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SUMMARY
Mitochondria and plastids power complex life. Why some genes and not others are retained in their organelle
DNA (oDNA) genomes remains a debated question. Here, we attempt to identify the properties of genes and
associated underlying mechanisms that determine oDNA retention. We harness over 15k oDNA sequences
and over 300 whole genome sequences across eukaryotes with tools from structural biology, bioinformatics,
machine learning, and Bayesian model selection. Previously hypothesized features, including the hydropho-
bicity of a protein product, and less well-known features, including binding energy centrality within a protein
complex, predict oDNA retention across eukaryotes, with additional influences of nucleic acid and amino
acid biochemistry. Notably, the same features predict retention in both organelles, and retention models
learned from one organelle type quantitatively predict retention in the other, supporting the universality of
these features—which also distinguish gene profiles in more recent, independent endosymbiotic relation-
ships. A record of this paper’s transparent peer review process is included in the supplemental information.
INTRODUCTION

Mitochondria and plastids (the broader class of organelles of

which chloroplasts are one type) are bioenergetic organelles

derived from the ancient endosymbiotic acquisition of bacterial

precursors (Martin et al., 2015). The subsequent co-evolution

ofmitochondria andplastidswith their host cells has shapedcom-

plex life (Lane and Martin, 2010; Hohmann-Marriott and Blanken-

ship, 2011; Booth and Doolittle, 2015). Across eukaryotes, the

genomes of the original endosymbionts (estimated to have con-

tained thousands of genes; Boussau et al., 2004) have been

dramatically reduced through evolutionary time (Blanchard and

Lynch, 2000; AdamsandPalmer, 2003;Martin et al., 2015).Genes

have either been lost completely or transferred to the ‘‘host’’ cell

nucleus, so that modern-day organelle DNA (oDNA) contains

fewgenes.Manydifferencesexist between thenuclearandorgan-

elle compartments as encoding environments (Bullerwell, 2011),

and some of these can vary dramatically across eukaryotic

taxa—including physical structure, gene density, presence of
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introns, and capacity for recombination (Edwards et al., 2021).

Some more general differences between oDNA and nuclear

DNA (nDNA) include cellular copy number (oDNA is often present

in ploidy of hundreds or thousands), mutation rate (oDNA is often

subject to a higher sequence mutation rate than nDNA, although

not in plants; rates of structural change differ again; Johnston

and Burgstaller, 2019), epigenetics (marking of oDNA, for

example, appearsmuchmore limited than nDNA), and expression

through different machinery and mechanisms (mitochondria and

chloroplasts have specific, dedicated polymerases, ribosomes,

and tRNAs). These differences mean that gene transfer from or-

ganelles has profound implications for the balance of control be-

tween the nucleus and endosymbiont and the inheritance and

maintenance of vital genetic information (Sloan et al., 2018).

Selective pressures favoring organelle gene transfer are largely

agreed upon (Adams and Palmer, 2003). Nuclear encoding allows

recombination to avoidMuller’s ratchet (the irreversible buildup of

damagingmutations) (Saccone et al., 2000; Blanchard and Lynch,

2000), protection from chemical mutagens (Allen and Raven,
or(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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1996;Wright et al., 2009) and replication errors (Itsara et al., 2014;

Kennedy et al., 2013), and enhanced fixing of useful mutations

(AdamsandPalmer, 2003; Blanchard and Lynch, 2000). However,

these observations raise the complementary question: why are

any genes retained in organelles at all (Allen and Martin, 2016)?

This question has been hotly debated over decades, with many

proposed hypotheses. The preferential retention of genes encod-

ing hydrophobic products has been suggested, due to the chal-

lenge of correctly targeting and importing such products to the

correct organelle (Von Heijne, 1981; Popot and de Vitry, 1990;

Björkholmet al., 2017). The retentionof genesplaying central roles

incontrolling redoxprocesses hasalsobeenproposed to facilitate

local, organellar control of activity (Allen, 2015).Other hypotheses,

including roles for nucleic acid biochemistry (Johnston and Wil-

liams, 2016), gene expression levels (Nabholz et al., 2013), ener-

getic costs of encoding (Kelly, 2021), toxicity (Martin and Schnar-

renberger,1997), andothershavebeenproposed,butquantitative

testing of these ideas remains limited (Johnston and Williams,

2016; Maciszewski and Karnkowska, 2019).

Applying tools from model selection to large-scale genomic

data offers unprecedented and powerful opportunities to both

generate and impartially test evolutionary and mechanistic

hypotheses (Kirk et al., 2013) (aligning with an influential recent

commentary on ideas in biology; Nurse, 2021). Here, following

previousworkonmitochondrial DNA (mtDNA) evolution (Johnston

and Williams, 2016), we adopt this philosophy to explore the

mechanisms shaping gene loss across organelles. First, mindful

of the dangers of proposing parallels between different organelles

(Smith and Keeling, 2015), we nonetheless hypothesized that the

same genetic features would shape retention propensity of genes

in mitochondrial and plastid DNA (ptDNA). Such features would

predispose a gene to be more or less readily retained in oDNA

overall, whereas the total extent of oDNA retention in a given spe-

cies is shaped inparallel by functional andmetabolic features (Ma-

ciszewski and Karnkowska, 2019; Hadariová et al., 2018) and

evolutionary dynamics (characterized statistically in elegant

recent work; Janou�skovec et al., 2017). We further expect that

these genetic features would reflect the above evolutionary ten-

sion,betweenmaintaininggenetic integrity and retaining theability

to obtain and control machinery, that applies to both organelles

(Johnston, 2019; Adams and Palmer, 2003). With this general hy-

pothesis in mind, we proceed by taking an impartial, data-driven

approach using large-scale genomic data to investigate which

physical, chemical, andgenetic featuresof genes and their protein

products predict oDNA gene retention. We will ask three linked

questions: first, of the genes retained inoDNAbyat least someeu-

karyotes,which features predict howcommonly they are retained;

second,which featuresdistinguishorganelle genes that are not re-

tained in oDNA in any knowneukaryotes; and third,which features

predict the genes retained in more recent symbioses that

resemble proto-organellar relationships.

RESULTS

Quantifying gene-specific oDNA loss patterns across
eukaryotes
To quantitatively explore the features predicting oDNA gene

retention, we first define a retention index for a given oDNA

gene, measuring its propensity to be retained in oDNA. To this
end, we acquired data on organelle gene content across eukary-

otes, using 10,328 whole mtDNA and 5,176 whole ptDNA

sequences from NCBI. We curated these data with two different

approaches, resembling supervised and unsupervised philoso-

phies, to form consistent records of gene presence/absence

by species (see STAR Methods). The supervised approach

(manual assignment of ambiguous gene records to a chosen

gene label) and the unsupervised approach (all-against-all

BLAST comparison of every gene record from the organelle

genome database) agreed tightly (Figure S1).

Simply counting observations of each gene across species

is prone to large sampling bias, as some taxa (notably bilaterians

and angiosperms) are much more densely sampled than others.

Instead, we reconstructed gene loss events using oDNA

sequences of modern organisms and an estimated taxonomic

relationship between them (see STAR Methods). We then define

a retention index for each gene, quantifying its relative propensity

to be retained in oDNAwhile accounting for the underlying phylo-

genetic connections between samples. Following the picture of

hypercubic transition path sampling (Johnston and Williams,

2016; Greenbury et al., 2020), we use an evolutionary model

representing all possible patterns of gene presence and absence

as nodes on a directed hypercubic transition graph. Each node

has a corresponding unique binary string label of length L, where

a 0 or 1 in position i corresponds to absence or presence of the

ith gene, respectively. Under this evolutionary model, the oDNA

complement of species evolves by traversing edges from an

ancestral state with all genes (the binary string of all 1s), progres-

sively losing genes (and corresponding acquiring 0s in its state).

This traversal occurs in parallel to phylogenetic branching, so

that each phylogenetic lineage inherits its ancestral oDNA pattern

and then traverses the hypercube independently thereafter. In this

picture,wecandefine thesampled retention indexofgeneXas the

mean number of other genes already lost when an inferred transi-

tion on the hypercube involves the loss of gene X. In other words,

the retention index estimates the average number of genes

already lost ina lineagewhengeneX is lost (our resultswere robust

with respect toalternativedefinitions; seebelow). This retention in-

dex, along with the unique patterns of oDNA gene presence/

absenceand their taxonomicdistribution, are illustrated inFigure1

(phylogenetic embedding in Figure S2).

The retention patterns of genes in mtDNA and ptDNA across

eukaryotes show pronounced structure, agreeing with existing

results (and arguing against a null hypothesis of random gene

loss). The several-fold expansion of mtDNA in this study

compared with (Johnston and Williams, 2016) preserves the

same structure, with, for example, several rpl genes and sdh

[2-4] commonly lost and nad[1-6], cox[1-3] and cytb commonly

retained. The highest mtDNA protein-coding gene counts

appear in jakobid protists, with over 60 protein-coding genes

in some species. Metazoan mtDNA gene patterns are mostly

stable, with a common 13-protein gene profile shared by a large

majority of taxa (including humans). Viridiplantae have more

diverse mtDNA profiles, typically containing more protein-cod-

ing genes; fungi are also highly diverse, with some large and

some highly reduced gene profiles—typically retaining fewer

protein-coding genes than plants. Parasitic species, notably

alveolates, contain very few protein-coding mtDNA genes.

The ptDNA patterns display pronounced clustering, following
Cell Systems 13, 874–884, November 16, 2022 875



Figure 1. Structure of oDNA gene retention

Each row of colored/white pixels is a unique gene presence/absence pattern found in eukaryotic oDNA, where columns are individual oDNA genes in (A) mtDNA

and (B) ptDNA. Darker colors correspond to higher values of our assigned retention index for a given gene. Each pattern may be present in many species: gray

bars on the left of each row show the logarithm of the number of species with that pattern in a number of eukaryotic clades; scale bar below. The pronounced split

in ptDNA patterns reflects the evolutionary pathways represented, for example, by Rhodophyta and Viridiplantae (Hohmann-Marriott and Blankenship, 2011).

Sets of genes encoding subunits of notable organelle protein complexes are labeled with gray bars under the horizontal axis. Highlighted taxa with abbreviations

are [Api]complexa, [Fungi], [Jako]bida, [Meta]zoa, [Rhodo]phyta, and [Viridi]plantae.
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previous observations (Mohanta et al., 2020) and the known se-

rial nature of their evolutionary heritage (Keeling, 2010), with one

cluster corresponding broadly to Viridiplantae (typically retaining

ndh genes) and the other corresponding broadly to brown and

red algae, diatoms, and other clades (typically lacking ndh genes

but retaining more atp, rps, rpl, psa, and psb). The largest ptDNA

gene counts occur in the Rhodophyta, with the overall patterns

of retention more distinctly clustered than for mtDNA. Viridiplan-

tae, making up the majority of samples in the dataset, display a

very large number of variations on a general structural theme,

with many ptDNA gene sets shared by dozens of species.

More reduced ptDNA gene sets are found in parasitic taxa,

with the smallest found in vestigial plastids like apicoplasts in

Apicomplexa. Several ribosomal subunits and ndhb are among

the most retained in ptDNA, with a second tier involving many

ndh, psa, psb, and atp genes retained in around half our species.

Least retained ptDNA genes include other members of psa, psb,

rps, and rpl.

Cross-organelle symmetry in the prediction of gene
retention by hydrophobicity and GC content
To facilitate the principled investigation of different existing and

new hypotheses on the features shaping oDNA gene retention,

we proceed with a Bayesian model selection approach applied

across oDNA. Here, the power of combinations of diversemolec-

ular features to predict gene retention patterns are explored using

the large-scale dataset alone, with no prior favoring of one hy-

pothesis over another. To this end, we compiled a set of quanti-
876 Cell Systems 13, 874–884, November 16, 2022
tative properties of genes and their protein products, linked to

evolutionary hypotheses about the mechanisms shaping oDNA

gene retention (Johnston and Williams, 2016). These included

gene length andGCcontent, statistics of encoding and codon us-

age, protein hydrophobicity, molecular weight, energy require-

ments for production, average carboxyl and amino pKa values

for amino acid residues, and others (Figure S3). Our quantitative

estimates for each feature were averages over a taxonomically

diverse sampling of eukaryotic records (see STAR Methods).

We used Bayesian model selection to ask which of these proper-

ties were most likely to be included in a linear model predicting

the retention index of each gene. Following Johnston and Wil-

liams (2016), this approach identifies likely predictors with quan-

tified uncertainty, while acting without prior favoring of any given

hypotheses and automatically guarding against overfitting and

the appearance of correlated predictors providing redundant in-

formation. In both mtDNA and ptDNA datasets, models where

high hydrophobicity and highGCcontent predict high gene reten-

tion were strongly favored (Figure 2A). Themodel with the highest

posterior probability that featured neither of these predictors

instead featured amino pKa and assembly energy, with a poste-

rior probability of 3.143 10�4 —many orders of magnitude lower

than the top models in Figure 2A, suggesting strong support for

hydrophobicity and GC content as likely predictors. As

mentioned above, the link with hydrophobicity has been dis-

cussed at length in the past. The link with GC content is, to our

knowledge, less well-known—and requires a careful disambigu-

ation. It is well-known that oDNA generally has lower GC content



Figure 2. Predictors of oDNA gene retention

(A) Posterior probabilities over the set of features in linear models predicting retention index. Each model structure is given by a set of codes describing its

component features. Hydrophobicity (Hyd) or hydrophobicity index (HydI) and GC content (GC) feature in all model structures with the highest posterior

probabilities (for priors see STARMethods). ±give posterior mean signs of associated coefficients in model for retention index. Abbreviations are as follows: Hyd,

hydrophobicity; HydI, hydrophobicity index; GC, GC content; Len, length; pK1, carboxyl pKa; pK2, amino pKa; MW, molecular weight; and AG/CW, energies of

gene expression (see STAR Methods).

(B) Prediction of retention index with linear models involving hydrophobicity and GC content. oDNA gene sets are split into training and test sets; trained models

predict retention indices well in the independent test sets.

(C) Cross-organelle prediction. Linear models trained on mtDNA gene properties predict retention indices of ptDNA genes well, and vice versa. In (B) and (C),

shaded regions give 95% confidence intervals.
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than nuclear DNA because of the asymmetric mutational pres-

sure arising from the hydrolytic deamination of cytosine to uracil,

reducing GC content more in the generally high mutation com-

partments of oDNA than in the nucleus (Reyes et al., 1998). How-

ever, our results show that higher GC content is relatively favored

between oDNA genes—and hence independently of the general

oDNA/nDNA difference (Johnston and Williams, 2016).

We next tested the capacity of models involving this combina-

tion of features to predict the retention index of oDNA genes in

an unseen dataset. We split mtDNA and ptDNA gene sets into

50:50 training and test sets, trained linear models involving

hydrophobicity and GC content using the training data, and

examined their performance in predicting retention index in

the independent test set. Average Spearman correlations were

r= 0:64 and r= 0:62 for training mt and pt sets, respectively,

and r= 0:63 and r= 0:60 for test mt and pt sets, respectively

(Figure 2B). Correlations were higher still (r>0:7) when only sub-

units of core bioenergetic complexes were considered

(Table S1). Following our hypothesis that the same features

predict retention in the two organelle types, we also performed

cross-organelle experiments. That is, we trained a hydrophobic-

ity and GC model using mt genes and examined its ability to

predict pt gene retention, and vice versa. Notably, both organelle

gene sets predicted well the other’s retention patterns (r= 0:65

for pt predicting mt; r= 0:55 for mt predicting pt; Figure 2C;
Table S1). In other words, a simple model trained only using

mitochondrial gene data can predict the retention profile of

plastid genes, and vice versa.

To relax the assumptions involved in this approach,

including linear modeling, we paralleled this analysis with a

range of other regression approaches from data science,

including penalized regression and random forests, and using

different definitions of retention index (STAR Methods; Fig-

ure S4). We generally observed hydrophobicity and GC con-

tent being selected as features with good predictive ability

and the capacity to predict one oDNA type’s behavior from

the other, regardless of statistical approach taken

(Table S2); pKa values were also selected as informative fea-

tures in some model types (see below).

Importantly, there is clear evidence for a combination of

features having predictive power over retention patterns. Previ-

ous work has often highlighted one feature over others; the

model selection process here (as with previous work on mtDNA;

Johnston and Williams, 2016) emphasizes that several features

likely act in concert to shape oDNA patterns. The construction

and validation of predictive models further allow these individual

contributions to be quantified, addressing the problem of multi-

ple causes (Hilborn and Stearns, 1982) (and to some extent ex-

plaining the ongoing debate between single-factor explanations

in the field).
Cell Systems 13, 874–884, November 16, 2022 877
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Hydrophobicity and protein biochemistry predict oDNA
gene transfer to the nucleus in both organelles
We next asked which properties predict which organelle protein-

coding genes are universally transferred to the nucleus across

all eukaryotes. To this end, we compiled sets of annotated

nDNA and oDNA genes encoding subunits of bioenergetic pro-

tein complexes in organelles using a custom pattern matching

algorithm and 308 eukaryotic whole genome records from

NCBI (see STARMethods) (Figure 3A). As expected, GC content

in organelle-encoded genes was systematically lower than

nuclear-encoded genes. Here, this signal cannot be regarded

as a causal mechanism because it is likely due at least in part

to the aforementioned differences in asymmetric mutational

pressure between nDNA and oDNA—organelles, which often

have higher mutation rates than the nucleus, experience more

asymmetric mutation driving GC content lower (Reyes et al.,

1998; Johnston and Williams, 2016). More interestingly, the

hydrophobicity of organelle-encoded genes was systematically

higher across taxa (agreeing with hypotheses above, and recent

observations in the mitoribosome; Bertgen et al., 2020). Other

less well-studied biochemical features, including the carboxyl

pKa values of protein products, were also systematically different

between encoding compartments (Figures 3A, 3B, and S5). We

also verified that these differences existed within the sets of

genes encoding subunits of different organellar complexes

(Figures 3B and S6).

Following the above philosophy of data-driven identification

of features shaping encoding compartment, we used Bayesian

model selection with a generalized linear model (GLM) using

gene properties to predict the encoding compartment (except

GC and codon use statistics, due to the possibility of differences

therein arising simply due to asymmetric mutation). We found,

not unexpectedly given previous work, that hydrophobicity

consistently appeared in all the model structures with highest

posterior probability (Figure 3C). More surprisingly, high-proba-

bility predictive models also featured the relatively under-exam-

ined feature of carboxyl pKa, in combination with hydrophobicity.

Their appearance together in a Bayesian model selection frame-

work suggests that they provide independent information on

gene encoding, despite a correlation (albeit rather weak) be-

tween the features (Figure S3).

We next asked if these features could predict the encoding

compartment of genes in an unseen dataset. To this end, we

constructed GLMs predicting encoding compartment using hy-

drophobicity and carboxyl pKa. Here, we consider each species

in our dataset separately to avoid having to account for phyloge-

netic correlations between species—these models then give

species-level predictions about encoding compartment. We

trained this model using a subset of genes from each given spe-

cies and asked how well it predicted encoding compartment in

the remaining set of genes in that organisms. The model was

able to predict the encoding compartment of an independent

test set from each species with high performance (true positive

[TP]/negative [TN] rates: mt TP 0:90±0:17, TN 0:97±0:10, pt

TP 0:75±0:20, TN 0:88±0:18, mean and SD across the different

species considered; Figure 3D). We employed a range of classi-

fication approaches to quantify these observations, again

training on a subset of the observations and testing classification

performance on an independent set (Figure S7). Hydrophobicity
878 Cell Systems 13, 874–884, November 16, 2022
and pKa values consistently appeared as strong separating

terms, with other features including production energy and

gene length playing a supporting role (Figure S7). Classification

accuracy was typically >0.8 for all complexes using random for-

est approaches (Table S3).

For a subset of organelle-localized gene products, solved

crystal structures of their protein complexes allow another prop-

erty to be quantified: the binding energy statistics of the protein

product in its protein complex structure. Here, we estimate the

free energy associated with each subunit-subunit interaction in

the solved complex using PDBePISA (Velankar et al., 2009)

(results were robust when additional ligands were ignored or

were considered part of the subunit-subunit interaction, see

STAR Methods). We then compute the total free energy across

all of a subunit’s individual interfaces (the strength of its interac-

tions within the complex), as a continuous quantitative proxy for

its potential control over the assembly and stability of complex

structure (Levy et al., 2008; Maier et al., 2013) and hence for a

complex’s role in redox regulation, as discussed in Allen and

Martin (2016).

Previous work qualitatively suggested that genes encoding

subunits with high total binding energy (strong binding interac-

tions with neighboring subunits) and playing central roles in com-

plex assembly pathways were most retained in mtDNA (John-

ston and Williams, 2016; Maier et al., 2013; Allen and Martin,

2016). We used a generalized linear mixed model to quantify

and extend this analysis to complexes in both organelle types.

We found that total binding energy predicted whether a gene

was organelle encoded in any eukaryotes, with the relationship

holding across mitochondria and plastids, although with varying

magnitudes in different complexes (Figures 3E and S8). We veri-

fied the absence of pronounced correlation structure between

binding energy statistics and hydrophobicity (Figure S9), sug-

gesting that the two features independently contribute to gene

retention (Johnston and Williams, 2016). Hence, hydrophobicity,

amino acid biochemistry, and energetic centrality (linked to co-

localization for redox regulation; Allen and Martin, 2016) predict

whether a gene is ever retained in oDNA; of those that are hydro-

phobicity and GC content predict the extent of this retention

across eukaryotes.

Independent endosymbiotic genomes show compatible
profiles of hydrophobicity and protein biochemistry
Evolutionary history cannot easily be rerun to independently

examine the principles predicted by our analysis. However, the

diversity of eukaryotic life provides some existing opportunities

to test them. In several eukaryotic species, unicellular endosym-

bionts that are not directly related to mitochondria or plastids

have co-evolved with their ‘‘host’’ species, in many cases

involving gene loss and in some cases transfer of genes to the

host. Class Insecta is known to have several examples of

reduced bacterial endosymbionts (Husnik and Keeling, 2019);

other notable examples include the chromatophore, an originally

cyanobacterial endosymbiont of Paulinella freshwater amoebae

(Gabr et al., 2020), the recently discovered Candidatus Azoami-

cus ciliaticola, a denitrifying gammaproteobacterial endosym-

biont within a Plagiopylea ciliate host (Graf et al., 2021), and

the Nostoc azollae symbiont of the Azolla water ferns (Ran

et al., 2010).



Figure 3. Features predicting encoding compartment

(A) Mean and SEM of selected gene properties for organelle genes encoded in nuclear DNA (gray), mtDNA (red), and ptDNA (blue), in different species (organized

by the phylogeny on the left, expanded set in Figure S5).

(B) Hydrophobicity and carboxyl pKa of organelle genes encoded in nuclear DNA (gray) and oDNA (red/blue), for two example protein complexes (expanded set in

Figure S6). The darkness of a segment’s color increases with the number of individual gene data points contained within it.

(C) Bayesian model selection with a generalized linear model (GLM) framework for features predicting the encoding compartment of a given gene. Posterior

probabilities are averaged across independent classifications for individual organisms. Each model structure is given by a set of codes describing its component

features; model labels as in Figure 2.

(D) Performance (T/F, true/false; P/N, positive/negative) of GLMs involving hydrophobicity and carboxyl pKa on predicting encoding compartment of genes

outside the training set. Each set of points corresponds to a model for one organism.

(E) Binding energy and encoding compartment. ‘‘Retention’’ here is not the continuous index used previous, but a binary variable describing if any organisms

retain a gene in their oDNA (1) or if none have been observed to do so (0). Traces show mean and 95% credible intervals for Bayesian generalized linear mixed

model (GLMM) (see STAR Methods for priors). The associated p value is a frequentist interpretation from bootstrapping, against the null hypothesis of no

relationship. Crystal structures are colored according to the number of species in our dataset that retain the gene for each subunit.
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Figure 4. Gene feature profiles in other endo-

symbionts

(A) Hydrophobicity and (B) carboxyl pKa across

genes in endosymbionts (red) and a non-endosym-

biotic close relative (blue). p values are from Wil-

coxon rank-sum tests. Boxplots show upper and

lower quartiles, medians, and whiskers to points not

exceeding a factor of 1.5 from the upper and lower

quartiles.
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Not all of these endosymbiotic relationships have been shown

to involve gene transfer to the host cell nucleus, although there is

evidence for this in the Paulinella system (Nowack et al., 2011).

The metabolic and energetic contexts, and ages, of the individ-

ual endosymbiotic relationships also differ, at least to some

extent, in each case. A general principle can, however, be

expected to hold across relationships. All cases involve reduc-

tion of the endosymbiont genome, as some machinery in

the endosymbiont becomes redundant in the symbiotic relation-

ship. In a subset of lost genes, this redundancy arises because

host-encoded machinery can fulfill the required function (other

genes will be lost without such host-encoded compensation,

as their entire function becomes redundant). For this subset,

the same broad principles regarding import of protein machinery

may then be expected to hold as in organelles. Such genes are

lost as host-encoded machinery removes the need for their local

encoding. However, such host-encoded machinery must

be physically acquired by the endosymbiont, raising similar

issues of the mistargeting and import difficulty for hydrophobic

gene products as in the organelle case. In tandem, any biochem-

ical pressures influencing the ease of gene expression in

the endosymbiont compartment may also be expected to shape

retention patterns of this subset of genes. We therefore hypoth-

esized that the principles we find to shape gene retention inmito-

chondria and plastids would also show a detectable signal in

these independent endosymbiotic cases (while expecting a

lower magnitude hydrophobicity signal, due to loss of some

genes without the requirement for nuclear compensation).
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To test this hypothesis, we computed

genetic statistics for the genomes of endo-

symbionts and non-endosymbiotic close

relatives (STAR Methods; Table S4). The

hydrophobicity profile of the endosymbi-

onts in 9 of 10 cases was significantly

higher than their non-endosymbiotic rela-

tive (STAR Methods; Figure 4). Genes re-

tained in the photosynthetic chromato-

phore also had lower carboxyl pKa values

than in a free-living relative; for other endo-

symbionts, this relationship was reversed,

with endosymbiont genes having lower

carboxyl pKa values. This diversity is

compatible with a possible mechanistic

link between the pH of the compartment

and the dynamics of gene expression

therein (see discussion).

Our analysis approach involves several

choices of parameter and protocol. To
assess the robustness of our findings, we have varied these

choices and checked the corresponding change in outputs,

described in STAR Methods and the following figures. The key

choices, with figures illustrating their effects, are in gene annota-

tion (supervised or unsupervised; Figure S1), initial selection of

features (where we followed existing hypotheses and particularly

their summary in Johnston and Williams, 2016) and how to sum-

marize their quantitative values (Figure S10), definition of retention

index (TableS1;FigureS11), choiceofpriors inBayesianmodel se-

lection (Figure S12), and choice of regression and classification

methods: we additionally tested least absolute shrinkage and se-

lection operator (LASSO) and ridge regression and decision trees

and random forests for regression and classification (Figures S7

and S11).

DISCUSSION

Present-day organelle genomes reflect a balance between

pressure favoring gene retention and those favoring gene loss.

Transfer to the nucleus is likely favored for protection of informa-

tion (Adams and Palmer, 2003), with other features including the

cellular ATP budget (Kelly, 2021) also playing a role. We

have found, using a unique combination of large-scale genomic

data, evolutionary modeling, and Bayesian model selection, that

a constellation of previously and newly considered genetic fea-

tures constitute opposing pressures to retain genes in organelles

across eukaryotes, predicting gene retention to a notably sym-

metric extent in mitochondria, chloroplasts, and independent
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endosymbionts. Protein product hydrophobicity, a common

hypothesis, is confirmed as a highly likely predictor. However,

it does not have sole predictive power over oDNA patterns.

Our approach reveals quantitative roles for colocation for redox

regulation (via the proxy of centrality of a subunit in its complex;

Levy et al., 2008; Allen and Martin, 2016) and several newly

considered features of nucleic acid and amino acid biochemistry

(including GC content and carboxyl pKa). It must be underlined

that no single mechanism has sole predictive power over this

behavior. As expected in complex biological systems, a combi-

nation of factors is likely at play, a situation that has perhaps

contributed to the ongoing debate on this topic (Hilborn and

Stearns, 1982)—and one which can be resolved through model

selection approaches.

The cross-taxa structure of protein-coding gene profiles in

mitochondria and plastids has been explored previously across

many different phylogenetic scales; two broad recent examples

are Johnston and Williams (2016) and Mohanta et al. (2020).

There are some features of these patterns that should be

mentioned in discussing our approach. The ptDNA profiles

show a pronounced clustering into two classes, broadly reflect-

ing the Viridiplantae and Rhodophyta ‘‘themes’’ (mirroring the

evolutionary heritage of the organelles (Keeling, 2010)). This

structure is reflected in the bimodal appearance of the plots in

Figure 2 and is the reason for the slightly weaker predictive

performance of plastid models than mitochondrial models

throughout (Figures 2 and 3). Broadly, the taxa from which

ptDNA profiles are drawn explain some amount of the variance

in the data, but our ‘‘universal’’ models deliberately use informa-

tion across eukaryotes without further phylogenetic subdivi-

sions. Modeling the two ptDNA ‘‘themes’’ separately will

certainly improve model performance, with the output being

more taxa-specific models.

Binding energy predicts retention propensity most strongly at

very low (under �200 kJ mol�1) binding energies—very strongly

bound subunits are almost invariably found in at least some eu-

karyotic oDNA. At higher energies (less strongly bound subunits),

there is typically a mix of retention scores. This reflects a general

observation—the interactions between features shaping oDNA

gene retention can be complicated. At low energies, it may be

that binding energy dominates retention behavior, whereas at

higher energies, other features like hydrophobicity and pKa

play a competing role in determining retention. As we cannot

analyze binding energy in the same model structure as our other

features (the source datasets and response variables are

different)—and as we use simple linear models for other fea-

tures—the quantitative details of such interactions remain to

be elucidated. A related observation is the cluster of mtDNA

genes including cox1, cytb, and other very highly retained genes.

These consistently appear above our model predictions—they

are (slightly) more retained than our model predicts. This

discrepancy may be accounted for by considering more flexible

model structures or additional predictive genetic features.

Our connection with more recent endosymbionts also war-

rants some discussion. Although difficult to state precisely, the

symbiotic relationships there span a range of ages—with esti-

mates, for example, ranging from under 30 to 300 Ma for some

insect symbioses (Moran and Wernegreen, 2000) and 90–140

Ma for Paulinella (Gabr et al., 2020). The different relationships
have had different times to undergo evolution, and the symbionts

and the free-living neighbors with which we paired them also

have a range of divergence times (which we have not attempted

to quantify, as data are limited for many pairs). There are several

reasons that we may expect the strength of the effects we

observe to differ between cases, but the direction of these

effects does seem consistent enough to suggest a general

theme. Further examples and data will help reveal how general

this observation is and how strong an effect such pressures

may provide over random drift (Boscaro et al., 2017).

How are evolutionary pressures from the features we identify

manifest at the cellular level? Hydrophobic gene retention may

be favored due to the physical difficulty of importing hydropho-

bic products or their propensity to be mistargeted to other com-

partments (Von Heijne, 1981; Björkholm et al., 2017) (although

these mechanisms are not free from debate (Allen, 2015)). As a

proxy for control over complex assembly (Levy et al., 2008;Maier

et al., 2013) and thus regulation of the redox processes those

complexes facilitate, the binding energy centrality of a subunit

in its protein complex aligns with the CoRR (colocalization for

redox regulation) hypothesis (Allen, 2015), where organelles

retain genes that facilitate local redox control. GC content

and carboxyl pKa have less established mechanistic hypotheses

and constitute an avenue for further research. The increased

chemical stability of GC bonds (Samuels, 2005) has been

suggested to support the integrity of oDNA in the damaging

chemical environment of the organelle, meaning that high GC

content (and hence more stable nucleic acid) may be favored

in oDNA. pKa, reflecting the ease of deprotonation of amino

acid subgroups for different pH environments, influences the

dynamics of peptide formation in translation (Watts and Forster,

2010), resulting in pronounced and diverse pH dependence of

peptide formation for different amino acids (Johansson et al.,

2011). Speculatively, we thus hypothesize that the synthesis of

protein products enriched for higher-pKa amino acids may

involve lower kinetic hurdles in themore alkaline pH ofmitochon-

dria, plastids, and the chromatophore, favoring the retention of

the corresponding genes. The pH within other endosymbionts,

which perform less or no proton pumping, is expected to be

lower, in which case the opposite pKa trend observed in Figure 4

follows this pattern. This harnessing of large-scale sequence

data with tools from model selection and machine learning has

thus generated, and tested, new understanding of the funda-

mental evolutionary forces shaping bioenergetic organelles,

providing quantitative support for several existing hypotheses

and suggesting new contributory mechanisms to this important

process.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

NCBI RefSeq Organelle Sequences O’Leary et al., 2016 https://www.ncbi.nlm.nih.gov/genome/organelle/

(all organelle genomes available)

NCBI Whole Genome Assemblies https://www.ncbi.nlm.nih.gov/genome/

(all eukaryotic genomes available)

NCBI Taxonomy Common Tree Federhen, 2012 https://www.ncbi.nlm.nih.gov/Taxonomy/

CommonTree/wwwcmt.cgi

PDB Structures Berman et al., 2000 https://www.rcsb.org/

PDB: 1oco, 1q90, 2h88, 2wsc, 5iu0, 5mdx,

5mlc, 5o31, 5xte, 6cp3, 6fkf.

Software and algorithms

Full pipeline This paper https://github.com/StochasticBiology/odna-loss

https://doi.org/10.5281/zenodo.6873510

PDBePISA Velankar et al., (2009) https://www.ebi.ac.uk/pdbe/pisa/

BLAST Camacho et al., 2009 https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=

Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download

R R Core Team, 2021 https://www.r-project.org/

ape (R library) Paradis and Schliep, 2019 (install within R)

arm (R library) Gelman and Su, 2020 (install within R)

blme (R library) Chung et al., 2013 (install within R)

BMA (R library) Raftery et al., 2021 (install within R)

caper (R library) Orme et al., 2018 (install within R)

cowplot (R library) Wilke, 2020 (install within R)

e1071 (R library) Meyer et al., 2021 (install within R)

geiger (R library) Pennell et al., 2014 (install within R)

GGally (R library) Schloerke et al., 2021 (install within R)

ggnewscale (R library) Campitelli, 2021 (install within R)

ggplot2 (R library) Wickham, 2016 (install within R)

ggpubr (R library) Kassambara, 2020 (install within R)

ggpval (R library) Cheng, 2021 (install within R)

ggrepel (R library) Slowikowski, 2021 (install within R)

ggtree (R library) Yu et al., 2017 (install within R)

ggtreeextra (R library) Xu et al., 2021 (install within R)

glmnet (R library) Friedman et al., 2010 (install within R)

gridExtra (R library) Auguie, 2017 (install within R)

hexbin (R library) Carr et al., 2021 (install within R)

igraph (R library) Csardi and Nepusz, 2006 (install within R)

lme4 (R library) Bates et al., 2015 (install within R)

logistf (R library) Heinze et al., 2020 (install within R)

mombf (R library) Rossell et al., 2021 (install within R)

nlme (R library) Pinheiro et al., 2021 (install within R)

phangorn (R library) Schliep, 2011 (install within R)

phytools (R library) Revell, 2012 (install within R)

randomForest (R library) Liaw and Wiener, 2002 (install within R)

stringdist (R library) van der Loo, 2014 (install within R)

stringr (R library) Wickham, 2019 (install within R)

tree (R library) Ripley, 2021 (install within R)

(Continued on next page)
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Biopython (Python library) Cock et al., 2009 https://biopython.org/

ETE3 (Python library) Huerta-Cepas et al., 2016 (install within Python)

PyMOL DeLano, 2002 https://pymol.org/2/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Iain John-

ston (iain.johnston@uib.no).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. The accession numbers for the datasets are listed in the key re-

sources table.

d Code is written in R, Python, and C, with a wrapper script for bash, and is freely available at github.com/StochasticBiology/

odna-loss. This study did not generate new unique reagents.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Source data
We used the mitochondrion and plastid sequences available from NCBI RefSeq (O’Leary et al., 2016), and annotated eukaryotic

whole genome data also from NCBI. The accessions and references for the endosymbiont/relative pairs are given in Table S4.

For biochemical and biophysical gene properties, we used the values from (Johnston and Williams, 2016), described below, using

BioPython (Cock et al., 2009) to assign these to given gene sequences. We averaged gene statistics over representative species

from a collection of diverse taxa, both using model species (Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae, Recli-

nomonas americana, Chondrus crispus, Plasmodium falciparum) and randomly selected members of different taxa (Figure S10).

Codes used in the figures are [Hyd]rophobicity, [HydI] hydrophobicity index, [GC] content, [Len]gth, [pK1] carboxyl pKa, [pK2] amino

pKa, [MW] molecular weight, [AG/CW] energies of gene expression. We used crystal structures and associated HTML descriptions

from the PDB (Berman et al., 2000) references PDB: 1oco, 1q90, 2h88, 2wsc, 5iu0, 5mdx, 5mlc, 5o31, 5xte, 6cp3, 6fkf. We used

PDBePISA (Velankar et al., 2009) to estimate subunit binding energies with two different protocols, both removing ligands and incor-

porating them into the overall binding energy value for a subunit. We used estimated taxonomies from NCBI’s Common Taxonomy

Tree tool (Federhen, 2012).

Biochemical and biophysical properties of genes and products
Our assignment of biochemical and biophysical properties of genes and their products follows that in Johnston and Williams (2016).

The length* (in number of amino acids of gene product) and GC content (trivially counted) of genes are taken straightforwardly from a

sequence. Chemical properties of amino acids were taken from the compilation at http://www.sigmaaldrich.com/life-science/

metabolomics/learning-center/amino-acid-reference-chart.html. The hydrophobicity and hydrophobicity index of a gene product

was computed using this compilation (original data from Ref. Monera et al., 1995). Amine group pKa, carboxyl group pKa, and

molecular weight* values were calculated using this compilation (original data from Lide, 1991).

Glucose energy costs* were computed using the Aglucose metric, based on the absolute nutrient cost required for amino acid

biosynthesis, from Ref. Barton et al., 2010. Craig-Weber energy costs*, estimating the number of high-energy phosphate bonds

and reducing hydrogen atoms required from the cellular energy pool to produce an amino acid, were taken from Ref. Craig and

Weber, 1998. These biochemical properties are summarised in Table S5.

Asterisks denote properties that are not averaged over gene length; it was deemed more appropriate to average other properties

over genome length to gain a representative measure. To check for artefacts from this interpretation, we performed a (much more

computationally demanding) model selection process including both the normalised and un-normalised values for each property;

although coverage of individual models was unavoidably low in this procedure, the same consistent observation of GC content

and hydrophobicity as important features was observed throughout.

To compute a single value for each statistic of interest, a protocol is required to summarise the many different values seen for a

given gene across the species in our dataset. For robustness, we considered several different averaging protocols. First, we aver-

aged gene statistics over a set of model species taken from diverse eukaryotic groups (Homo sapiens, Arabidopsis thaliana,
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Saccharomyces cerevisiae, Reclinomonas americana, Chondrus crispus, Plasmodium falciparum). Second, we randomly selected a

member of each clade branching from the eukaryotic group (see clade names above) and averaged over the set containing these

random samples. Most statistics were very strongly correlated for these different choices (Figure S10A). The exception was GC con-

tent, which is well known to evolve differently in different clades. To assess the effect of this difference, we ran the model selection

process in the text with randomly-sampled averaging protocols. We found that despite differences in GC statistics, the selected

models, and the presence of GC within them, remained robust to averaging choice (Figure S10B).

Binding energy calculations
We used PDBePISA (Velankar et al., 2009) to calculate interaction energies between different protein subunits and ligands in crystal

structures. We summed the interaction energies over all interfaces between a given subunit and its partners to compute a total en-

ergetic centrality statistic for each subunit. Several choices of representation are possible for these calculations. Ligands can be

ignored, so that only interaction energies of interfaces directly linking protein subunits are considered. Alternatively, bonds to ligands

can be included as contributing to a given subunit’s total binding energy. We primarily considered the mean energy per interface,

including ligands, for each subunit, but also verified that our detected relationship existed for different choices including total energy

over interfaces.

Pattern matching for nuclear-encoded organelle genes
Due to the previously mentioned inconsistency of annotation across species, we used a combination of positive and negative pattern

matching with regular expressions to identify annotations for genes encoding subunits of different organelle complexes. After sub-

stantial preliminary experimentation to find good capture performance on a subset of the data, the positive matches required were:
CI /NADH dehydrogenase|[Uu]biquinone oxidoreductase/

CII /[Ss]uccinate dehydrogenase|[cC]o[qQ] reductase/

CIII /[Cc]ytochrome [Bb]|[Cc]ytochrome [Cc] reductase/

CIV /[Cc]ytochrome [cC] oxidase/

CV /[Aa][Tt][Pp] synthase|ATPase sub/

MitoRibo /[Rr]ibosomal.*[Mm]itochondri/

PSI /[Pp]hotosystem I /

PSII /[Pp]hotosystem II /

Cytb6f /[Cc]ytochrome [Bb]6|[Cc]ytochrome f|[Pp]lastocyanin reductase/

Rubisco /bi.phosphate [Cc]arboxylase/

PlastRibo /[Rr]ibosomal.*[cC]hloroplast/
With the following patterns (split for formatting) required to be absent:

/assembly|alternative|containing|dependent|chaperone|kinase|NADH-cytochrome|coupling|maturase|

vacuolar|biogenesis|repair|LOW QUALITY PROTEIN|synthetase|activator|reticulum|activase|

synthesis|lyase|like| non|transporting|lipid|autoinhibited|membrane|type|required|

QUALITY|precursor|inhibitor|proteasomal|proteasome|E1|various|regulatory|Clp|

calcium|vesicle|b-245|b5|WRNIP|AAA|Cation|family|remodelling/

The outputs of this approach were manually verified to include genes encoding subunits physically present in their corresponding

complex, while excluding assembly factors, regulatory factors, synthesis factors, unrelated enzymes, and other false positives.

Gene labelling and evolutionary transitions
Gene annotations are inconsistent across such a diverse dataset. For organelle genomes, we used two approaches. In a supervised

approach, where the full set of unique labels found was manually curated and assigned a ‘correct’ label based on biological knowl-

edge. In an unsupervised approach, we used BLASTn to perform an all-against-all comparison of all genes in our dataset. We scored

each comparison as the proportional length of the region of identity compared to the reference sequence, multiplied by the propor-

tion of identities across that region. Scores over 0.75 were interpreted as ‘hits’ (e.g. 75% identity over the full sequence, or full identity

over 75%of the sequence). If more than 25%of appearance of gene label X in the BLAST output involved a ‘hit’ with gene labels Y, we

interpreted X and Y as referring to the same gene. This process built a set of pairwise identities, which we then resolved iteratively into

groups of gene labels assumed to refer to the same gene. We then assigned the most prevalent gene label to all members of that

group. In each case, we retained only genes that were present in more than ten species in our dataset. For annotated whole genome

data, we used pattern matching for gene annotations based on regular expression identifiers to identify nuclear-encoded subunits of

organellar protein complexes (expressions below).

Using these curated gene sets, we assigned ‘barcodes’ of gene presence/absence (binary strings of length L, with 0 denoting gene

absence and 1 denoting gene presence) to each species in our dataset. Each of these species is a tip on an estimated taxonomic tree
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describing their putative evolutionary relationship. Assuming that gene loss is rare and gene gain is very rare, we iteratively recon-

structed parent barcodes on this tree by assigning a 0 for gene X if all descendants lack X, and 1 otherwise. We then identified

parent-child pairs where the child barcode had fewer genes than the parent (the opposite is impossible by construction). For

each such instance, we record the transition from parent barcode to child barcode as a loss event.

Retention indices
Our simple retention index is defined as follows. Identify the set of transitions that involve the loss of gene X. For each transition in this

set, count the genes retained by the parent and the genes retained by the child, and take their mean. The retention index is the mean

of this quantity over the set of transitions where X is lost. The rationale is to characterise the number of genes that have already been

lost when X is lost. If a transition event involves only the loss of X, the parent-child average will report this number minus 1= 2. If a

transition involves the loss of several other genes in parallel with X, the average of the before and after counts is used.

In addition to our simple retention index, which relies on an estimated phylogeny linking observations in our dataset, we considered

another assumption-free index. Here, we construct the set of unique oDNA presence/absence patterns in our dataset (as in Figure 1),

and simply count the occurrences ci of each gene i in this dataset. The index is given by logci=maxj logcj. This index relies on no evolu-

tionary assumptions, and thus cannot account for the evolutionary relationship between sampled species. Considering only the set of

unique barcodes goes someway towards accounting for the sampling bias in the dataset (for example, almost all metazoans have the

same presence/absence profile, but this profile will only occur once in the unique set). The distribution of this index had substantial

structure (as visible in Figure 1, and clear, particularly for plastids, in Figure S11), but we do not consider further transformations or

more tailored analysis here, instead focusing on the similarity of results with those from the other index.

Prediction of retention index
We used Bayesian model selection with non-local priors to promote separation of overlapping models (Johnson and Rossell, 2010);

specifically, moment (MOM) priors parameterised so that a signal-to-noise ratio of >0:2 is anticipated, compatible with previous find-

ings (Johnston and Williams, 2016); a beta-binomial ð1; 1Þ prior distribution on the model space, and a minimally informative inverse

gamma prior for noise. Further information on priors, and the effects of varying them, are given in Figure S12. We implemented the

selection process in the R package mombf.

In addition to the Bayesian linear model approach, we used a variety of different approaches for retention index regression. These

included decision linear modelling with ridge and LASSO penalisation, decision tree regression, and random forest regression. The

training, test, and cross-organelle performance of these approaches is given in Table S2.

Classification of subcellular encoding
We used Bayesianmodel averaging for generalised linear models (GLMs) predicting encoding compartments with priors giving prob-

ability 1=2 for the inclusion of each parameter, implemented in BMA. We then trained GLMs involving hydrophobicity and carboxyl

pKa on a training subset of genes for each species. The training subset was the union of a random sample of half the nuclear-encoded

genes and half the organelle-encoded genes in each species, with the test set being the complement of this set. We also used

decision tree and random forest approaches for the classification task. For binding energy values, we used both a Bayesian GLM

treating all complexes independently, with t-distributed priors with zeromean, implemented in arm; and a Bayesian generalised linear

mixed model with flat priors over coefficients, residuals, and covariance structure, implemented in blme. These priors were used to

overcome convergence issues given the perfect separation of datapoints observed for some protein complexes. Complexes were

visualised in PyMOL (DeLano et al., 2002).

We also considered decision tree and random forest approaches for the organelle/nuclear encoding compartment classification

problem; performance is shown in Table S3, with illustrations in Figure S7.

Endosymbionts and relatives
We considered a range of endosymbionts highlighted in a comprehensive recent review (Husnik and Keeling, 2019). For each we

sought to identify a close free-living relative. In some cases all closest relatives of an endosymbiont themselves adopted a largely

or obligate intracellular lifestyle; in these cases we tried to identify the closest relative that was at least capable of free-living

(Table S4).

QUANTIFICATION AND STATISTICAL ANALYSIS

The quantification and statistical analyses are an integral part of this research and each approach is described in detail above and as

it arises. Briefly, we use a bioinformatic pipeline to curate oDNA datasets, constructing gene profiles for each species and collecting

physical and chemical statistics for each gene. We create a quantitative retention index borrowing from hypercubic transition path

sampling. We then use Bayesian model selection to (a) predict this index from those statistics using linear models and (b) predict

encoding compartment from these statistics using generalised linear models. In this Bayesian paradigm, quantitative outputs are

posterior probabilities over model indices and parameter values, and 95% credibility intervals are given; the effect of different priors

is explored throughout. For binding energy analysis we quantify binding energy using PDBePISA and use both maximum likelihood
e4 Cell Systems 13, 874–884.e1–e5, November 16, 2022
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and Bayesian generalised linear models to relate the variables, with confidence and credibility intervals given accordingly. For the

recent endosymbiont analysis we use Wilcoxon rank-sum tests to compare statistics in different compartments.

Code and dependencies
Code iswritten in R, Python, andC, with awrapper script for bash, and is freely available at github.com/StochasticBiology/odna-loss,

publication release https://doi.org/10.5281/zenodo.6873510.

Our pipeline uses the following R packages: ape (Paradis and Schliep, 2019), arm (Gelman and Su, 2020), blme (Chung et al., 2013),

BMA (Raftery et al., 2021), caper (Orme et al., 2018), cowplot (Wilke, 2020), e1071 (Meyer et al., 2021), geiger (Pennell et al., 2014),

GGally (Schloerke et al., 2021), ggnewscale (Campitelli, 2021), ggplot2 (Wickham, 2016), ggpubr (Kassambara, 2020), ggpval

(Cheng, 2021), ggrepel (Slowikowski, 2021), ggtree (Yu et al., 2017), ggtreeExtra (Xu et al., 2021), glmnet (Friedman et al., 2010), grid-

Extra (Auguie, 2017), hexbin (Carr et al., 2021), igraph (Csardi andNepusz, 2006), lme4 (Bates et al., 2015), logistf (Heinze et al., 2020),

mombf (Rossell et al., 2021), nlme (Pinheiro et al., 2021), phangorn (Schliep, 2011), phytools (Revell, 2012), randomForest (Liaw and

Wiener, 2002), stringdist (van der Loo, 2014), stringr (Wickham, 2019), and tree (Ripley, 2021).

We also use BioPython (Cock et al., 2009) for parsing sequences and computing gene statistics, PyMOL (DeLano et al., 2002) for

visualisation, and BLAST (Camacho et al., 2009) for sequence comparisons.
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