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Abstract
Background: The complex and hierarchical structure of the vascular system constitutes a main chal-

lenge in blood flow modelling, to which multiscale modelling has been a common approach. Recent

publications suggest to represent large vessels as a graph structure with Hagen-Poiseuille flow in graph

edges, and the intricate mesh of microscale capillaries as a porous medium with Darcy flow. However,

a coupling between scales that is both mathematically and physiologically sound remains a challenge.

Due to limited resolution in medical imaging devices, there is a large number of vessels below the scale

of pixel size whose structure is unknown. Hence, we can only make structural and modeling assump-

tions about the flow distribution from macroscale to microscale vessels.

Methods: In this thesis, we have investigated whether a complex network may be replaced by a sim-

plified, coarse model with a fewer model parameters, hoping to eliminate the need to know the exact

mesoscale network structure. In this respect, we estimated a set of transfer conductivity parameters on

three different graph structures. A coarse network approximation based on the estimated transfer con-

ductivity was used in an idealized model for arterial flow in brain, and compared with a reference model

where the mesoscale network was represented as a graph model.

Results: The transfer conductivity decreased with radial distance R from the source node when the flow

path length was associated with R. For the coarse model, we found the error to be small for all three

graph structures given small pressure gradients in the porous domain. We also found the transfer con-

ductivity to be highly dependent on the conductivity of single graph edges.

Conclusions: Our study confirms modeling assumptions about the flow distribution being dependent on

radial distance from the source node. However, the exact functional relationship will depend on the net-

work structure. Moreover, since a significant portion of the pressure drop in the brain vasculature is over

the arterioles and venules, and not in the capillaries, we claim that our coarse model can be sufficiently

accurate for modelling purposes. Finally, the single graph edge influence on transfer conductivity sug-

gests that a coarse model in the context of parameter estimation may be used for diagnostic purposes, as

several medical conditions involve changes in brain vascular microstructure.
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List of symbols
A area m2

g gravitational acceleration ms−2

h hydraulic head m
k permeability m2

KD Darcy conductivity m2s−1Pa−1

KN network conductivity m3s−1Pa−1

KT transfer conductivity s−1Pa−1
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M maximum graph level
p fluid pressure Pa
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q volumetric flux m3s−1m−2
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qT transfer flux m3s−1m−3

r tube/edge radius m
rD source/sink term m3s−1m−3

rR root edge radius m
rT terminal edge radius m
Re Reynolds number
u fluid velocity vector ms−1

vn outward normal vector
z elevation above datum m

αr radius reduction factor
αl length reduction factor
φ material porosity
κ hydraulic conductivity ms−1

µ fluid viscosity Pa · s
ω distribution area
Ω domain
ρ fluid density kgm−3
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Ei edges meeting in node i
G graph
G ′ subgraph
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NI interior nodes
NR root node
NT terminal nodes
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∇· divergence operator m−1

∇ gradient operator m−1
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1 Introduction
Many biological transport systems, such as the branches and roots of trees, but also the arteries and veins

in the human body, form network structures where flow is driven by pressure gradients. In this thesis

we investigate mathematical modelling of such systems, where we aim to understand the connection

between discrete network structures and a coarse network approximation. The considered field of appli-

cation is the modelling of brain hemodynamics. Within this field, such a coarse, network approximating

model has been proposed as a remedy to the lack of information about the blood vessel network in the

brain.

Robust and accurate mathematical models may serve as important clinical tools to understand and pre-

dict flow patterns and transport mechanisms in the brain vasculature. As many severe medical conditions

are linked to disruptions in the microvascular circulation, improved measurements and understanding of

the flow dynamics can contribute to better diagnostics, treatments and surgical planning. For instance,

changes in capillary perfusion has been detected in brain cancer survivors, to which more precise,

patient-specific estimates are wanted in order to assess treatment response and sequela (Troudi et al.,

2022). Microvascular alterations are also seen in stroke patients (Rubin et al., 2000) and in relation to

Alzheimer’s disease (Chen et al., 2011) as a result of occlusion in capillary vessels. Modern imaging

technology such as magnetic resonance imaging (MRI) and computerized tomography (CT) have revo-

lutionized the field of diagnostics and treatment, as it allows for in vivo investigations of anatomical and

dynamic responses in organ tissue through both qualitative and quantitative image acquisitions. For in-

stance, through dynamic contrast-enhanced (DCE) MRI, parametric maps of biomarkers may be dervied

from time-intensity curves of contrast agent concentration in brain tissue, as the variation in concentra-

tion intensities depends on vessel network properties (Gordon et al., 2014). More generally, modern

imaging technology combined with mathematical models may provide parameter estimations both use-

ful for diagnostic purposes as well as for simulations predicting e.g. surgical outcomes (Voß et al., 2016).

The vascular system in the human body forms a huge and complex network composed of vessels at

different spatial scales, ranging from the aorta with radius ∼1 to 2 centimeters (Greenfield & Patel,

1962) to the capillaries on a few micrometers (Perdikaris et al., 2016). Due to the size, complexity and

large variations in spatial scales, the main modelling challenge is to accurately model and connect flow

at different scales without too high a computational cost. Multi-scale models have become a common

approach to this challenge, and involves combining two or more well known models accounting for

flow at different scales to constitute a global flow model. For instance, in Hodneland et al. (2019) and

Koch et al. (2020), macroscale vessels are modeled as a 1D graph with Hagen-Poiseuille flow in graph

edges, while the capillary bed is considered as a 3D porous domain and microcirculation is modeled

with Darcy’s law. In these models, structure details such as vessel wall elasticity and vessel curvature,

as well as the non-linear and non-Newtonian behaviour of blood flow is disregarded. However, these
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are simplifications that one are aware of and thereby can account and even correct for. For instance, in

Qohar et al. (2021), the non-linear effects due to pressure drop at vessel junctions and vessel elasticity is

included in the model. Yet, what remains a challenge due to unknown features is the coupling between

the vessels at macro and micro scale. Due to limited image resolution, the structure of the vessel network

is unknown at spatial scales below image resolution, meaning that the mesoscale network constitutes a

gap between the visible macroscale network and the microscale capillary bed that forms a remaining

puzzle piece in a complete vascular network model, see Figure 1.1 for illustration. To avoid singular-

ities in the domain, the above referenced models uses spatially distributing functions coupling the 1D

graph to the 3D domain through the terminal nodes of the graph. These functions are chosen based

on the assumption that the blood distribution is a decreasing function of the distance from the feeding

artery. A recently developed model from Hodneland et al. (2021) suggests a different approach: instead

of an assumed distribution being given, the mesoscale network is assigned a transfer conductivity, and

the flow transferring from macro to micro scale is calculated. The remaining question is then whether

there in reality is possible to replace the complex mesoscale network with a set of parameters to obtain

a valid, coarse network approximation. This question forms the main objective for this thesis, and will

be attempted answered by calculating the transfer conductivity on a set of synthetic networks assumed

to share common properties with vessel networks. We also investigate the hypothesis of a spatial de-

pendency on the transferring flow, and test the sensitivity of the transfer conductivity to various network

parameters.

Figure 1.1: This drawing illustrates the model problem considered in this thesis, and is inspired from
the Figure 2 in Hodneland et al. (2021). Only vessels above the spatial scale of a image pixel size
(macroscale) are visible in imaging pictures, thus, a flow approximation (green cones) is made between
these vessels and the microscale capillary mesh which is considered as a porous medium. Note that the
spatial scaling is not realistic, as the microscale vessels are of order 103 smaller than the macroscale
vessels.
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1.1 Contributions

We have generated three different network structures in order to investigate the validity of a coarse

network approximation in terms of a transfer conductivity parameter, as proposed in Hodneland et al.

(2021). By plotting the transfer conductivity as a function of the radial distance R from the source node,

we have confirmed that the assumption of a radial dependent flow distribution holds when there is a

correspondence between flow path length and radial distance. This implies that a significant portion

of blood flow may be restricted to a support area around the source node, which simplifies the model

considerably as it eliminates the need for a full network-domain connectivity. The estimated transfer

conductivity as a function of radial distance R from the source node can be found online (https://github.

com/rix004/Master). The main contribution of this thesis is the demonstration that a coarse network

approximation in terms of the transfer conductivity is valid for an idealized arterial flow model for the

brain, given small pressure gradients in the porous domain (capillaries). Since the highest pressure

drop in the brain vasculature is over the arterioles and venules, this suggests that our coarse model

may be valid, and encourages to further work towards an application to brain vasculature. Finally,

we have demonstrated that the transfer conductivity is highly dependent on the radii of single graph

edges, indicating that changes in network structure will affect the parameter values. This suggests that

estimating the transfer conductivity in patients may have a clinical value in the context of diagnostics,

as several medical conditions alters the morphology of the vascular network.

1.2 Thesis outline

Chapter 1 is this chapter and presents the motivation, context and contributions of this thesis.

Chapter 2 provides the reader with the background theory on which the modelling framework is built

upon. It includes a brief introduction to the vascular system before the flow equations are presented. We

show the derivation of the Hagen-Poiseuille equation from the incompressible Navier-Stokes equations

and give a short introduction to basic porous media theory, including Darcy’s law. The last section is

devoted to traditions and earlier work within the field of blood flow modelling.

Chapter 3 presents the continuous formulation of the two idealized flow models for arterial blood flow

used herein. We have implemented one model which will be referred to as the reference model to use as

reference to the coarse model, where we will use a coarse approximation of the mesoscale network.

Chapter 4 includes the methods for the generation of the three different network structures used to

model the mesoscale network, as well as the implementation of flow equations for the two different

models. It also includes the description of the set-up for code verification.

Chapter 5 presents the numerical results. We start by showing the verification results before presenting

11

https://github.com/rix004/Master
https://github.com/rix004/Master


the results on the structured tree, which are also used to validate the code as well as to provide un-

derstanding and insight about important parameters. At last we present the results on the unstructured

networks, which are considered as the "biological" test cases. A short summary of the main results is

listed in the last section.

In Chapter 6, the results are discussed and conclusions are drawn. We consider the results in light

of an application to brain vasculature and provide suggestions to further work, including a brief consid-

eration about other fields of application.
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2 Background theory
In this chapter we present the basic theory to provide context and understanding about the mathematical

models used herein. The chapter is structured as follows:

Section 2.1 gives a short presentation of the full vascular system. The aim of this chapter is to pro-

vide the reader with sufficient background knowledge about the terminology and function of the system

to follow the rest of the chapters. The theory is based on Keener and Sneyd (2009) unless otherwise

stated.

In Section 2.2 we show the derivation of the Hagen-Poiseuille equation from the Navier-Stokes equa-

tions. The equation is an idealized model for flow in tubes, and will be used to model blood flow in fully

resolved vessels in our model. The chapter provides insight about some of the simplifications such an

idealization implies.

Section 2.3 is about porous media, some of their properties and flow modelling in this regime. We

introduce the concept of a Representative Elementary Volume (REV) and discuss important properties

in the context of this thesis. At last we present Darcy’s law and the assumptions we do in order to include

it in our model.

Finally, in Section 2.4, we go more into detail about modelling of biological networks. At last we look

at how it has been attempted to derive mathematical design principles for vascular structure generation

through two different approaches: Models based on optimal principles and fractal models.

2.1 The vascular system

The vascular system is the collection of all blood vessels in the body. It is a transport system whose main

task is to carry oxygen from the lungs to the body tissues, and carbon dioxide from the tissues back to the

lungs. We can think of the vascular system as a loop for the blood flow, starting and ending at the heart.

The vessels that transports blood from the heart to to the tissues are called the systemic arteries. From

the left heart chamber, the oxygenated blood is pumped into the main artery, which is the largest vessel

in the vascular system, named aorta. The aorta can be though of as the main stem in an arterial vessel

tree, branching into progressively smaller arteries and even smaller arterioles in order to reach out to all

body parts. Finally, the blood reaches the capillaries, which is the vessels that participate in the exchange

of gases and nutrients from blood to tissue. The capillaries do not have the same branching structure

as the other vessels, but a mesh-like, space filling structure, as their main task is not effective transport

over distances, but to effectively deliver oxygen to surrounding tissue (Lorthois & Cassot, 2010). Figure
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Figure 2.1: A sketch of a capillary. Note the mesh-like structure and the difference in radii be-
tween capillary vessels and the feeding artery and draining vein. The image is reproduced from
https://commons.wikimedia.org/wiki/File:Capillary_system_CERT.jpg.

2.1 illustrate the structure as well as the scale differences between capillary vessels and the arteries

and veins. The exchange processes in the capillaries also involves receiving carbon dioxide from the

tissue to the blood, which is then transported back to the lungs through the systemic veins. Leaving the

capillaries, the blood first enters the venules, which progressively widen and join into larger veins before

finally converging to the venae cavae. This is the main stem of the venous tree which delivers the carbon

dioxide rich blood to the right heart chamber. A similar transport system is found between the heart and

the lungs. From the right heart, the carbon dioxide rich blood is pumped into the pulmonary arterial

tree. The exchange of gases from and to the lungs takes place in the pulmonary capillaries, and as the

oxygen rich blood is transported to the left heart chamber through the pulmonary venous tree, the loop

is closed.

2.2 Idealized flow in tubes

Flow through a cylindrical tube with constant cross-section is a situation where an exact solution can be

derived for the Navier-Stokes equations for fluid motion. The solution is the Hagen-Poiseuille equation,

named after the german civil engineer Gotthilf H. L. Hagen and the french physiologist Jean L. M.

Poiseuille, who independently discovered the relationship experimentally. For Poiseuille, the underlying

motivation for the experiments was to understand blood flow in human vasculature. With the right

assumptions and simplifications, the relationship is still, after later discoveries of the behavior of blood

cells, considered as an acceptable model for this purpose (Sutera & Skalak, 1993).
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2.2.1 Laminar flow

The Navier-Stokes equation describing motion of a viscous fluid is given by

ρ(
∂u
∂ t

+u ·∇u) =−∇p+µ∇
2u+ρg (2.1)

Here, u denotes the fluid velocity vector, p the fluid pressure, ρ the fluid density, µ the dynamic viscosity

of the fluid and g the gravitational acceleration vector. Equation (2.1) is Newtons second law for viscous

fluid motion, where the left hand side is mass times acceleration, and the right hand side is the total force

acting on the fluid. The relation

Re =
ρuL

µ
(2.2)

is called Reynolds number, and is an important, dimensionless quantity in fluid mechanics. Here, u is the

flow speed, which can be taken as a spatial average of u (Huinink et al., 2016), and L is a characteristic

linear dimension depending on the tube radius (Formaggia et al., 2010). Reynolds number is a ratio of

inertial forces to viscous forces in the fluid, and gives information about the flow behaviour: At relatively

high speeds and thus high Reynolds numbers, we have turbulent flow. Here, the streamlines of the flow

are mixed together, and they are often characterized by swirls. The contrary is laminar flow, where the

streamlines do not mix, but follows well-defined paths and lies in layers like sheets. The dividing line

between turbulent and laminar flow lies at Re∼ 2000 to 3000 (Kundu et al., 2015). In the case of laminar

flow with Re < 2000, Equation (2.1) simplifies considerably as we can neglect the acceleration term on

the left hand side to obtain

−∇p+µ∇
2u+ρg = 0 (2.3)

Without the non-linear term present, exact solutions can be derived with the appropriate choice of bound-

ary conditions and additional assumptions of the flow behaviour.

2.2.2 The Hagen-Poiseuille equation

We consider steady (constant velocity) and fully developed (far from an open end) flow in a narrow,

circular tube with radius r, see Figure 2.2. We employ cylindrical coordinates u = u(R,φ ,x), and let the

x-axis coincide with the tube axis. In this coordinate system we have (Adams & Essex, 2013)

∇
2u =

1
R

∂

∂R
(R

∂u
∂R

)+
1

R2
∂ 2u
∂R2 +

∂ 2u
∂x2 (2.4)

Since the flow is laminar, we assume it to follow more or less straight paths along the x-axis. The only

non-zero component of u is therefore the one in the x-direction, and we are left with only the first term in

Equation (2.4). Since the flow is also steady, this component is only dependent of R, so u = (0,0,u(R)).

If we in addition assume constant fluid density so that the gravitation term can be neglected (Kundu
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et al., 2015, p. 152), Equation (2.3) reduces to

− d p
dx

+µ
1
R

d
dR

(R
du
dR

) = 0. (2.5)

Since p is only a function of x and u only a function of R, both terms in Equation (2.5) must be constant

to sum to zero. The pressure thus falls linearly along the length of the tube in the flow direction. Solving

for u(R) by integrating twice we get

u(R) =
R2

4µ

d p
dx

+C1ln(R)+C2,

and by employing no-slip boundary conditions, u = 0 at R = r, we see that we must have C1 = 0 and

C2 =− r2

4µ

d p
dx . Thus

u(R) =
R2− r2

4µ

d p
dx

.

Finally, we integrate the velocity distribution over the cross sectional area to find the volume flow rate:

q =
∫ r

0
u(R)2πRdR =−πr4

8µ

d p
dx

. (2.6)

This is the Hagen-Poiseuille equation. d p
dx is often approximated over the tube length l as −∆p

l . Thus we

end up with

q =
πr4

8µl
∆p. (2.7)

Worth noticing is the forth power on r, making the flow rate very sensitive to changes in the tube radius.

Figure 2.2: Cylindrical tube with radius r and length l, where the fluid velocity vector u depends on the
radial coordinate R only.
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2.3 Flow in porous media

2.3.1 Porous materials

A porous medium is any material consisting of a solid matrix and containing pores (Huinink et al., 2016).

Rocks, soil and sandbeds as well as wood, skin and biological tissue are just a few examples of materials

fitting in to this categorization. Naturally, the structure in these materials are very different from each

other. Soil is a porous material because it consists of unconsolidated particles, so the pores are simply

the highly unordered void space between the grains. Wood and biological tissue have a perhaps more

intuitive distinction between the solid matrix and pores, because the pores are vessels that are meant to

transport fluid. However, the same tools for calculations apply to all porous materials, but we need to

assign specific values for the properties of the material of interest.

Some of the properties we are concerned about in a porous medium, such as porosity, permeability

and saturation of fluid, cannot be considered at a specific point in space. Doing that, we will either

be looking at a point within a pore or within the solid part, but the properties of interest are about the

relationship between the two. Instead we use the concept of a representative elementary volume (REV).

The REV can be thought of as a cut out box or sphere of the porous medium, see Figure 2.3. The REV

must be large enough to account for inhomogenities in the medium and allow for meaningful averages

to be defined (Nordbotten & Celia, 2011), but also small enough to say something meaningful about

spatial variations. Properties of the medium can then be assigned to each point in space based on the

REV surrounding that point, and continuous formulations can still describe changes within the medium.

Figure 2.3: Illustration of a cross-section of a porous medium and a Representative Elementary Volume
(REV).

The specific permeability k is an important characteristic of a porous medium. It provides information

about how the geometry of the pore space in the medium contributes in the conductivity, i.e., it indicates

how much resistance the fluid experiences due to the material itself when flowing through it (Dullien,
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1979). The resistance is due to friction in the fluid-material interface, and will therefore increase as

the internal surface area in the pores increases (Huinink et al., 2016). There are two factors that hence

determine the value of k: The porosity of the material and the pore radii. Porosity is the ratio of void

space to the total volume of material, and as the porosity decreases, the internal surface area will increase,

which results in higher resistance and lower permeability. The pore radii affects the resistance in that

smaller radii gives a bigger internal surface area, and hence bigger resistance and lower permeability.

An important flow feature is that fluid will always search for the flow paths with the lowest resistance.

Considering an idealized pore throat as a cylindrical tube, we recall from the Hagen-Poiseuille equation

that the flow in a pore throat is extremely dependent on the pore radius. This will often result in flow

paths dominated by bigger pores, while other, very small pores are hardly engaged in the flow. For a

given flow path, it will therefore be the pore with the lowest radius engaged in the flow that determines

the path resistance (Huinink et al., 2016).

2.3.2 Darcy’s law

The pore space in a porous medium as usually highly geometrically complex with large variations in both

pore radii and lengths. This makes flow calculations on a pore scale cumbersome or even impossible in

a large pore network, as it requires knowledge about characteristics of the medium that might be difficult

to extract. Calculations on flow in porous media is therefore usually done in a macroscopic manner by

considering properties at REV scale and by looking at the filtration velocity rather than the fluid velocity

within the pores. The fluid and material properties that indicates how easily the fluid flows through the

material are usually collected in the hydraulic conductivity parameter κ , reading

κ =
kρg
µ

, (2.8)

where k is the permeability of the porous medium, ρ is the fluid pressure, g is the gravitational acceler-

ation and µ is the viscosity of the fluid. The equation that relates the properties of a porous medium to

the macroscopic flow rate qD is the famous Darcy’s law (Darcy, 1856), which reads

qD =−κ∇h (2.9)

where

h =
p

ρg
+ z (2.10)

is often referred to as the hydraulic head, describing the mechanical energy state of the system. The first

term is the pressure head, which is the fluid pressure p scaled by the fluid density and the gravitational

acceleration. The second term is the elevation head, and is simply the elevation z of the measuring point

above some datum.

It is important to notice that the volumetric flux qD is not the velocity of the fluid within the pores,
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which we recall may be highly heterogeneous, but rather the volume of fluid per time per total area,

including both the pores and the solid matrix. If we assume that all material and fluid properties as well

as the gravitational acceleration are scalars, we can rewrite Equation (2.9) as

qD =
k
µ
(∇p+ρg∇z) (2.11)

In this thesis, Darcy’s law will be used to model microcirculation in the capillaries, and we assume that

the differences in elevation is negligible. Thus, we follow the assumption about blood flow being driven

solely by pressure gradients (Keener & Sneyd, 2009), which means that the last term in the parenthesis

in Equation (2.11) can be neglected, and we are left with

qD =−KD
∇p (2.12)

where

KD :=
k
µ

(2.13)

2.4 Modelling of hemodynamics and vascular network structure

Due to varying structure and spatial scales in vasculature, the flow behaviour of blood changes during

circulation. In the largest macroscale vessels the flow is nearly turbulent, but becomes laminar at lower

scales as resistance increases with smaller radii (Formaggia et al., 2010). In addition, the presence of

blood cells makes the viscosity depend on the vessel radii. Blood is primarily composed of red and white

blood cells and ∼ 55% plasma which mainly contains water (∼ 92%) (Formaggia et al., 2010). When

the vessels narrow and approach a critical limit ∼ 1 mm, the red blood cells will move to the center

of the vessel, while the plasma stays in contact with the vessel wall and promotes the cell movement

(Formaggia et al., 2010). This results in a sharp decrease in the apparent fluid viscosity, and is known

as the Fåhareus-Lindquist effect (Fåhræus & Lindqvist, 1931). Formaggia et al. (2010) therefore argue

that a Newtonian model, where one neglects the viscoelastic effects of blood flow, is acceptable at larger

scales or in models where detailed flow behavior is not the main focus.

Flow at macro scale is understood up to a point where sufficiently accurate, patient-specific models

are obtained using medical imaging tools to detect the vascular network structure (Perdikaris et al.,

2016). Flow dynamics it governed by the unsteady, incompressible Navier-Stokes equations coupled

with a model for the flow-structure interactions (Formaggia et al., 2010), but 1D models are considered

sufficient for computations of pressure and flow distributions in cases where detailed flow behavior is

not important (Perdikaris et al., 2016). 1D approximations involves to take advantage of the cylindri-

cal symmetry of the vessels and often also to assume laminar and steady flow, hence, the vessels can

be modelled as a network of cylindrical tubes using the Hagen-Poiseuille equation. Within the field of

porous media, this idealized model applied to extremely complex pore spaces has proved to be not only

valid, but also useful. This was first demonstrated by Fatt (1956), and has been used to predict important
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parameters for flow in porous media, especially multi phase flow (Blunt et al., 2002). Despite the many

differences between the pore space in a rock and the blood vessel network, one can argue that the success

of network modelling of highly geometrically complex porous material speaks for the validity of such

an idealization.

As the smallest capillary vessels have diameters the size of a blood cell, plasma and cells flows with

different rates, and the flow in this regime should be considered as multi-phase flow of particles and

plasma on a fully resolved scale (Formaggia et al., 2010). However, a common approach in multiscale

modelling is to represent the capillary flow in an averaged manner as flow in a porous medium, advan-

taging its mesh-like structure. Thus, through a coupling with a 1D model of the macroscale vessels,

this may constitute an effective discrete-continuous flow model where variations in the bigger arteries

can be described vessel-wise, while effects of microvascular diseases can be investigated by varying

local parameters like porosity and permeability in the capillary bed (Cookson et al., 2014). Yet, this is

provided a reasonable modelling of the mesoscale network forming a coupling between the two.

The representation of the mesoscale vessel network remains a modelling issue. In mixed discrete-

continuous models such as Shipley et al. (2019), Hodneland et al. (2019), Koch et al. (2020) and Qohar

et al. (2021), the dimensional gap is filled using spatially distribution functions where outflow from ter-

minal nodes are seen as local sources in the continuous domain, which are distributed in a support area

around the source point. The distribution is assumed to have a spatial dependence in the sense that more

flow is distributed in areas near the source node. Hodneland et al. (2021) suggests a different approach,

where the transferring mesoscale flow is calculated using a given transfer conductivity between the ter-

minal nodes and the capillary bed. However, such a network conductivity for the mesoscale network is

to this date not assessed, and should be approximated on a realistic vessel network to be used in a model.

2.4.1 Approaches to computational vascular structure generation

Simulation of blood flow on computationally generated graph structures may be useful for estimating

unknown modelling parameters, provided that the graph is a realistic vasculature representation. Using

available information about real network structure, many authors have searched for a set of design prin-

ciples that may provide understanding about the non-available information. The two main approaches

to synthetic network generating algorithms are optimization principles and fractal models (Schreiner

et al., 2006). The optimization approach involves to implement theoretical laws for vessel branching

derived from physiological principles, often involving the minimization of a cost function (Talou et al.,

2021). Such physiologically grounded branching laws have been studied for many years (C. D. Murray,

1926; Kamiya and Togawa, 1972; Zamir, 1976), and are employed in e.g. the Constrained Constructive

Optimization (CCO) algorithm as a branching guiding line in the generation of a space-filling, synthetic

network within a given domain (Talou et al., 2021). The fractal modelling approach is based on the idea

that the structure of the vessel network repeats itself at progressively smaller scales (J. D. Murray, 2002).

The many fractal appearing patterns arising in nature have been elucidated by e.g. Mandelbrot (1977),
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and owing to its branching and hierarchical structure, the vascular system has been scrutinized in search

for fractal properties (Zamir, 1999; Masters, 2004), without any consensus emerging, however (Lorthois

& Cassot, 2010).

One particular class of fractal structures arising in several natural growth patterns are Laplacian fractals.

These are structures arising from a clustering growth phenomenon governed by the Laplace equation,

where the growth is limited by the diffusion to the cluster (Masters, 2004). It has been suggested that

vessel formation (angiogenesis) is characterized by such a mechanism. One of the main stages in an-

giogenesis is the vascular endothelial growth factor (VEGF), which is a process where endothelial cells

clusters to form new vascular structures (Martino et al., 2015). Fleury and Schwartz (1999) propose that

sheer stresses within a Laplacian pressure field in the endothelial walls is the driving force of the cluster-

ing, and hence that diffusion limited aggregation may be used to model angiogenesis . This hypothesis

is adopted in Lorthois and Cassot (2010), who argue that healthy vasculature in the brain should be

regarded as a fractal, tree-like structure emerging from a Laplacian growth mechanism at larger scales,

and the microscale capillary bed as a non-fractal, mesh-like composition.
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3 Idealized model for vascular network flow
This chapter outlines the mathematical models used in this thesis. The aim is to investigate a set of

parameters defining a unknown, mesoscale vessel network, and to describe this network, we will use

a 1D graph with nodes representing the vessel bifurcation points, and edges representing vessel seg-

ments. Further, we will compare two different multiscale models representing a network of vessels from

macroscale to microscale in the brain. Both models are a composition of a discrete network modelling

the visible arteries and a 3D/2D porous medium domain representing the capillaries. The difference in

the two models is the representation of the mesoscale network. In the the reference model, we use a

graph for both the macroscale and mesoscale network, and we couple the graph to the domain directly

through its terminal nodes. In the coarse model, we use the mesoscale graph to obtain a description of

the network conductivity KT . This parameter is then used to replace the graph by a continuous, linear

model for the flow transferring from the terminal nodes of the macroscale network to the domain, as

proposed in Hodneland et al. (2021). Our model involves several simplifications. By employing the

Hagen-Poiseuille flow model we consider vessels as static, straight and cylindrical tubes with constant

cross section, hence, elasticity in vessel walls is ignored, as well as the non-linear flow behaviour. We

consider blood as a Newtonian fluid with constant density and viscosity. We also assume all capillaries

to have equal and constant radius when regarding the capillary bed as homogeneous and isotropic with

constant permeability.

In Section 3.1, the geometry and terminology of the graph representing the discrete vessel network

is presented. Then the governing equations common for both models are presented in Section 3.2, while

equations concerning the coupling in the reference and the coarse model is presented in Section 3.3 and

Section 3.4, respectively.

3.1 Geometry of the discrete vessel network

The vessel network is modeled as a graph G consisting of a set of nodes N connected with a set E of

edges. One of the nodes are designated as the root, and the graph is connected in a topological sense.

That is, given any pair of nodes in N , a subset of E forms a path between them. We will refer to the

root node as NR. We divide N into three subsets: The root node NR, interior nodes NI and terminal

nodes NT , see figure 3.1. The neighbours of node i and all edges meeting in node i will be denoted Ni

and Ei, respectively. Note that for i ∈NT , |Ni|= |Ei|= 1. The edge Ei, i ∈NR will be referred to as the

root edge, while Ei, i ∈NT will be referred to as terminal edges. If there are no circuits in the graph, we

define it as a rooted tree T .

Next, we give the graph a level structure. Let the node level Lm of the node i be the distance of the
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shortest path between the root node and node i. We also assign a level to each edge so that the edge

e(i, j) has the same level as node j. All nodes except for the root node then have a belonging edge with

the same level as itself. We let L0 denote the root node level and LM the maximum level in the tree, thus

we have m ∈ 0,1,2, ...,M for the nodes and m ∈ 1,2,3, ...,M for the edges. The level structure is also

demonstrated in Figure 3.1.

We want to distinguish between the visible vessel network and the sub-resolution, "invisible" network.

We will do this by creating a subgraph G ′ ⊆ G that contains nodes and edges in T up to a given level

LM′ . The nodes at LM′ are the terminal nodes of G ′ and will be denoted as NT ′ .

Figure 3.1: A rooted tree with 1 root node (yellow diamond), 3 interior nodes (red circles) and 4 terminal
nodes (blue triangles). The level structure is also illustrated. The node levels are written with black text
and the edge levels in gray.

3.2 Continuous formulation of the mathematical models

Here we present the governing equations building the two models. The constitutive laws for network

flow (Hagen-Poiseuille) and domain flow (Darcy) are common for both models and are presented first,

in Section 3.2.1 together with mass conservation equations and boundary conditions that also appears

in both models. The models are distinguished in the coupling of the network and domain, leading to

two different sets of equations which are handled in the next two subsections. In Section 4.3.1 we then

consider the equations accounting for the reference model, and section 3.2.3 considers the coarse model.

23



3.2.1 Common governing equations

The domain pressure potential pD(x), x ∈ Ω is chosen as primary variable. To each point x ∈ Ω we

assign a conductivity KD(x) given by Equation (2.13). Flow in the porous domain is then given by

Darcy’s law:

(Flow in domain) qD =−KD(x)∇pD (3.1)

In the network, we pressurize each node i ∈N and denote the network pressure potential as pN . To

each edge we assign a length l, a radius r and a conductivity KN
i, j given by the Hagen-Poiseuille equation,

KN =
πr4

8µl
. (3.2)

and the network flow from node i to j is then given by

(Flow in network) qN
i, j =−KN

i, j(pN
j − pN

i ), i ∈N , j ∈Ni. (3.3)

Common for both models is that mass must be conserved in the interior nodes of the graph. That is,

for i ∈NI , the sum of fluid flowing into the node must be equal to the sum of fluid flowing out, plus

eventual external source/sink terms rN
i :

(Mass conservation in interior nodes) − ∑
j∈Ni

qN
j,i = rN

i i ∈NI. (3.4)

To close the system, Dirichlet boundary conditions have been set on the root node and on the boundary

∂Ω. Throughout this thesis, we have used

pN
i = 1 i ∈N R pD =−1 on ∂Ω (3.5)

when solving the coupled system both with the reference and the coarse model.

3.2.2 Coupling of flow and pressure in the reference model

In the reference model, we let a graph G model the vessel network down to mesoscale level, and we

couple the network to the Darcy domain directly through the terminal nodes i ∈NT of G , see Figure

3.3. In order to couple the flow flux qN
Ni,i to the flow in the domain, we now let each connection point

between Ni, i ∈NT and Ω be defined as its own domain, ΩTi . That is, the porous domain Ω has a "hole"

at all places where the graph and the domain connects, in which each hole is a small, circular domain

ΩTi with radius equal to the edge radius of Ei, i ∈NT , see figure 3.2. We then impose mass conservation

in Ω and boundary conditions on ∂ΩTi to require that flow entering Ω is from the network only, entering

through the boundary ∂ΩTi . We end up with the following set of equations:

(Mass conservation in domain) ∇ ·qD(x) = rD x ∈Ω (3.6)
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where rD is any sources or sinks in the domain, and in this continuous formulation considered to be zero.

(Neumann boundary conditions at terminal nodes)
∫

∂ΩTi

qD(x)·vn dl = qN
Ni,i x∈ ∂ΩTi , ∀i∈NT

(3.7)

Where vn is the outward normal vector on ∂ΩTi .

(Dirichlet boundary conditions at terminal nodes) pD(x) = pN
i , x ∈ ∂ΩTi , ∀i ∈NT (3.8)

Figure 3.2: Each intersection point between terminal node Ni, i∈NT and Ω forms a domain ΩTi withing
Ω. vn is the normal vector pointing outwards from ∂ΩTi .

Figure 3.3: Illustrative figure of the reference model. G is the graph both modelling the macroscale
network and mesoscale network. The network is coupled to the domain Ω through the micro terminal
nodes NT , illustrated with blue dots.
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3.2.3 Coupling of flow and pressure in the coarse model

The coarse model is an up-scaled approximation of the reference model, where we replace the network

that is taken to be unknown with a continuous, linear flow model. That is, we cut G from LM′ to LM, and

keep only the subgraph G ′ modelling the macroscale network, see Figure 3.4. Now, the flow transferring

from terminal node i ∈NT ′ to x ∈Ω is described as

(Flow transferring from network to domain) qT
i (x) =−KT

i (x)(pD(x)− pN
i ), i ∈NT ′ (3.9)

involving the spatially distribution transfer parameter KT
i (x). KT

i (x) can be considered as a conductivity

for the total "path" from terminal node to domain, analogous to KN for one graph edge. The calculation

of KT will be demonstrated in the next chapter. Now we consider the coupling of the flow from network

to domain. To ensure conservation of mass in the domain Ω, we require that the sinks in Ω is equal to

the terminal node sources, that is,

(Mass conservation in domain) ∇ ·qD− ∑
i∈NT

qT
i (x) = 0 i ∈NT , x ∈ Ω. (3.10)

Then to ensure conservation of mass in the terminal nodes, we require that fluid flowing from terminal

node i to point x in the Darcy domain is equal to the fluid flowing through the terminal edge ending in i,

(Mass conservation in terminal nodes)
∫
Ω

qT
i (x)dx−qN

Ni,i = 0, i ∈NT , x ∈ Ω. (3.11)

Figure 3.4: Illustrative figure of the coarse model. G ′ is the macroscale network, a subgraph of G where
NT ′ is the set of its macro terminal nodes. The mesoscale network is "cut away", and Equation (3.9)
describes the flow that is distributed from i ∈NT to x ∈Ω.
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4 Methods
This chapter concerns the methods used in the numerical implementation of the model, as well as meth-

ods for verification of the code. It contains the following sections:

Section 4.1 covers the generation of the three different graphs modelling the mesoscale network in

the reference model, in addition to the numerical solving of the network flow.

In Section 4.2 we describe the numerical method used to solve the flow equations in the Darcy do-

main, which is a Finite Volume Two Point Flux Approximation (FV-TPFA) method.

Section 4.3 presents the discretized coupling of the network and Darcy flow. Section 4.3.1 concerns

the reference model, where the flow and pressure is coupled using the Peaceman correction, a method

stemming from the numerical solving of flow in reservoirs and wells. In 4.3.2 we present how KT is

numerically calculated and include it in the linear system for the coarse model.

Finally, Section 4.4 concerns the verification methods of the code. We verify the FV-TPFA method

and the coupling in the reference model using well known test cases. Also, we derive methods for

verifying the calculation of KT and the coarse model.

4.1 Network generation and flow

4.1.1 Deterministic tree

The first network we consider herein is a binary, symmetric fractal tree. This will be referred to as

the deterministic tree because its structure is given by its "initial configuration" values. The symmetry

as well as the deterministic feature makes this tree suitable for observing effects of varying isolated

variables when experimenting. Since the tree is symmetric, all terminal nodes and edges will be at the

same level LM. The length and radii of the edges with level Lm, m = 1,2, ...,M is given in a fractal sense

by assigning a constant reduction factor 0 < αr ≤ 1 to the edge radii such that αr := rm
rm+1

and, similarly,

0 < αl ≤ 1 to the edge length such that αl := lm
lm+1

. Thus, all edge lengths and radii may be found from

the length and radius of the root edge and the respective reduction factor. The last value we assign to the

tree is a constant bifurcation angle θ . With certain choices of θ and αl , we get a space filling tree as in

Figure 4.1.
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Figure 4.1: A space-filling deterministic tree in the domain Ω := x ∈ [0,1],y ∈ [0,1/
√

2] with maximum
level M = 11, l1 = 1/2

√
2, length reduction factor αl =

1√
2
, radius reduction factor αr = 0.7 and bifur-

cation angle θ = 90°. The red dot marks the root node.

The tree was generated using a recursive algorithm with the initial configurations as input, where the

code proceeds the following steps:

1. Place the root node NR at the midpoint of the horizontal axis and set the maximum level M.

2. Construct main stem rooted in NR with given length l1, radius r1 and a 90° angle with the hori-

zontal.

3. From the end node of the current edge ei, construct two new edges with bifurcation angle±θ with

the line of direction to the current edge with length liαl and radius riαr.

4. Repeat step 3 while the node level of the end-node is less than M.

4.1.2 Diffusion limited aggregation generated network

The Diffusion Limited Aggregation (DLA) model is an idealized model for the growth process of cluster

formations such as dendrites, dust and bacteria, where the growth is limited by the diffusion of matter

to the cluster, developed by Witten and Sander (1981). It has also been suggested that this growth

mechanism is the driving force in vascular growth from pre-existing vascular network (angiogenesis)
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(Fleury & Schwartz, 1999). The process behind the algorithm is simply described by J. D. Murray

(2002): "Diffusion limited aggregation is a diffusion process whereby particles exhibit a random walk

and when a particle comes into contact with another particle it sticks to it and can no longer move".

The code used herein was found at GitHub (https://github.com/natter1/playground/blob/master/my_dla_

optimization.py) and builds the network through the following steps:

• A seed particle is placed at the center of the domain

• A new particle (random walker) is released at the boundary of the domain

• The particle does a random walk until it comes in touch with another particle and sticks to it

• The process is repeated n (number of particle) times

The network complexity is hence determined by setting the number of particles involved in the genera-

tion. The output file was converted from a binary structure to a graph structure in MATLAB using the

function npy2tree.m, see GitHub repository.

As opposed to the deterministic tree, the structure of the DLA network is a result from a random process,

and the only factor to be determined is the number of particles involved in the generation. Figure 4.2

is an example of how a network generated with 16000 particles may look like. The root node is here

placed manually at a central network node where all the "main branches" meet.

Figure 4.2: A graph generated by diffusion limited aggregation with 16000 particles in a square domain.
The red dot marks the root node.
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Radius setup for unstructured trees

Previously, we assigned each edge a radius by setting the root edge radius and a reduction factor, thus

obtaining progressively smaller radii with increasing level. Since the deterministic network is symmet-

ric, we obtain the same radius at all terminal edges. This network is however unstructured, and we have

terminal nodes at all levels, both directly linked to the main stems as well as in the outer most branches.

Setting the radii the same way will result in some unrealistic short and wide terminal edges at low levels.

Instead, we let all terminal edges have the same radius rT . Then we define one of the root edges as the

main stem of the network and set its radius to rR > rT . To assign the correct radius to all edges, we now

consider an inverse level system in which all i ∈NT has level Linv
0 and the rest of the nodes has node

level Linv
n , n = 1,2, ...,M according to their distance from the the terminal node. For nodes that lies on

several root node-terminal node paths, we choose the highest n, and the root node thus get a node level

LT
M, see Figure 4.3 for illustration.

We now derive the radius reduction factor αr from rR and rT in order to assign the correct radius to

each edge. We start by considering the longest root node-terminal node path in the network. The radius

at L1 is set to rR, thus the radius at L2 must be given by

r2 = rRαr, (4.1)

and at L3 by

r3 = rRα
2
r , (4.2)

and so on. Since there are M levels in the tree, the terminal edge is given by

rT = rRα
M−1
r . (4.3)

We solve for αr by taking the logarithm on each side:

(M−1)ln(αr) = ln
(

rT

rR

)
, (4.4)

and we can express the reduction factor as follows:

αr = eβ , (4.5)

where

β = ln
(

rT

rR

)
1

M−1
. (4.6)

We now set αr according to this setup. The edge ei, j is assigned a radius according to the node level n

of j, that is

rn =
rT

αn
r

n = 0,1,2, ...M−1 (4.7)
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Figure 4.3: Illustration of the inverse level system and the resulting radius setup. The root node is
marked with a bigger dot, and has level Linv

3 since the longest root node-terminal node path in the graph
has length 3. All terminal nodes has level Linv

0 . Notice that the node at Linv
2 has been given its node level

according to the longest root node-terminal node path that it is part of, and not according to the nearest
terminal node.

4.1.3 Rapidly exploring random tree

The Rapidly-exploring random tree (RRT) was invented by Kuffner and LaValle (2011) as a tool for

path planning, and is used as test case herein because of its space filling and fractal (Burch & Weiskopf,

2013) properties. The aim of the algorithm is to search for and cover unexplored areas of a given domain

Ω by building the RRT.

Given a start position xinit and the resulting amount of terminal nodes K, the pseudocode used for the

generation reads:

GENERAT E.RRT (xinit ,K,Ω)

while |NT |< K do
xrand ← RandomState(Ω)

xnear← NearestNeighbor(xrand ,T )

T .AddNode(xnew)

T .AddEdge(xnear,xnew)

end while
return T

In RandomState(Ω), a random position xrand in the domain is found. xnear is then the nearest neighbour

in the tree to xrand . xnear may also be an edge that is closer to xrand than the closest node. In that case, a

new edge is made as a normal to this edge. If xnear is a node, then the new edge is made as a normal from

xrand to the closest edge connected to that node. An exception is made if the angle between the vector

from xrand to xnear and the closest edge is more that 90°. The new edge is then constructed between the

nodes xrand and xnear. This results in a tree where most angles are 90°, see Figure 4.4. For the radii we

use the same setup as with the DLA generated network.
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Figure 4.4: A rapidly exploring random tree with 500 terminal nodes in a square domain.

4.1.4 Discrete network flow

Flow in the discrete network is calculated according to the Hagen-Poiseuille law. We will use Dirichlet

boundary conditions

pi = 1, i ∈NR pi =−1, i ∈NT (4.8)

when solving for flow in the network only. Conservation of mass in the interior nodes is assured through

Equation (3.4), and solved together with Equation (3.3) we get the following system of equations:[
1

KN ∇h

∇·h 0

][
qN

pN
I

]
=

[
pN

D

0

]

where ∇h and ∇·h are connectivity matrices working as discrete gradient and discrete divergence oper-

ators, respectively, and pN
D is a |N |×1 column vector with Dirichlet boundary condition values on the

Dirichlet node entries.

4.2 Finite volume method (FVM) on Voronoi grid

The flow equations for the Darcy domain have been discretized using a cell centered finite volume

scheme. The finite volume method (FVM) involves dividing the domain into smaller subdomains, or

control volumes, and then evaluating the PDE of interest by integrating over the control volumes. Here,

the control volumes are the cells resulting from the Voronoi diagram generated from the terminal nodes

of the invisible vessel tree, see Figure 4.5. Each cell can therefore be though of as a distribution area for

the blood from its belonging terminal node. However, we will for now consider the porous domain as
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an isolated system at steady state without any flow contributions from the network, while the coupling

will be considered in the next section. Thus, for a Voronoi grid cell ωi we have the following mass

conservation equation ∫
ωi

∇ ·qDdV =
∫

ωi

rDdV (4.9)

where rD is any sources or sinks other than blood from feeding vessels. The next step is to convert the

volume integrals into surface integrals using the divergence theorem, which states that∫
ωi

∇ ·qDdV =
∫

∂ωi

qD · vndA (4.10)

and then employ a flux approximation method to evaluate the fluxes over the boundaries of the control

volume.

Figure 4.5: A Voronoi diagram generated from the terminal nodes i ∈NT of the graph, shown as dots
within each cell ωi.

This has been done using a two-point flux approximation (TPFA) scheme, where the normal component

flux over a boundary segment σi j is approximated using the pressure potential values in the two volumes

ωi, ω j on each side of the segment. That is, each Voronoi cell ωi is assigned a discrete pressure value pi

in its center, and each boundary segment a flux to its midpoint. This discrete flux qD
i, j over the boundary

segment σi j between two adjacent cells ωi and ω j is approximated according to Darcy’s law, Equation

(2.9):

qD
i, j · vn = KD (pi−p j)

∆xi j
(4.11)

where ∆xi j is the distance between the centers of ωi and ω j. Now we can write the discrete formulation of

Equation (4.9) in terms of Equation (4.11) inserted into the surface integral in Equation (4.10). We take

the value of rD to be constant within the cell, so the right hand side integral is just this value multiplied
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with the cell area. By iterating over the neighbouring cells j of the cell i, the discrete formulation of

Equation (4.9)-(4.10) thus reads

∑
j

qD
i, j · vn = rD

i Ai (4.12)

where li j is the length of σi j.

The fluxes over the boundary segments that is also a part of the boundary ∂Ω is approximated by con-

structing a "ghost cell" ω̃i on the adjacent side of the segment. With a Dirichlet boundary condition pBC

on ∂Ω, we let the pressure value p̃i in the ghost cell be given by

pBC =
pi + p̃i

2
. (4.13)

If we let the length of a segment that is both a boundary of a cell ωi and also a part of ∂Ω be denoted l̃i
and the distance between the center of ωi and ω̃i be denoted ∆̃xi, then the flux over this segment is given

by

q̃i = 2KD (pi−pBC)l̃i
∆̃xi

(4.14)

Let Nc be the number of cells, and Ns be the number of cell segments. To integrate over the whole do-

main, a Nc×Ns cell-to-segment connectivity matrix has been constructed by iterating over all segments

in all cells and setting the matrix values as follows:

Ci, j =


1 if segment j is a boundary segment of ωi

-1 if segment j is a boundary segment of ωi, but already accounted for at a neighbouring cell

0 otherwise.

This matrix will work as a discrete divergence, and its transpose as a discrete gradient. For the sake

of clarity we rename the matrix and let C = ∇·TPFA and CT = ∇TPFA. li, j and ∆xi, j for each segment

is collected in the vector B. For simplicity we do not consider the effect of any source terms, thus rD

= 0. On the right hand side we then only have the Dirichlet terms. Let BBC be a Ns×Ns diagonal

matrix with 2l̃i
∆x̃i

on the Dirichlet row entries according to Equation (4.14), and let PD
BC be a Nc×1 vector

with Dirichlet boundary values pBC on the Dirichlet entries. According to Equation (4.12) we obtain the

following:

∇·T PFA KD
∇

T PFA B pD = ∇·T PFAKDBBCPD
BC (4.15)

The code for the generation of the Voronoi diagram is from Sievers (2022), and the coordinates for

the terminal nodes where used as input argument. The cell area were found using the MatLab built-in

function polyarea.
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Figure 4.6: Illustration of the TPFA method. To each cell center we assign a pressure value, and across
each segment σi, j between ωi and ω j we assign a flux qi, j. This flux is calculated according to Equation
(4.11), using the pressure values on each side of σi, j, the length li, j and the distance ∆xi, j between the
cell center of ωi and ω j. The fluxes across segments that are part of ∂Ω are calculated according to
Equation (4.14), and involves the construction of a ghost cell ω̃i.

4.3 Coupling between network and porous domain

Next, we consider the discrete coupling of the network and the Darcy domain. For each model, this is

done by solving for pD, qN and pN simultaneously in a system of equations. Let

∆
T PFA := Div KD Grad B, fT PFA := ∇·T PFAKDBBCPD

BC

and let Ne, Nn, Ntn and Nc be the number of edges, nodes, macro terminal nodes and cells, respectively.

Note that Nc is the same as the number of micro terminal nodes, thus, we will use Nc for both. For

each model we now construct a block matrix where each row corresponds to a flow equation, either a

constitutive equation, a mass conservation equation, or both solved together.

4.3.1 Reference model

The network equations is the same as in Section 4.1.4, but on the right hand side we have now only the

Dirichlet root pressure, as the outlet-pressure is set on ∂Ω, according to Section 3.2.1. We hence denote

the right hand side of the network equations as pN
R , which is a |N | × 1 column vector with root node

pressure on the root node entry. Next, we solve the flow in the Darcy domain, which must be coupled

to the network flow to ensure mass conservation. Now, discretizing Equation (3.6)-(3.8) requires a grid

with mesh size h << ri, where ri is the radius of ΩTi , in order to calculate the flow distribution around a

terminal node, which would lead to an expensive method for very small vessel radii. Therefore, for the

numerical implementation of the reference model, we consider instead each terminal node as a source
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point in each Voronoi grid cell, and let

rDAωi = qN
Ni,i i ∈NT (4.16)

We ensure mass conservation in the domain by inserting Equation (4.16) into Equation (4.12) to obtain

∑
j

qD
i, j · vn = qN

Ni,i (4.17)

for each cell ωi, i ∈NT and for all of its neighbours ω j. This make up line 3 in the system matrix below,

where the matrix IT E is a Nc×Ne connectivity matrix between cells and terminal edges.

At last, we must couple the network and the domain pressure, and for this we use the results from

Peaceman (1978). The work of Peaceman considers the numerical solving of the pressure near the well

in a reservoir using the TPFA method on a uniform, squared grid. We use the source vessel and the dis-

tribution area (surrounding tissue) as analogy to the well and the surrounding reservoir. What Peaceman

found was that for a pressure distribution around a well given by

pD(r) = pN
i −

qN
Ni,i

2πKD ln
(

r
ri

)
, i ∈NT , (4.18)

the pressure pD
i in a cell ωi (well block) is equal to the flowing pressure at r = 0.2∆x, where ∆x is the

width of the grid cell in a uniform, squared grid. Here we use ∆x =
√

Aω , and for the pressure pD
i in the

cell ωi surrounding the terminal node i ∈NT we then have

pD
i = pN

i −
qN

Ni,i

2πKD ln
(

0.2∆xi

ri

)
, i ∈NT . (4.19)

The adjustment of the cell pressure according to the findings of Peaceman (1978) is called the Peaceman

correction, and we have illustrated how the pressure in each cell is corrected for in Figure 4.7. To solve

this numerically, matrix PC of size Nc×Ne is constructed and added to the system of equations. This

matrix has the last term in Equation (4.19) on the respective grid cell-terminal edge entries and zero

elsewhere. We finally obtain the following block matrix:
0 1

KN ∇h

0 ∇·h 0

∆T PFA IT E 0

I PC −IT N


pD

qN

pN

=


pN

R

0

fT PFA

0


The system of equations is then solved using the MATLAB backslash operator.
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(a) Peaceman correction in each cell. (b) Average pressure in cells.

Figure 4.7: Illustration of how the Peaceman correction is used. In (a), the pressure distribution from
each node according to Equation (4.18) is plotted in its respective Voronoi grid cell. Light colors corre-
spond to high pressure values. The yellow dots thus correspond to the fluid pressure in the source vessel
(terminal node pressure), and the pressure decreases rapidly as we move away from the vessel. The
dashed circle in each cell correspond to r = 0.2∆x and we set the pressure at this point as the average
grid cell pressure in the TPFA method. This pressure value corresponds to that plotted in the same cells
in (b).

4.3.2 Coarse model

The first step is to obtain an expression for the transfer parameter KT . From Equation (3.9) we obtain

KT
i (x) =−

qT
i (x)

pD(x)− pN
i
. (4.20)

We now let KT
i (x) be a set of piece-wise constants within each cell, that is,

KT
i (x) = Ki ∀ x ∈ ω j, ∀ j ∈NT , ∀ i ∈NT ′ (4.21)

Since we by that assume qT
i (x) to be constant within ω j, we have, from Equation (3.11), that

qT
i (x) =

qN
N j, j

Aω j

(4.22)

Let the pressure in the macro terminal nodes be denoted pN
i and the micro terminal node pressure is

denoted pN
j . The network transfer parameter is then given by

Ki =
qN

N j, j

Aω j(pN
i −pN

j )
, i ∈NT ′ , j ∈NT (4.23)
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When solving for KT , we use the network only with Dirichlet boundary condition on all open ends

according to Section 4.1.4. With an expression for KT , we can now solve the linear system for the coarse

model. We have an extra component in the system, namely the transfer flux qT
i (x). When coupling the

network and domain, we now have

∑
j

qD
i, j · vn = qT

i (x) ·Aωi (4.24)

Row 2-3 is the same network equations as before, and in row 4-5 we solve Equation (4.22) and Equation

(4.21), respectively. The matrix KT is a Nc×Ntn matrix where KT
j,i is the KT value for the jth micro

terminal node and the ith macro terminal node. Thus, the matrix KT is a somehow weighted connectivity

matrix between macro and micro terminal nodes. We end up with the following system matrix. Here,

the network pressure is split into two vectors, one for the interior nodes pN
I and one for the terminal

nodes pN
T , for the sake of clarity.

∆T PFA 0 0 0 Aωi

0 1
KN ∇h ∇h 0

0 ∇·h 0 0 0

0 IT E 0 0 Aωi

KT 0 0 −KT I




pD

qN

pN
I

pN
T

qT

=


fT PFA

pN
R

0

0

0



Figure 4.8: This figure shows the variables included in Equation (4.23). pN
i is the pressure in the macro

terminal node, and pN
j the pressure in the micro terminal node, qN

Ni,i is the flux in the terminal edge and
Aωi is the area of the cell ωi.
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4.4 Methods for code verification

4.4.1 Verification of the Two Point Flux Approximation (TPFA) method

The TPFA method has been verified by solving the test problem

−∇ ·∇u = f (x,y), x,y ∈ [0,1] (4.25)

u = 0, on ∂Ω (4.26)

which has the analytical solution

u = (1− x)(1− y)xy

and the corresponding flux function

f (x,y) = 2y−2y2 +2x−2x2

This is a commonly used test problem, and it is known that the order of convergence is 2 when solv-

ing this problem on a squared lattice. This has been proven to hold, see Appendix A. In this work,

however, the grid is a Voronoi diagram based on the terminal nodes of a randomly generated tree. The

grid is therefore irregular, with cells of different sizes and shapes. Normal grid refinement can not be

performed, instead, a new tree with more terminal nodes is generated to obtain a finer grid. An expected

convergence rate can therefore not be predicted analytically, but the order of convergence may be found

numerically by running several tests and look at the average error.

Here, one convergence test involves "refining" the grid 5 times by doubling the number of terminal

nodes and thereby also the number of grid cells. uh
i is, according to the method, approximated on each

cell ωi, and the analytical value is calculated at the cell center (xi,yi). The error is measured in the

L2-norm, that is,

e =
√

∑
i

u(xi,yi)−uh
i )

2Aωi (4.27)

Due to varying results as a consequence of the randomly generated and irregular grid, several test has

been performed and the average error is considered. See Section 5.1.1 for results.

4.4.2 Verification of the coupled system

To verify the system as a whole, that is, the network coupled with the Darcy domain, we use as a test

problem the Laplace equation with a Dirac type source term:

−∇ ·KD
∇p = q0

δ (r) in Ω (4.28)
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where

δ (r) =

{
1/πr2

0 if 0≤ r ≤ r0

0 if r > r0
(4.29)

where r0 is the radius of the source edge providing the flux q0. The solution is the fundamental solution

to the Laplace equation in 2D:

p =− q0

2πKD ln(
r
r0
) r > r0

When solved numerically, we used a grid with size h >> r0.

Setup

Consider Ω := {x ∈ [−1,1],y ∈ [−1,1]} coupled with a network where we have a Neumann boundary

condition q0 on the edge Ei, i ∈NR, |Ei| = 1, and with an arbitrary number of terminal nodes. We let

one terminal node be the source node of the domain, and place it in the middle, i.e., the origin. The

conductivity in all terminal edges are set to zero except for the one leading to the source node, which

we refer to as the source edge. On ∂Ω, we set Dirichlet boundary conditions pBC = − qN

2πKD ln( rBC
r0
) on

the midpoint of the boundary segment of the cell. rBC denotes the distance from the source node to the

boundary, and r0 denotes the radius of the source edge. Now, we solve for the pressure pD. The error

was measured in the L2-norm, see Equation (4.27).

4.4.3 Verifying the calculations of the transfer conductivity

With the deterministic tree, we can derive the expression for the transfer function using only its initial

configuration. This will here be used as a way of verifying the code by comparing the before hand cal-

culated value of KT with that calculated by the code. Since the tree is binary and completely symmetric

both with respect to length and radius of the edges, the resistance in a path between a macro and micro

terminal node is the same everywhere. In other words, the transfer function is expected to be constant

for the whole tree.

To derive the analytical KT from Equation (4.23), we need expressions for the pressure value at the

macro terminal node (which will here be an arbitrarily chosen interior node), an expression for the flux

in the terminal edges and the for cell areas.

Now let pm and qm be the pressure and flux at level Lm, respectively. The edge between the two nodes

pm−1 and pm will experience a pressure drop given by the Hagen-Poiseuille equation,

pm−1− pm = (KN
m )
−1qm m = 1,2, ...,M. (4.30)
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Since the tree is binary and symmetric, the flux will be divided equally at each bifurcation point, and

may be expressed in terms of q1 as

qm =
q1

2m−1 m = 1,2, ...,M (4.31)

The edge conductivity KN
m will be equal for edges at the same level, and since the length and radius at

level Lm may be expressed in terms of the root edge as

Lm = αllm−1 = α
m−1
l l1 and rm = αrrm−1 = α

m−1
r r1 m = 1,2, ...,M (4.32)

For the conductivity we have

KN
1 =

πr4
1

8µl1
, KN

2 =
πr1αr)

4

8µl1αl
, KN

3 =
π(r1αr

2)
4

8µl1αl
2 (4.33)

and so on. Thus, we can express the conductivity in terms of the edge level as

KN
m =

π(r1αr
m−1)

4

8µl1αl
m−1 m = 1,2, ...,M (4.34)

Now, the pressure drop between any two nodes at different arbitrary chosen levels La and Lb is found by

summing Equation (4.30) over all bifurcation points between this node and the root node, yielding

pa− pb =
b

∑
i=a+1

(KN
i )
−1qi = (κN

a,b)
−1q1 a,b = 0,1,2, ...,M (4.35)

where

κ
N
a,b =

(
8µl1
πr4

1

b−1

∑
i=a

α i
l

2iα4i
r

)−1

. (4.36)

Now we can express the pressure difference between the chosen macro terminal node pM′ and the micro

terminal node pM in terms of Equations (4.35)-(4.36):

pM′− pM = (κN
M′,M)−1q1 (4.37)

Finally, we need an expression for the cell area. Here, the initial configuration data has been chosen

such that the area of the cells are all equal and given by the following:

Aω =
AΩ

2M−1 (4.38)
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Now we insert into the equation for KT :

KT =
qM

(pM′− pM)Aω

=
q1

2M−1

(pM′− pM) AΩ

2M−1

=
κN

M′,M

AΩ

(4.39)

And hence,

KT :=

(
AΩ

8µl1
πr4

1

M−1

∑
i=M′

α i
l

2iα4i
r

)−1

(4.40)

4.4.4 Verifying the coarse approximation

To verify the coarse approximation, we check that the two models are equal when we remove only one

level of the tree. For this method of verification, we leave the Peaceman correction out of the reference

model, since this will introduce a small error in the coarse approximation. The pressure in the terminal

node is then equal to the pressure in the cell in this test case.

Cutting away only one level, we have LM′ = LM−1, and we get, by Equation (4.40), that

KT =
π(r1αr

M−1)
4

8µl1αl
M−1

2M−1

AΩ

=
KN

M′

Aω

(4.41)

and, consequently,

qT =−KT (pD− pN
M′) =−

KN
M−2

Aω

(pN
M− pN

M′) =
qN

M′

Aω

This holds because we leave out the Peaceman correction and pD = pN
M. Now, replacing KT with

KN
M′

Aω
,

qT with
qN

M′
Aω

and
∫

ωi
dx with Aω in the system matrix in Section 4.3.2 we obtain the same system matrix

as in Section 4.3.1. We verify this by solving for the domain pressure pD using both models, proving

that we obtain the same answer. The error has been calculated using the root mean square (RMS) error

divided by the pressure difference in the root node pressure pN
Dirichlet and the domain boundary pressure

pD
Dirichlet :

RMS =

√
∑cells Acell(pex− pcoarse)2

AΩ

(4.42)

erel =
RMS

pN
Dirichlet −pD

Dirichlet
(4.43)
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5 Numerical results
In this chapter we present the results achieved through the methods described in Chapter 4. The chapter

is structured as follows:

Section 5.1 presents the verification of the TPFA method and of the coupled system, as described Section

4.4.1 and Section 4.4.2, respectively.

In Section 5.2 we present the results from the deterministic tree. This tree serves as a well suited

test case due to its symmetric structure, and these results will be used in order to better understand the

results from the unstructured networks.

Section 5.3 presents the results on the unstructured networks. Here we do also investigate the hypothesis

of a radial dependency of KT .

Section 5.4 provides a summary of the main results.

5.1 Code verification and validation

5.1.1 Verification of the Two Point Flux Approximation (TPFA) method

Here we present the results from the verification method in section 4.4.1. Figure 5.1 shows that the

numerical solution to the testproblem (4.25)-(4.26) obtained with the FV-TPFA method on an irregular

Voronoi grid and a dirac type right hand side is close to converge with order 1. The red line is a reference

to 1st order convergence. The error e[kPa ·mm] was calculated according to Equation (4.27), and h[mm]

is the average area of one grid cell, that is h =
√

AΩ

ncells
. The dashed lines represents the 10 tests that

have been done. Recall that the grid is a Voronoi diagram based on the terminal nodes of the graph, and

that each "grid refinement" involves the generation of a new random graph with twice as many terminal

nodes, which is why each test gives different results.

5.1.2 Verification of the coupled system

The results from the verification method described in Section 4.4.2 is presented in Figure 5.2. As with

the test of the FV-TPFA method, 10 tests was done from which the mean error and standard deviation

was calculated. Considering the average, we conclude that the method converges with what appears to

be about 1st order rate.
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Figure 5.1: Convergence plot of test case presented in Section 4.4.1. The dashed lines represents the
convergence results for each individual test case, while the thick blue line is the average error of all the
test cases, with error bars showing the standard deviation. The red line is a reference to exact 1st order
convergence, and its intersection point is arbitrary and irrelevant.

Figure 5.2: Convergence plot of test case presented in Section 4.4.2. The dashed lines represents the
convergence results for each individual test case, while the thick blue line is the average error of all the
test cases, with error bars showing the standard deviation. The red line is a reference to exact 1st order
convergence.
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5.2 Experiments on the structured network

5.2.1 Verifying the calculations of the transfer conductivity

The calculation of KT is here validated according to Section 4.4.3 on the deterministic tree. That is,

we have compared the analytically calculating values by Equation (4.40) with the numerically calcu-

lated value of KT . We used the following initial configuration: Maximum node level L8, trunk length

of tree l1 = 5
2
√

2
mm, length reduction rate αl =

1√
2
, trunk radius r1 = 0.05 mm and radius reduction

rate αr = 0.7. This gives terminal edge radii equal to 0.0041 mm and a reasonable ratio between vessel

radii and lengths. By letting Ω := x ∈ [0,5],y ∈ [0, 5√
2
], we obtain a space filling tree with equally sized

Voronoi grid cells. Figure 5.3a displays the results. Here, the analytically derived KT is represented by

dashed lines, while the numerically calculated values are represented by dots. R is the radial distance

between the macro terminal node at LM′ to the micro terminal nodes at L8 within its impact field, and

due to the symmetry of the tree we see no radial dependence on KT , as expected. The right y-axis gives

the level difference LM−LM′ .

For LM − LM′ = 1, we have two overlapping data points only, as the macro node at L7 supplies only

two cells with equal distance R to both. We have more data points at larger level differences because

the macro terminal node then supplies a larger amount of cells. With LM −LM′ = 8, the root node is

the macro terminal node, and thus the impact field is the whole domain. The impact field of a macro

terminal node at L3 is illustrated in Figure 5.3b.

From Figure 5.3a we do the following observations and reflections:

• KT is inversely proportional to the level difference LM − LM′ . That is, the higher gap between

macro and micro terminal node, the lower transfer conductivity.

• The inverse proportionality is explained by the fact that the fluid loses pressure along its flow path

due to resistance in edges. By increasing LM −LM′ , we consider a longer flow path with higher

resistance, over which more pressure is lost, in the calculation of KT .

• Most pressure will drop over edges with the highest resistance, i.e. the high-level edges with

the smallest radii. Therefore we see larger differences between KT values for lower values of

LM−LM′ .

• These observations indicates that the conductance in edges over which most pressure drops is a

determining factor for the value of KT .
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(a) KT calculated on a deterministic, space filling tree, both analytically (dashed
lines) and computationally (dots). R is the radial distance from the given macro
terminal node to the micro terminal nodes. The right y-axis shows the level
difference between the macro terminal node and the micro terminal nodes. Dif-
ferent colors are chosen for visual purposes. We have more data points at higher
level differences because this corresponds to a bigger impact field, see figure (b).

(b) The impact field of a macro terminal node is the collection of all the cells
that are supplied through that node, and is here marked in gray. The visible tree
is drawn in red, and the invisible in blue. Here, maximum node level is L8 and
the macro terminal node is placed at L3 and marked with a red dot. Note that
for each step we move the macro node closer to a micro node, the impact field
is halved, so that for LM−LM′ = 1 the impact field is only two cells, while with
LM−LM′ = 7 the impact field is the whole domain.

Figure 5.3: a) KT (R) and b) impact field for a deterministic, symmetric tree. The transfer conductivity
with a given macro terminal node is constant, as expected.
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5.2.2 Testing of sensitivity to network variables

In Figure 5.4, we look closer at how the edge radii affects the value of KT by letting αr vary from 0.4 to

0.9. Recall that the smaller αr, the more dramatic reduction in radii for each level jump, and αr = 0.4

means that the radii are more than halved. The results of varying αr is thus radical differences in the

terminal edge radii, and the consequences are clear in the figure: At most, the difference in KT is of

order 1010. A striking observation from the figure is also that the results are practically independent of

the level difference for sufficiently small radii. When the radii shrink slowly (∼ αr > 0.6), KT is also

quite dependent on how much of the tree that is removed. This as opposed to when the reduction factor

is small and the radii becomes very small very fast (∼ αr ≤ 0.5). Then the placement of the macro

terminal node plays no role at all.

We may explain these results as follows: When the edge radii are just slightly decreasing, the varia-

tion in edge resistance is small (since the edge radius is the most important factor for the resistance).

The pressure drop over each edge will therefore be nearly constant, and the pressure in the nodes will

decrease almost linearly in the whole flow path. KT will therefore be more dependent on the placement

of the macro terminal node. That as opposed to when the radii shrinks very quickly. The resistance in

the flow path will as a result increase dramatically for each level increase. The insignificance of the level

difference as αr decreases indicates that almost all pressure drops over the terminal edges. What we see

in the figure is hence that the more the resistance in terminal edges dominates the pressure profile, the

less is the significance of the placement of the macro terminal node for the value KT .

Figure 5.4: The value of KT is strongly dependent of the vessel radii. Here, the reduction factor αr in
radius is varying from 0.4 to 0.9, resulting in a difference of order 1010 in KT at most. Also, the number
of levels removed has practically no influence on KT for low αr.
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5.2.3 The coarse model approximation

The coarse model was validated according to Section 4.4.4. Six graphs with varying LM were used as

test cases and the error was zero for all.

Test case 1: Identifying important parameters

We want to test how well the coarse model approximates the reference model, the Peaceman correction

included (which was left out in the validation). In this section we present the results from investigating

which model parameters that affects the results of the approximation the most. We divided the model

parameters into three groups:

1. Fixed parameters. This includes structure parameters that results in the wanted graph structure,

namely a tree yielding equally sized Voronoi cells which is space filling for a sufficient amount of

levels. We fixed the domain Ω := x ∈ [0,5],y ∈ [0, 5√
2
], the root length l1 = 0.05 mm, the length

reduction factor αl =
5

2
√

2
, and the bifurcation angle θ at 90°. Also, we kept the viscosity µ

constant at 3 ·10−6 kPa · s and assumed this to be the "true" blood viscosity.

2. Structural parameters. We investigate how the error depends on the network complexity, i.e., the

maximum level LM, and how much of the graph we remove in the approximation, i.e. the level

difference LM−LM′ .

3. Conductivity parameters, that is, parameters affecting the conductivity in the domain and the

network. In the domain we vary KD by varying the permeability k, assumed to be isotropic.

k = 3 · 10−5 mm was used as reference value as this has been used as a physical parameter in

related literature. This gives KD = 10 mm2

s·kPa . The network conductivity KN is varied through the

radius reduction factor αr.

Hence, four model parameters were considered: LM, LM−LM′ , KD and αr. In Figures 5.5 we present

the results as the error in the domain pressure pD according to Equation (4.43) as function of the various

parameters. In each test, two parameters were fixed and two others varied.
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(a) Fixed: M = 8 and αr = 0.7.
Varying: KD and LM−LM′ .

(b) Fixed: M = 8 and LM−LM′ = 4.
Varying: αr and KD.

(c) Fixed: αr = 0.7 and KD = 10 mm2

s·kPa .
Varying: M and LM−LM′ .

(d) Fixed: KD = 10 mm2

s·kPa and LM−LM′ = 3.
Varying: M and αr.

Figure 5.5: Here we test the sensitivity of the coarse approximation to four different variables: αr is the
radius reduction factor, KD is the domain conductivity, M is the maximum level in the tree and LM−LM′

is the level difference between the macro and micro terminal node. The tests are done by fixing two
variables and letting the two others vary. The legend in (b) also accounts for (a), and the reference
value KD = 10 mm2

s·kPa is marked with a thicker, yellow line. Similarly, the legend in (d) also accounts for
(c). Note that the axis limits are varying. On these plots we have several datapoints where erel < 10−15,
which is in the range of machine precision and thus interpreted as zero.

Figure 5.5a shows that, for all KD values, increasing level difference results in a bigger error. This is

expected, as increasing level difference means that we remove a bigger part of the network, and by that

more information about the flow details. However, the level difference is by far not as important as the

value of the domain conductivity KD, and for the highest value of KD the error is close to zero even

when we remove 6 out of 8 levels of the tree. The figure indicates that the error is more influenced by

conductivity parameters than structural parameters.

Looking at 5.5b we see that αr also has a dramatic impact on the results, and significantly more than the
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level difference, which was here kept constant. Recall that low values of αr means that the radii reduces

quickly, and notice that for αr = 0.4, the error is (numerically) zero also for low KD values. However,

here the error increases immediately as we increase αr, while for high KD we can allow a bigger reduc-

tion rate before we see any increase. Lower αr results in lower transfer conductivity, as seen in Section

5.2.2. Since small αr entails narrow terminal edges dominating the pressure profile, this indicates that

lower errors are obtained with more pressure drop in the network, and less in the domain.

The results in Figure 5.5c and Figure 5.5d may be explain in light of these insights. Both figures re-

veal that a higher network complexity results in lower error, which at first might seem unreasonable as

it should be easier to approximate something less complex. However, a more complex network yields

higher network resistance, as the edge radii decreases for each level increase. Thus, with higher com-

plexity, more pressure drops over the network. The results in (d) is particularly interesting: For large αr,

the network edges shrink just slightly for each level increase, and whether there are 4 or 9 levels does not

significantly impact how much pressure that drops over the network. However, for low αr, the difference

between 4 and 9 levels has a dramatic impact on the terminal edge radii, and, correspondingly, for the

pressure differences in the network. Thus, it seems like the network complexity is only important for the

error if network parameters (such as radii) varies significantly with varying complexity.

To explain the sensitivity to conductivity parameters, we must recall that flow in this model regime

will always search for the most effective flow path towards the minimum pressure at ∂ω . Thus, for

sufficiently low KD compared to KN , it becomes more efficient to reach the boundary through the net-

work terminal edges, and the network flow is altered by the pressure gradients in the domain. This flow

pattern is not captured in the coarse model, as the network is removed and replaced by a linear flow

model unable to replicate such effects. From Figure 5.6b) we also note the pressure difference between

terminal edges and the domain due to the Peaceman correction (see Equation (4.18)), which increases as

we increase the domain conductivity. This pressure drop is neither accounted for in the coarse approxi-

mation. Thus, both the effects of altered network flow and of the Peaceman correction are not captured

by the coarse approximation and results in higher errors for higher pressure gradients in the porous

domain.
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(a) Pressure plot for the reference model with KD =

1000 mm2

s·kPa . Network setup as in Section 5.2.1, but with
maximum level L5.

(b) Pressure plot for the reference model with KD =

0.1 mm2

s·kPa . Otherwise same setup as in (a).

Figure 5.6: (a): When KD is high and the resistance to flow is lower in the domain than in the network,
most pressure drops over the network. (b): For high KD, the pressure gradients in the domain are larger,
and that the Peaceman correction (seen as the gap between terminal nodes and the domain) becomes
more important for the pressure profile. The error in the coarse model is higher in case (b).

Test case 2: Fixed radius setup

Before proceeding to the unstructured networks, we consider one final test case where we use the setup

for the radii described in Section 4.1.2 (used for the unstructured networks), where we fix the radius of

the root edge and the terminal edges. Thus, we test how the results vary when one of the most important

conductivity related parameters, i.e. the smallest radius in the network, is fixed. rR was set to 0.5 mm

as this is approximately the size of the smallest radii visible in medical pictures. rT was set to typical

capillary radii of 0.004 mm. We cut the tree at L1 and varied the maximum level LM to observe the effect

of varying network complexity. The resulting KT values and the error in the coarse approximation are

displayed in Figure 5.7.

Figure 5.7a shows that by fixing the terminal edge radii, we do not get the same variations of sev-

eral orders in the results. The variations we see is now due to variations in terminal edge length, which

is reduced by a factor αl for each level increase. The results of the coarse approximation with this

setup and different KD values is shown in 5.7b. KT is increasing with increasing M, and the error is

correspondingly increasing, since higher network conductivity results in smaller pressure drop over the

network. The important message from this test case is that the order of KT seems to be highly dependent

of the terminal edge radii, as the variations in KT is much smaller when they are kept fixed. However,

these results elucidate that the effect of edge length is not negligible, and thatthe conductivity of single

graph edges, which depends both on edge radii and length, are important for the value of KT .
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(a) KT measured on a tree with the radius setup de-
scribed in Section 4.1.2. The macro terminal node is
kept at L1 and the maximum level LM is varied.

(b) The coarse approximation with the KT values found
in (a) for different values of the domain conductivity
KD.

Figure 5.7: Test case with constant terminal edge radii and varying complexity.

5.3 Results on unstructured networks

The results for the DLA generated network and the rapidly-exploring random tree are now presented.

Model parameters are set as follows: We fix the domain Ω := x,y ∈ [0,1] and use the radius setup

described in Section 4.1.2 with rR = 0.5 mm and rT = 0.004 mm as in the final part of the last section.

We then look at how the transfer function KT and the coarse approximation depends on the complexity

of the network. For the DLA generated network, we indicate its complexity by referring to the number

of particles that is involved in its generation. More particles leads to higher complexity, and it will also

lead to more terminal nodes, but there is no exact connection between the two. However, it is noted that

twice as many particles gives approximately twice as many terminal nodes, and 16 000 particles, which

is the most complex network we will use herein, corresponds to ∼ 1000 terminal nodes. The number

of terminal nodes will be used to indicate the complexity of the rapidly-exploring random tree. Since

both networks has terminal nodes at different levels, we will always use the root node at L0 as macro

terminal node. Thus, we measure KT as a parameter for the entire network, and the coarse model is an

approximation of the entire network. This means that the pressure difference when calculating KT is

always the same, and variations in KT values are due to other factors.

5.3.1 The transfer function on DLA generated network

Figure 5.8 shows two DLA generated networks of different complexity and a color map of KT where

lighter colors indicates higher values. Note that when adding more particles, the network grows outwards

from the root and covers a larger share of the domain. The network develops a few main branches that

splits into progressively thinner branches. Considering the KT values, the pattern is clear, especially for
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(a) DLA tree generated with 2000 particles.

(b) DLA tree generated with 16000 particles.

Figure 5.8: Two DLA generated networks of different complexity together with a color map of the KT

value for each micro terminal node. Light colors indicates higher values. The red dot represents the
macro terminal node, and the blue dots represent micro terminal nodes.
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the bigger network: Higher values gather around the main branches near the root, while the lowest are

found at the outer most terminal nodes.

In order to investigate the modelling assumption about the flow distribution being inversely proportional

to radial distance, we have plotted log10(KT ) as a function of R at four different network complexities,

see Figure 5.9a. R is the distance between the macro terminal node and each micro terminal node. We

did a linear approximation from the data points, and used the slope coefficient as an indication of the

R-dependence, which are plotted in Figure 5.9b. As the trees are randomly generated, we based each

regression model on 10 different trees at each level of complexity. The slope is negative for all networks,

and in all cases we found that the p-value of the slope coefficient is < 0.05, meaning that the spatial

dependency is statistically significant. The R2 values ranges from 0.159 for the network with 1000 par-

ticles to 0.309 for the network with 16 000 particles. This indicates that as the complexity increases and

the network fills up more of the space, the overall spread in KT values decreases.

The variations we see in KT is the result of variations in flow in terminal edges, which in turn is the

result of some flow paths being more efficient than others. Both the length of a flow path and the resis-

tance in each edge determines the resulting terminal edge flow. The flow in edges directly linked to the

main branches will therefore be higher, while for distant terminal edges at the sub-branches, the fluid

loses more pressure along the path, and the terminal edge flow is lower. For this network, we note that

the path length and radial distance R to terminal nodes are to a large extent coinciding, and therefore,

KT shows a tendency to be a decreasing function of R.

(a) We have plotted log10KT (R) and the linear regression
model on four networks of different complexity. "Parti-
cles" refer to the way the tree is generated, but the data
points represent terminal nodes. The marker size reflects
the area of the distribution region of the terminal node.
The R2-value of the model based on 10 networks is plot-
ted at each graph. The network of 16000 particles having
R2 = 0.31 is not plotted for visual purposes.

(b) Here we plot the slope coefficient from the linear re-
gression model for trees of varying complexity. Each data
point is based on data from 10 different trees, in which
one of them is plotted i (a) with the same color as the
corresponding data point. Here we have also included
trees with 16 000 particles, but this is not plotted in (a)
due to visual purposes.

Figure 5.9: We investigate the modelling assumption about the flow distribution being inversely propor-
tional to the distance R from the macro to micro terminal node. The p-value of the slope coefficient was
found to be < 0.05, hence, the spatial dependency is statistically significant.
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5.3.2 The transfer function on rapidly-exploring random tree

Figure 5.11 shows two trees of different complexity, and note that even with a relatively low complexity,

the branches reaches out to cover outer parts of the domain as well, and the network grows denser as

the complexity increases. As for the DLA network, the highest values are gathered around the main

branches. Low values are found at areas with a long path distance from the root, but as opposed to the

DLA network, this does not necessarily correspond to a long radial distance. For instance, the black

spot a little to the right of the root node in Figure 5.11b is very close in radial distance, but far if we

consider the path from the root node. However, what seems to be common for both the unstructured

networks is that the terminal edges near the root, especially the short ones, dominates the flow. This in

addition to variations due to path length, is most likely the reason behind the KT distribution pattern we

see here for both unstructured networks.

The distribution pattern of KT in Figure 5.11 is reflected in Figure 5.10a, in the sense that high and

low KT values are found at the same radial distances. A linear approximation to log10(KT ) is clearly a

bad fit, with R2 values (not displayed in the figure) varying between 0.018 and 0.054. However, the slope

coefficients, plotted in Figure 5.10b have p-values < 0.05, thus, the radial dependence is statistically

significant. The increasing slope of the linear regression model of log10(KT ) at higher complexity may

be explained by the fact that a new terminal edge linked to a main branch will significantly alter the

flow and lead to a larger gap between the KT extremities. This happens as a result of the space-filling

algorithm, allowing new nodes to appear at any empty space in the domain, near the root as likely as in

the periphery.

(a) Linear regression approximation of KT as a function
of the distance R between the macro and micro terminal
node on three different rapidly-exploring random trees.
An increase in the number of terminal nodes results in a
denser tree with many short edges, which seems to result
in a larger spread in the KT values. The R2-values, alter-
nating between 0.018 and 0.054, has been left out of the
plot for visual purposes.

(b) The slope coefficient of the linear regression approx-
imation as a function of the number of terminal nodes.
Each data point is based on the data from 10 different
trees. The red, green and blue data points thus represent
the data points in (a) except that these points are from
one single tree.

Figure 5.10: Analogous to Figure 5.9.
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(a) Rapidly-exploring random tree with 100 terminal nodes.

(b) Rapidly-exploring random tree with 500 terminal nodes

Figure 5.11: Analogous to Figure 5.8. Lighter colors indicates higher KT values.
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5.3.3 Coarse model approximation

Finally, we look at the results of a coarse approximation of the unstructured trees. For the approximation

we used the KT value from the linear regression model of log10(KT (R)) found in the previous section.

That is, we used the coefficients in Figure 5.9b and Figure 5.10b and the corresponding intercept coef-

ficients. Hence, KT (R) = 10slope·R+intercept . We calculated the average error and the standard deviation

on the basis of 10 networks for each test. As in Section 5.2.3, the error was measured in the domain

pressure pD calculated with the reference and the coarse model according to Equation (4.43).

The results for the DLA generated network and the RRT are displayed in Figure 5.12a and 5.12b, re-

spectively. The legend in Figure 5.12b accounts for both figures. The errors are here many magnitudes

bigger than those for the deterministic tree, which is expected as we use approximated KT values. How-

ever, despite that many of the data points deviated from the linear regression model, especially for the

RRT, the errors may be considered small. For KD≤ 10 mm2

s·kPa , which was our reference conductivity value,

errors remains below 1% for both networks. The range of erel is about the same for both networks, with

a slightly larger standard deviation of the error at the RRT. We still conclude that the differences are, a

bit surprisingly, not very large. It thus seems like as long as the conductivity parameters results in that

most pressure drop happens in the network, the network structure plays a minor role on the results of a

coarse approximation.

(a) The relative error in domain pressure between
the reference and coarse approximation on DLA
generated trees of varying complexity for different
KD values. Each data point is based on data from
10 different trees. The dashed-dotted line is the
mean error and the shaded area shows the stan-
dard deviation.

(b) Analogous to (a), but for the rapidly-exploring
random tree. For the red graph (KD = 100),
some of the standard deviation values std(erel) was
greater than the mean value, and in order to use the
logarithmic axis scaling we have plotted the devia-
tion above the graph only.

Figure 5.12: Relative error in domain pressure pD calculated with the reference and the coarse model
for a) the DLA generated network and b) the rapidly-exploring random tree.
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5.4 Summary

Through the numerical experiments we have investigated the distribution of KT for three different net-

works, and whether a coarse approximation of these networks in terms of KT is a valid approximation.

Using the deterministic tree as a perspicuous tool to understand the influence of isolated variables, and

the unstructured trees as "biological-like" test cases, we can summarize the results as follows:

• KT , which may be considered as the total conductivity for a given flow path in a network, is highly

dependent on the conductivity of single graph edges as well as the flow path length.

• KT tends to decrease with increasing distance R from macro to micro terminal node when the

length of the flow path is associated with higher values of R. This tendency is clearer for the DLA

generated network than for the rapidly-exploring random tree.

• The error in the coarse model approximation is small when most pressure is lost in the network and

the pressure gradients in the domain are small. Large pressure gradients in the domain result in

higher error in the coarse approximation, leading to alterations in the network flow also affecting

the Peaceman correction that the linear flow model is unable to replicate.

• The error therefore depends more on the conductivity parameters (KD, KN) than on network struc-

ture and complexity.
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6 Discussion and conclusions
We will here discuss the main results summarized in Section 5.4. First, if the vessel network resembles

any of the unstructured networks, the flow distribution may exhibit a radial dependency (in terms of

distance from the macro terminal), and the flow from a feeding artery into the tissue can be modelled

with a finite support area. This eliminates the need for a full network-domain connectivity in a model,

and the calculations thus simplify considerably. The appropriate functional relationship between KT and

R remains however an open question, and will most likely depend on the network structure. Secondly,

our results indicate that the coarse model may be suitable for coupled problems where most pressure is

lost in the network, while pressure gradients in the domain are small. The small errors for the unstruc-

tured networks indicate model robustness. However, it also underlines the importance of an appropriate

pressure distribution for the validity of the model. In vascular networks, most pressure is lost over arte-

rioles and venules (Formaggia et al., 2010) and not in the capillaries. According to our results, the KT

parameter should hence incorporate arterioles and venules for a coarse model to be valid for blood flow

simulations. Moreover, there is reason to believe that an extended model with a corresponding venous

compartment will allow for higher pressure gradients in the porous domain. The effect of internal sinks

in the form of venules is expected to result in less flow across the domain, and, consequently, less al-

terations in the network flow. Our claim is therefore that the coarse model may be sufficiently accurate

for modelling purposes using a two-compartment model. Finally, the fact that KT is highly dependent

on vessel radius distributions implies a sensitivity to changes in the structural morphology of a vessel

network. This indicates that the transfer conductivity may be used as a biological marker for diagnostic

purposes, as many medical conditions involve morphological alterations. By inverse modelling, in vivo

measurements of KT may be feasible with an initial value obtained from a realistic synthetic network.

We therefore conclude that our results are interesting both from a modelling but also potentially from a

clinical perspective.

A natural discussion point is to what extent our networks are comparable to real vessel networks. Based

on the suggestion by Fleury and Schwartz (1999) about vascular formation being governed by a Lapla-

cian growth mechanism, we may assume that the DLA network is the most physiologically relevant

network considered herein. A natural prolongation of this work is to test our methodology on synthe-

sized but realistic networks, e.g. obtained from a CCO method as in Schreiner et al. (2006) or from a

mouse brain image-based Circulatory Network Synthesis (iCNS) developed by Linninger et al. (2019).

Ongoing work on in silico based mouse brain network models faces several technical challenges, but

discrete graph structures have been obtained using machine learning analysis (Todorov et al., 2020).

Such a fully resolved network is valuable for parameter estimations (for instance the transfer conduc-

tivity) and provides a true network reference. However, the computational costs associated with fully

resolved network models highlights the relevance of coarse approximations.
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Our results on a simplified, idealized arterial flow model should encourage to further work towards a

realistic global model. First, a corresponding model for the venous compartment needs to be coupled

onto this model to be used in a full-brain simulation. As mentioned, this will probably result in a different

flow behavior in the domain, and the effect on the error in the coarse model should be investigated. Sec-

ond, the radius dependence of KT and the self-regulating mechanisms of the vessel system, controlled by

contraction and widening of vessel radii (Formaggia et al., 2010), suggest that a realistic model should

incorporate physiological function as well as design. The flow in macro scale vessels should include

effects of vessel wall elasticity and the resulting non-linear flow behavior as in Qohar et al. (2021), and

a corresponding extensions of the transfer flow model should also be subjected to research.

Several naturally occurring networks are highly hierarchical and appear fractal, and we devote this

last paragraph to speculate on possible applications to other types of biological networks with poten-

tial gradient driven flow. A captivating analogy is the vascular system of plants, as they as well are live

organisms having nutrients transported through a pressure driven transport system. Like the mammalian

vascular system, it has two main compartments: the xylem and the phloem, for which coupled models

have been built in order to understand function-structure relationships (Hölttä et al., 2009). These rela-

tionships are also shown to change due to plant sickness (Brodersen & McElrone, 2013), thus, it is not

beyond belief that a coarse model could be used as a tool for e.g. estimating global effects of embolism.

River ramifications are another typical example of naturally arising fractal structures. We may consider

the landscape in Figure 6.1 as an upside-down version of our reference model, where the porous domain

is the impact fields around the stream sources, and instead of diverging branches we have streams that

Figure 6.1: River ramifications from the Missisippi river. Redistributed from https://www.wikiwand.
com/no/Hovedelv#Media/Fil:Mississippiriver-new-01.png, with licence: CCBY-SA4.0.
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progressively widen and join into larger rivers before converging into the main river and flowing into the

ocean. It is certainly a time for being concerned about consequences related to changes in water levels,

amount of precipitation etc., and modelling complex systems over domains the size of a large country

do most likely call for a coarsening.
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A Code verification

A.1 Verification of the Two Point Flux Approximation (TPFA) method

A.1.1 Convergence on squared grid

uh is approximated on each cell with diameter h =
√

dx2 +dy2, and the exact value is calculated in the

cell center. The error is measured in the L2-norm, that is, Equation 4.27. On a regular, squared grid, the

method is shown to converge with order 2, see figure A.1.

Figure A.1: Convergence plot of the test problem on a squared grid. h is the diagonal of one grid cell
and the error is measured in the L2-norm.
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