0.389 0.043

medium type cloud area fraction 0.424 0.027 precipitation amount acc 0.385 0.037

x wind 925 0.424 0.074 relative humidity 2m 0.362 0.062

CAPE 0.495 0.101 y wind 850 0.352 0.057

relative humidity 2m 0.49 0.086 low type cloud area fraction 0.438 0.14

hourly precip 0.561 0.121 - - -

F01P01 B01P01

RFE rrank Feat.
imp.

RFECV rrank Feat.
imp.
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11.2 Recursive feature elimination 11 FEATURE SELECTION

11.2.1 Evaluation of the feature selection

To summarize the performance of the different models run during feature selection (base RFC,
RFECV, and in some cases RFE) one can look at the calculated AUC and visualize how perfor-
mance depend on threshold probability by looking at the ROC curve (method sec. 2.6). Figure
19 shows the results from models trained on different feature selections of F01P01 and B01P01.
Looking at the ROC curves for Florida in fig. 19a it is clear that there is no difference between
base RFC, RFECV or RFE. The fact that the model shows no difference in performance with 30
or 20 features compared to 10 features is a testament to the fact that there is much redundant
information within the dataset that is not utilized by the machine learning algorithm. Figure
19b shows insignificant difference between 33 and 9 features, which further supports this claim.

Figure B.5 in B.5 shows ROC curves for all datasets, with Florida on the left and Blindern
on the right. To summarize the main findings from these ROC curves is that there is little
difference between performance of the models trained on F01/B01 and F02/B02, suggesting that
the feature selected by the RFECV/RFE contains enough information for the RFC to classify
the data. A general pattern for the P02 datasets is that the model performance is greatest
for 0-6 hours, then declining with each forecast-length. However, the difference between model
performance for P01 versus P02 is not very significant.
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Figure 19: Figure shows ROC curve for all models trained for F01P01 and B01P01 during feature selection.
Note that these models are evaluated on the validation data used specifically for model selection (and not the
test data intended for the final model evaluation) (a) ROC curves for base RFC, RFECV and RFE trained on
F01P01. (b) ROC curves for base RFC and RFECV trained on B01P01.

Table 12 shows an overview of the verification metrics for the different model in the feature
selection process for F01P01 and B01P01. It is important to note that this evaluation was not
done on the test data, but the validation data, and as the models trained in the feature selection
process is not the final random forest classifier (RFC), the verification metrics for these models
will not be discussed in detail. However, the take-away from this evaluation is the fact that the
performance is seemingly unchanged when reducing the datasets to approximately 10 features,
emphasizing the necessity to do a proper feature selection. Though keeping redundant features
does not appear to make the RFC performance any poorer, this is likely due to the fact that
random forest is quite robust against overfitting, and this will likely not be reflected in other
machine learning algorithms. Table B.8 and B.9 in App. B.6 shows an exhaustive overview of
the verification metrics for all Florida and Blindern datasets respectively.

44



12 CLASSIFICATION OF NO PRECIPITATION/PRECIPITATION USING RANDOM
FOREST

Table 12: Table shows the verification metrics for all models run during feature selection for F01P01 in the upper panel
and B01P01 in the lower panel, with the abbriviations defined as ACC: accuracy, POD: probability of detection,
POFD: probability of false detection, FAR: false alarm ratio/rate, SR: success rate, CSI: critical success index,
SS: skillscore. The base is the base classifier trained on all features in the datasets, while RFECV is the base RFC
trained on the RFECV-selected features (selected by the recursive feature elimination cross-validation module, i.e
RFECV), and the RFE is the base RFC trained on the RFE-selected features (selected by the recursive feature
elimination module, i.e RFE).

Base RFECV RFE MEPS

F
0
1
P
0
1

ACC 0.84 0.84 0.83 0.79

POD 0.65 0.66 0.66 0.5

POFD 0.09 0.09 0.1 0.09

FAR 0.26 0.27 0.27 0.32

SR 0.74 0.73 0.73 0.68

CSI 0.53 0.53 0.53 0.4

SS 0.42 0.42 0.41 0.26

Bias 0.88 0.9 0.91 0.73

B
0
1
P
0
1

ACC 0.9 0.9 - 0.89

POD 0.44 0.49 - 0.56

POFD 0.03 0.03 - 0.05

FAR 0.26 0.29 - 0.37

SR 0.74 0.71 - 0.63

CSI 0.38 0.41 - 0.42

SS 0.29 0.29 - 0.23

Bias 0.6 0.68 - 0.9

Both Spearman rank and feature importance line up well with the features selected by the
recursive feature elimination. It is however interesting to see that so many similar features are
selected. For example, low type cloud area fraction, medium type cloud area fraction and cloud
area fraction are all selected for both locations, which seems redundant. The same is true for
zonal wind at both 925 hPa and 850 hPa for Florida. Because of the seemingly redundancy of
some features, further work could include more feature selection and the use of domain knowl-
edge to further reduce redundant information within the dataset. Additional feature engineering
could possibly provide more compressed information than the ones included in this work and
thus simplify the dataset even more. The zonal wind at 925 and 850 hPa selected for Florida
could for example be replaced by one variable either by aggregating the two levels or by calcu-
lating the wind normal to topography. The high rank among the features shown in fig. 16 and
the grouping seen in fig. 17 show strong indication that the feature selection could be optimized
even further. Nevertheless, due to time restriction it was decided to stick with the RFECV/RFE
selected features when continuing onto the next part of model selection in the RFC process.

From this point forward it should be understood that when referring to the different datasets,
for example F01P01, it is the RFECV/RFE selected features only that is referred. In any case
where it is the full original (pre-selected) dataset that is referenced, this will be explicitly stated.

12 Classification of no precipitation/precipitation using ran-
dom forest

This part of the thesis covers the machine learning process of the classification task. Each sam-
ple will be assigned one of two classes, which are categorized by hourly accumulated precipitation
amount, RR < 0.1mmh−1 (class 0; no precipitation) and RR ≥ 0.1mmh−1 (class 1; precipitation).
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This is achieved using a random forest classifier as described in section 7 and the results will be
presented in the following structure; Firstly, model selection to optimize the model structure for
the given task, secondly, fitting the optimized model to the training data and lastly, evaluate
model performance using previously unseen test data.

12.1 Model selection

Optimizing model performance is done by tuning different hyperparameters. The tuning is done
using the GridSearchCV as described in sec. 7.1. Table 13 shows the hyperparameters chosen
by the grid-search for F01P01 and B01P01. The grid-search selected shallower trees and fewer
trees in the forest (estimators) for Florida than for Blindern. This is possibly due to the fact
that there is significantly less class 1 (precipitation) samples for Blindern (i.e lower percentage
of precipitation within the Blindern data), meaning that deeper trees and more estimators are
required to be able to solve the task sufficiently. On the other hand, this is not reflected in
the grid-search done for the randomly split data and is thus only speculative. In addition, it is
possible to achieve similar results with many different combinations of hyperparameter-settings,
making it difficult to assess individual hyperparameters.

An extensive overview of the hyperparameters selected by the grid-search for the P01 and
P02 data (randomly split) can be found in C.11 and C.11 in App. C.1. From this overview
it is evident that no pruning (ccp alpha = 0.0) is selected for all P01 cases (full forecast lead
time), while there seem to be equal split between 0.0 and 0.150 for P02 (split into forecast lead
time). A general pattern seems to be that pruning is selected for P02-6h and P02-12h, while
less for P02-66h. This is possibly due to the fact that the P02-6h and P02-12h contain far fewer
samples than P02-66h (which is closer to the amount of samples in P01). Fewer samples makes
it harder for the random forest to generalize, making the model more prone to overfitting, thus
pruning might be chosen to minimize this. Another way to minimize overfitting is to reduce
the depth of the trees. Shallow trees are favored for all datasets, however, despite there being
fewer samples for the P02-6h and P02-12h datasets, the grid-search seem to favor even shallower
trees for these than for the larger datasets, which also might be a way to reduce the chance of
overfitting. For P01 there seems to be a preference for the class weight (described in tab. 7
in sec. 7.1) to be set to balanced subsample, while it is an equal split between balanced and
balanced subsample for P02. The option None was not selected in any of the cases, which
makes sense considering how unbalanced the classes are. The grid-search prefers the depth
of the trees to be more on the shallow end for both types of datasets. The number of estima-
tors (described in tab. 7 in sec. 7.1) do vary, though 250 estimators are selected most frequently.

Table 13: Hyperparameters selected in the grid-search done by the GridSearchCV for F01P01 and B01P01.

F01P01 0.0 balanced gini 10 50

B01P01 0.0 balanced entropy 25 250

ccp alpha class weight criterion max depth n estimators

After the grid-search had been completed, the optimized model’s (from this point referred
to as the GridSearchCV) performances was evaluated and compared to MEPS and the base
RFC (random forest classifier), which in this section will also be referred to as reference models.
The results for the GridSearchCV for F01P01 can be seen in table 14. Though probability of
detection (POD) is significantly better than both the base RFC and MEPS, this is followed
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by an significant worsening of probability of false detection (POFD) compared to the reference
models. The GridSearchCV also has slightly lower skill (SS) then the base RFC, though it
scores higher than MEPS. This, together with an increase in bias, creates a picture of over-
predicting precipitation-events. The GridSearchCV does detect more of the actual precipitation
events, but it also overestimates the occurrence. According to this, the base RFC provides over-
all better performance, and is thus a better model choice than the one selected by the grid-search.

Looking at the model selection results for B01P01 a similar pattern of an increased POD
with an accompanying significant increase in POFD is found. A decrease in success ratio (SR)
and critical success index (CSI) as well as a significant increase in bias results in an overall
worse skill than both reference models. In fact, the SS is negative, meaning it performs worse
than just guessing the majority class for each sample. In contrast to F01P01 however, the base
RFC for B01P01 has a lower POD than MEPS, yet a comparable POFD. This is accompanied
with a slight increase in SR and CSI, and a more significant lowering in bias, resulting in a
skill comparable to MEPS. Nevertheless, it seems the base RFC is not entirely able to identity
the precipitation events with the minority class making up such a small percentage of the dataset.

Table C.13 and C.14 in App. C.1.2 gives a exhaustive overview of the model selection
results of P01 and P02 respectively (random split). The most unexpected result (from both
splits) is that the models selected by the grid-search consistently perform worse than the base
RFC used in the feature selection. What is perhaps even more noteworthy is the fact that the
hyperparameters-settings used in the base RFC is included in the grid-search, meaning the grid-
search evaluates this combination and deems it as less optimal than the one it selects. In other
words, the base RFC score lower on the evaluation method used by GridSearchCV, balanced
accuracy, than the model selected by the grid-search. It is nothing new that accuracy is not
a sufficient measure of model performance when class distribution is unbalanced, as the model
can score very well by just predicting the majority class every time. However, the balanced ac-
curacy score takes the imbalance into consideration by applying class-balanced sample weights
[Buitinck et al., 2013]. Because F1 (described in method sec. 7.1) is another popular choice
for imbalanced data, a grid-search using F1 as objective was done on F01P01 in order to assess
how this compares to the outcome of using the balanced accuracy score. The skill score of the
grid-search using F1 was calculated to be 0.33, which is exactly the same skill score as for the
grid-search using balanced accuracy (both calculated using the randomly split data). Because
of this, balanced accuracy was kept as the objective for the grid-search.

These results indicate that the methods used for evaluating classification models does not
translate that well into the methods used to evaluating numerical weather prediction. In this
case, the selected model got the highest score at the classification score, but got lower scores on
the forecast verification metrics compared to the base RFC.

Furthermore, in order to investigate the possibility of the feature selection that was done
influencing GridSearchCV performance negatively, a grid-search was done on the original P01
(containing all features) datasets as well. This gave equivalent results, both concerning hyper-
parameter tuning and verification metrics for the selected models. The exact results will not
be discussed further, but can be found in tab. C.13 in App. C.1.2. This indicated that feature
selection has no significant impact on the hyperparameter tuning, and thus this process was not
repeated for the P02 data.
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Table 14: Verification metrics for the model selection of the random forest classifiers (RFC) for F01P01 (upper) and B01P01
(lower), in comparison to MEPS. The models are trained on the selected features found in sec. 11, and evaluated
on the validation data. The GridSearchCV references the RFC model with the hyperprameter-settings found
in the grid-search by the GridSearchCV algorithm (as presented in tab. 13). The Base is the base RFC used
in the feature selection (settings specified in tab. 6 in sec. 6.1.2). The Base RFC consistently outperforms the
GridSearchCV RFC for both locations.

F
0
1
P
0
1 GridSearchCV 0.76 0.92 0.35 0.35 0.65 0.61 0.42 1.41

Base 0.79 0.75 0.18 0.26 0.74 0.6 0.49 1.01

MEPS 0.74 0.57 0.14 0.26 0.74 0.47 0.37 0.77

B
0
1
P
0
1 GridSearchCV 0.84 0.88 0.16 0.59 0.41 0.39 -0.37 2.13

Base 0.92 0.5 0.03 0.31 0.69 0.41 0.28 0.72

MEPS 0.91 0.61 0.04 0.36 0.64 0.45 0.26 0.95

ACC POD POFD FAR SR CSI SS Bias

From the results presented above, it is clear that sklearn’s GridSearchCV does not provide
the optimal model for the intended use in this thesis. This highlights the implication that
the typical objectives used in classification tasks does not reflect the methods used in forecast
verification. In this study, the base RFC utilized in the feature selection provided overall better
results. Therefore the GridSearchCV models were at this stage discarded, while the base RFC
was selected as the final classifier. Thus, the base RFC will from this point forward be referred
to as just the RFC.

12.2 Model evaluation

The final step in this process was then to evaluate the random forest classifier’s (RFC) perfor-
mance. In order to do this, the selected RFC were set to predict the class of unseen data, i.e
the test data described in section 4, spanning mid February to the beginning of August 2022.

From table 15 we see that the random forest classifier (RFC) for F01P01 are able to in-
crease the POD (probability of detection) with 16%, but also increases the POFD (probability
of false detection) with 10% compared to MEPS. The other verification metrics are comparable
to MEPS, resulting in a 16% increase of skill for the RFC. The ROC curve in fig. 20a very
much resembles the ROC curve plotted during feature selection (randomly split), which also got
AUC = 0.89. From the reliability diagram shown in fig. 20b we see that the RFC overestimates
the probability of precipitation for observations with an observed frequency ≤ 0.7, meaning the
RFC has a tendency of overpredicting.

The model evaluation for random forest classifier (RFC) for B01P01 (also tab. 15) indi-
cate that the RFC is not able to identify precipitation events to the same degree as MEPS
(RFC has 24% lower POD than MEPS) and this is supported by the ROC curve in fig. 21a.
Though the RFC accuracy is comparable to MEPS, this is likely due to the high occurrence of
no precipitation-events. The CSI (critical success index) of the RFC is 15% lower than MEPS.
The POFD is also significantly lower for the RFC than MEPS (50%), which is a good thing.
However, together with the low POD this is likely be due to a systematic under-prediction of
precipitation events due to a too small percentage of precipitation-events within the training
data. Because of this it is strange to find that the skill score for the RFC is ten times higher
than MEPS, even with the 50% reduction in POFD. In the model selection, where the models
was evaluated on the validation data (see tab. 14), the SS of the RFC is only 7% higher than
MEPS, which seems more realistic.
The low POD and POFD might indicate a systematic underprediction, but this is on the other
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hand not supported by the reliability diagram in fig. 21b which rather indicate overprediction
due to the graph falling under the one-to-one line. This is somewhat contradictory to the ver-
ification metrics though, which indicate underprediction with bias≤ 1, and the cause of this
discrepancy is not clear. Note that MEPS is unbiased (bias equal to 1).

The verification metrics for all the random forest classifiers (RFC) are found in table C.15
in App. C.1.3. With exception to the RFC for the Blindern P02-6h datasets, all other RFC
perform significantly better than MEPS. Even though the skill of MEPS is quite comparable
for Blindern and Florida, there is a notable difference in the skill of the RFC for the different
locations. The Blindern RFC has overall a smaller gain in all metrics compared to MEPS, than
the Florida RFC. However, considering the minority class (i.e class 1: precipitation) only makes
up 14% of the data for Blindern, compared to 32% for Florida, this difference is expected. This
demonstrates how important the quantity of data is in the training process, and how difficult it
is to train on very unbalanced data. Although it was decided not to do in this study, one could
try correcting the unbalance with either up- or downsampling to see whether this could bring
the performance of Blindern to the level of Florida. One reason undersampling was decided
against was to keep as many samples as possible, as we know the machine learning algorithms
perform better the more data is available. Upsampling was decided against due to the fact that
one only generate more samples from already existing data, and thus not actually adding any
new information to the dataset. Nevertheless, in further work it could prove useful to research
how up- and downsampling could contribute to the overall model performance, particularly for
Blindern.

An interesting result is the fact that there is no notable gain when training a separate model
for the different forecast intervals (i.e 0-6h, 6-12h, 12-66h). Because the forecast skill goes down
as the forecast time increases, one reasonable hypothesis is that there would be a greater gain of
skill for the 6h and 12h datasets, compared to the skill gain of the full forecast period. On the
other hand, the amount of data the random forest classifiers (RFC) has to train on is greatly
reduces for these smaller datasets, which one can expect leads to a reduced gain of skill. Table
C.15 in App. C.1.3 show that both the RFC and MEPS achieve the greatest skill for P02-12h,
followed by P02-6h, then lastly P02-66h, just as expected because of chaos. However, when
comparing the respective P02 RFC with the corresponding MEPS, it is evident that the great-
est increase of skill is P02-66h (50% increase for F01P02-66h and 33% increase for B01P02-66h
compared to MEPS), followed by P02-12h, and lastly P02-6h. There is a notable difference
between the locations in this. Although F01P02 (-6h, -12h, -66h) achieves an increase of skill
of 33%, 44.8%, 50% compared to MEPS, which is a significant improvement, when averaged it
is equivalent to F01P01s increase of 42%. B01P02-6h on the other hand achieve a 4% decrease
in skill compared to MEPS, while B01P02-12h and B01P02-66h achieve 11% and 23% increase
respectively. This averaged is however not comparable to B01P01 which performs significantly
better with a 25% increase of skill in comparison.

From these results it is evident that the loss of data in the training is especially severe for
Blindern, resulting in an overall poorer performance of B01P02 compared to B01P01. Even
though F01P02-12h and F01P02-66h score better than F01P01, the loss of data results in sig-
nificantly poorer performance for F01P02-6h (compared to F01P01), and thus the loss of data
samples in the training counteract any gain of shorter forecast lead times. In addition, training
a separate model for different forecast periods complicates the process of implementing machine
learning in the steps of numerical weather prediction. Not only could it prove necessary to do
feature selection multiple times, one does also need to do model selection and train several mod-
els. Furthermore, having several distinct forecast periods can also lead to discontinuity going
from one period to the next, meaning even more post-processing is needed. Taking all of this
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into account, this study supports that it is sufficient to train one model for the entire forecast
period (0-66h in this case using AROME-MEPS).

When comparing the skill score found with the chronologically split data with the one found
with the randomly split data (which can be seen in tab. C.15), it demonstrates why it proved
necessary to redo the process with chronologically split data. It should be noted that the data
from the two splitting methods span different time periods (January 2020 to January 2021 for
randomly split, January 2020 to July 2022 for chron. split), the MEPS results between the
two spits are comparable, supporting the claim that the difference in skill score between the
splitting methods is in fact due to overly positive results for the randomly split, stemming from
cross-contamination between the training and test set from auto-correlation within the data.

One last point is that the final performance of the random forest classifiers (RFC) on the
unseen (randomly drawn) test data very much reflect the values presented for the validation data.
In contrast, comparing the results in tab. 14 and 15 from the chronologically split we see quite a
drastic difference, for both the RFCs and MEPS. The latter contains an uneven distribution of
precipitation data across the training, validation and test data due to the limited time-period,
and this unevenness becomes evident when comparing the validation and test performance. The
test data is from mid February 2022 until August 2022 and thus span the summer months that
often prove more challenging to forecast in terms of precipitation, and this is likely an important
factor in why there is such a big difference in performance across the validation and test data.

Table 15: Verification metrics for the final random forest classifiers, which in the model selection was determined to be
the Base RFC from tab. 14. The performance of the RFC is evaluated on the test data spanning the period
18th February 2022 16:00 UTC until 3rd August 12:00. The results for F01P01 (upper) and B01P01 (lower) is
compared to MEPS.

F01P01 0.85 0.69 0.11 0.38 0.62 0.49 0.28 1.11

MEPS 0.84 0.59 0.1 0.37 0.63 0.44 0.24 0.95

B01P01 0.93 0.38 0.02 0.42 0.58 0.29 0.1 0.65

MEPS 0.92 0.5 0.04 0.5 0.5 0.34 0.01 1.0

ACC POD POFD FAR SR CSI SS Bias

The figures in App. C.1.3 shows an exhaustive overview of the ROC curves and reliability
diagrams for all datasets (randomly split). The reliability diagrams of the P01 random forest
classifiers (RFC) show the models have good calibration, with a tendency to underpredict the
cases of higher observed frequency. The reliability diagrams for the P02-RFCs shows more
variability, especially on Blindern, due to the smaller amount of samples available for each
forecast period. Comparing the diagrams from the chronologically split data with the randomly
split shown in App. C.1.3, we see a significant difference. The reliability diagrams showed
good calibration for the randomly split data, while we see a pattern of overprediction for both
F01P01 and B01P01 of the chronological split. Although the ROC curve for F01P01 (fig. 20a)
is comparable to the one found with randomly split, the ROC curve for B01P01 (fig. 21a) shows
a significant reduction in performance compared to the randomly split.
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Figure 20: Left figures shows the ROC curve for the final RFC for Florida (F01P01) evaluated on the test data
spanning the period 18th February 2022 16:00 UTC until 3rd August 12:00. Right figure show the reliability
diagram, consisting of the reliability graph and rank histogram (see 8.3 for further explanation)
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Figure 21: The same as figure 20, but for Blindern (B01P01).

While the grid-search selected the hyperparameters that got the best evaluation score, when
calculating the different evaluation metrics used in numerical weather prediction it was evident
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that these models were far from optimal. The results of the grid-search shown in table 14 shows
the GridSearchCV performed significantly worse compared to the base RFC used in the feature
selection. It is clear that the objective traditionally used for classification tasks does not trans-
late well to the verification methods used in numerical weather prediction. The RFC used in this
thesis is thus not optimized, and it is likely that better results would be achieved if a manual
grid-search using our verification methods. These results indicate that model performance is to
a surprisingly high degree reliant on the hyperparameters used. Based on the hyperparameters
used in the base RFC, one can speculate that a strict and shallow tree performs better as it
might be less prone to overfitting, and thus does a better job at generalization.
From the results presented in table C.15, training separate models for different forecast lead
times (P02-6h, P02-12h, P02-66h) seems to be an unnecessary step. Considering the added
steps in the machine learning process when utilizing multiple models, as well as the effect of
fewer data samples in the training, it can be concluded that training one single model for the
entire forecast period is to be preferred. Therefore, it is only the datasets with the full length
forecast period that will be utilized when training neural networks in the coming part.

Lastly, in the case of classification of precipitation and no precipitation, there is for the most
part little difference in the RFCs trained on 10 features compared to the RFCs trained on 30
features, implying munch redundancies within the data. However, because of the different nature
of regression task and neural networks, the 02P01 datasets was still advanced to the initial steps
in the neural network process.

13 Predicting hourly accumulated precipitation amount using
neural networks

In this section the results of using neural networks (as described in sec. 8) to solve the regression
task of predicting hourly accumulated precipitation amount is presented and discussed.

13.1 Base NN and feature selection

The feature selection presented in sec. 11.2 was also used when solving the regression task
using neural networks. A base neural network (from this point referred to as base NN) with
the architecture described in section 8.1 was first trained using the previously RFECV/RFE-
selected features only. In an effort to capture some temporal dependencies in the data, the
base NN was then also trained on datasets where the tendency features highlighted in tab.
4 was included in addition to the selected features. Table D.18 in App. D shows the mean
absolute error (MAE) of these models (note that these models are trained on the randomly split
data). For class 0 (no precipitation) of F01P01 the MAE was reduced by 5% when including
the tendency features, and class 1 (precipitation) had an 4.8% reduction. Interestingly enough,
the MAE did not decrease for either classes of B01P01 when including the tendency features,
and it was at first decided to not include the additional features when moving forward to
selecting an optimized neural network. However, due to the fact that all other datasets had
better performance with the tendency included, it was decided to train an optimized neural
network for both the recursive feature elimination (RFE) selected variables only, as well as with
the additional tendency features to assess whether an optimized neural network showed the
same result as the base NN (concerning performance with and without the tendency variables).
Although class 0 had the same performance with and without the tendency included, class 1
had an 8% decrease in the MAE with the tendency included compared to without. Based on
these results, it was decided to include the tendency features in the further training of the neural
networks for both F01P01 and B01P01.
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13.2 Model selection

The model selection was done using KerasTuner as described in sec. 8.2. The architecture
selected for each model is shown in tab. 16. The most striking difference between F01P01 and
B01P01 is the number of hidden layers required to solve the task. While four hidden layers are
selected for Florida (originally one hidden layer, described in next paragraph), Blindern require
nine hidden layers. This is once again a testament to the difference in precipitation distribution
within the data, where Blindern require a significantly deeper network in order to estimate the
precipitation amount.

Originally, the grid-search for class 1 (precipitation) of F01P01 selected an architecture with
only one hidden layer (see full architecture in tab. D.19 in App. D.3). However, after plotting
the time-series of the neural network forecast of the test data (fig. D.10) it was very clear that
there was an artificial cut-off of the hourly precipitation amount predicted by the neural network.
This artificial cut-off was not evident in the predictions from the optimized neural network for
the randomly split data. To look into this further, a neural network with the architecture found
by the grid-search for the randomly split data (with 4 hidden layers) was trained on the chrono-
logically split data. Table D.20 show the verification metrics for both neural networks and it is
quite clear that there is a notable increase in performance, especially for the higher-intensity rain
rates. Bias is overall better for with the 4-layer neural network, whilst skill score is better for the
1-layer neural network for rain rates ≤ 2.5mmh−1. For rain rates ≥ 2.5mmh−1 the 4-layer neural
network has a higher skill score. Due to the generally better performance of the 4-layer neural
network, it was decided to discard the 1-layer neural network at this point, and continue with the
4-layer neural network for class 1 of F01P01, and thus it is the latter that is presented in tab. 16.

Table 16: Table shows the architecture for each neural network of class 0 (no precipitation) and class 1 (precipitation), for
each location. There is a clear difference of how many layers is needed for the two location to solve the task.

F
0
1
P
0
1

Input 96 Input 128

Hidden 1 64 Hidden 1 96

Hidden 2 32 Hidden 2 96

Hidden 3 32 Hidden 3 96

Hidden 4 32 Hidden 4 96

Output 1 Output 1

Activation Sigmoid Activation ReLU

B
0
1
P
0
1

Input 96 Input 96

Hidden 1 64 Hidden 1 96

Hidden 2 64 Hidden 2 64

Hidden 3 32 Hidden 3 32

Hidden 4 32 Hidden 4 64

Hidden 5 128 Hidden 5 96

Hidden 6 64 Hidden 6 64

Hidden 7 96 Hidden 7 64

Hidden 8 64 Hidden 8 64

Hidden 9 64 Hidden 9 128

Architecture of the network

Class 0 Class 1

Layer Units Layer Units

Continued on next page
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Table 16: Table shows the architecture for each neural network of class 0 (no precipitation) and class 1 (precipitation), for
each location. There is a clear difference of how many layers is needed for the two location to solve the task.
(Continued)

Output 1 Output 1

Activation ReLU Activation ReLu

Architecture of the network

Class 0 Class 1

Layer Units Layer Units

13.3 Forecast verification

Table 17 show the mean absolute error (MAE), bias and skill score (SS, skill compared to guess-
ing 0.0mmh−1 for every time step) for both the total forecast (i.e containing predictions from
both classes) and the forecast for the individual classes.

The skill score for class 0 (no precipitation) for both locations is zero, meaning there is no
increase or decrease in skill compared to simply guessing zero precipitation for every time-step.
This is indicative of the neural networks simply predicting 0mmh−1 precipitation for all samples
of class 0, and this was confirmed when plotting the class 0 predictions for both locations. In
other words, the neural networks for class 0 is unable to identify any precipitation-events within
the data. This is an interesting results and can be attributed to the fact that there is simply
not enough precipitation samples within the training data of class 0 for the neural networks to
sufficiently learn and identify these events. The percentage of precipitation-events within the
training data for class 0 is 12.6% and 8.1% for Florida and Blindern respectively, and this is
clearly not enough within the relatively short time-period of January 2020 until August 2022.
This raises the question whether it would be sufficient to stop after the classification of class 0
using the random forest classifier (RFC), and only bring class 1 along to the subsequent step of
the regression task using neural networks. This is of course not ideal considering that there is in
fact precipitation at around 10% of the samples in class 0. However, with this limited amount of
precipitation samples within class 0, it would have been sufficient in this thesis as there was no
actual gain in training neural networks for this class at either location. One last point regarding
this is that a deeper network for class 0 of F01P01 could possibly work, considering there is
12.6% precipitation, but this is speculative.
It is worth noting that the neural network’s mean absolute error of class 0 for Florida is 17%
smaller than MEPS, and 19% smaller for Blindern, despite the NNs only predicting 0.0mmh−1

for every time step of the class. This emphasizes how important it is to look at all the verification
metrics to get a more accurate picture of the neural networks performance.

The verification metrics for the total forecast (combined predictions from both class 0 and
class 1) of both locations are improved compared to MEPS with both a decrease in mean abso-
lute error (MAE) and an increase in skill score (SS). For the total forecast of Florida, the neural
network (NN) got a MAE of 0.178, resulting in a 20% decrease compared to MEPS (0.223). In
addition, the bias for the NN is more than halved compared to MEPS, with 0.027 and 0.061
for the NN and MEPS respectively. While the NN achieves a skill score of 0.99, MEPS got a
negative skill score, −0.26, indicating a higher MAE compared to guessing 0mm precipitation
for all samples. The neural network for Blindern has a decrease of 32% of the MAE compared
to MEPS (0.065 and 0.097 respectively), accompanied with a skill score of 0.034. Similarly to
Florida, MEPS has a negative skill score with −0.433 for Blindern. However, while the bias for
the Florida NN is significantly decreased compared to MEPS, for Blindern MEPS has a smaller
bias than the NN (in absolute terms).
Looking specifically at the verification metrics for class 1 of Florida, we see an even greater
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decrease in MAE for the NN compared to MEPS (32%), but this is accompanied with an nega-
tive bias, which is greater than for MEPS in absolute terms. There seem to be a pattern of an
overall improvement in both the mean absolute error and the skill score for the neural networks
compared to MEPS, while on the other hand they have a varying bias.

It is rather surprising that MEPS achieve a negative skill score across all forecasts (note
that the skill is in reference to guessing 0 mmh−1 at all time-steps). Looking at the plot of
the entire test period in fig. D.11 and D.12 in App. D.3.1, it is quite clear that MEPS does a
rather good job at following the general variations of the observed precipitation. Especially for
Blindern, it is evident that MEPS in fact does a better job than the neural network at estimat-
ing the precipitation amount. This is not what is reflected in the verification metrics discussed
above, where the neural network has a 32% smaller mean absolute error than MEPS, as well
as a positive skill score. Though these metrics show quite a significant improvement, the plot
in fig. D.12 quickly illustrate a problem of verification. The metrics might point to the neural
network as the best fit to the observation, but human intuition and pattern recognition can
quite easily spot that MEPS in fact seems to be the better fit. This highlight the fact that what
the forecasters subjective impression of which is the better forecast is not necessarily coinciding
with the verification measures.

Table 17: Mean absolute error, bias and skill score for F01P01 and B01P01, evaluated on the test data spanning the period
18th February 2022 16:00 UTC until 3rd August 12:00. Total refers to the final product of the class 0 forecast
and class 1 forecast combined, while the class 0/1 refers to the individual classes (no precipitation/precipitation).
The verification metrics is calculated for all rain rates, i.e all ranges of RR ≥ 0.1.

F01P01 Total Neural network 0.178 0.027 0.099

MEPS 0.223 0.061 -0.126

Class 0 Neural network 0.047 0.0

MEPS 0.056 -0.029 -0.201

Class 1 Neural network 0.602 -0.306 0.12

MEPS 0.759 0.054 -0.109

B01P01 Total Neural network 0.065 -0.05 0.034

MEPS 0.097 0.009 -0.433

Class 0 Neural network 0.039 -0.039 0.0

MEPS 0.048 -0.023 -0.243

Class 1 Neural network 0.56 -0.265 0.075

MEPS 1.004 0.599 -0.66

MAE Bias SS

As mentioned, tab. 17 show that despite the mean absolute error and skill score is improved
for the neural networks, the bias is varying, and the plot in fig. D.12 indicate systematic underes-
timation of precipitation amount. In order to investigate this further, it is necessary to categorize
the hourly accumulated precipitation amount into hourly rain rates, RR and look at the neural
network’s performances within these separate rain rates. Looking at the verification metrics for
these different rain rates in tab. 18, there is a general pattern of the neural networks performing
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better than MEPS for no rain (RR < 0.1mmh−1) and light rain (RR ∈ [0.1, 2.5⟩mmh−1) for
both location. The skill score for Florida within the light rain range is more than two folds
higher than MEPS. The exception is the bias, which is for light rain better for MEPS, while
the bias for no rain is better for the neural networks. For RR ≥ 2.5 mmh−1 both the neural
network and MEPS has an increasingly worse performance with increasing rain rate, but MEPS
has a general better performance than the neural networks. This is especially evident for Blin-
dern, where MEPS has a skill score between 2 and 1.5 times higher for moderate and heavy
rain respectively. This is also confirmed when looking at the plot of the entire forecast period,
most notably for Blindern (fig. D.12 in App. D.3.1), where an artificial cut-off is very evident.
This is similar to the one found from the 1-layer neural network for Florida previously discussed
in sec. 13.2 (i.e fig. D.10 in App. D.3). Florida has more realistic variability in the forecast
(see fig. D.11) and seem to follow MEPS quite closely. However, during the summer months,
there seem to be a underestimation of the amount. While MEPS show similar pattern during
the same months, it also overestimates the precipitation amount, and thus don’t have the same
prevalence of underestimating.

Table 18: Mean absolute error (MAE), bias and skill score (SS) for the total forecast for Florida (F01P01, upper) and
Blindern (B01P01, lower). The verification metrics are here seperated into the different ranges of hourly rain
rate, where no rain equals RR < 0.1 mmh−1, light rain equals RR ∈ [0.1, 2.5⟩ mmh−1, moderate rain equals
RR ∈ [2.5, 7.5⟩mmh−1 and heavy rain equals RR ≥ 7.5mmh−1. All rates is equvialent ot the values presented
in tab. 17 for the total forecast, and is included to ease comparison.

F
0
1
P
0
1

M
A
E

NN 0.205 0.042 0.587 2.768 7.986

MEPS 0.223 0.061 0.627 2.553 7.349

B
ia
s

NN -0.068 0.042 -0.231 -2.723 -7.986

MEPS -0.009 0.061 -0.042 -2.324 -7.349

S
S

NN -0.035 -inf 0.067 0.255 0.08

MEPS -0.126 -inf 0.002 0.313 0.153

B
0
1
P
0
1

M
A
E

NN 0.065 0.006 0.493 3.339 10.547

MEPS 0.097 0.035 0.609 2.745 10.382

B
ia
s

NN -0.05 0.006 -0.44 -3.339 -10.547

MEPS 0.009 0.035 -0.062 -2.481 -9.79

S
S

NN 0.034 -inf 0.148 0.078 0.01

MEPS -0.433 -inf -0.052 0.242 0.025

All rates No rain Light rain Moderate
rain

Heavy rain

Because tab. 18 show a notable difference in the neural networks’ performance with increas-
ing hourly rain rates (RR), the distribution of the forecasts and observations was plotted for
each location, as seen in fig. 22. Looking at the distribution of light rain for Florida (the upper
panel of fig. 22a), it is clear the the neural network follow MEPS quite closely for the most part,
and they are in an overall good agreement with the observations (with the exception of very low
rain rate). Looking at RR ∈ [2.5, 5⟩mmh−1 (middle panel) there is a greater difference between
the distribution of both MEPS and the neural network compared to the observations, where the
latter usually has a higher density for most rain rates within this given range. It also becomes
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clear that the neural network has a significant lower density than MEPS, especially in the range
RR ∈ [2.5, 4⟩mmh−1. In the range of RR ∈ [5, 7.5⟩mmh−1 there are few observations and very
low density. In this range there are no predictions from the neural network, as suspected.
The distribution for Blindern is shown in fig. 22b. Initially, the distribution for light rain (upper
panel) looks similar to what was found for Florida. However, for RR ∈ [1.25, 2.5⟩mmh−1 the
neural network has completely disappeared, meaning there is no predictions from the neural
network in this range. The higher rain rates in the middle and lower panel confirm that this is
the case for all RR ≥ 1.25 mmh−1, showing a quite severe and systematic underprediction of
the precipitation amount.

To illustrate how the neural networks performs in both winter and summer, an arbitrary
forecast from February and July was selected for each location. Figure 23 shows the winter and
summer forecast for Florida (upper panels) and the difference between forecast and observation
(forecast− observation, lower panels). Figure 23a show the 18UTC forecast from 17 February
2022, and show that MEPS clearly overestimates the precipitation amount in the beginning of
the forecast period, while both MEPS and the neural network underestimates the precipitation
amount of the event at 50 hours forecast lead time. In general though, it seems like both MEPS
and the neural network is mostly able to identify the significant precipitation-events, and is very
much able to identify the no precipitation event in the middle of the forecast period. From
the summer months the 00UTC forecast from 3 July 2022 is plotted in 23b. Both MEPS and
the neural network are able to identify most precipitation-events, but struggle to both identify
and predict the major precipitation-event with heavy rain rate that is observed around 8 hours
forecast lead time.

Looking at the lower panels of fig. 23, its seems the neural network follow MEPS quite
closely for the most part, with the exception of the overestimation by MEPS at approximately
5 hours forecast lead time in fig. 23a. The fact that the neural network follow MEPS closely is
not surprising as MEPS’ hourly precipitation forecast is not only one of the predictands used
by the neural network, it also has the highest Spearman rank.

Figure 24 shows the equivalent plot for Blindern. Looking at the 6UTC forecast from
19 February 2022 in fig. 24a it is quite clear that MEPS overestimates the occurrence of
precipitation-events. While the neural network seems to predict number of occurrences closer to
the number of observed, it seems at times to predict the precipitation one or two hours earlier
than it is observed. It should be noted that though the neural network might be slightly off
hour-to-hour, this is still quite good. The neural network’s predictions also looks reasonable in
consideration of precipitation amount.

The 00UTC forecast from 1 July 2022 is shown in fig. 24b. Both of the models struggle
to identify the precipitation-event at 14 hours forecast lead time, however, they both seem to
identify the no precipitation-events rather well. Looking at the precipitation-event at 29 hours
forecast lead time, it seems that both MEPS and the neural network is a few hours early with
the predicted precipitation. In addition, the neural network’s underestimation of precipitation
amount is very clear in this instance. MEPS seems to be able to predict more realistic precipi-
tation amount than the neural network in this particular forecast.

These are simply a few selected forecast presented to illustrate the performance of the neu-
ral networks compared to MEPS and the observations, both during winter months and summer
months. Keep in mind that this is an hour-to-hour comparison, but the neural networks show
much of the same variability as the observation, though more successfully for Florida than Blin-
dern.
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Figure 22: An overview of the distribution of the final forecast for (22b) Florida (F01P01) and (22b) Blindern
(B01P01). The figure shows the distribution for both the neural network (light blue), MEPS (navy) and the
observations (teal). Note that both the x-axis and the y-axis changes between the subplots in order to accurately
show the distribution of the different rain rates.
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Though the neural network performs quite well for light rain (RR ∈ [0.1, 2.5⟩mmh−1 ) due to
the majority of precipitation samples being classified as such, they are unable to capture moder-
ate to heavy rain rates. Capturing the full variability of precipitation seems to be a difficult task
for both the neural networks and to some degree MEPS, though it is clear that MEPS is able to
do so at a higher degree than the neural networks. The neural networks for Blindern had a 67%
and 60% decrease in skill for moderate and heavy rain compared to MEPS, while Florida had a
19% and 48% decrease. Once again the lack of data, in this case the small amount of precipitation
samples in the range of the heavier rain rates, is evident in the neural network as a systematic
underprediction. It seems quite clear that the amount of data is mostly to blame for this fault,
as it is even more severe for Blindern than Florida, which has only 12% precipitation versus 32%.

The forecast verification, both for the neural networks and MEPS, is assessed hour-to-hour
and point-to-point. This means that any spatial or temporal shifts is not taken into considera-
tion, i.e if the models forecast a precipitation field and the spatial structures are quite close to
the observed, but slightly skewed in some direction, the traditional verification metrics will not
accurately reflect the true characteristics of the forecast [Gilleland et al., 2009].

The neural networks show good improvement (relative to MEPS) according to the verifica-
tion metrics. Upon further inspection, it becomes evident that the good performance is limited
to hourly rain rates of less than 2.5 mmh−1, and that MEPS outperform the neural networks
for all rates above this threshold. Looking at fig. D.11b and D.12b in App. D.3.1 it seems that
the neural networks follow the same overall pattern as MEPS quite closely, which is not sur-
prising considering MEPS hourly precipitation forecast is the most important feature. Looking
at specific forecasts however, figures 23 and 24 confirm that there are differences between the
predicted values from the neural networks and MEPS, showing that the former does not simply
reproduce the latter model’s predictions directly, confirming that learning has been achieved.
The neural networks has an overall good performance, and even though there is a notable de-
crease in mean absolute error and an increase in skill relative to MEPS, the distribution plotted
in fig. 22 makes it clear that one cannot conclude that the NN are particularly better than
MEPS altogether. However, at some areas, in particular for no rain and light rain the neural
network perform quite well and is at the very least comparable to MEPS (for Florida), which
in itself is a notable achievement and very much a promising result for the future of machine
learning in numerical weather prediction.
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Figure 23: Precipitation-events for two specific forecasts, and the accompanying observations. Navy bar shows
MEPS forecast, light blue shows the neural network forecast and teal shows the measured precipitation. Fig. (a)
shows a particular forecast from the winter season, more specifically the 2022/02/17 18 UTC forecast, while (b)
shows a forecast from the summer months, 2022/07/03 00 UTC forecast.
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Figure 24: Same as figure 23, but for Blindern (B01P01). Navy bar shows MEPS forecast, light blue shows the
neural network forecast and teal shows the measured precipitation. Fig. (a) shows a particular forecast from the
winter season, more specifically the 2022/02/17 18 UTC forecast, while (b) shows a forecast from the summer
months, 2022/07/03 00 UTC forecast.
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Conclusion

14 Conclusions

The method of splitting the data into training, validation and test data proved to be very
important. It was first decided to split the data randomly to get an even distribution of pre-
cipitation samples across the different datasets. Because of the limited time-period in the data
(2020-2021), the precipitation distribution when splitting chronologically was varying to a sig-
nificant degree across the different datasets. However, after all the steps in this thesis was done,
including feature selection, training a random forest classifier and training a neural network
for each class assigned by the classifier, a final evaluation on 2022 data showed significantly
poorer performance than the evaluation done on the randomly drawn test data, going from a
30% increase in skill to a 8.3% decrease in skill for class 1 (precipitation) compared to MEPS.
This illuminated the effect of the auto-correlation within the data leading to overly optimistic
estimates of model performance, just as Schultz et al. [2021] emphasized, to such a degree that
it was deemed necessary to redo the random forest classifier and neural network process with
chronologically split data.

Even though the feature selection was done on randomly split data, it is not likely that
the outcome would differ if done on chronologically split data due to the nature of the features
selected. There was similar features selected for both location, such as low and medium cloud
cover, relative humidity and hourly precipitation (MEPS precipitation forecast). Location-
specific features proved to be zonal wind for Florida and meridional wind for Blindern, as
expected due to the topography and climate of the locations. The features selected was assigned
high importance by the random forest classifier, as well as having a high Spearman rank, further
supporting the choice of selected features. However, many similar features was selected, such
as several cloud cover features, therefore it is likely that the set of features could be simplified
even further. In addition, a bigger emphasize on feature engineering could prove useful both in
potentially further eliminate any redundant information across the selected features, and trans-
lating information into a form which is easier to interpret for the machine learning algorithms. A
separate feature selection specifically aimed at the neural networks would also be recommended
in further work.

The objective used by the grid-search performed by GridSearchCV for hyperparameter tun-
ing does not reflect the metrics traditionally used in forecast verification, and thus the grid-search
done in this thesis did not select the optimal random forest classifier (RFC) for the task. The
RFC selected by the grid-search got a skill score of 0.42 and −0.37 For Florida and Blindern
respectively, while the base RFC scored 0.49 and 0.28 in comparison. It could be favorable to
manually do a grid-search using the verification metric appropriate for such a task, for example
skill score, but due to time-limitations this was not executed in this thesis. Considering the
performance of the RFC proved to be quite influenced by the hyperparameters, one can easily
imagine even better results if a proper grid-search (that actually provide the optimal model)
was performed.
The random forest classifiers for Florida are able to identify more precipitation-events than
MEPS, whilst they struggle more for Blindern, though this is not reflected in the skill score.

For the training of the neural networks the performance benefited somewhat from incorpo-
rating the tendency features in the training data as it introduced some temporal dependencies
across one time-step and the prior. Including the tendency features resulted in a decrease in
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mean absolute error (MAE) between 5− 8% for the validation data, however, a separate feature
selection for neural networks would be advisable in further work.
Not so surprisingly the architecture of the neural networks proved to be of great significance
to the overall performance. Going from one hidden layer to four (F01P01) removed the arti-
ficial cut-off of the precipitation amount seen from the former model’s predictions (fig. D.10
and D.11a), making the latter model’s predictions more realistic and reducing the MAE of the
moderate and heavy rain rates with 11% and 3% respectively. Though the latter is somewhat
modest, the skill score (SS) went from 0.168 to 0.255 for moderate rain, and 0.08 to 0.057 for
heavy rain (equivalent to a 51% and 40% increase). The optimal neural networks for Blindern
needed nine hidden layers to solve the regression task, yet still did not manage to capture the
variability of hourly precipitation amount and had a similar artificial cut-off as seen for the
1-layer neural network for Florida.

The neural network has a general reduction in mean absolute error (MAE) and increased
skill score (SS) compared to MEPS. The decrease in MAE for the Florida NN is found to be
20% for the total forecast and 32% for class 1 (precipitation) specifically, while the equivalent for
Blindern is 32% and 45% respectively. However, a general pattern is that the neural networks
often underestimate the precipitation amount, and from fig. 22 in sec. 13.2 it is clear that
the neural networks struggle to capture the heavier rain rates. In comparison to MEPS, the
neural network got a 19% and 48% decrease in skill for Florida (F01P01) in the moderate and
heavy rain rates (RR ≥ 2.5mmh−1), and a even more severe reduction for Blindern (B01P01)
with a 67% and 60% decrease in skill. MEPS also struggles more with the heavier rain rates,
however, it is clear it outperforms the neural networks in these ranges. This is likely due to
the very limited samples within these ranges, in other words there is simply too few samples in
these ranges for the neural networks to learn sufficiently. The verification metrics show good
results for the total forecast of the neural networks and this is mainly because most of the sam-
ples fall within no rain (RR < 0.1mmh−1) and light rain (RR ∈ [0.1, 2.5⟩mmh−1) range, and
thus the good performance within these ranges hides the problem in the moderate and heavy
rain rates of RR ≥ 2.5mmh−1. Consequently, it is clear that the verification metrics does not
give the full picture, and the comparison between the models are challenging to accurately depict.

As mentioned, the neural networks do quite well in the range of hourly rain rate (RR) ∈
[0.1, 2.5⟩, particularly for Florida, and this is undoubtedly because the majority of precipitation
data fall within this range, thus it is this range the machine learning algorithm is able to learn
well. The neural networks for class 0 (no precipitation) at both locations was not able to identify
and predict any precipitation-events within the class, which makes up about 12% for Florida and
8% for Blindern. This is simply not enough precipitation-samples to solve the task. Therefore,
in this thesis it would be sufficient to predict 0 mmh−1 for all samples classified as class 0 by
the random forest, and not train a neural network for this particular class.

Splitting the dataset depending on forecast lead time (i.e P02-6h, P02-12h, P02-66h) did not
improve model performance enough to justify the extra steps such a split would require oper-
ational use. In fact, for Blindern it actually resulted in less increase in skill relative to MEPS,
than what was seen for P01. Furthermore, there was some difference in model performance of the
random forest classifiers when trained on 10 versus 30 features (approximately 10% increase in
skill for 30 features). This increase was however not proportional to the increase in features, and
this emphasize the redundant information found within the dataset. Simplicity is favorable to
avoid overfitting and consequently, only F01P01 and B01P01, referring to the datasets with vari-
ables directly from MEPS and the entire forecast lead time (i.e 66 hours), was used for all three
steps of the thesis. The fact that fewer features and one single model for the full forecast period
proved sufficient further support that simplicity is a favorable starting point for solving the task.
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Machine learning thrives on big data, and this has been highlighted at each step of this
thesis. Though there are a decent number of samples (training data contain 134 560 samples),
the problem is that the samples that actually classifies as precipitation is very much a minority.
Florida has 30% precipitation samples in the training data, while Blindern has only 14.6%, and
this difference has significantly influenced the performance of both the random forest classifier
and the neural networks.

In this thesis, the full range of forecast lead time (66h) is used and then paired up with the
observation corresponding to the given time-step. In practice, this means that there are several
samples for each specific time step, ranging from early to late in the forecast (early referring
to few hours forecast lead time, while late refers to a significant number of hours forecast lead
time), which are all paired with the same observation. In other words, a forecast at 6 hours
forecast lead time could be paired with the same observation as a forecast at 60 hours forecast
lead time (given they both forecast the same time-step). Due to the chaotic nature of the at-
mosphere, the forecast at 6 hours forecast lead time is in most cases closer to the actual state
of the atmosphere at said time-step (compared to 60 hours forecast lead time), and thus gives
a more realistic representation of the physics resulting in the specific observation. This raises
the question whether the machine learning algorithm could be confused by the many samples,
especially those with a higher forecast lead time, and whether it would be better to only use
data from shorter forecast lead times in the training of the machine learning algorithms, while
still using the final model on all forecast lead times. This would of course reduce the number
of samples drastically, which would have a negative effect on the machine learning algorithms’
ability to generalize, so it is uncertain whether the potential gain from limiting the forecast lead
time in training would be greater than the known loss from the far fewer data-points this limita-
tion would result in. The skill of the random forest classifiers of P02-6h and P02-12h (tab. C.15
in App. C.1.3) is comparative to the skill of P01 despite far less samples, though the increase
in skill (compared to meps) is lower for the shorter lead times with fewer samples. However, for
the neural networks in this thesis this trade-off would most certainly result in a greater loss due
to the limited time-period the data is collected from. In instances were many years of data is
available though, this could potentially provide a significant gain.

The verification methods used is in this thesis is a direct comparison hour-by-hour, which
does not take into account temporal shifts between forecast and observations, in other words,
whether the model made good predictions, but an hour early or late, which would matter in
reality. Another important thing to note is that MEPS is able to forecast precipitation pretty
well, and provide good quality predictands used by the neural network. The difference between
the spatial and temporal resolution of the model output and the observations used during verifi-
cation is called the representativness error [Warner, 2011]. In this thesis the temporal resolution
of the model output and the observations is both hourly, however, the spatial resolution of the
model grid i 2.5km, while the observations is from only one station situated within the grid.

15 Further work

Lastly, this section will summarize aspects of this thesis that would be interesting to look further
into.

One of the clear implications during this work has been the unbalance between precipitation
and no precipitation samples within the data. In addition, the unbalance has varied between the
training, validation and test data has also been a challenge. Increasing the time-period would
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mostly even out the differences between the datasets as they would span years instead of a few
season. This would not solve the general low percentage of precipitation though. To address
this, over- or under-sampling could be used to get the percentage up to a sufficient level so the
machine learning algorithm had enough samples to learn from. A longer time-period would also
result in more samples, not just overall, but also in the heavier rain rates, which could further
improve the neural networks ability to capture these ranges better.

Another aspect of interest is additional feature selection and engineering. It would be in-
teresting to do further work with the feature selection and engineering in an effort to remove
redundant information and possibly translate information to a form easier interpreted by the
machine learning algorithms. Particularly wind normal to topography could be a variable of in-
terest, as this could could make it possible to combine Florida and Blindern to one big dataset,
without the machine learning algorithm learning a systematic bias towards Florida-specific fea-
tures, such as zonal wind (due to far more precipitation data for Florida compared to Blindern).

Furthermore, a manual grid-search to select the optimal hyperparameters for the random
forest classifiers, as well as an even more thorough grid-search to select the architecture of the
neural network, looking into other types of layers and perhaps try other types of networks such a
recurrent neural network or a long short-term memory neural networks to capture the temporal
dependencies within the domain. This would require a significant change of the structure of
the data, as it now is compiled of many small time-series (i.e one forecast of 66 hours is one
continuous time-series).

As described in the last paragraph in the section above, it would be interesting to look into
whether using MEPS data from shorter forecast lead times makes better training of the neural
network. Another option would be to categorize the precipitation based on hourly rain rate (i.e
light rain, moderate rain, heavy rain), and instead of trying to predict the actual amount the
task would be to predict rain rate category. This reduces the problem to a multi-class classifica-
tion task. This would likely only be sufficient for recreational use, and even then the higher rain
rates cover a too wide range. However, it would still be valuable information, because it can be
argued that it is not the exact precipitation amount that is of importance for most people, but
how heavy the rainfall will be (i.e rain rate).
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663-667).

Leo Breiman. Random forests. 45:5–32, 2001.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification and
regression trees. 1984. ISBN 0534980538.

The Editors of Encyclopaedia Britannica. Orographic precipitation. URL https://www.

britannica.com/science/orographic-precipitation.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Lay-
ton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine
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A DATA

Part VI

Appendix

A Data

A.1 Location

Table A.1: This table shows an overview of the x and
y values of the points within a 3.5km radius
from Florida (left) and Blindern (right)

x y x y

−532584. −285017.88 −240084. −367517.88

−532584. −282517.88 −240084. −365017.88

−530084. −287517.88 −240084. −362517.88

−530084. −285017.88 −237584 −367517.88

−530084. −282517.88 −237584 −365017.88

−527584. −285017.88 −237584 −362517.88

−527584. −282517.88 −235084. −365017.88

Florida Blindern

A.2 The calculated variables in dataset 02

Table A.2: The additional variables for the 02 dataset, and the equations used in the calculation.

MEPS: Label, y 1 eq. 39

Dewpoint temperature at 925hPa ◦C eq. 40

Dewpoint temperature at 500hPa ◦C eq. 40

Dewpoint temperature at 2m eq. eq. 40

Windspeed at 925hPa ms−1 eq. 41

Windspeed at 850hPa ms−1 eq. 41

Windspeed at 500hPa ms−1 eq. 41

Wind direction at 10m ◦ eq. 42

Wind direction at 925 ◦ eq. 42

Wind direction at 850 ◦ eq. 42

Wind direction at 500 ◦ eq. 42

Pressure of lifting condensation level Pa [May et al., 2022, see metpy.calc.lcl]

Temperature of lifting condensation
level

◦C [May et al., 2022, see metpy.calc.lcl]

Absolute moisture flux at 925hPa eq. 43

Zonal moisture flux at 925hPa eq. 43

Meridional moisture flux at 925hPa eq. 43

Windspeed tendency 10m ms−1

hour
eq. 44

Windspeed tendency 925hPa ms−1

hour
eq. 44

Windspeed tendency 850hPa ms−1

hour
eq. 44

Windspeed tendency 500hPa ms−1

hour
eq. 44

Air temperature tendency 2m [dT/dt] K
hour

eq. 44

Variable Unit Calculation

Continued on next page
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Table A.2: The additional variables for the 02 dataset, and the equations used in the calculation. (Continued)

Relative humidity tendency 2m
[dRH/dt]

1
hour

eq. 44

Zonal wind tendency 10m [du/dt] ms−1

hour
eq. 44

Meridional wind tendency 10m
[dv/dt]

ms−1

hour
eq. 44

Pressure tendency [dp/dt] Pa
hour

eq. 44

Zonal wind tendency at 925hPa
[du/dt]

ms−1

hour
eq. 44

Zonal wind tendency at 850hPa
[du/dt]

ms−1

hour
eq. 44

Zonal wind tendency at 500hPa
[du/dt]

ms−1

hour
eq. 44

Meridional wind tendency at 925hPa
[dv/dt]

ms−1

hour
eq. 44

Meridional wind tendency at 850hPa
[dv/dt]

ms−1

hour
eq. 44

Meridional wind tendency at 500hPa
[dv/dt]

ms−1

hour
eq. 44

Air temperature tendency at 925hPa
[dT/dt]

K
hour

eq. 44

Air temperature tendency at 850hPa
[dT/dt]

K
hour

eq. 44

Air temperature tendency at 500hPa
[dT/dt]

K
hour

eq. 44

Relative humidity tendency at 925hPa
[dRH/dt]

1
hour

eq. 44

Relative humidity tendency at 500hPa
[dRH/dt]

1
hour

eq. 44

Dewpoint temperature at 700hPa ◦C eq. 40

Dewpoint temperature at 850hPa ◦C eq. 40

K index ◦C eq. 45

Precipitable water mm eq. 46

Variable Unit Calculation

The label, y is determined from

y =

{
0, for RR < 0.1mmh−1

1, for RR ≤ 0.1mmh−1
(39)

dewpoint = 273.15 +
243.5 log(e/6.112)

17.67− log(e/6.112)
(40)

Windspeed V is defined by

V =
√
u2 + v2 (41)

where u, v is wind components in zonal and meridional direction respectively.
Wind direction is found by

wind direction = 90◦ − arctan(
−u

−v
) (42)

Moisture flux (absolute, zonal or meridional) is found by windspeed (V , u or v) multiplied with
the specific humidity, q

moisture flux = V ∗ q (43)
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The tendency variables is found by subtracting the previous time-step from the current

Xtendency =
Xt −Xt−1

t− (t− 1)
=

Xt −Xt−1

hour
(44)

where t is the current time-step, and t− 1 is the previous time-step.

The K-index used by May et al. [2022] is defined by

K = (T850 − T500) + Tdew,850 − (T700 − Tdew,700) (45)

and the precipitable water is defined as

precipitable water = − 1

ρlg

∫ ptop

pbottom

rdp (46)
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B Feature selection

B.1 Exploratory data analysis
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Figure B.1: Similar as fig. 16, figure shows the Spearman rank matrix for the F02 dataset.
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Figure B.2: Similar as fig. 16, figure shows the Spearman rank matrix for the B02 (Blindern).
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Figure B.3: Similar to fig. 17, but for the 02 datasets for (a) Florida (F02) and (b) Blindern (B02).
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B FEATURE SELECTION B.2 Objective vs n features plot from RFECV

B.2 Objective vs n features plot from RFECV
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Figure B.4: Figure shows balanced accuracy plotted against number of features, n for (a) F01P02-66h. (b)
F02P02-6h. (c) F02P02-12h and (d) F02P02-66h. The different coloured curves represent the 5-fold cross-
validation used by the RFECV.

B.3 Feature scores and selection

Table B.3: All feature scores for F01P01 (left) and B01P01 (right). F01P01: The two columns to the left shows spearman
rank, rrank, and feature importance obtained from random forest. The two columns to the right shows features
selected by scikit-learns recursive feature elimination packages, RFECV and RFE respectivly. The RFECV
function uses cross validation to find the optimal number of features to include, while RFE work with a predefined
number of features selected by the user (in this case n features = 10). B01P01: Similarly as for F01P01, the
two columns to the left shows Spearman rank and feature importance. The thrid show whether the feature was
selected by RFECV (marked by x). There was no need to use RFE for B01P01.

precipitation amount acc 0.449 0.043 x x 0.385 0.037 x

low type cloud area fraction 0.53 0.174 x x 0.438 0.14 x

x wind 850 0.468 0.098 x x -0.005 0.002 -

fog area fraction 0.438 0.042 x x 0.389 0.043 x

cloud area fraction 0.463 0.01 x x 0.408 0.071 x
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B.3 Feature scores and selection B FEATURE SELECTION

Table B.3: All feature scores for F01P01 (left) and B01P01 (right). F01P01: The two columns to the left shows spearman
rank, rrank, and feature importance obtained from random forest. The two columns to the right shows features
selected by scikit-learns recursive feature elimination packages, RFECV and RFE respectivly. The RFECV
function uses cross validation to find the optimal number of features to include, while RFE work with a predefined
number of features selected by the user (in this case n features = 10). B01P01: Similarly as for F01P01, the
two columns to the left shows Spearman rank and feature importance. The thrid show whether the feature was
selected by RFECV (marked by x). There was no need to use RFE for B01P01. (Continued)

medium type cloud area fraction 0.424 0.027 x x 0.409 0.09 x

x wind 925 0.424 0.074 x x -0.102 0.005 -

CAPE 0.495 0.101 x x 0.353 0.03 -

relative humidity 2m 0.49 0.086 x x 0.362 0.062 x

hourly precip 0.561 0.121 x x 0.52 0.199 x

w upwd 500 -0.031 0.0 - - 0.008 0.0 -

w upwd 850 0.212 0.023 x - 0.218 0.022 -

w upwd 925 0.241 0.014 x - 0.242 0.012 -

relative humidity 500 0.213 0.003 - - 0.238 0.02 -

clear sky toa dwSW -0.111 0.001 - - -0.076 0.001 -

CIN -0.126 0.01 x - -0.031 0.001 -

y wind 850 0.107 0.002 - - 0.352 0.057 x

y wind 925 0.147 0.003 - - 0.301 0.007 -

x wind 500 0.352 0.004 - - -0.019 0.003 -

y wind 500 0.094 0.001 - - 0.347 0.023 -

air temperature 500 -0.122 0.003 - - -0.002 0.001 -

relative humidity 925 0.492 0.078 x - 0.419 0.139 x

geopotential 500 -0.226 0.008 x - -0.136 0.002 -

snowfall amount acc 0.102 0.0 - - 0.189 0.003 -

air temperature 850 -0.076 0.003 - - -0.024 0.001 -

air temperature 925 -0.06 0.004 x - -0.057 0.001 -

high type cloud area fraction 0.167 0.001 - - 0.25 0.003 -

atmosphere boundary layer thickness 0.38 0.025 x - 0.2 0.011 -

integral of surface downwelling SW -0.263 0.006 x - -0.192 0.001 -

y wind 10m 0.243 0.003 - - 0.1 0.001 -

x wind 10m 0.193 0.007 x - -0.16 0.006 -

air temperature lowest level -0.061 0.002 - - -0.055 0.001 -

air temperature 2m -0.059 0.002 - - -0.051 0.001 -

air pressure at sea level -0.282 0.019 x - -0.253 0.004 -

Hours since model init -0.001 0.001 - - 0.001 0.0 -
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Table B.4: Same as table B.3, but for all feature scores for F02P01 (left) and B02P01 (right). It was sufficient to use
RFECV for both F02P01 and B02P01, therefore RFE was used.

hourly precip 0.561 0.136 x 0.52 0.167 x

abs moisture flux 925 0.403 0.016 x 0.253 0.004 -

wind dir 925 0.232 0.004 x -0.099 0.005 x

F02P01 B02P01

r r
a
n
k

F
ea

t
im

p

R
F
E
C
V

r r
a
n
k

F
ea

t
im

p

R
F
E
C
V

Continued on next page

76



B FEATURE SELECTION B.3 Feature scores and selection

Table B.4: Same as table B.3, but for all feature scores for F02P01 (left) and B02P01 (right). It was sufficient to use
RFECV for both F02P01 and B02P01, therefore RFE was used. (Continued)

w upwd 925 0.241 0.011 x 0.242 0.01 x

CIN -0.126 0.005 x -0.031 0.001 -

wind dir 850 0.248 0.009 x -0.107 0.008 x

integral of surface downwelling SW -0.264 0.004 x -0.192 0.001 -

air pressure at sea level -0.281 0.007 x -0.253 0.002 x

dewpoint 925 [degC] 0.199 0.002 x 0.147 0.001 -

k index 0.327 0.017 x 0.255 0.008 x

low type cloud area fraction 0.53 0.109 x 0.438 0.052 x

air temperature 850 -0.076 0.0 x -0.024 0.0 -

specific humidity 925 0.199 0.003 x 0.147 0.0 -

windspeed 850 0.365 0.006 x 0.189 0.001 -

w upwd 850 0.212 0.005 x 0.218 0.013 x

x wind 10m 0.193 0.009 x -0.159 0.005 -

medium type cloud area fraction 0.424 0.025 x 0.41 0.085 x

x wind 925 0.424 0.082 x -0.102 0.001 x

x moisture flux 925 0.43 0.102 x -0.079 0.001 -

fog area fraction 0.438 0.008 x 0.389 0.016 x

precipitation amount acc 0.449 0.039 x 0.385 0.034 x

cloud area fraction 0.463 0.016 x 0.409 0.054 x

x wind 850 0.468 0.028 x -0.005 0.0 -

MEPS: Label 0.488 0.089 x 0.557 0.147 x

relative humidity 2m 0.49 0.077 x 0.362 0.053 x

lcl - pressure 0.492 0.021 x 0.418 0.052 x

relative humidity 925 0.492 0.019 x 0.419 0.036 x

CAPE 0.495 0.063 x 0.353 0.003 x

relative humidity 850 0.503 0.044 x 0.431 0.085 x

geopotential 500 -0.226 0.004 x -0.136 0.001 -

air temperature 2m -0.06 0.002 - -0.051 0.001 -

Temp tendency at 850hPa [dT/dt] -0.061 0.0 - 0.019 0.0 -

v tendency 10m [dv/dt] -0.07 0.0 - -0.015 0.0 -

air temperature 925 -0.061 0.001 - -0.057 0.0 -

air temperature lowest level -0.062 0.0 - -0.055 0.0 -

windspeed tendecy 925 -0.063 0.0 - -0.018 0.0 -

windspeed tendecy 850 -0.07 0.0 - -0.021 0.0 -

dewpoint 500 [degC] 0.08 0.0 - 0.164 0.001 -

specific humidity 500 0.08 0.0 - 0.164 0.001 -

Temp tendency at 925hPa [dT/dt] -0.042 0.0 - 0.03 0.0 -

RH tendency at 500hPa [dRH/dt] -0.027 0.0 - -0.033 0.0 -

windspeed tendecy 10m -0.04 0.0 - -0.002 0.0 -

Temp tendency 2m [dT/dt] 0.04 0.0 - 0.042 0.0 -

v tendency at 500hPa [dv/dt] -0.039 0.0 - 0.005 0.0 -

w upwd 500 -0.03 0.0 - 0.008 0.0 -

u tendency 10m [du/dt] 0.029 0.0 - 0.027 0.0 -

v tendency at 850hPa [dv/dt] -0.08 0.0 - -0.072 0.001 -

u tendency at 850hPa [du/dt] -0.025 0.0 - 0.023 0.0 -
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B.3 Feature scores and selection B FEATURE SELECTION

Table B.4: Same as table B.3, but for all feature scores for F02P01 (left) and B02P01 (right). It was sufficient to use
RFECV for both F02P01 and B02P01, therefore RFE was used. (Continued)

RH tendency at 925hPa [dRH/dt] 0.023 0.0 - 0.009 0.0 -

RH tendency 2m [dRH/dt] 0.021 0.001 - 0.016 0.002 x

pressure tendency [dp/dt] 0.006 0.0 - -0.151 0.001 -

u tendency at 925hPa [du/dt] -0.004 0.001 - 0.023 0.0 -

u tendency at 500hPa [du/dt] -0.004 0.0 - -0.016 0.0 -

v tendency at 925hPa [dv/dt] -0.08 0.0 - -0.061 0.0 -

high type cloud area fraction 0.166 0.0 - 0.25 0.002 -

wind dir 500 0.083 0.0 - -0.196 0.006 x

y wind 500 0.094 0.0 - 0.347 0.013 x

atmosphere boundary layer thickness 0.38 0.002 - 0.2 0.003 x

x wind 500 0.351 0.001 - -0.019 0.001 -

windspeed 925 0.35 0.002 - 0.191 0.0 -

relative humidity 700 0.334 0.004 - 0.361 0.055 x

windspeed 500 0.315 0.001 - 0.088 0.001 -

windspeed 10m 0.277 0.003 - 0.161 0.0 -

lcl - temp [degC] 0.247 0.002 - 0.187 0.002 -

y wind 10m 0.243 0.001 - 0.101 0.0 -

dewpoint 850 [degC] 0.217 0.002 - 0.16 0.0 -

relative humidity 500 0.212 0.0 - 0.238 0.005 x

precipitable water 0.201 0.003 - 0.188 0.001 -

dewpoint 700 [degC] 0.182 0.002 - 0.248 0.003 x

y moisture flux 925 0.161 0.001 - 0.288 0.006 x

wind dir 10m 0.155 0.003 - -0.048 0.001 -

y wind 925 0.147 0.0 - 0.301 0.009 x

dewpoint 2m [degC] 0.132 0.001 - 0.109 0.0 -

specific humidity 2m 0.132 0.001 - 0.109 0.0 -

air temperature 500 -0.123 0.003 - -0.002 0.001 -

air temperature 700 -0.111 0.001 - 0.006 0.002 -

clear sky toa dwSW -0.111 0.001 - -0.076 0.0 -

y wind 850 0.107 0.001 - 0.352 0.028 x

Temp tendency at 500hPa [dT/dt] -0.107 0.0 - -0.078 0.0 -

snowfall amount acc 0.102 0.0 - 0.189 0.002 -

windspeed tendecy 500 -0.002 0.0 - 0.013 0.0 -
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Table B.5: Same as table B.3, but for all feature scores for F01P02 (i.e F01P02-6h, F01P02-12h, F01P02-66h) and B01P02 (i.e B01P02-6h, B01P02-12h, B01P02-66h). For F01P02-66h it was neccisary to use RFE, where
n features = 30).

precipitation amount acc 0.64 0.24 x 0.62 0.23 x 0.31 0.05 x x 0.56 0.22 x 0.52 0.2 x 0.26 0.04 x

low type cloud area fraction 0.57 0.12 x 0.56 0.12 x 0.31 0.16 x x 0.46 0.12 - 0.45 0.13 - 0.25 0.13 x

hourly precip 0.63 0.08 x 0.6 0.09 x 0.46 0.11 x x 0.57 0.15 - 0.56 0.16 x 0.36 0.18 x

x wind 850 0.48 0.08 x 0.48 0.1 x 0.36 0.1 x x -0.0 0.0 - -0.0 0.0 - 0.0 0.0 -

relative humidity 2m 0.54 0.14 x 0.52 0.12 x 0.31 0.1 x x 0.38 0.05 - 0.38 0.05 - 0.19 0.06 x

CAPE 0.5 0.05 x 0.51 0.07 x 0.2 0.1 x x 0.36 0.02 - 0.37 0.03 - 0.19 0.03 -

fog area fraction 0.49 0.04 x 0.48 0.04 x 0.23 0.03 x x 0.42 0.03 - 0.42 0.03 - 0.22 0.04 x

cloud area fraction 0.5 0.04 x 0.48 0.01 x 0.23 0.02 x x 0.43 0.06 - 0.43 0.06 - 0.22 0.06 x

x wind 500 0.35 0.0 - 0.35 0.0 - 0.26 0.0 - - -0.02 0.0 - -0.02 0.0 - -0.03 0.0 -

y wind 925 0.14 0.0 - 0.13 0.0 - 0.17 0.0 - - 0.31 0.0 - 0.31 0.0 - 0.18 0.0 -

y wind 850 0.1 0.0 - 0.1 0.0 - 0.13 0.0 - - 0.36 0.06 - 0.36 0.05 - 0.18 0.06 x

w upwd 925 0.27 0.01 - 0.27 0.02 - 0.2 0.02 x - 0.25 0.01 - 0.24 0.02 - 0.13 0.01 -

y wind 500 0.09 0.0 - 0.09 0.0 - 0.14 0.0 - - 0.35 0.02 - 0.35 0.02 - 0.18 0.02 -

relative humidity 500 0.22 0.0 - 0.21 0.0 - 0.18 0.0 - - 0.26 0.02 - -0.26 0.02 - -0.16 0.02 -

w upwd 850 0.24 0.02 - 0.24 0.02 - 0.22 0.02 x - 0.22 0.02 - 0.23 0.02 - -0.13 0.02 -

w upwd 500 -0.04 0.0 - -0.04 0.0 - 0.03 0.0 - - 0.01 0.0 - -0.02 0.0 - 0.03 0.0 -

clear sky toa dwSW -0.11 0.0 - -0.13 0.0 - -0.1 0.0 - - -0.04 0.0 - -0.06 0.0 - 0.03 0.0 -

CIN -0.12 0.0 - -0.12 0.01 - -0.14 0.01 x - -0.01 0.0 - 0.01 0.0 - -0.02 0.0 -

x wind 925 0.44 0.05 - 0.44 0.05 x 0.31 0.07 x x -0.1 0.0 - -0.1 0.0 - 0.06 0.0 -

air temperature 500 -0.12 0.0 - -0.12 0.0 - -0.02 0.0 - - 0.0 0.0 - -0.0 0.0 - 0.01 0.0 -

relative humidity 925 0.53 0.06 - 0.52 0.07 x 0.29 0.09 x - 0.44 0.09 - 0.43 0.08 - 0.23 0.16 x

geopotential 500 -0.22 0.0 - -0.23 0.0 - -0.13 0.01 x - -0.14 0.0 - -0.14 0.0 - -0.06 0.0 -

snowfall amount acc 0.14 0.0 - 0.13 0.0 - -0.01 0.0 - - 0.26 0.01 - 0.25 0.01 - 0.15 0.01 -

air temperature 850 -0.07 0.0 - -0.08 0.0 - 0.01 0.0 - - -0.02 0.0 - -0.03 0.0 - -0.03 0.0 -

air temperature 925 -0.06 0.0 - -0.06 0.0 - 0.0 0.0 x - -0.06 0.0 - -0.06 0.0 - 0.05 0.0 -

medium type cloud area fraction 0.44 0.01 - 0.43 0.01 x 0.31 0.03 x x 0.44 0.1 - 0.44 0.1 - 0.24 0.1 x

high type cloud area fraction 0.16 0.0 - 0.17 0.0 - 0.16 0.0 - - 0.25 0.0 - 0.25 0.0 - 0.15 0.0 -

atmosphere boundary layer thickness 0.38 0.02 - 0.39 0.02 - 0.28 0.03 x - 0.21 0.01 - -0.23 0.01 - 0.09 0.02 -

integral of surface downwelling SW -0.24 0.0 - -0.32 0.01 - -0.17 0.01 x - -0.15 0.0 - -0.16 0.0 - -0.07 0.0 -

y wind 10m 0.25 0.0 - 0.24 0.0 - 0.22 0.0 - - 0.1 0.0 - 0.1 0.0 - 0.06 0.0 -

x wind 10m 0.2 0.0 - 0.21 0.0 - 0.17 0.01 x - -0.17 0.0 - 0.21 0.0 - -0.07 0.0 -

air temperature lowest level -0.07 0.0 - -0.07 0.0 - -0.01 0.0 - - -0.06 0.0 - -0.06 0.0 - 0.06 0.0 -

air temperature 2m -0.07 0.0 - -0.06 0.0 - -0.01 0.0 - - -0.06 0.0 - -0.06 0.0 - 0.04 0.0 -

air pressure at sea level -0.28 0.01 - -0.28 0.01 - -0.22 0.02 x - -0.26 0.0 - 0.26 0.0 - 0.15 0.01 -
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Table B.5: Same as table B.3, but for all feature scores for F01P02 (i.e F01P02-6h, F01P02-12h, F01P02-66h) and B01P02 (i.e B01P02-6h, B01P02-12h, B01P02-66h). For F01P02-66h it was neccisary to use RFE, where
n features = 30). (Continued)

Hours since model init 0.0 0.0 - 0.0 0.0 - -0.0 0.0 - - -0.0 0.0 - 0.0 0.0 - 0.0 0.0 -
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Table B.6: Same as table B.3, but for all feature scores for F02P02 (i.e F02P02-6h, F02P02-12h, F02P02-66h) and B02P02 (i.e B02P02-6h, B02P02-12h, B02P02-66h). It was neccisary to do the extra step of RFE for all
subsets of F02P02, with n features = 30).

precipitation amount acc 0.64 0.14 x x 0.62 0.14 x x 0.46 0.04 x x 0.56 0.19 x 0.52 0.15 x 0.25 0.02 x

k index 0.34 0.02 x x 0.33 0.02 x x 0.23 0.02 x x 0.27 0.0 - 0.26 0.0 - 0.18 0.0 x

relative humidity 850 0.54 0.05 x x 0.52 0.04 x x 0.31 0.05 x x 0.45 0.04 - 0.45 0.08 x 0.21 0.07 x

MEPS: Label 0.55 0.08 x x 0.53 0.07 x x 0.36 0.1 x x 0.65 0.12 - 0.63 0.15 x 0.34 0.16 x

hourly precip 0.63 0.13 x x 0.6 0.14 x x 0.39 0.13 x x 0.57 0.15 - 0.56 0.14 x 0.36 0.18 x

CAPE 0.5 0.04 x x 0.51 0.06 x x 0.31 0.06 x x 0.36 0.0 - 0.37 0.01 - 0.15 0.0 x

windspeed 10m 0.27 0.0 x x 0.28 0.0 x - -0.22 0.0 x - 0.18 0.0 - 0.17 0.0 - 0.07 0.0 -

w upwd 925 0.27 0.01 x x -0.28 0.01 x x 0.22 0.01 x x 0.25 0.01 - 0.26 0.02 - 0.18 0.01 x

windspeed 925 0.35 0.0 x x 0.34 0.0 x - 0.23 0.0 x - 0.19 0.0 - 0.2 0.0 - 0.12 0.0 -

windspeed 850 0.37 0.0 x x 0.37 0.0 x x 0.25 0.0 x x 0.19 0.0 - 0.2 0.0 - 0.13 0.0 -

dewpoint 700 [degC] 0.19 0.0 x x 0.18 0.0 x - 0.17 0.0 x - 0.26 0.0 - 0.26 0.0 - 0.18 0.0 x

x wind 850 0.48 0.02 x x 0.48 0.03 x x 0.28 0.03 x x -0.0 0.0 - 0.0 0.0 - -0.02 0.0 -

x wind 925 0.44 0.08 x x 0.43 0.06 x x 0.27 0.08 x x -0.1 0.0 - -0.1 0.0 - -0.07 0.0 -

relative humidity 500 0.22 0.0 x x 0.21 0.0 x x 0.18 0.0 x - 0.26 0.0 - 0.24 0.0 - 0.13 0.01 x

dewpoint 925 [degC] 0.21 0.0 x x 0.21 0.0 x - -0.17 0.0 x - 0.15 0.0 - 0.15 0.0 - 0.15 0.0 -

geopotential 500 -0.23 0.0 x x -0.23 0.0 x x 0.18 0.01 x x -0.14 0.0 - -0.14 0.0 - -0.03 0.0 -

relative humidity 925 0.53 0.02 x x 0.52 0.02 x x 0.31 0.02 x x 0.44 0.04 - 0.44 0.04 - 0.22 0.04 x

relative humidity 700 0.36 0.0 x x 0.35 0.0 x x 0.25 0.0 x x 0.4 0.05 - 0.38 0.04 x 0.19 0.05 x

relative humidity 2m 0.54 0.08 x x 0.53 0.1 x x 0.35 0.07 x x 0.39 0.03 - 0.38 0.04 - 0.19 0.04 x

fog area fraction 0.49 0.01 x x 0.48 0.01 x x 0.29 0.01 x x 0.43 0.01 - 0.42 0.01 - 0.05 0.02 x

cloud area fraction 0.5 0.05 x x 0.48 0.02 x x 0.31 0.02 x x 0.43 0.06 - 0.43 0.06 x 0.18 0.06 x

medium type cloud area fraction 0.44 0.02 x x 0.44 0.02 x x 0.28 0.02 x x 0.44 0.08 - 0.43 0.09 x 0.26 0.08 x

low type cloud area fraction 0.57 0.1 x x 0.56 0.1 x x 0.36 0.1 x x 0.46 0.08 - 0.45 0.06 x 0.24 0.07 x

lcl - pressure 0.53 0.03 x x 0.52 0.03 x x 0.31 0.02 x x 0.44 0.04 - 0.43 0.02 x 0.21 0.05 x

air pressure at sea level -0.28 0.0 x x -0.32 0.0 x x 0.22 0.01 x x -0.26 0.0 - -0.26 0.0 - -0.16 0.0 x

atmosphere boundary layer thickness 0.38 0.01 x x 0.39 0.01 x - 0.26 0.0 x x 0.21 0.0 - 0.21 0.0 - 0.15 0.0 -

wind dir 925 0.25 0.0 x x 0.25 0.0 x x 0.2 0.0 x x -0.11 0.0 - -0.11 0.0 - -0.03 0.0 x

precipitable water 0.21 0.0 x x 0.21 0.0 x x 0.17 0.0 x x 0.19 0.0 - 0.19 0.0 - 0.19 0.0 -

x wind 10m 0.2 0.0 x x 0.2 0.0 x x 0.17 0.01 x x -0.17 0.0 - -0.16 0.0 - -0.07 0.0 -

x moisture flux 925 0.45 0.06 x x 0.45 0.06 x x 0.28 0.09 x x -0.08 0.0 - -0.08 0.0 - -0.07 0.0 -

windspeed tendecy 500 -0.01 0.0 - - -0.0 0.0 - - 0.0 0.0 - - 0.02 0.0 - 0.01 0.0 - 0.01 0.0 -

u tendency at 850hPa [du/dt] -0.01 0.0 - - 0.01 0.0 - - -0.0 0.0 x - 0.03 0.0 - 0.02 0.0 - 0.04 0.0 -

RH tendency 2m [dRH/dt] 0.02 0.0 x - 0.02 0.0 - - 0.0 0.0 x - 0.03 0.0 - 0.02 0.0 - 0.01 0.0 -

u tendency at 925hPa [du/dt] 0.01 0.0 - - -0.01 0.0 x x 0.0 0.0 x - 0.05 0.0 - 0.04 0.0 - 0.04 0.0 -

F02P02-6h F02P02-12h F02P02-66h B02P02-6h B02P02-12h B02P02-66h

S
p
e
a
rm

a
n

F
e
a
t
im

p

R
F
E
C
V

R
F
E

S
p
e
a
rm

a
n

F
e
a
t
im

p

R
F
E
C
V

R
F
E

S
p
e
a
rm

a
n

F
e
a
t
im

p

R
F
E
C
V

R
F
E

S
p
e
a
rm

a
n

F
e
a
t
im

p

R
F
E
C
V

S
p
e
a
rm

a
n

F
e
a
t
im

p

R
F
E
C
V

S
p
e
a
rm

a
n

F
e
a
t
im

p

R
F
E
C
V

Continued on next page

81



B
.3

F
ea
tu
re

sco
res

a
n
d
selectio

n
B

F
E
A
T
U
R
E

S
E
L
E
C
T
IO

N

Table B.6: Same as table B.3, but for all feature scores for F02P02 (i.e F02P02-6h, F02P02-12h, F02P02-66h) and B02P02 (i.e B02P02-6h, B02P02-12h, B02P02-66h). It was neccisary to do the extra step of RFE for all
subsets of F02P02, with n features = 30). (Continued)

pressure tendency [dp/dt] 0.03 0.0 x - 0.03 0.0 - - -0.01 0.0 x - -0.14 0.0 - -0.15 0.0 - -0.11 0.0 -

v tendency 10m [dv/dt] -0.08 0.0 - - 0.08 0.0 x - 0.06 0.0 x - 0.0 0.0 - -0.01 0.0 - 0.0 0.0 -

u tendency 10m [du/dt] 0.04 0.0 x - -0.04 0.0 - - 0.01 0.0 - - 0.04 0.0 - 0.04 0.0 - 0.03 0.0 -

Temp tendency 2m [dT/dt] 0.05 0.0 - - -0.06 0.0 x - -0.02 0.0 x - 0.04 0.0 - 0.04 0.0 - -0.0 0.0 -

Temp tendency at 500hPa [dT/dt] -0.13 0.0 - - -0.13 0.0 x - -0.13 0.0 - - -0.09 0.0 - -0.08 0.0 - -0.05 0.0 -

u tendency at 500hPa [du/dt] -0.0 0.0 - - 0.0 0.0 x - -0.0 0.0 - - -0.0 0.0 - -0.02 0.0 - 0.0 0.0 -

v tendency at 925hPa [dv/dt] -0.1 0.0 - - 0.1 0.0 x - 0.11 0.0 - - -0.06 0.0 - -0.06 0.0 - -0.04 0.0 -

v tendency at 850hPa [dv/dt] -0.1 0.0 - - -0.1 0.0 x - 0.11 0.0 - - -0.08 0.0 - -0.08 0.0 - -0.05 0.0 -

v tendency at 500hPa [dv/dt] -0.04 0.0 - - 0.04 0.0 - - -0.01 0.0 - - 0.0 0.0 - -0.0 0.0 - 0.01 0.0 -

Temp tendency at 925hPa [dT/dt] -0.03 0.0 - - 0.03 0.0 x - 0.01 0.0 - - 0.03 0.0 - 0.02 0.0 - 0.0 0.0 -

Temp tendency at 850hPa [dT/dt] -0.07 0.0 x - -0.07 0.0 x - 0.05 0.0 - - 0.02 0.0 - 0.02 0.0 - 0.0 0.0 -

windspeed tendecy 925 -0.08 0.0 x - -0.08 0.0 x - 0.07 0.0 - - -0.0 0.0 - -0.01 0.0 - -0.02 0.0 -

RH tendency at 925hPa [dRH/dt] 0.03 0.0 - - -0.03 0.0 x - -0.01 0.0 x - 0.02 0.0 - 0.0 0.0 - 0.0 0.0 -

RH tendency at 500hPa [dRH/dt] -0.04 0.0 x - -0.04 0.0 x - -0.01 0.0 - - -0.05 0.0 - -0.04 0.0 - -0.03 0.0 -

dewpoint 850 [degC] 0.23 0.0 - - 0.23 0.0 x x 0.18 0.0 x - 0.17 0.0 - 0.17 0.0 - 0.15 0.0 -

lcl - temp [degC] 0.26 0.0 x - 0.27 0.0 x - 0.21 0.0 x x 0.19 0.0 - 0.19 0.0 - 0.17 0.0 -

abs moisture flux 925 0.41 0.02 x - 0.41 0.02 x x 0.26 0.02 x x 0.26 0.0 - 0.26 0.0 - 0.24 0.0 -

y moisture flux 925 0.16 0.0 - - 0.16 0.0 - - -0.16 0.0 x - 0.29 0.0 - 0.29 0.0 - 0.23 0.0 -

windspeed tendecy 850 -0.08 0.0 - - 0.09 0.0 x - -0.07 0.0 - - -0.03 0.0 - -0.03 0.0 - -0.02 0.0 -

dewpoint 2m [degC] 0.15 0.0 x - 0.14 0.0 x - 0.14 0.0 x - 0.11 0.0 - 0.11 0.0 - 0.13 0.0 -

windspeed tendecy 10m -0.04 0.0 - - -0.05 0.0 x - -0.01 0.0 - - -0.0 0.0 - -0.01 0.0 - 0.0 0.0 -

wind dir 500 0.08 0.0 x - -0.09 0.0 x - -0.08 0.0 x - -0.2 0.0 - -0.19 0.0 - -0.07 0.0 x

air temperature 2m -0.07 0.0 x - -0.07 0.0 x - -0.03 0.0 x - -0.06 0.0 - -0.06 0.0 - 0.03 0.0 -

air temperature lowest level -0.07 0.0 x - -0.07 0.0 x - -0.04 0.0 x - -0.06 0.0 - -0.06 0.0 - 0.03 0.0 -

y wind 10m 0.25 0.0 x - 0.26 0.0 x - 0.2 0.0 x - 0.1 0.0 - 0.1 0.0 - 0.09 0.0 -

integral of surface downwelling SW -0.24 0.0 x - 0.24 0.0 x x 0.18 0.01 x x -0.15 0.0 - -0.23 0.0 - -0.06 0.0 -

high type cloud area fraction 0.16 0.0 - - 0.17 0.0 x - 0.16 0.0 x - 0.25 0.0 - 0.26 0.0 - 0.15 0.0 -

air temperature 925 -0.06 0.0 x - -0.06 0.0 x - 0.03 0.0 x - -0.06 0.0 - -0.06 0.0 - 0.04 0.0 -

air temperature 850 -0.07 0.0 - - -0.07 0.0 x - -0.06 0.0 x - -0.02 0.0 - -0.02 0.0 - 0.06 0.0 -

air temperature 500 -0.12 0.0 x - -0.12 0.0 x - 0.12 0.0 x - 0.0 0.0 - -0.0 0.0 - 0.06 0.0 -

x wind 500 0.35 0.0 - - 0.35 0.0 x - 0.24 0.0 x - -0.02 0.0 - -0.02 0.0 - -0.03 0.0 -

y wind 925 0.14 0.0 - - 0.13 0.0 x - -0.13 0.0 x - 0.31 0.0 - 0.31 0.01 - 0.18 0.01 x

y wind 850 0.1 0.0 - - -0.09 0.0 x - -0.1 0.0 x - 0.36 0.02 - 0.36 0.02 - 0.23 0.03 x

y wind 500 0.09 0.0 x - 0.09 0.0 x - -0.09 0.0 x - 0.35 0.01 - 0.35 0.01 - 0.22 0.01 x
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Table B.6: Same as table B.3, but for all feature scores for F02P02 (i.e F02P02-6h, F02P02-12h, F02P02-66h) and B02P02 (i.e B02P02-6h, B02P02-12h, B02P02-66h). It was neccisary to do the extra step of RFE for all
subsets of F02P02, with n features = 30). (Continued)

w upwd 850 0.24 0.01 - - 0.24 0.01 x - 0.19 0.0 x x 0.22 0.01 - 0.23 0.0 - 0.19 0.0 x

w upwd 500 -0.04 0.0 - - -0.04 0.0 x - 0.01 0.0 - - 0.01 0.0 - 0.01 0.0 - 0.0 0.0 -

clear sky toa dwSW -0.11 0.0 - - -0.11 0.0 - - 0.12 0.0 x - -0.04 0.0 - -0.06 0.0 - 0.01 0.0 -

CIN -0.12 0.0 - - -0.12 0.0 x - 0.12 0.01 x x -0.01 0.0 - -0.03 0.0 - -0.13 0.0 -

Hours since model init 0.0 0.0 - - -0.0 0.0 - - -0.0 0.0 - - -0.0 0.0 - -0.0 0.0 - 0.0 0.0 -

air temperature 700 -0.11 0.0 - - -0.12 0.0 - - -0.12 0.0 x - 0.01 0.0 - 0.01 0.0 - 0.07 0.0 -

dewpoint 500 [degC] 0.08 0.0 - - -0.08 0.0 - - 0.06 0.0 x - 0.17 0.0 - 0.16 0.0 - 0.13 0.0 -

snowfall amount acc 0.14 0.0 - - 0.13 0.0 x - 0.13 0.0 x - 0.26 0.03 - 0.25 0.02 - 0.06 0.0 -

specific humidity 925 0.21 0.0 x - 0.21 0.0 x - -0.17 0.0 x - 0.15 0.0 - 0.15 0.0 - 0.16 0.0 -

specific humidity 500 0.08 0.0 - - 0.08 0.0 x - -0.06 0.0 x - 0.17 0.0 - 0.16 0.0 - 0.15 0.0 -

windspeed 500 0.32 0.0 x - 0.32 0.0 x - 0.23 0.0 x - 0.09 0.0 - 0.08 0.0 - 0.06 0.0 -

wind dir 10m 0.16 0.0 - - 0.15 0.0 x - 0.14 0.0 x - -0.06 0.0 - -0.05 0.0 - -0.02 0.0 -

wind dir 850 0.25 0.01 x - 0.26 0.01 x x 0.2 0.01 x - -0.11 0.0 - -0.11 0.0 - -0.03 0.01 x

specific humidity 2m 0.15 0.0 - - 0.14 0.0 x - -0.14 0.0 x - 0.11 0.0 - 0.11 0.0 - 0.14 0.0 -
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B.4 Combined dataset B FEATURE SELECTION

B.4 Combined dataset

Table B.7: Features scores for the combined dataset FB. Spearman rank, rrank, and feature importance is the two left
columns, while which features were selected by RFECV and RFE is shown in the two columns to the right. Note
that both zonal and meridional wind was selected by the RFECV, but only zonal for the RFE. This emphasises
the need to feature engineer location specific features (such as wind which is very influenced by local topography)
in order to train on a combined dataset.

precipitation amount acc 0.375 0.054 x x

atmosphere boundary layer thickness 0.272 0.032 x x

x wind 925 0.207 0.022 x x

relative humidity 925 0.384 0.092 x x

air temperature 925 -0.046 0.008 x x

cloud area fraction 0.374 0.037 x x

medium type cloud area fraction 0.351 0.035 x x

low type cloud area fraction 0.418 0.17 x x

CAPE 0.393 0.088 x x

x wind 10m 0.073 0.007 x x

CIN -0.072 0.01 x x

relative humidity 2m 0.383 0.129 x x

air temperature 2m -0.04 0.009 x x

hourly precip 0.467 0.147 x x

x wind 850 0.261 0.033 x x

clear sky toa dwSW -0.084 0.0 - -

w upwd 500 -0.004 0.0 - -

x wind 500 0.2 0.004 - -

w upwd 850 0.157 0.018 x -

w upwd 925 0.179 0.013 x -

y wind 500 0.144 0.002 - -

y wind 850 0.162 0.005 - -

y wind 925 0.172 0.006 x -

air temperature 500 -0.067 0.003 - -

relative humidity 500 0.177 0.002 - -

geopotential 500 -0.164 0.006 x -

snowfall amount acc 0.108 0.001 - -

air temperature 850 -0.046 0.004 x -

fog area fraction 0.347 0.037 x -

high type cloud area fraction 0.16 0.0 - -

integral of surface downwelling SW -0.207 0.004 - -

y wind 10m 0.19 0.006 x -

air temperature lowest level -0.04 0.006 x -

air pressure at sea level -0.229 0.011 x -

Hours since model init 0.001 0.0 - -

[FB] Spear-
man rank

[FB] Feature
Importance

[FB] RFECV [FB] RFE
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B.5 ROC curves
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Figure B.5: Figure shows ROC curve for all models trained for feature selection. Left columns shows the ROC
curves for Florida, showing F01P01 and F02P01 to the upper left, F01P02 in the middle and F02P02 in the lower
left. The equivalent for Blindern is found on the right. The different models refer to the base RFC trained on the
different feature selections, with base referring to all features, and RFECV/RFE refer to the base RFC trained
on features marked with x in tables B.3, B.5, B.4 and B.6.
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B.6 Verification metrics

B.6.1 Florida

Table B.8: Table shows the verification metrics for all models run during feature selection for Florida. the upper panel
shows the model performance of F01P01 and F02P01, and the following panels shows model performance for
P02-6h, P02-12h and P02-66h respectively for both F01 and F02. The different models referred is tha same as
explained in fig. B.5.

[F01P01]
Base

[F02P01]
Base

[F01P01]
RFECV

[F01P01]
RFE

- - MEPS

ACC 0.84 0.83 0.84 0.83 - - 0.79

POD 0.65 0.65 0.66 0.66 - - 0.5

POFD 0.09 0.09 0.09 0.1 - - 0.09

FAR 0.26 0.27 0.27 0.27 - - 0.32

SR 0.74 0.73 0.73 0.73 - - 0.68

CSI 0.53 0.52 0.53 0.53 - - 0.4

SS 0.42 0.41 0.42 0.41 - - 0.26

Bias 0.88 0.89 0.9 0.91 - - 0.73

[F01P02-
6h] Base

[F02P02-
6h] Base

[F01P02-
6h]
RFECV

[F01P02-
6h] RFE

[F02P02]
6h RFECV

[F02P02]
6h rfe

[6h] MEPS

ACC 0.85 0.85 0.85 - 0.86 0.86 0.82

POD 0.65 0.67 0.65 - 0.69 0.69 0.54

POFD 0.07 0.07 0.07 - 0.08 0.08 0.07

FAR 0.21 0.22 0.21 - 0.23 0.23 0.24

SR 0.79 0.78 0.79 - 0.77 0.77 0.76

CSI 0.56 0.56 0.55 - 0.57 0.57 0.46

SS 0.48 0.48 0.48 - 0.49 0.49 0.37

Bias 0.83 0.85 0.82 0.9 0.9 0.72

[F01P02-
12h] Base

[F02P02-
12h] Base

[F01P02-
12h]
RFECV

[F01P02-
12h] RFE

[F02P02-
12h]
RFECV

[F02P02-
12h] RFE

[12h]
MEPS

ACC 0.85 0.83 0.85 - 0.83 0.83 0.8

POD 0.65 0.62 0.67 - 0.64 0.64 0.52

POFD 0.07 0.09 0.08 - 0.09 0.09 0.09

FAR 0.22 0.27 0.23 - 0.27 0.27 0.32

SR 0.78 0.73 0.77 - 0.73 0.73 0.68

CSI 0.55 0.5 0.56 - 0.52 0.52 0.42

SS 0.46 0.39 0.47 - 0.41 0.4 0.28

Bias 0.84 0.85 0.87 0.87 0.88 0.76

[F01P02-
66h] Base

[F02P02-
66h] Base

[F01P02-
66h]
RFECV

[F01P02-
66h] RFE

[F02P02-
66h]
RFECV

[F02P02-
66h] RFE

[66h]
MEPS

ACC 0.83 0.83 0.83 0.83 0.83 0.83 0.79

POD 0.64 0.63 0.65 0.66 0.63 0.64 0.49

POFD 0.09 0.09 0.1 0.1 0.09 0.09 0.09

FAR 0.27 0.26 0.27 0.28 0.26 0.27 0.31

SR 0.73 0.74 0.73 0.72 0.74 0.73 0.69

CSI 0.52 0.52 0.53 0.53 0.52 0.52 0.4

SS 0.41 0.41 0.41 0.41 0.41 0.41 0.27

Bias 0.88 0.86 0.9 0.92 0.86 0.87 0.71
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B.6.2 Blindern

Table B.9: same as for tab. B.8, but for all models run during feature selection for Blindern. the upper panel shows the
model performance of B01P01 and B02P01, and the following panels shows model performance for P02-6h,
P02-12h and P02-66h respectively for both B01 and B02.

[B01P01] [B02P01] [B01P01]
RFECV

[B02P01]
RFECV

MEPS

ACC 0.9 0.9 0.9 0.9 0.89

POD 0.44 0.49 0.49 0.51 0.56

POFD 0.03 0.03 0.03 0.03 0.05

FAR 0.26 0.26 0.29 0.28 0.37

SR 0.74 0.74 0.71 0.72 0.63

CSI 0.38 0.42 0.41 0.43 0.42

SS 0.29 0.32 0.29 0.32 0.23

Bias 0.6 0.67 0.68 0.71 0.9

[B01P02-6h]
Base

[B02P02-6h]
Base

[B01P02-6h]
RFECV

[B02P02-6h]
RFECV

[6h] MEPS

ACC 0.91 0.91 0.91 0.91 0.91

POD 0.51 0.54 0.62 0.59 0.62

POFD 0.02 0.03 0.04 0.04 0.04

FAR 0.17 0.24 0.27 0.31 0.27

SR 0.83 0.76 0.73 0.69 0.73

CSI 0.46 0.47 0.51 0.47 0.5

SS 0.41 0.38 0.4 0.33 0.38

Bias 0.61 0.71 0.85 0.86 0.85

[B01P02-12h]
Base

[B02P02-12h]
Base

[B01P02-12h]
RFECV

[B02P02-12h]
RFECV

[12h] MEPS

ACC 0.91 0.92 0.92 0.92 0.91

POD 0.46 0.59 0.6 0.63 0.65

POFD 0.01 0.03 0.02 0.04 0.05

FAR 0.15 0.21 0.19 0.25 0.31

SR 0.85 0.79 0.81 0.75 0.69

CSI 0.43 0.51 0.53 0.52 0.5

SS 0.38 0.44 0.47 0.42 0.36

Bias 0.54 0.75 0.74 0.84 0.95

[B01P02-66h]
Base

[B02P02-66h]
Base

[B01P02-66h]
RFECV

[B02P02-66h]
RFECV

[66h] MEPS

ACC 0.9 0.9 0.9 0.89 0.88

POD 0.43 0.46 0.48 0.47 0.56

POFD 0.03 0.03 0.03 0.03 0.06

FAR 0.26 0.29 0.3 0.3 0.39

SR 0.74 0.71 0.7 0.7 0.61

CSI 0.37 0.38 0.4 0.39 0.41

SS 0.28 0.27 0.28 0.27 0.2

Bias 0.59 0.65 0.69 0.67 0.92

B.6.3 F03 and FB

For curiosity, a dataset with manually selected features from F01 and a dataset combining both F01 and B01 were also
tested. The results of this can be seen in table B.10.
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Table B.10: Verfication metrics for F03 (left) and FB (middle to right). As F03 is pre-picked features, therefore no RFECV
was used, only the verification metrics for the base RFC is shown on the left. For FB, both RFECV and RFE,
in addition to the base metrics, is shown on the right side of the table.

ACC 0.83 0.8 0.85 0.85 0.85 0.82

POD 0.65 0.5 0.44 0.46 0.46 0.48

POFD 0.1 0.09 0.04 0.05 0.05 0.09

FAR 0.27 0.3 0.27 0.27 0.28 0.4

SR 0.73 0.7 0.73 0.73 0.72 0.6

CSI 0.52 0.41 0.38 0.39 0.39 0.36

SS 0.41 0.29 0.28 0.29 0.28 0.16

Bias 0.89 0.72 0.6 0.62 0.64 0.8

[F03P01]
Base

MEPS [FB] Base [FB]
RFECV

[FB] RFE MEPS

C Random forest
The results presented below is from the randomly split data.

C.1 Model selection

C.1.1 Hyper-parameter search

Table C.11: Hyperparameters selected by GridSearchCV for each P01 dataset (random split). Selected features refers to the
dataset with the RFECV/RFE selected features. In contrast, all features refers to the original dataset without
any feature selection.

F
0
1
P
0
1 Selected features 0.0 balanced subsample’ gini’ 10 250

All features 0.0 ’balanced’ ’entropy’ 25 250

F
0
2
P
0
1 Selected features 0.0 ’balanced subsample’ ’entropy’ 25 750

All features 0.0 ’balanced’ entropy’ 25 500

B
0
1
P
0
1 Selected features 0.0 ’ balanced’ ’gini’ 10 250

All features 0.0 ’balanced subsample’ ’ entropy’ 10 50

B
0
2
P
0
1 Selected features 0.0 ’balanced subsample’ ’entropy’ 25 500

All features 0.0 ’balanced subsample’ ’entropy 10 250

ccp alpha class weight criterion max
depth

n estima-
tors

Table C.12: Similar as tab. C.11, but the hyperparameters selected by GridSearchCV for all P02 dataset. Also note that
for the P02 datasets, the grid-search was only done on the RFECV/RFE-selected features, thus F01P01-6h
refers to the selected feature of F01P02-6h only, and equivalent for the rest o the P02 datasets.

F01P02-6h 0.015 balanced gini 5 50

ccp alpha class weight criterion max depth n estimators

Continued on next page

89



C.1 Model selection C RANDOM FOREST

Table C.12: Similar as tab. C.11, but the hyperparameters selected by GridSearchCV for all P02 dataset. Also note that
for the P02 datasets, the grid-search was only done on the RFECV/RFE-selected features, thus F01P01-6h
refers to the selected feature of F01P02-6h only, and equivalent for the rest o the P02 datasets. (Continued)

F01P02-12h 0.015 balanced subsample gini 10 750

F01P02-66h 0.0 balanced gini 25 50

F02P02-6h 0.015 balanced subsample entropy 5 50

F02P02-12h 0.015 balanced subsample entropy 10 500

F02P02-66h 0.0 balanced entropy 10 50

B01P02-6h 0.0 balanced subsample gini 5 50

B01P02-12h 0.015 balanced entropy 5 500

B01P02-66h 0.0 balanced entropy 25 50

B02P02-6h 0.015 balanced gini 5 50

B02P02-12h 0.015 balanced entropy 5 250

B02P02-66h 0.0 balanced entropy 10 750

ccp alpha class weight criterion max depth n estimators

C.1.2 Model selection

Table C.13: Verification metrics for all P01 datasets (random split), evaluated on validation data in the model selection.
The table is divided into a section for each dataset, with each section containing the verification metrics for the
GridSearchCV model with the selected features and all features, as well as base RFC with the selected features
only. GridSearchCV here reference the random forest classifier (RFC) with the hyperparameters (as seen in
tab. C.11 and C.12) found in the grid-search, while Base refers to the base RFC used in feature selection
(settings specified in tab. 6 in sec. 6.1.2)

F
0
1
P
0
1 GridSearchCV 0.81 0.86 0.21 0.38 0.62 0.56 0.33 1.39

GridSearchCV (All features) 0.81 0.86 0.21 0.38 0.62 0.57 0.34 1.39

Base 0.83 0.66 0.1 0.27 0.73 0.53 0.41 0.9

MEPS 0.8 0.5 0.09 0.3 0.7 0.41 0.29 0.72

F
0
2
P
0
1 GridSearchCV 0.81 0.86 0.2 0.38 0.62 0.56 0.34 1.38

GridSearchCV (All features) 0.82 0.86 0.2 0.37 0.63 0.57 0.34 1.37

Base 0.83 0.65 0.1 0.28 0.72 0.52 0.4 0.9

MEPS 0.79 0.5 0.09 0.32 0.68 0.4 0.26 0.73

B
0
1
P
0
1 GridSearchCV 0.84 0.83 0.16 0.54 0.46 0.42 −0.16 1.81

GridSearchCV (All features) 0.83 0.84 0.17 0.55 0.45 0.42 −0.17 1.86

Base 0.9 0.48 0.03 0.28 0.72 0.4 0.29 0.67

MEPS 0.89 0.56 0.05 0.37 0.63 0.42 0.23 0.9

B
0
2
P
0
1 GridSearchCV 0.84 0.85 0.16 0.52 0.48 0.44 −0.08 1.78

GridSearchCV (All features) 0.85 0.85 0.15 0.52 0.48 0.44 −0.07 1.77

Base 0.9 0.51 0.03 0.28 0.72 0.43 0.32 0.71

MEPS 0.89 0.58 0.06 0.36 0.64 0.44 0.25 0.91

ACC POD POFD FAR SR CSI SS Bias
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Table C.14: Same as tab. C.13, but for the model selection of all P02 datasets, evaluated on the validation data.

F
0
1
P
0
2
-6

h GridSearchCV 0.82 0.88 0.2 0.38 0.62 0.57 0.35 1.4

Base 0.85 0.66 0.07 0.21 0.79 0.56 0.48 0.84

MEPS 0.82 0.54 0.07 0.24 0.76 0.46 0.37 0.72

F
0
1
P
0
2
-1

2
h GridSearchCV 0.82 0.86 0.2 0.36 0.64 0.58 0.37 1.35

Base 0.85 0.65 0.07 0.22 0.78 0.55 0.46 0.83

MEPS 0.81 0.54 0.08 0.27 0.73 0.45 0.34 0.74

F
0
1
P
0
2
-6

6
h GridSearchCV 0.8 0.86 0.22 0.39 0.61 0.55 0.31 1.4

Base 0.83 0.65 0.1 0.28 0.72 0.52 0.4 0.91

MEPS 0.79 0.5 0.09 0.32 0.68 0.4 0.27 0.73

F
0
2
P
0
2
-6

h GridSearchCV 0.82 0.88 0.2 0.37 0.63 0.58 0.37 1.4

Base 0.86 0.69 0.07 0.22 0.78 0.58 0.5 0.88

MEPS 0.83 0.57 0.07 0.24 0.76 0.48 0.39 0.74

F
0
2
P
0
2
-1

2
h GridSearchCV 0.81 0.87 0.22 0.39 0.61 0.56 0.31 1.43

Base 0.84 0.66 0.09 0.27 0.73 0.53 0.42 0.91

MEPS 0.8 0.52 0.09 0.32 0.68 0.42 0.28 0.76

F
0
2
P
0
2
-6

6
h GridSearchCV 0.81 0.86 0.21 0.38 0.62 0.56 0.33 1.38

Base 0.83 0.64 0.09 0.27 0.73 0.52 0.4 0.88

MEPS 0.79 0.49 0.09 0.31 0.69 0.4 0.27 0.71

B
0
1
P
0
2
-6

h GridSearchCV 0.86 0.85 0.14 0.49 0.51 0.47 0.04 1.66

Base 0.91 0.62 0.04 0.27 0.73 0.51 0.4 0.85

MEPS 0.91 0.63 0.04 0.26 0.74 0.52 0.41 0.86

B
0
1
P
0
2
-1

2
h GridSearchCV 0.88 0.86 0.12 0.45 0.55 0.5 0.15 1.57

Base 0.92 0.6 0.02 0.19 0.81 0.53 0.47 0.74

MEPS 0.92 0.67 0.04 0.26 0.74 0.54 0.43 0.91

B
0
1
P
0
2
-6

6
h GridSearchCV 0.83 0.83 0.17 0.55 0.45 0.41 -0.2 1.86

Base 0.9 0.48 0.04 0.3 0.7 0.4 0.28 0.69

MEPS 0.88 0.56 0.06 0.39 0.61 0.41 0.2 0.93

B
0
2
P
0
2
-6

h GridSearchCV 0.87 0.84 0.12 0.48 0.52 0.48 0.08 1.6

Base 0.91 0.59 0.04 0.31 0.69 0.47 0.33 0.86

MEPS 0.91 0.62 0.04 0.27 0.73 0.5 0.38 0.85

ACC POD POFD FAR SR CSI SS Bias

Continued on next page
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Table C.14: Same as tab. C.13, but for the model selection of all P02 datasets, evaluated on the validation data. (Continued)

B
0
2
P
0
2
-1

2
h GridSearchCV 0.86 0.86 0.14 0.49 0.51 0.47 0.04 1.67

Base 0.92 0.63 0.04 0.25 0.75 0.52 0.42 0.85

MEPS 0.91 0.65 0.05 0.31 0.69 0.5 0.36 0.95

B
0
2
P
0
2
-6

6
h GridSearchCV 0.83 0.84 0.17 0.55 0.45 0.42 -0.18 1.85

Base 0.9 0.48 0.03 0.3 0.7 0.39 0.27 0.68

MEPS 0.88 0.56 0.06 0.39 0.61 0.41 0.2 0.92

ACC POD POFD FAR SR CSI SS Bias

C.1.3 Model evaluation

Table C.15: Verification metrics for the final random forest classifier for all datasets (random split) and MEPS, evaluated
on the previously unseen test data.

F01P01 0.83 0.65 0.1 0.27 0.73 0.52 0.4 0.89

F02P01 0.83 0.65 0.09 0.27 0.73 0.53 0.41 0.89

MEPS 0.8 0.51 0.09 0.31 0.69 0.41 0.28 0.73

F01P02-6h 0.84 0.63 0.07 0.23 0.77 0.53 0.44 0.82

F02P02-6h 0.84 0.65 0.08 0.24 0.76 0.54 0.44 0.86

MEPS 0.81 0.53 0.08 0.27 0.73 0.44 0.33 0.72

F01P02-12h 0.84 0.66 0.09 0.26 0.74 0.53 0.42 0.89

F02P02-12h 0.86 0.7 0.08 0.24 0.76 0.57 0.47 0.92

MEPS 0.8 0.52 0.09 0.31 0.69 0.43 0.29 0.76

F01P02-66h 0.83 0.65 0.1 0.28 0.72 0.52 0.39 0.91

F02P02-66h 0.83 0.64 0.09 0.27 0.73 0.52 0.4 0.88

MEPS 0.79 0.49 0.09 0.32 0.68 0.4 0.26 0.73

B01P01 0.9 0.5 0.03 0.29 0.71 0.42 0.3 0.7

B02P01 0.9 0.49 0.03 0.29 0.71 0.41 0.29 0.69

MEPS 0.89 0.58 0.06 0.37 0.63 0.43 0.24 0.92

B01P02-6h 0.9 0.54 0.04 0.3 0.7 0.44 0.31 0.78

B02P02-6h 0.91 0.61 0.04 0.28 0.72 0.49 0.37 0.84

MEPS 0.9 0.58 0.04 0.28 0.72 0.48 0.36 0.81

B01P02-12h 0.91 0.58 0.03 0.24 0.76 0.49 0.4 0.76

B02P02-12h 0.91 0.62 0.04 0.26 0.74 0.51 0.4 0.83

MEPS 0.9 0.63 0.05 0.3 0.7 0.5 0.36 0.91

B01P02-66h 0.9 0.47 0.03 0.31 0.69 0.39 0.26 0.68

B02P02-66h 0.9 0.49 0.03 0.29 0.71 0.41 0.29 0.68

MEPS 0.89 0.57 0.06 0.39 0.61 0.42 0.21 0.93

ACC POD POFD FAR SR CSI SS Bias
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Figure C.6: Left figures shows the the final (i.e base) RFC trained on the RFECV/RFE selected features for
F01P01 (upper) and F02P01 (lower). Left figures show the ROC curve, while right figures show the reliability
diagram.
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Figure C.7: Same as fig. C.6, but for F02P01 and F02P02.
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Figure C.8: Same as C.6, but for B01P01 and B01P02.
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Figure C.9: Same as C.6, but for B02P01 and B02P02.
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D NEURAL NETWORK

D Neural Network

D.1 NN trained on random split predict 2022 precipitation

Table D.16: The MAE for the NN trained on randomly drawn data compared to MEPS. The MAE is caculated from the
total forecast (i.e combined class 0 (no precipitation) and class 1 (precipitation)). The top rows show the
MAE on randomly drawn test data, and bottom rows show 2022 data between January and August. The
evaluation done with randomly drawn test data show significantly more optimistic results (i.e greater rduction
in MAE compared to MEPS) than the evaluation on 2022 data. This illustrated how auto-correlation within
the data provide a biased evalution when split randomly into training and test data.

T
e
st

d
a
ta NN 0.228 0.029 0.525 2.052 4.758

MEPS 0.299 0.062 0.65 2.468 5.844

J
a
n
-J

u
l
2
0
2
2 NN 0.413 0.157 0.647 3.408 8.608

MEPS 0.459 0.211 0.691 3.349 8.628

MAE

All rates No rain Light rain Moderate
rain

Heavy rain

Table D.17: Similarly to tab. D.16, for each induvidual class seperatly (i.e class 0: precipitation, class 1: precipitation),
all all ranges. The evaluation done on 2022 data is presented in the left column, and the evaluation done on
randomly drawn test data is shown n the right column.

C
la
ss

0 NN 0.221 0.124

MEPS 0.215 0.155

C
la
ss

1 NN 0.75 0.534

MEPS 0.408 0.761

MAE

Jan - Aug 2022 Test data
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D.2 Base NN and feature selection

Table D.18: Table show an overview of the evaluation of the base neural network (NN) (evaluated on validation data).
The three columns show the base NN trained on the features selected by the recursive feature elimination
(RFE) presented in sec. 11.2 (left), the RFE-selected features with additional tendency features (middle) and
MEPS (right). The tendency features included are marked in gray in tab. 4 in sec. 5. Note that for B01P01,
the process of model selection and final model evaluation was done on both the RFE-only features and the
RFE+tendnecy.

F
0
1
P
0
1

B
a
se

N
N Class 0 0.165 0.157 0.600

Class 1 0.666 0.635 0.976

F
0
2
P
0
1

B
a
se

N
N Class 0 0.123 0.125 0.800

Class 1 0.726 0.709 1.147

B
0
1
P
0
1

B
a
se

N
N Class 0 0.074 0.081 0.052

Class 1 0.529 0.585 0.604

o
p
t
N
N Class 0 0.049 0.049 0.051

Class 1 0.503 0.463 0.604

B
0
2
P
0
1

B
a
se

N
N Class 0 0.078 0.069 0.047

Class 1 0.513 0.534 0.608

MAE

RFE vars only Tendency vars in-
cluded

MEPS
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D.3 Model selection and evaluation: F01P01 - class 1
This section present the optimal neural network found in a grid-search for F01P01.

Table D.19: Table show the archetecture of the optimized neural network found for F01P01 from a grid-search. Only one
hidden layer was selected, with 128 neurons in both the input layer and the hidden layer.

Input 128

Hidden 1 128

Output 1

Activation ReLU

Architecture of the network

Class 1

F
0
1
P
0
1

Layer Units
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Time
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1 ]

MEPS
Obs
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Figure D.10: Figure shows the time series for the the predictions from both the 1-hidden layer NN and MEPS,
together with the corresponding observations, for the test data spanning 18 February to 3 August 2022. It is
clear that the neural network is unable to capture the variability seen in the precipitation, and that there is an
artificial cut-off. The verification metrics of the 1-hidden layer NN is presented in tab. D.20.
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D.3.1 Model evaluation

Table D.20: Verification metrics for the optimized neural network trained for F01P01 (upper half) and B01P01 (lower half).
Class 0 refers to the neural network (NN) trained on data-points classified as no precipitation by the RFC,
while class 1 refers to the NN trained on those classified as precipitation. The upper panel, referred to as total
is the overall mean absolute error (MAE) and bias. The columns shows the MAE and bias for the different
ranges of precipitation rate. The middel panel show the corresponding verification metrics for class 0 (no
precipitation), while the lower show the same for class 1 (precipitation).

F
0
1
P
0
1

T
o
ta

l

M
A
E NN (1hidden layer) 0.178 0.027 0.48 3.089 8.186

NN (4hidden layers) 0.205 0.042 0.587 2.768 7.986

MEPS 0.223 0.061 0.627 2.553 7.349

B
ia
s NN (1hidden layer) -0.108 0.027 -0.339 -3.089 -8.186

NN (4hidden layers) -0.068 0.042 -0.231 -2.723 -7.986

MEPS -0.009 0.061 -0.042 -2.324 -7.349

S
S NN (1hidden layer) 0.099 -inf 0.236 0.168 0.057

NN (4hidden layers) -0.035 -inf 0.067 0.255 0.08

MEPS -0.126 -inf 0.002 0.313 0.153

C
la
ss

0

M
A
E NN 0.047 0.0 0.428 3.656 8.775

MEPS 0.056 0.012 0.41 3.525 8.734

B
ia
s NN -0.428 -3.656 -8.775

MEPS -0.029 0.012 -0.353 -3.525 -8.734

S
S NN 0.0 0.0 0.0 0.0

MEPS -0.201 -inf 0.043 0.036 0.005

C
la
ss

1

M
A
E NN (1hidden layer) 0.602 0.239 0.506 3.017 8.108

NN (4hidden layers) 0.713 0.372 0.663 2.655 7.88

MEPS 0.759 0.44 0.732 2.429 7.164

B
ia
s NN (1hidden layer) -0.306 0.239 -0.295 -3.017 -8.108

NN (4hidden layers) -0.138 0.372 -0.136 -2.604 -7.88

MEPS 0.054 0.44 0.109 -2.17 -7.164

S
S NN (1hidden layer) 0.12 -inf 0.303 0.19 0.064

NN (4hidden layers) -0.042 -inf 0.086 0.287 0.091

MEPS -0.109 -inf -0.009 0.348 0.173

All rates No rain Light rain Moderate
rain

Heavy rain

Continued on next page
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Table D.20: Verification metrics for the optimized neural network trained for F01P01 (upper half) and B01P01 (lower half).
Class 0 refers to the neural network (NN) trained on data-points classified as no precipitation by the RFC,
while class 1 refers to the NN trained on those classified as precipitation. The upper panel, referred to as total
is the overall mean absolute error (MAE) and bias. The columns shows the MAE and bias for the different
ranges of precipitation rate. The middel panel show the corresponding verification metrics for class 0 (no
precipitation), while the lower show the same for class 1 (precipitation). (Continued)

B
0
1
P
0
1

T
o
ta

l

M
A
E NN 0.065 0.006 0.493 3.339 10.547

MEPS 0.097 0.035 0.609 2.745 10.382

B
ia
s NN -0.05 0.006 -0.44 -3.339 -10.547

MEPS 0.009 0.035 -0.062 -2.481 -9.79

S
S NN 0.034 -inf 0.148 0.078 0.01

MEPS -0.433 -inf -0.052 0.242 0.025

C
la
ss

0

M
A
E NN 0.039 0.0 0.487 3.834 11.576

MEPS 0.048 0.01 0.495 3.67 11.462

B
ia
s NN -0.039 0.0 -0.487 -3.834 -11.576

MEPS -0.023 0.01 -0.362 -3.67 -11.462

S
S NN 0.0 0.0 0.0 0.0

MEPS -0.243 -inf -0.017 0.043 0.01

C
la
ss

1

M
A
E NN 0.56 0.26 0.505 2.907 7.046

MEPS 1.004 1.082 0.809 1.935 6.71

B
ia
s NN -0.265 0.26 -0.357 -2.907 -7.046

MEPS 0.599 1.082 0.462 -1.441 -4.104

S
S NN 0.075 -inf 0.319 0.154 0.061

MEPS -0.66 -inf -0.092 0.437 0.105

All rates No rain Light rain Moderate
rain

Heavy rain
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Figure D.11: The figure shows a time-series plot for the model prediction for the verification data (i.e the
test data) from MEPS (navy), the neural network (light blue) and the observations (teal) for (D.11a) Florida
(F01P01). The difference between the forecast and observation (forecast− observation) is shown in D.11b.
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Figure D.12: Same as for fig. D.11, but for Blindern (B01P01). Fig. D.12a show the time-series of the model
predictions, and fig. (D.12b) show the difference between the forecast and observation (forecast− observation).
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