
FREJA:
A framework for effectively

creating programming
assignments based on code

transformations

Erlend Berntsen

Master’s thesis in Software Engineering at

Department of Computer science, Electrical
engineering and Mathematical sciences,

Western Norway University of Applied Sciences

November 2022

1

Abstract

Programming assignments have become the prevalent method for evaluating
programming skills and knowledge of students in computer science courses. Typ-
ically, a programming assignment is composed of several independent artefacts,
such as the solution code, start code, and assignment description. These arte-
facts are often created in isolation from each other, but contain a redundancy
of information and code between them. Maintaining consistency between the
artefacts is a tedious and error-prone task, due to the extensive manual labor
required to reflect a change in all the required locations. The work in this thesis
has resulted in a new framework, FREJA, that aims to guarantee consistency
and reduce redundancy between assignment artefacts. The goal is to make
the process of developing programming assignment more efficient, and FREJA
tries to achieve this by centralizing the development to a single source. Code
transformations and code generation techniques are used to produce the assign-
ment artefacts semi-automatically. FREJA is exclusive to assignments for the
Java programming language, however, a small prototype has been developed to
determine the possibility of a language agnostic version of FREJA. Analysis of
several assignments from computer science courses at the university-level has set
the basis for the design and implementation of both frameworks. FREJA was
tested on several real-life assignments, and evaluated based on how well it could
replicate the original structure and content of each assignment, while still main-
taining consistency and reducing redundancy. The evaluation of the language
agnostic prototype was similar, but put more emphasis on its ability to manage
assignments in an arbitrary programming language. The results of these exper-
iments showed that FREJA significantly reduces the number of elements in an
assignment that need to be manually maintained to preserve consistency. The
framework did also replicate the target assignments well, suggesting it would
be beneficial and effective to incorporate FREJA into the assignment develop-
ment process. The language agnostic prototype handled several programming
languages, but not in a manner that was deemed effective or practical, due to
its lack of consistency guarantees.

2

Contents

1 Introduction 5
1.1 Research Questions . 6
1.2 Methodology . 7
1.3 Contribution . 8
1.4 Outline . 8

2 Background 11
2.1 Code Generation and Transformation 11
2.2 Refactoring . 13

2.2.1 Single Source of Truth . 14
2.3 Model Driven Software Engineering 15
2.4 Code Documentation . 17
2.5 Related Work on Programming Assignments 18

3 Design and Requirements 21
3.1 Requirements . 21
3.2 Artefacts of a Programming Assignment 23

3.2.1 Solution Project . 23
3.2.2 Start Code Project . 23
3.2.3 Assignment Description 25

3.3 Modelling a Programming Assignment Framework 26
3.4 Defining Meta-Information . 29

4 Implementation 31
4.1 FREJA . 31

4.1.1 Annotations . 31
4.1.2 Parsing . 35
4.1.3 Execution Phase . 36
4.1.4 Exercise Descriptions . 38

4.2 Programming Language Agnostic Framework 40
4.2.1 First Prototype . 41
4.2.2 Second Prototype . 43

5 Architecture 49
5.1 Architecture of FREJA . 49

5.1.1 Maven . 50
5.1.2 Parsing . 51

3

5.1.3 Transforming . 52
5.1.4 Generating . 55
5.1.5 Testing . 56

5.2 Programming Language Agnostic Prototype Architecture 57
5.2.1 Structure . 57
5.2.2 Editor . 58
5.2.3 Input and Output . 59

6 Installation and Usage 61
6.1 Installing FREJA . 61
6.2 Example . 63
6.3 Installing the Programming Language Agnostic Prototype 70
6.4 Example . 71

7 Evaluation 75
7.1 A First Evaluation of FREJA . 75

7.1.1 Details of the Assignment 75
7.1.2 Testing and Results . 76

7.2 A Second Evaluation of FREJA 81
7.2.1 Details of the Assignment 82
7.2.2 Testing and Results . 84

7.3 Evaluating a Language Agnostic Framework 87
7.3.1 Using the Language Agnostic Framework DSL 87
7.3.2 Using FREJA . 88
7.3.3 Using the Conventional Method 88
7.3.4 Comparing the Different Methods 88
7.3.5 Other Programming Languages 91

8 Conclusions and
Future Work 95
8.1 Summary . 95
8.2 Conclusions . 96
8.3 Future Work . 99

List of Figures 101

List of Tables 103

Listings 105

Acronyms 107

Appendix A: Source code 109

4

Chapter 1

Introduction

Most courses at informatic departments in universities revolve around program-
ming. Students will generally have programming assignments throughout the
semester to assess their knowledge and skills, which are often graded by lec-
turers and/or teaching assistants with some feedback supplementing the grade.
Producing such assignments can be a long and tedious task, and is prone to
human errors. Programming assignments are comprised of many closely related
but independent parts. Often there is some starting code produced to help the
students focus on the specific purpose of the assignment without them doing ev-
erything from scratch. The starting code is based directly on the solution for the
assignment. The students also receive an assignment description that explains
the exercises of the assignment in detail. These different parts, or artefacts, is
the foundation of a programming assignment.

A common workflow and approach for creating programming assignments was
identified by speaking with assignment creators and analyzing past assignments
from courses at Western Norway University of Applied Sciences (HVL) and
University of Bergen (UiB), such as DAT1001, an introductory course to pro-
gramming, and INF1022, a beginner course for algorithms and data structures.
The creator of a programming assignment generally writes the solution code
before publishing the assignment, often accompanied by tests to make sure that
the solution is sound. Developing the solution first may also reduce frustration
on the students’ end by identifying potential complexities or other problems
with the assignment before it is published [51].

A copy of the solution project is made when it is finished. The solution code is
then removed, and handed out to students afterwards. This project is referred
to as the start code project, and is often accompanied with some unit tests. The
assignment text is usually written completely independent from the assignment
code. Lastly, the assignment is corrected when the students hand in their so-
lutions. This last step is usually a combination of automated tests and manual
inspection of the source code. Some courses, such as INF1013, focus more on

1https://www.hvl.no/studier/studieprogram/emne/1/dat100
2https://www.uib.no/en/course/INF102
3https://www.uib.no/en/course/INF101

5

https://www.hvl.no/studier/studieprogram/emne/1/dat100
https://www.uib.no/en/course/INF102
https://www.uib.no/en/course/INF101

code quality instead of functionality. Correcting assignments for these courses
relies much more on manually inspecting the solution. However, in recent years,
there has been a rapidly growing development of tools and frameworks that can
automatically evaluate code quality [7, 9, 23, 45].

Most of the tasks described above involves manual work by a human. A change
in one part may need to be reflected in other parts to maintain consistency.
For example, a change in the starting code may imply changes to certain tests
and the assignment text. Since these artefacts are mostly independent of each
other, manual refactoring is needed. Despite many developers still favoring
manual refactoring over automatic tools, most refactoring defects are often due
to manual refactoring [18, 24].

1.1 Research Questions

The current issues with programming assignments identified above lead to the
following research questions which forms the basis of this thesis:

RQ1: How can we centralize programming assignment development
to a single source to ensure consistency and avoid redundancy?

RQ2: How can we automatically, or semi-automatically, generate the
necessary programming assignment artefacts from that source?

What we mean by a ”single source” here is that the creation of the entire
assignment is contained within the same project and development environment.
This means that the development environment does not extend beyond the needs
of the underlying assignment, which in most cases will be limited to a singular
IDE. The term ”project” used above and throughout this thesis always refers to
what is considered a project within an IDE4, which is more or less synonymous
with the word application. For example, the start code and solution for an
assignment can be considered as two separate projects.

This master thesis is focused on developing a new approach and a framework for
creating programming assignments. The redundancy of code and information
in programming assignments is a problem we are looking to address. For ex-
ample, a method name can be repeated in the assignment solution, start code,
and assignment description, all of which is manually created. This is a direct
violation of the Do Not Repeat Yourself (DRY)[20] principle that aims at re-
ducing redundancy. By centralizing information and code, in conjunction with
automating steps wherever possible, we intend to reduce both inconsistencies
and time spent creating programming assignments. Our framework is aimed at
connecting the currently independent parts so that there is always consistency
between them. Code generation and code transformation plays a central role in
the implementation to make this work.

Ideally, the framework would be compatible with any programming language
to be as accessible and useful as possible. However, most programming courses
that were analyzed at HVL and UiB focus either on Java or Python, with the
occasional shift to C, Haskell, or JavaScript for more specific courses. This is

4Here is JetBrains’s definition of a project in IntelliJ: https://www.jetbrains.com/help/
idea/creating-and-managing-projects.html

6

https://www.jetbrains.com/help/idea/creating-and-managing-projects.html
https://www.jetbrains.com/help/idea/creating-and-managing-projects.html

also very similar for American colleges and universities, where Java and Python
clearly dominates, followed by C++ and C [48]. To keep the project focused,
and to identify a feasible path, we only worked on creating a framework for
programming assignments written in Java at the start of the project. This
framework will be referred to as FRamework for Engineering Java Assignments
(FREJA) throughout the rest of the thesis to keep an ubiquitous language. We
later reevaluated to see if a more general framework is feasible, which inspired
a third research question:

RQ3: To what degree is making a general language agnostic frame-
work possible?

This is a difficult question to give any meaningful answer to by just reading,
discussing and contemplating ideas that might be possible. Instead, an attempt
at implementing a proof-of-concept prototype of such a framework was made
to determine its feasibility. The overall purpose of this framework is the same
as FREJA, with the additional benefit that a new specific framework for each
programming language does not need to be created if a generic one works well
enough.

1.2 Methodology

The main focus of this thesis is the development of FREJA, but some initial
ground work and planning needed to be done before development could begin.
At the start, a lot of research and testing went into finding suitable code trans-
formation and code generation technologies that could be the foundation of
FREJA’s implementation. Afterwards, several programming assignments were
studied to identify different artefacts of an assignment. The contents and struc-
ture of the artefacts were analyzed to find a common pattern. We primarily
used a preexisting programming assignment from an introductory programming
course at HVL, DAT100, that focuses on Java, to base the design and imple-
mentation of FREJA on. Two other assignments from the same course was then
used to test and evaluate FREJA. The purpose of these tests was to evaluate
the versatility of the framework, and ensure that it could handle other assign-
ments than just the one it was mainly designed after. The evaluations were
based on how well the framework could replicate the target assignment, while
also maintaining consistency and reducing redundancy between artefacts. Ad-
ditionally, testing on other assignments allowed us to identify shortcomings of
the framework. This served as a way to change and improve the implementation
of FREJA in an iterative process.

As for the third research question, an entirely separate implementation of a
prototype was created. This prototype was tested with several programming
exercises in different programming languages that differ drastically in style and
structure to determine its flexibility. Finally, it was compared to other methods
of creating programming assignments, such as the conventional method of man-
ual development, and FREJA, to compare its functionality and effectiveness to
those.

7

1.3 Contribution

The work in this thesis has resulted in the creation of FREJA, a framework
aimed at producing Java programming assignments more effectively, and a pro-
totype implementation of a programming language agnostic framework with
the same purposes, but targeted at assignments in any programming language.
Links to the source code for both of these frameworks can be found in Appendix
A. Figure 1.1 shows an overview of the workflow for developing a program-
ming assignment, both using FREJA and the conventional method of manual
development. A yellow box represents an artefact that is manually developed,
while a green box represents an artefact that is semi-automatically generated.
The figure highlights the principle idea of FREJA of centralizing assignment
information into a single source that needs to be managed. We hope that this
framework can have an impactful contribution in the field of programming as-
signments. Moreover, we hope that an adoption of FREJA in a real-life setting
would be beneficial and bring forth a more effective assignment development
process.

Figure 1.1: Workflow of FREJA compared to the conventional method of cre-
ating programming assignments.

1.4 Outline

The rest of this thesis is structured as follows:

Chapter 2: Background Background information and related work that are
relevant to the topic of this thesis are presented and discussed.

Chapter 3: Design and Requirements This chapter covers the design and
requirements of both FREJA and the programming language agnostic pro-
totype that is implemented, as well as explaining the overall new approach
to creating programming assignments.

Chapter 4: Implementation In this chapter, an overview of the implemen-
tation of FREJA and of the generic framework is shown and discussed.
The focus is mostly put on the implementation details that concern end-
user interaction.

8

Chapter 5: Architecture This chapter puts more emphasis on the source
code behind the implementation of FREJA and its generic counterpart.
The architecture of the source code of both frameworks is explained, as
well as code logic and other necessary background information that is
important to understand for anyone that is interested in continuing the
work presented in this thesis.

Chapter 6: Installation and Usage This chapter thoroughly explains how
to install FREJA and the programming language agnostic prototype, and
how to use them. A simple tutorial is presented for each framework that
demonstrates how to use them on a small example assignment.

Chapter 7: Evaluation The experiments that were conducted to both of the
frameworks are explained in this chapter. Afterwards the results of these
are presented.

Chapter 8: Conclusion and Future Work The final chapter summarizes
the work done in this thesis, as well as discussing the main conclusions
that can be drawn from the results, in the context of the research ques-
tions. Finally, there is a small section detailing possible further work that
can be done on FREJA or other related projects.

9

10

Chapter 2

Background

In this chapter, relevant theory that is important for understanding both design
decisions and implementation details of each framework is presented. Related
work that this thesis draws inspiration from are presented and discussed. There
are also comparisons between the work done in this thesis and the work of others
to demonstrate the differences between them.

2.1 Code Generation and Transformation

The term low-code has had a steady increase in popularity the last decades [11],
which focuses on quickly producing applications with minimal effort. Low-code
programming is based upon model-driven software development, rapid appli-
cation development, automatic code generation and visual programming [54].
The frameworks implemented in this thesis are also inspired by these paradigms,
with less emphasis on visual programming.

The implementation of low-code tools relies heavily on code transformations
and code generation. These techniques are the foundation of metaprogramming,
which is based on creating programs that use other programs as data, either
to generate new programs or modify existing ones. Such programs are called
metaprograms, and are written in a metalanguage. The object language is the
language of the generated or transformed program. It is called homogeneous
metaprogramming if the object language and metalanguage are the same, and
heterogeneous metaprogramming if they differ. Many programming languages
today have official support for metaprogramming, such as C++ and Java, while
the inception of metaprogramming can be traced all the way back to macros
in Lisp [33]. Metaprogramming tools in general purpose languages are often
used for homogeneous metaprogramming, while a dedicated metaprogramming
language, such as Rascal [27], is often used for heterogeneous metaprogramming.

Whether its with the help of built-in metaprogramming functionality, such as
reflection and annotation processors for Java, or through a dedicated metapro-
gramming language, the plethora of code generation and transformation tools
available today are all rooted in metaprogramming techniques. One such tool is
Meta3, a conceptual framework for creating code generators for Domain Specific

11

Language (DSL)s [29]. This framework identifies several layers of a system for
generating code from DSLs. These layers are divided into input languages and
meta-models, conceptual meta-models, and output artefacts and related meta-
models. Changes between these layers are done by Model-To-Model (M2M) and
Model-To-Text (M2T) transformations. Other transformation tools, such as the
C/C++ refactoring tool Nobrainer, are built and used in the same language,
and argues that avoiding using DSLs increases the ease of use [47].

Xevolver is a framework for code transformations that lets developers specify
their own code translation rules [53]. It is mainly focused on transforming code
by optimizing it for better performance of applications. This is done by turning
the source code into an Abstract Syntax Tree (AST) and converting the tree
into a XML document. User-defined code transformations can then be written
with XML data transformation tools. Xevtgen [52] builds on similar ideas but
generates the transformation rules automatically based on input and output
code patterns. Other transformation frameworks stray away from user-defined
transformations, and instead make use of machine learning [31].

Common for most of these code transformation tools is the target focus on large
established code bases. The cost of manually rewriting enormous amount of code
may be too large and not economically beneficial. However, with transforma-
tion tools as described above, developers can still focus on new features and
functionality, while old code is automatically transformed in the background.
The purpose of these transformations may vary. Some are meant for refactoring
code to improve code cleanliness and structure, others focus on optimizing the
code as much as possible for hardware limited systems. It is usually the case
that large code bases have been in development for years, even decades, and mi-
gration from older language or API versions to newer ones for such code bases
can be done more efficiently through code transformations.

Code transformations are typically done at the structural level, while the seman-
tics remain the same. Unit tests can be created and executed before and after a
transformation to ensure such transformations do not change the functionality
of the application. Transformation tools recognizes certain structural code com-
ponents, which are then used as inputs for a transformation rule. Some even use
syntactic isomorphism [38], i.e., code statements that differ in their syntactic
structure but are identical in their semantics, to find more code components
eligible for transformations. A transformation rule specifies precisely what to
transform the input into, often referred to as the output of the transformation
rule.

The work in this thesis differ from these tools in several aspects. Firstly, FREJA
does not aim to rewrite hundreds of thousands lines of code, but rather be a
tool to efficiently produce small to medium-sized programming assignments.
Secondly, the transformations that take place are not because of the need to
transform old, inefficient or bad code into something that is objectively better,
but rather as a way to ensure consistency and reduce the amount of repeated in-
formation. Finally, most of these tools have a clear objective, with specific code
components that the transformation rules look for, and a predefined output of
those rules. FREJA does also look for specific components in a programming
file, but it is up to the user to mark sections of the source code that should
make up a specific component. These components are meaningful in terms of a

12

programming assignment and are used as input for a transformation rule. For
example, marking a section of code as a solution to an exercise would create
a solution component, and handled by a solution transformation rule, as op-
posed to a typical transformation tool that uses structural components in the
programming language for transformation rules.

The user of FREJA also has full control over what the transformation should
do, e.g., they can specify that a code component should be removed, or swapped
out with some other code. In short, the framework only provides the tools to
perform code transformations on a code base, without any presumptions on
what should be transformed, or how to transform it. It is entirely up to the
user to specify those aspects.

2.2 Refactoring

Syntactical and structural code transformations as discussed above are often
referred to as refactoring, that is, changes to the code that improves it in some
manner without changing its functionality. In practice, the definition of refactor-
ing does not only encapsulate semantic-preserving changes [26]. A comparative
study of manual refactoring and automatic refactoring shows that automatic
refactoring saves time across the board [37]. There are differences in how much
time an automatic refactoring saves compared to a manually refactoring, based
on what type of refactoring it is. For example, Extract Method is a type of
refactoring where some code gets extracted out of a preexisting method to a
new method, when the initial method becomes too large, while a Rename Field
refactoring simply changes the name of a field in a record data structure, or a
field variable in a class [17]. The first type of refactoring saves the most time
being done automatically instead of manually, while the latter has the smallest
difference. Several studies show many more benefits to refactoring in addition
to time-saves, such as increasing code maintainability, readability and reusabil-
ity, while other studies highlight possible negative effects such as increasing the
amount of bugs [26].

Popular IDEs today bring many tools and functions for automatically refactor-
ing source code. However, the limitations of these are much of the inspiration
for this thesis. Typically, these automatic refactorings only do code changes
for a single project, and mostly just targets programming files. Other files in
a project that may be connected to the source code in some way, such as an
assignment description text file, will not be affected by such refactorings. As
mentioned, a programming assignment is usually split into several projects, for
example, one project contains the solution to the assignment, while another
project contains the start code that the students receive. Both of these projects
have code that are related to each other, but an IDE has no way of knowing this
relationship. Using an IDE’s automatic refactoring tool to rename a function in
one project would not also rename a function with the same name in another
project.

These limitations of automatic refactoring tools forces the use of manual refac-
toring in a scenario like this. Even with the current abundance of automatic
refactoring tools, one study shows that there are still many developers that pre-

13

fer manual refactoring in some cases [26]. Although is is not specified, it is most
likely that this concern refactorings within the same project. However, there is
an argument to be made that manual refactoring across multiple projects would
not be favorable. This is because manual refactoring within the same project
can use compilation errors or warnings as a crutch. For example, if a developer
forgets to manually refactor some part of a project, an IDE would likely give a
warning and guide the developer to the location of the issue. The same cannot
be said if someone forgets to refactor a semantically related part in another
project.

Issues with semantically related code or dependencies across multiple projects
and code bases is nothing new. This thesis tackles a small-scale version of
problems that developers have encountered for a long time when integrating or
changing Application Programming Interface (API)s. Providing functionality
through an API have given the opportunity for developers to work in parallel
on different parts of the same application. One of the major drawbacks of
an architecture like this is the unpredictable nature of software engineering
most certainly guarantees performing unplanned changes to an API. This forces
clients of the same API to use unwanted time and effort to change their own code
to reflect the changes in the API [49]. API migration is often done manually
and most of the changes that break preexisting applications are refactorings
[15]. Synchronization between the clients and creators of an API is a problem
of restoring consistency between different instances of the same thing. The field
of databases has tackled this problem for several decades, and clever innovations
started with the birth of the internet.

2.2.1 Single Source of Truth

As the internet grew bigger and enterprises began to take their businesses online,
a way of handling the increasing load on their servers was needed. Much of
the time the bottleneck was the slow database queries that could cause data
to be unavailable for extended periods of time, depending on how it handled
concurrent access. One solution to this was to replicate the data to several
database servers, so that several users could interact with the same data at
the same time. There are several ways to replicate data, lazy replicating focus
on achieving higher performance and availability but sacrifices consistency in
doing so, while eager replication prioritizes consistency in cost of performance
and scalability. The former option was the one that got preferred and adopted
in the infancy of distributed database systems [22]. Gray et al. [19] pointed out
the pitfalls of the early primitive lazy replication solutions, showcasing potential
increase in response times and deadlocks.

Because of this, there was a growing need for a better way of handling incon-
sistencies and synchronization problems when replicating data, similar to the
problem of having distributed assignment projects with replication of informa-
tion and code between them. The Single Source of Truth (SSOT) architecture
emerged later, putting more emphasis on retaining consistency between repli-
cated data. This architecture is built on the idea of having only one place to
edit data or information in a distributed system. Data that is replicated, or
in some way linked to the original data, only have a reference to it. In this
way, updates to the original data will be propagated to any other system that

14

reference it, greatly increasing consistency over other methods. Other software
architectures are often used to implement some sort of SSOT, such as the En-
terprise Service Bus (ESB) architecture, Service Oriented Architecture (SOA),
and Data Warehouse (DW) [57]. Some methods handles SSOT even without
data replication, shifting the responsibility from the data layer to the service
layer [40].

Constructing programming assignments does not require the same level of in-
frastructure as big enterprise services with distributed systems. Usually, only
one or a few people are authoring an assignment at a time. Important features
such as availability and scalability for enterprise services are therefore not a big
concern for FREJA. The different artefacts of an assignment also include a lot
of repetition of some code or information, but are rarely a direct copy in the way
replicates of data in database systems are. Although the SSOT architecture is
usually targeted at large enterprise systems, this thesis still draws inspiration
from the architecture for achieving better consistency between different projects
and artefacts. FREJA combines ideas from large database systems with code
generation and code transformation techniques, allowing for one single project
to be the source of information that can replicate certain code fragments or in-
formation to other projects through code transformations and code generation.

2.3 Model Driven Software Engineering

One domain that also utilizes transformations and code generation tools to in-
crease efficiency in software development, is Model Driven Software Engineering
(MDSE). Within MDSE, central concepts of a problem domain are abstracted
away as models, which are then used for varying purposes, such as being used
as sketches, blueprints or programs. There is a distinction between prescriptive
models, that define how the target system should be implemented, and descrip-
tive models, that describes a system in a bottom-up fashion by abstracting away
implementation details [10]. Prescriptive models are often used in constructing
systems in a top-down process by model transformations and code generation.

Central to the topic of MDSE is the idea of a concept being represented at
different abstraction levels. Prescriptive models in software development often
use a model at a high level of abstraction as the starting point for code genera-
tion, with M2M transformations that reduce the abstraction level until a M2T
transformation finally transform a model into code. This too is an example of
several concrete artefacts that are semantically related but can quickly become
inconsistent. The Eclipse Modeling Framework (EMF) [43] provides the ability
to describe object classes and hierarchies through graphical diagrams, which
can then be used to generate the corresponding code. However, the prominent
difficulty with such tools is figuring out how to deal with inconsistencies between
the generated code and the original model. What happens when the generated
code is edited and afterwards the code generation tool is executed again from
the same source model?

This problem occurs when inconsistent models needs to synchronize so that
they are consistent again. Bidirectional Transformations (BX) is an attempt
at defining a consistency relation between different models that can be used

15

to figure out how to restore consistency again. The background of BX can be
traced back all the way to the 80s, from what is now known as the view-update
problem in databases [3]. This problem boils down to having a view that is
composed of data from several tables in a database, while also providing the
opportunity for an user to change the data that is presented in the view. This
update does not have an unambiguous way of handling the change in data from
the view back to the database.

BX describes the notion of lenses, which defines functions to restore consistency
between models [2]. A symmetric lens refers to consistency restoration func-
tions for models that contain some common information, but also some private
information that other models do not know about [21]. For asymmetric lenses
however, there is a clear distinction between the models. One model act as the
source S and the other as the view V. Two functions are then defined

get : S −→ V

put : S × V −→ S

The get function creates the view from source, while the put function produces
a new source from an updated view and the old source. A forward consistency
restoration, i.e., restoring consistency to the view from the source, is trivial with
an asymmetric lens. This is because the source completely defines the view, and
consistency restoration can be done by just applying the get function. While
backward consistency restoration is just the put function, it can be difficult to
define a implementation for the function so that it restores consistency in a
meaningful way. To demonstrate this difference, imagine a source that consists
of two integers, 1 and 2. Furthermore, the get function is just the operation
of adding the numbers in the source together, thus the view is also an integer,
the sum of the source. If a number in the source was changed, e.g., the 1 was
changed to 4, restoring consistency between the models is very easy, since the
get function can be applied and the view would update from 3 to 6. On the
other hand, if the view was changed instead, e.g., from 3 to 5, it is not so clear
how this change should propagate back to the source so they become consistent
again. Remember, they are only consistent if the view is the sum of the source.
The models could become consistent again by updating 2 to 4 (1 + 4 = 5),
which was calculated by subtracting the other number in the source from the
sum, but the source could also be updated by changing the 1 instead, using
the same method. There is no distinct method of updating the source from the
view that could be deemed as ”correct”. Although this example is very simple,
it demonstrates that a get function in an asymmetric lens is much easier to
define than a put function.

At least for FREJA, an assignment will always have one project that acts as
the source of information, and can be seen as the source in an asymmetric lens.
The get function is defined partially by the framework itself, but mostly by the
creator of a programming assignment. It produces the view by transforming the
code from the source project. More importantly, there is no need to define a put
function for backward restoration since there is only one source of information.
This is because there is never a point where FREJA needs to use changes made
in the generated artefacts, i.e., the view, to update the source project, i.e., the
source. As will become apparent later, the FREJA get function does not follow

16

the exact BX definition. This is due to difficulty surrounding the assignment
description, especially the elements that concern code documentation.

2.4 Code Documentation

The rise in popularity of agile software development methods can largely be
credited to Robert C. Martin, who was one of the first to preach the agile
methodology. The agile approach to software development follows certain rules
and practices. One rule, called Martin’s first rule of documentation, says to “
produce no document unless its need is immediate and significant” [35]. His
reasoning for this was that source code is bound to change and the documenta-
tion for it will inevitably be outdated, or worse, outright misleading. He argued
that the only true documentation is the source code itself. In his book, Clean
Code, he explains that clean code requires self-documenting, or self-explanatory
code [34]. The literate programming paradigm also emphasises the use of natu-
ral language when developing programs. This is done by incorporating macros
inside an explanation of the program in a natural language, resulting in a file
that documents the program with the code embedded inside the documentation
[28]. The opposite of the literate programming paradigm is the field of code
documentation generators. Many can agree with Martin’s notion of the truth
being in the source, which is why there has been many attempts at creating
tools that generate documentation from the source code itself.

Javadoc1 is one of the more well-known tools that does exactly this. It was
created to eliminate the need for dedicated technical writers that wrote stan-
dalone documentation for the Java source code. The tool is bundled with the
Java language. Special comments, called Javadoc comments, are used directly
in the source code to write documentation about the code. These are then
processed and transformed into HTML documents that uses hyperlinks to link
together documentation for related code. This is done through doclets2, which
are Java programs that determine the format and content of the documentation
that gets produced. The Standard Doclet3 creates documentation as described
above, but it is also possible to create custom doclets that produces documen-
tation differently, even in other file types than HTML, such as XML or PDF.
Javadoc works well to document API specifications, but is limited in its ability
to create API documentation that is more useful for developers [30]. This other
type of documentation that is targeted at developers is much larger, with elabo-
rate explanations and examples of what the code does, as well as documentation
of potential bugs.

There are many other tools in the code documentation domain. Swagger4 is
a framework that can document REST APIs by generating documents that
conform to the Open API Specification5. These documents are programming
language agnostic and can be used for a multitude of things, such as generating

1https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
2https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/

overview.html
3https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/

standard-doclet.html
4https://swagger.io
5https://spec.openapis.org/oas/v3.1.0

17

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/standard-doclet.html
https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/standard-doclet.html
https://swagger.io
https://spec.openapis.org/oas/v3.1.0

websites that visualises an API. Other tools, such as VisUML [16], can produce
real-time UML diagrams from source code. Doxygen [5] is another document
generator that also uses special comments to generate code documentation, but
works with many more programming languages than Javadoc.

As mentioned, one component of traditional code documentation that is some-
times missing, is a thorough explanation of the code in a natural language. Such
explanations document the code by describing its behavior and intent. There
are several ways of explaining code in this manner, such as a line-by-line expla-
nation, or a more abstract summary concerning the purpose of the code [56].
In recent years, there has been a growing interest and success within the realm
of AI and natural language processing [25]. This has naturally led to innova-
tive work concerning the natural language of code explanations also. Codex
[12] is a language model, trained on public Python code from GitHub. It can
write source code using a natural language explanation of the desired code as
an input prompt. Codex was also trained to do the same thing in reverse, that
is, writing a natural language explanation of some source code given as input.
Moreover, one particular version of Codex powers GitHub Copilot6. Dubbed as
an ”AI pair programmer”, GitHub Copilot can provide smart code suggestions
from short natural language code explanations. However, not all suggestions are
correct in terms of the desired behavior, and some suggestions can be simplified
further [39].

2.5 RelatedWork on Programming Assignments

There is a lot of related work done on programming assignments in an edu-
cational context when it comes to correcting and giving feedback to solutions
automatically or semi-automatically. Florencia Miranda from the University of
Chile developed a tool to give more specific feedback to students when their
solution was incorrect, as a way of having more positive effect on student en-
gagement, while also giving tutors a better overview of different problems that
students encounter [36]. An inquiry-based tool with conceptual feedback is also
shown to help students produce better code, compared to normal code coverage
feedback [13].

Other studies have shown that real-time feedback on assignments can enhance
the learning experience of students, and a scoreboard based on the grading
results can motivate students to work harder on the assignments before submit-
ting them [32]. Penalties can be introduced to stop students from relying too
much on autograders [4]. This results in students testing their own solutions
more before checking it with an autograder. CloudCoder [41] is a web-based
open platform for sharing programming exercises. The motivation behind it is
to enable free a distribution of exercises to increase better reuse between insti-
tutions. Another purpose of the platform is to collect data about students and
programming exercises, to better understand how students learn to program.

The work done on the creation side of programming assignments is much more
scarce. OpenAI Codex was mentioned earlier as a tool for creating source code
from natural language code explanations, and vice versa. Codex has also been

6https://github.com/features/copilot

18

https://github.com/features/copilot

used in the context of programming exercises, both as a tool for generating
source code for exercises, and as a tool for creating natural language exercise
descriptions [46]. CrowdSorcerer [42] is a tool that combines crowdsourcing and
programming assignments. Instead of following the normal approach of having
an instructor making the assignments, students can instead make their own as-
signments through an online interface. Other students from the same course
can access these assignments to test themselves, and evaluate the quality of the
assignment. Students must create all assignments artefacts themselves, such as
the solution, start code, test cases, and description text, before uploading them.
CodeWrite [14] is another tool that also focuses on student-driven program-
ming exercises. Exposing students to the code of others, and gaining deeper
knowledge of the curriculum are some of the benefits for tools like these.

nbgrader [8] is a tool for creating and grading assignment in Jupyter Notebook7.
Jupyter Notebook is a web-based interactive development environment for cre-
ating notebook documents, which are traditionally used to document research
and other engineering related work. The core idea and purpose of nbgrader
is similar to FREJA when it comes to producing assignments. It centralizes
assignment artefacts into a master copy that includes tests and the solution.
The master copy is then used to generate the version of the assignment that
the students receive, which has the solution removed. The creators of nbgrader
have also realized the benefit of avoiding maintaining several copies, or different
artefacts, when creating assignments.

However, the use of Jupyter Notebook in an educational context is often aimed
at students from other fields than computer science, such as mathematics and
mechanical engineering, to teach them basic computational skills [8]. FREJA
differs in this aspect, which targets programming assignments used in courses for
computer science majors. These courses do not use notebooks to teach software
engineering, but rather industry standard software development environments
and methods, such as using an traditional IDE instead of a notebook.

There has also been work done on automatically generating programming ex-
ercises [50]. These are randomly created programs within a certain domain
of programming, e.g. bit-level programming, that should be implemented from
scratch by students as an exercise. The exercises that were automatically created
were used as a supplement for students, on top of manually produced exercises
by the teachers. FREJA attempts to simplify the process of manually creating
larger assignments that are tailor-made for the curriculum, not to automate the
content of the assignment itself. Creating high quality assignments is not an
easy task. Different aspects such as difficulty, relation to current class topic,
and relevance to real-world scenarios must all be delicately balanced, while still
being interesting for students [51]. Taking all of these aspects into meaning-
ful consideration is difficult for an automatic assignment or exercise generator,
which is why this thesis focuses on improving the development of manually
designed assignments instead.

7https://jupyter.org

19

https://jupyter.org

20

Chapter 3

Design and Requirements

This chapter presents the high-level design of FREJA and its language agnos-
tic counterpart. Requirements that were established at the start of the thesis
are explained. The design part will briefly discuss technologies, theory and
methodology used in the design, and explain the reasoning behind certain de-
sign decisions.

3.1 Requirements

The requirements discussed here are primarily targeted at FREJA, and not the
language agnostic prototype. The reason for this is that the purpose of the pro-
totype is to be more of a proof-of-concept, rather than a complete framework
like FREJA that aspires to be incorporated into real-life assignment creation.
A baseline for the language agnostic framework is that it has a solution to the
problems posed in the first two research questions. That is, it centralizes de-
velopment to a single source that reduces redundancy and ensures consistency,
while also providing a way to generate the necessary artefacts from that source.
Of course, the implementation of the framework aims to meet all the require-
ments described below, however, any requirement may be sacrificed in the favor
of realizing the language agnostic aspect of the framework.

Most of the requirements for FREJA are non-functional due to the difficult na-
ture of defining appropriate functional requirements that can accurately mea-
sure the impact of the framework. Even with a well-defined measuring unit for
a functional requirement, it is still a difficult task to determine the acceptable
values of the chosen unit of measure. The non-functional requirements are con-
fined into several explicit points so they can be easily referred to later in the
thesis. They are as follows:

1. Effectiveness: For the framework to be successful, it must be more effec-
tive than the conventional manual way of creating programming assign-
ments. In other words, the framework needs to reduce the effort and time
spent writing assignments. How this is achieved is not important, as long
as there is a decent beneficial gain of using FREJA.

21

2. Consistency: As stated in the first research question, the goal is not only
to reduce the amount of inconsistencies between the different artefacts of
an assignment, but to guarantee that they remain consistent.

3. Non-redundant: The first research question emphasized the need for
avoiding redundancy across the artefacts of an assignment. In reality,
there will be repetition between the artefacts nonetheless, but the goal is to
maintain the repeated information from a single source. More specifically,
this point is aimed at reducing the amount of information or code that
need to be manually maintained

4. Accessibility: This requirement concerns the accessibility of FREJA for
those who use it. For it to be easily accessible, it needs to be platform
independent, i.e., not specific to Windows, Linux or Mac OS. It should
also be easy to retrieve and install. The users of FREJA are naturally
programmers, which tend to be stringent on their development environ-
ment and which tools and software they use. Because of this, an emphasis
was made on making the framework independent of whatever IDE is used
for development. This means that one of the early ideas of creating an
IDE plugin is not a suitable solution.

5. Dependencies: A consequence of the previous requirement is to limit
the amount of dependency on other tools or software as much as possible.
In this context, a dependency is considered as something that the user
need to acquire themselves before being able to use the framework. It
is not considered a dependency if there is some underlying software that
the framework relies on, as long as it is bundled in the installment of the
framework.

6. Learning ability: These last requirements are about the design of the
program in regards to the user experience. The implementation of FREJA
can be thought of as its own small language. This ”language” should then
be easy to learn, meaning the amount of new syntax and keywords should
be kept to a minimum, but sufficient to cover all the needs of the user.
Also, the framework should avoid relying on deep knowledge of any third
party tools or software.

7. Ease of use: In addition to being easy to learn, it should also be easy
to use. The syntax should be short but descriptive and meaningful. The
framework should also provide means for helping the user when they are
using it. Standard IDE functions, such as auto-complete and code sug-
gestions, should also extend to the syntax of the framework. The user
should be informed when syntactical errors are made, with an explana-
tion of what caused it and where it happened. Syntax warnings should
also be presented as early as possible to reduce run-time errors. Likewise,
any semantic wrongdoing should also be caught and presented to the user,
along with a description of the issue.

22

3.2 Artefacts of a Programming Assignment

To get a better understanding of programming assignments and the artefacts
that they are composed of, we analyzed assignments from courses where we had
access to all artefacts. This was important in terms of getting an overview of
where different programming assignments differ from each other, and where they
share commonalities. One of the courses was INF1021 at UiB, an introductory
course to algorithms and data structures aimed at second-year students. The
other course was DAT1002 at HVL, an introductory course to programming for
first-year students. Both courses teaches concepts from the syllabus through ex-
amples and assignments, exclusively using Java as the programming language of
choice. The courses did also have weekly exercises that were completely volun-
tary, which were sometimes more focused on theory than implementation. These
were not analyzed for this thesis, however, the larger compulsory assignments
from both courses were studied in detail. After analyzing the structure of these
programming assignments, a common pattern and structure was identified.

One of the assignments from DAT100 was extensively studied and primarily
used to define implementation details and design decisions for FREJA. The
assignment was split into several exercises that concerned calculations and visu-
alizing of GPS sensor data from sport watches or fitness apps. The goal of the
assignment was to asses the students skills and knowledge of the syllabus, which
included input-output operations with local files, object-oriented programming,
simple mathematical methods, and use of external libraries. Examples and code
listings from this assignment are used throughout the thesis to explain things
in more detail.

3.2.1 Solution Project

An assignment often has two to three corresponding projects, each with different
properties and accessibility. One project that was common for all assignments
that were analysed was the solution project. This project contains the entire
solution to all the exercises for the assignment, and is shared to an online cloud
service for sharing Git repositories, such as GitHub or GitLab. Only lecturers
and teaching assistants have access to this repository. The solution project
is commonly used as a guideline when evaluating the student solutions. It is
not uncommon for the repository to be open for everyone to view after every
student has received their grading. This is so they can learn and study from
the intended solution. The online repository for the aforementioned DAT100
assignment3 shows that the solution project does not contain much information
besides the source code for the solution.

3.2.2 Start Code Project

Another separate project is created for the start code that the student receive
at the beginning of the assignment. It is not always the case that students
receive any starting code at all, but this usually only happens for courses later

1https://www.uib.no/en/course/INF102
2https://www.hvl.no/studier/studieprogram/emne/dat100
3https://github.com/lmkr/dat100-prosjekt-gps-complete

23

https://www.uib.no/en/course/INF102
https://www.hvl.no/studier/studieprogram/emne/dat100
https://github.com/lmkr/dat100-prosjekt-gps-complete

in the studies when they are more experienced programmers. For the intro-
ductory programming courses that were studied, some skeleton starting code is
generally given as to not overwhelm students when they are first starting out.
Additionally, there is often unit tests accompanied with the start code project.
An example of this can be seen in Listing 3.1, which is an excerpt from the start
code for the first exercise in the DAT100 assignment4. The exercise is to imple-
ment the constructor, getters and setters, and field variables of the GPSPoint

class, which still have their skeleton implementation in the start code.

1 public class GPSPoint {

2 // TODO - field variables

3

4 public GPSPoint(int time , double latitude , double longitude ,

double elevation) {

5 // TODO - constructor

6 // Remove the throw statements as the methods get implemented

7 throw new UnsupportedOperationException(TODO.constructor("

GPSPoint"));

8 }

9

10 // TODO - get/set methods

11 public int getTime () {

12 throw new UnsupportedOperationException(TODO.method ());

13 }

Listing 3.1: An excerpt of the start code for an exercise.

Another reason for giving out starting code is the ability to predefine class and
function names. Having a standardized structure and naming for the code makes
it much easier to create a test suite for the assignment. The benefits of this are
many. First of all, unit tests can be accompanied with the start code for the
students to help them check their solution as they go along. This is also very
useful for lecturers and teaching assistants to guide students if their program
is not functioning correctly. Unit tests can then be used to quickly determine
the root cause of the problem. Lastly, hidden tests can be created to determine
the correctness of the solutions, speeding up the process of grading assignments.
The unit test in Listing 3.2 is from the test project5 from the same DAT100
assignment, and is a test for the exercise in Listing 3.1.

1 private GPSPoint g;

2 private int T_TIME = 1;

3 private double T_LAT = 2.0;

4 private double T_LONG = 3.0;

5 private double T_ELEV = 5.0;

6

7 @BeforeEach

8 void setUp() throws Exception {

9 g = new GPSPoint(T_TIME ,T_LAT ,T_LONG ,T_ELEV);

10 }

11

12 @Test

13 void testgetTime () {

14 assertEquals(T_TIME ,g.getTime ());

15 }

Listing 3.2: An excerpt of a test to the above exercise.

4https://github.com/dat100hib/dat100-prosjekt-gps-startkode
5https://github.com/dat100hib/dat100-prosjekt-gps-testing

24

https://github.com/dat100hib/dat100-prosjekt-gps-startkode
https://github.com/dat100hib/dat100-prosjekt-gps-testing

Previously, the start code projects were handed out through zipped (com-
pressed) folders with the source code. Nowadays, cloud file-sharing technologies
have become increasingly popular and accessible so that even students with no
experience in software development can quickly learn to use them. As with
the solution project, the start code project is also shared to one of the popular
repository cloud-hosting services. The students then get their own local copy
by either cloning or forking the original repository.

The content of the start project can vary, but it more or less includes every file
from the solution project. Of course, the actual solutions to the exercises are
removed. Only the bare-bone structure of the solution code is given, potentially
with some helper classes and functions that is out-of-scope or unnecessary for
the students to implement themselves. There may also be differences in the tests
that are in each project. For example, some tests in the solution project may
only serve as verification that helper classes and functions behave as intended.
On the other hand, the project that the students receive generally includes tests
that only checks that the implementation of the exercises works as intended.

3.2.3 Assignment Description

Lastly, the students also obtain an assignment description that describes each
exercise, explaining exactly what the student should implement. If the starting
code includes several implemented classes, functions, or libraries that students
must use, a thorough explanation of how to use them is often included in the
description as well. The assignment text usually have a hierarchical structure
since an assignment is often composed of several exercises, and each exercise
has the possibility of containing sub-exercises, and so on. These exercises are
structured as an ordered list, starting with exercise 1 and counting upwards.
Sub-exercises are also ordered lists, often with alphabetical instead of numerical
numbering. An example of an exercise description can be seen in Fig. 3.1.

Figure 3.1: An example of an exercise description.

This is the exercise description for the same sub-exercise seen previously in
Listing 3.1, but simplified and condensed, in addition to being translated from

25

Norwegian to English. This example highlights the exercise and sub-exercise
hierarchy. It also shows that an exercise description contains direct references
to the source code, including the filename, package location, test-class filename,
and a constructor definition. These references are hard-coded and must be
manually updated if they are changed later in the source code.

How the assignment description is handed out varies between courses, but each
course tend to use the same method throughout the semester. Some courses
deliver the description separately from the start code project, while others in-
clude it in that project. The file structure also differs from course to course,
with some preferring centralizing everything into one file. Other courses split
up the description, usually with one file for each exercise. This is the case for
the assignment description for the DAT100 example6 that has been discussed
throughout. The file format is generally PDF if the description is handed out
separately, or Markdown if it is included as part of the start code project.

3.3 Modelling a Programming Assignment Frame-
work

The last section identified three key artefacts in a programming assignment:
the solution project, the start code project, and the assignment description. The
assignment description has a close relationship with the start code project by
having references to the source code. Actively linking the assignment text to
the source code would allow for changes in the source code to be automatically
updated in the text. A way to do this is by generating or transforming the
assignment description directly from the source code. It is also possible to
construct the hierarchical structure of an assignment description this way, by
including extra meta-information in the source code, such as specifying what
class or filename corresponds to an exercise.

Even with the ability to generate a template-based assignment description just
from the source code, it is not reasonable to believe that this is good enough
in all scenarios. It is often the case that an exercise description explains the
overall goal of the exercise, along with a loose explanation of how the exercise
should be solved. Most exercises can be solved in a multitude of ways, but
there may be only one way that is correct with respect to the current class
topic. For example, an exercise concerning iterating an array may be intended
to be solved with a for-loop instead of a while-loop. Such semantics is diffi-
cult to automatically infer from the source code alone. Studies also show that
the most crucial part of source code descriptions is an explanation of the in-
tended behavior of a method or a program [1]. Therefore it is important for the
connection between assignment text and source code to allow manually editing
the description after generating it. In this scenario, an exercise description can
have a thorough explanation of the code and its intended behavior, and also be
specifically facilitated towards the curriculum for a course. At the same time,
the description can still automatically update any code references in the text
when the referenced source code changes. An example of a detailed semantic
code explanation can be seen at the start of the description for exercise 2 in the

6https://github.com/dat100hib/dat100-prosjekt-gps-testing/tree/master/docs

26

https://github.com/dat100hib/dat100-prosjekt-gps-testing/tree/master/docs

DAT100 assignment, show in Fig. 3.2.

Figure 3.2: An exercise description that explains the semantics of the exercise.

Another observation that was made is the subset-like relationship between the
start code project and the solution project. This relationship can also make
good use of code generation and transformation techniques. With extra meta-
information in the source code one could, for example, specify what code frag-
ments constitutes as the solution to an exercise. Additionally, specifying what
to do with an exercise solution (or other code fragments) would allow a trans-
formation tool to completely generate the start code project from the solution
project. Listing 3.3 shows the solution to the exercise described previously in
Fig. 3.1, while Listing 3.4 shows the start code that the students received for
the same exercise. This example showcases that an exercise solution is not nec-
essarily just removed, but can also be replaced with comments and different
code.

1 public GPSPoint(int time , double latitude , double longitude ,

double elevation) {

2 this.time = time;

3 this.latitude = latitude;

4 this.longitude = longitude;

5 this.elevation = elevation;

6 }

Listing 3.3: Solution to a simple Java exercise.

1 public GPSPoint(int time , double latitude , double longitude ,

double elevation) {

2 // TODO - Implement Constructor

3 throw new UnsupportedOperationException(TODO.constructor("

GPSPoint"));

4 }

Listing 3.4: Start code for the above exercise.

27

After analyzing multiple exercises from DAT100 and INF102 assignments, five
main strategies were identified for transforming a solution to start code. Most
of these were exercises that only spanned a single method in a Java class. The
strategies were:

• Remove everything, both the method definition and body.

• Remove only the body but keep the method definition.

• Replace the body of the method with some other code.

• Remove only the solution while keeping the method definition and other
program statements in the method body that was not a part of the solu-
tion.

• The same as above but the solution is replaced with some other code
instead.

Exercises within the same assignment often used different strategies for the
transformations, meaning there is a need for specifying which transformation
strategy, or transformation rule, to use on an exercise-by-exercise basis. These
options, and the other meta-information discussed above, must somehow be
injected or connected to the solution project. Including this meta-information in
the same solution project that other teachers, assistants, and possibly students
get access to would most likely cause confusion and annoyance. This is because
the meta-information is entirely foreign to them, and it also makes the solution
source code bloated and harder to understand. Another project is therefore
included in the design, which contains the solution project with the additional
meta-information needed for FREJA. This is often referred to as the source
project or annotated solution project throughout the thesis. The regular solution
project is generated from the source project by simply removing all the meta-
information. Figure 3.3 shows a simple model that demonstrates the high-level
design of the framework. The arrows shows which artefacts gets generated.
This design embodies the SSOT architecture by only needing one place for
development. This central source of information acts as a prescriptive model
for generating the other artefacts.

Figure 3.3: A model of the artefacts for a FREJA assignment. The generated
artefacts have an incoming arrow.

28

3.4 Defining Meta-Information

The above design is based on the idea of defining meta-information related to
the source code, so that assignment artefacts can be actively connected. How-
ever, this design raises two difficult questions. Where is this meta-information
defined? And equally important, how is it defined? The meta-information must
target several pieces of code, and define their meaning in the context of a pro-
gramming assignment, as well as specifying how they are transformed. As for
the first question, there are two central strategies. Either the meta-information
is directly injected in the source code, or it is defined in a separate file or project.

Both of these strategies poses great difficulties. Defining the meta-information
outside of the source code presents the task of targeting certain fragments of
code. For example, suppose someone wants to specify in the meta-information
that a certain method in a class constitutes as an exercise in an assignment.
One could target this method by, e.g., specifying the filename in conjunction
with the start and end line of the method, or perhaps use a combination of
class and method name to target it. The immediate pitfall of these solutions
is that they fall apart when the source code is changed, either by renaming
things, or by changes that affect line positions. Keeping track of such changes
would cause for a complicated implementation. Besides, a DSL would likely
need to be created so that the meta-information has a clear syntax that can be
interpreted. This inconsistency issue between isolated elements is reminiscent of
the problems that inspired this thesis, so basing a design on that is undesirable.

On the other hand, defining the meta-information directly inside the source
code makes targeting specific sections of code much easier. Though, an entirely
different issue arises with this strategy. How can meta-information be injected
in the source code and still conform to the syntax of the programming language?
One possible solution is to make use of comments, which can be placed almost
anywhere in the code in any programming language. However, the laid-back
nature of comments makes it difficult to enforce a clear syntax that can warn
and help the user when syntactical errors are made. Another possibility is
to define a new DSL with clear definitions of programming assignment meta-
information, both syntactically and semantically, while also defining concepts
in the DSL for code blocks of the underlying programming language of the
assignment. The design for the generic language agnostic prototype is based
on this idea. A later section goes into more detail about the benefits and
challenges for this design. One other solution is to make use of the tools given
by the programming language that the assignment is written in, especially any
metaprogramming functionality. The meta-information syntax would then be
defined as a regular library of the language, meaning it can easily be inserted
into the source code by simply importing the library. This is the core idea
behind the design of FREJA. No matter which of these strategies are used, there
needs to be an accompanying parser that can process the meta-information,
and an interpreter that understands the meaning of it. Once the source code
is completely processed, the necessary code transformations can take place.
Finally, the generation is initiated to produce the desired artefacts. The next
chapter goes into detail on the structure and functionality of the implemented
meta-information designs, while the Architecture chapter puts more emphasis
on the later steps concerning parsing, transformations, and generation.

29

30

Chapter 4

Implementation

This chapter covers implementation details of both FREJA and the program-
ming language agnostic prototype. Detailed explanations are given on how both
frameworks function, which include descriptions and brief explanations of the
underlying technologies that are used. The majority of this chapter revolve
around the parts of the frameworks that the user interacts with, while the next
chapter focuses more on how the source code is structured internally.

4.1 FREJA

FREJA is implemented in Java and is only available for programming assign-
ments also written in Java. The end-user uses this framework by writing Java
code with specific semantics inside the assignment solution project. The assign-
ment solution project is the only artefact that needs to be manually developed,
whilst other artefacts such as the start code and assignment description are
generated from that.

4.1.1 Annotations

Assignment meta-information is inserted into the code by making use of Java’s
annotation API1. The API is used to define custom annotations that can be in-
serted into to the solution code to mark code fragments with specific semantics
related to programming assignments. Java annotations are only metadata and
is not part of the program logic itself. There are some predefined annotations
in the Java language that does specific things, but creating custom-made anno-
tations must also be accompanied by some processor that can parse and use the
metadata in a meaningful way. If not, the annotations will have no effect.

A Java annotation is defined in its own file where the name of the annotation is
specified in addition to potential annotation elements and extra metadata about
the annotation itself. Annotation elements are essentially variables to store some
type of data inside the annotation. They can be required, or optional by having a
default value. There is also a restriction on where annotations can be placed in a

1https://docs.oracle.com/javase/tutorial/java/annotations/index.html

31

https://docs.oracle.com/javase/tutorial/java/annotations/index.html

program. By default, annotations can be applied on nearly all declarations, i.e.,
declarations of classes, methods, variables, parameters, and packages. However,
the annotation definition can specify a more limited application space for the
annotation. Other annotations, called meta-annotations, are used to define such
metadata about the annotation itself.

Listing 4.1 shows the definition of an annotation that has three elements: id,
transformOption and replacementId. The last one is optional, since the
empty string is specified as the default value. The @Targetmeta-annotation lim-
its the scope of the annotation to only be applicable to field variables, construc-
tors and methods. The part that precedes the annotation name, @interface,
is a keyword in the Java language that is used to define that the type for this
Java class should be an annotation. This is similar to how other keywords such
as enum, class, interface are used to create classes for those respective types.
The reason the word interface is used in the keyword for an annotation class is
that annotations are a form of Java interface, which becomes more apparent by
noticing the similarities between their class definitions.

1 @Target ({ ElementType.FIELD , ElementType.CONSTRUCTOR , ElementType.

METHOD })

2 public @interface Exercise {

3

4 int[] id();

5 TransformOption transformOption ();

6 String replacementId () default "";

7 }

Listing 4.1: The definition of the Exercise annotation.

There are currently five different custom annotations in FREJA that can be
used. The Exercise annotation shown in Listing 4.1 is used on code structures
that should be implemented for an exercise in an assignment, such as on field
variables or methods. The annotation includes some options to specify its iden-
tifier and how it should be transformed when generating the start code. Listing
4.2 shows an example of using the Exercise annotation on the constructor ex-
ercise from earlier, where the id annotation element specifies that it is the first
sub-exercise for exercise 1. Using an integer array for specifying the numbering
of an exercise allows for enforcing a more syntactic structure of the hierarchical
numbering, compared to using something like a string. Different annotations
can have the same number, or identifier rather. For example, one exercise might
be to implement several field variables, which requires a separate annotation for
each of them. These can be grouped as several tasks for one exercise by using
the same identifier for each annotation.

1 @Exercise(id = {1,1}, transformOption = TransformOption.

REPLACE_BODY , replacementId = "1")

2 public GPSPoint(int time , double latitude , double longitude , double

elevation) {

3 this.time = time;

4 this.latitude = latitude;

5 this.longitude = longitude;

6 this.elevation = elevation;

7 }

Listing 4.2: An example of the Exercise annotation being used.

32

TransformOption is an enum used to pick between the transformation strategies
discussed in the previous chapter. As a reminder, these transformation strate-
gies define how the solution should be transformed into the start code. In this
scenario the body of the constructor should be replaced with some other code,
specifically some replacement code with 1 as its identifier. Replacement code
is marked with a ReplacementCode annotation, as seen in Listing 4.3. Here,
the entire body of the constructor from Listing 4.2 would be swapped out with
the body of the replacement method, since the replacementId in the exercise
annotation has the same value as the id element in the ReplacementCode an-
notation. The reason these annotation elements are strings and not some other
type like integers, is to give the user the option to create their own identification
system for replacement code. Multiple exercise annotations can target the same
replacement code, allowing for better code reuseability.

1 @Remove

2 @ReplacementCode(id = "1")

3 public static void replacement (){

4 // TODO - Implement Constructor

5 throw new UnsupportedOperationException(TODO.constructor("

GPSPoint"));

6 }

Listing 4.3: An example of the ReplacementCode annotation being used

However, the actual definitions of these code replacements does not need to be
included in the start code after the replacement have taken place. There might
be confusion from students if this unused code is included, so it is better if these
definitions are removed entirely. The third annotation, Remove, can be used on
any component in the source code. That component will be removed completely
from both the start code and the generated solution project as well. Using the
annotation at the class level will remove the entire file instead. The Remove

annotation in Listing 4.3 would allow the replacement to take place first, before
removing the entire replacement method, including all of its annotations.

The last two annotations are used a little differently. After studying solutions
and start code from many example exercises, a good deal of them had some
statements from the solution code in the start code also. These statements were
not necessarily a part of the solution, but often left in the start code to either
help students, or for the sake of avoiding syntax/compilation problems. Listing
4.4 is the solution code to an exercise from the DAT100 assignment.

1 public boolean insert(String time , String latitude , String

longitude , String elevation) {

2 GPSPoint gpspoint;

3

4 // TODO - START

5 gpspoint = GPSDataConverter.convert(time , latitude , longitude ,

elevation);

6 boolean inserted = insertGPS(gpspoint);

7 // TODO - END

8

9 return inserted;

10 }

Listing 4.4: The solution to an exercise that highlights which statements are
part of the exercise solution through comments.

33

The start and end comments were left in the solution code, and showcases a
scenario were some statements in the method body are not part of the exercise
solution. Listing 4.5 shows the start code for the very same exercise, which
has only the solution replaced, while other statements are kept. Removing or
replacing the entire method body is not a suitable solution for this scenario.

1 public boolean insert(String time , String latitude , String

longitude , String elevation) {

2 GPSPoint gpspoint;

3

4 // TODO - START

5 throw new UnsupportedOperationException(TODO.method ());

6 // TODO - END

7 }

Listing 4.5: The start code to the above exercise with only the solution removed.

To make transformations like these a possibility, there needs to be a way to
mark only some statements as being part of the solution to an exercise. Un-
fortunately, the Java language does not provide any obvious functionality for
solving this. Again, using comments as seen in the examples above is a possibil-
ity, but this limits the ability to enforce a clear syntax, as previously discussed.
Another way is to mark the solution statements within curly brackets and label-
ing that code block as the solution. However, there is no possibility of enforcing
a certain name on a labeled code block, and this also encounters problems
with scoped local variables. The implementation of FREJA uses annotations
to mark the start and end of a solution. Due to the previously mentioned re-
strictions that Java’s annotation API enforces on the placement of annotations,
they must be applied somewhat differently to be flexible. An object variable
of the SolutitionStart annotation is declared before the first statement of a
solution, while a SolutionEnd variable is declared after the last statement to
mark specific statements as a solution within a method or constructor body. An
example of this can be seen in Listing 4.6, at line 5 and 8.

1 @Exercise(id = {2,2,3}, transformOption = TransformOption.

REPLACE_SOLUTION , replacementId = "1")

2 public boolean insert(String time , String latitude , String

longitude , String elevation) {

3 GPSPoint gpspoint;

4

5 SolutionStart start;

6 gpspoint = GPSDataConverter.convert(time , latitude , longitude ,

elevation);

7 boolean inserted = insertGPS(gpspoint);

8 SolutionEnd end;

9

10 return inserted;

11 }

12

13 @Remove

14 @ReplacementCode(id = "1")

15 public void replacement (){

16 throw new UnsupportedOperationException(TODO.method ());

17 }

Listing 4.6: The solution wrapped in annotation variables

34

This is the solution code from Listing 4.4, where the start/end comments are
swapped out for annotations variable declarations. At the bottom is the replace-
ment code that the solution should be swapped out with. The marked solution,
combined with the details of the Exercise annotation, will produce the start
code shown in Listing 4.7.

1 public boolean insert(String time , String latitude , String

longitude , String elevation) {

2 GPSPoint gpspoint;

3

4 // TODO - START

5 throw new UnsupportedOperationException(TODO.method ());

6 // TODO - END

7

8 return inserted;

9 }

Listing 4.7: The generated start code with a syntax error.

This is not identical to the original start code since it includes the return state-
ment at the end. The reason this statement is removed from the original start
code is because it will create a compilation warning. The return statement fol-
lows immediately after a throw statement and will create an Unreachable State-
ment2 error. This can be easily fixed by putting the SolutionEnd variable after
the return statement, however, this will also encounter the same unreachable
statement problem, only this time it will be in the annotated solution code in-
stead. To account for this, the SolutionEnd variable declaration can be omitted
if the last statement in the solution is a return statement or a throw statement.
The curly bracket that encloses the method body will be used instead to mark
the end of the solution. Doing this for the above exercise would result in the
correct start code, shown earlier in Listing 4.5.

The naming of the annotation variables does not matter, only that objects of
these specific annotations are declared. Of course, the solution markers could
be defined as regular classes instead, but defining them as annotations makes
the declarations stand out more, since most IDEs will highlight them with a
different color. This makes it clearer that these statements have a different
function than the rest of the code. Currently, it is only possible to mark one
block of statements as a solution per Exercise annotation.

4.1.2 Parsing

The very first prototype of FREJA was based on making use of the Java anno-
tation processor API3. As mentioned earlier, this is an officially supported API
for performing metaprogramming in Java. A processor can easily keep track
of what constructs, such as methods, field variables, and classes, are annotated
with the annotations defined above. The source code can then be transformed
during compilation. The difficulty with this approach is the bottom-up way of
processing the annotations. Other parts of the source code that is not anno-
tated still need to be processed somehow, since this code should also be included

2https://www.geeksforgeeks.org/unreachable-code-error-in-java
3https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/

Processor.html

35

https://www.geeksforgeeks.org/unreachable-code-error-in-java
https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/Processor.html
https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/Processor.html

when generating the other projects. The processor API only allows navigating
to non-annotated code from some other code that is annotated. Classes that do
not contain any annotations cannot be processed because of this. In addition,
the API for navigating the processed source code is also limited and difficult
to use. The processor API is very useful in scenarios where it is important
that the processing happens during compilation, for example before initializ-
ing a long-running application. However, this is not the case for FREJA, since
the underlying assignment program that is processed does not get executed or
launched after processing and transforming it. In reality, the end-product of
FREJA are static text files, so it does not matter if the transformations are
done under pre-processing, compilation, or during run-time.

Because of these problems and details, a pivot was made to use a dedicated Java
parsing and generator library. Behind the scenes, FREJA relies on JavaParser4

for parsing, transforming and generating Java source code. The program starts
by looking for the source folder (i.e., a folder literally named src or source, which
is standard in Java projects) and starts parsing all the Java files in that folder.
An AST is created for every Java file. The ASTs are stored as Java objects that
also includes additional meta-information, such as filename, storage information
and more.

All the ASTs are then traversed to create a new object hierarchy, that more
closely resembles the structure of a programming assignment. The annotations
defined in this framework are searched for in the AST traversal, and are used to
create objects in the assignment structure. For example, a method annotated
with @Exercise is used to create an Exercise object. A simplified UML class
diagram can be seen in Fig. 4.1 on the next page, showcasing the structure
of the assignment class hierarchy. The Assignment object is simultaneously a
descriptive model, in the sense that it describes the structure of an assignment in
a more abstract way, and a prescriptive model, since it is also used as a blueprint
for generating the rest of the assignment artefacts.

The Node class is part of the JavaParser library, and represents a node in an
AST. There exists a node class for every terminal and non-terminal in the Java
grammar, but the diagram is kept simple for the sake of brevity. The Task class
is what corresponds to an Exercise annotation, since multiple nodes can be
annotated with the same exercise identifier. These task objects have two im-
portant methods, createStartCode for creating a new node for the start code,
and createSolutionCode that creates a new node for the solution code without
annotations. By following the instructions specified in the transformOption

element of the Exercise annotation, two new lists of ASTs are created in the
Assignment object, containing the newly created nodes. One list is for the start
code project, and one list for the solution code project.

4.1.3 Execution Phase

The popular Java project management and build tool, Maven5, is required to
execute the program since the framework is implemented as a Maven plugin.
There are several reasons for this, but most important is that it makes the

4https://javaparser.org
5https://maven.apache.org

36

https://javaparser.org
https://maven.apache.org

Figure 4.1: A simplified view of the assignment object hierarchy.

37

framework easy to distribute and install while still being IDE independent.
Another benefit is that the framework can be executed within the same project
as the one the assignment is developed in.

After the initial ASTs are constructed and used for creating the assignment
objects, the program goes through every folder and file in the source project
and copies them over into two new projects. The target folder is cleared before
generating the projects due to the likelihood of executing the program several
times, eliminating the need for manually deleting files to avoid duplication.
When copying a Java file, the program will instead look for the associated AST
that was created in the Assignment object, and then use JavaParser to create
a Java file from an AST object.

The only information that needs to be provided to be able to execute the pro-
gram is the location of the target folder to generate the projects in. There are
options that can be configured in the Maven Project Object Model (POM) file,
which includes the required target path folder. Executing the program without
any additional configuration and annotations will simply copy all the files in
the source project and paste them over in the generated projects. However,
the POM file also includes the ability to specify files or folders that should be
ignored, meaning that they will not be copied over into the generated projects.
This option uses glob patterns6 to specify filenames to make it more standard-
ized and user friendly, since most users will likely already be familiar with such
patterns from other types of configuration files, such as gitignore.

4.1.4 Exercise Descriptions

During the generation of the start code project, an additional folder is created
for exercise descriptions. A separate file is created for each exercise, but sub-
exercises are grouped in the same file. The descriptions are structured based
on the numbering (identifier) in the exercise annotations. The information is
generated entirely from the source code by using the meta-information that
JavaParser provides for each annotated node. Descriptions are written in the
markup language AsciiDoc7 because of the rich functionality it provides. The
language requires an Asciidoctor processor8 to process AsciiDoc files. Most
importantly, the language provides the ability to define attributes9 that can be
referenced later in a document. An attribute is a key-value pair that is defined in
a document header. Referencing the key later in a document will substitute the
key with the value in the definition, making it possible to reference the source
code, and also automatically update the reference if the source code changes. To
do this, the attribute key must be linked to some piece of the source code while
the value stores the actual information that should be referenced. The attribute
key must remain unchanged, but the attribute value updates automatically
whenever the source code updates. There is no need to manually update the
substitutions since the attribute key name does not get changed. This is useful
in many scenarios, especially in the case of exercise descriptions.

6https://en.wikipedia.org/wiki/Glob_(programming)
7https://asciidoc.org
8https://asciidoctor.org
9https://docs.asciidoctor.org/asciidoc/latest/syntax-quick-reference/

#attributes-and-substitutions

38

https://en.wikipedia.org/wiki/Glob_(programming)
https://asciidoc.org
https://asciidoctor.org
https://docs.asciidoctor.org/asciidoc/latest/syntax-quick-reference/#attributes-and-substitutions
https://docs.asciidoctor.org/asciidoc/latest/syntax-quick-reference/#attributes-and-substitutions

For example, many exercise descriptions reference the filename of the start code
for the exercise. In Listing 4.8, the exercise description would generate the
attribute, :Exercise1_1_FileName: pass:normal[+GPSPoint.java+], for the filename.
The name of the key for the attribute is Exercise1_1_FileName, and the value is
GPSPoint.java10. A reference to that attribute in the description must wrap the
key in curly brackets, as seen in Listing 4.9. This would result in the substitution
shown in Listing 4.10. If the filename then changes afterwards, simply executing
FREJA again will update the AsciiDoc description file by changing the value of
the attribute. There is no need to manually update the description since both
the key and the reference to the key remains unchanged, but the substitution
will use the new value instead.

1 public class GPSPoint {

2

3 @Exercise(id = {1,1}, transformOption = TransformOption.

REPLACE_BODY , replacementId = "1")

4 public GPSPoint(int time , double latitude , double longitude ,

double elevation) {

5 this.time = time;

6 this.latitude = latitude;

7 this.longitude = longitude;

8 this.elevation = elevation;

9 }

Listing 4.8: A simple exercise.

1 The start code to exercise 1 can be found in {Exercise1_1_FileName}

Listing 4.9: An exercise description with an attribute reference.

1 The start code to exercise 1 can be found in GPSPoint.java

Listing 4.10: An exercise description with a substitution for the attribute
reference.

A template description is generated for each exercise and is structured as a
bare-bone explanation of what to implement in the exercise. The purpose of
this template is to be a starting point for the full description, and to give the
user an example of how to use attributes and other common syntax of Asci-
iDoc. Executing FREJA several times will regenerate the template description
and overwrite any manual changes that may have been done to the description,
but this behavior can be changed through an option in the POM configuration.
Either way, all attribute values will always be updated to reflect any changes
in the source code. AsciiDoc provides the opportunity to transform the text to
either PDF or HTML after the writing is finished. Publishing an AsciiDoc file
directly to GitHub is also possible, since the website has an embedded Asciidoc-
tor processor.

Going back to the subject of bidirectional transformations and asymmetrical
lenses, the implementation details surrounding assignment descriptions does
somewhat break the definition of what a normal get function is. Instead of the
view, i.e., the generated description and other generated artefacts, being defined

10The other parts of the value definition is just to make the substitution use a monospaced
font.

39

exclusively by the source, it is also defined by the previous view, kind of like
a combination of get and put. The reason for this is to make it possible to
preserve any manual changes made to the description. An earlier implementa-
tion of FREJA attempted to avoid this by having a pure get function instead.
This implementation was inspired by Javadoc comments, and revolved around
writing entire exercise descriptions in a string variable annotation element. The
string variables were used to generate dedicated AsciiDoc description files, the
same way it does now. The important detail is that any manual changes to the
description would be done in the source project instead, ensuring the source
completely defines the view. This idea was eventually scrapped due to its im-
practicality. Several exercise descriptions that were analyzed contained images,
but writing the entire description through string variables did not provide the
ability to do this. Since the end product was still AsciiDoc files, the description
must still be written in the AsciiDoc language. However, this had to be done
without the help of a plugin or editor due to them being written as regular
string variables. Moreover, including the entire description in the source code
also cluttered the source project immensely.

4.2 Programming Language Agnostic Framework

For a framework that attempts to target every programming language, there
obviously cannot be a reliance on implementation details of a specific language,
such as relying on annotations in Java. Instead, commonalities must be ex-
tracted from all programming languages to be able to develop a framework that
can target arbitrary source code. One area that most programming languages
have in common is their textual representation. This representation is used for
developers to easily write and read their source code as they create it. Often,
this is then compiled into a binary representation that computers can under-
stand the meaning of. One step of the compilation is to create an AST of
the source code, which is another representation that more clearly shows the
syntactic structure of the code, in terms of the grammar of the programming
language. After seeing the usefulness of the AST representation for FREJA, the
initial prototype of a language agnostic framework was founded on the idea of
working directly with ASTs.

As mentioned earlier, the design of the language agnostic framework is centered
around a DSL that provides the ability to both write source code of any lan-
guage, and define meta-information for programming assignments. The idea is
for the DSL to allow injecting this meta-information inside the AST. The user
would develop the solution for an assignment as normal, and then use the DSL
to include meta-information in the syntax tree. This tree would then be pro-
cessed and used to generate the other assignment artefacts. JetBrains MPS11

is a language workbench that is used to develop the DSL. MPS does not use
regular text files to store or edit code. Instead, the code is also represented and
stored as an AST. MPS provides a projectional editor where the editor(s) of the
language can be defined in terms of how they should work and look.

11https://www.jetbrains.com/mps

40

https://www.jetbrains.com/mps

4.2.1 First Prototype

The first prototype was based on a long transformation pipeline which can be
seen in Fig. 4.2. The starting point on the left contains the source code of the
complete solution of an assignment. Each arrow is a transformation from one
representation of the source code to another, and is numbered to make it easier
to discuss each transformation. The outer boxes show which language or format
the representation and transformation are written in. Source language is the
language that the programming assignment is written in.

Figure 4.2: The transformation pipeline from source code to the DSL, and back.

Transformation 1 is the most complex, but most languages today have a ded-
icated library or third party tool to handle this transformation step without
writing it from scratch, such as the aforementioned JavaParser, or Python’s
official ast module12. The result of this transformation is an object in the re-
spective source language, that represents an AST for a programming file in the
same language. However, this object is dependent on specific details for each
programming language. Specific details like these must be abstracted away so
that the AST can be transformed into more generic components of the DSL.
The AST object only exist in memory in the source language for a brief moment,
and obviously cannot be imported directly into MPS. Thus, a second transfor-
mation is needed to convert the AST object into a representation that can be
used irrespective of the source language, such as JSON. Transformation 3 con-
verts the JSON file to corresponding DSL components in MPS. It is after this
transformation that the AST gets edited and injected with meta-information.
Once that is done, a fourth transformation generates a new JSON file. The AST
in this file is generated based on transformation rules and meta-information in-
cluded from the previous step, similar to how annotations and their information
are used to specify transformation details in FREJA. A fifth and final transfor-
mation converts the new JSON file back to code in the original source language.
Creating a JSON schema for the JSON files ensures that transformation 3 and
4 only need to be written once. However, transformation 2 and 5 still need a
specific implementation for each programming language.

As mentioned, MPS provides the ability to define how the editor of the lan-
guage should look like, called the projectional editor. Although it may have
initially sounded good on paper, it became immediately clear that displaying
and working with the AST directly would be futile. Firstly, the people that cre-
ate programming assignments may not be familiar with ASTs, either in general,
or for a specific language. In this scenario, they would need to have knowl-
edge about ASTs for the source language, while also learning the generic ASTs

12https://docs.python.org/3/library/ast.html

41

https://docs.python.org/3/library/ast.html

within the DSL. Secondly, an AST is verbose and becomes quite large, even
for one simple line of code, as seen in Listing 4.11, making it very hard to
get an overview of the actual code. Others have also encountered similar dif-
ficulties trying to transform ASTs directly, and have instead opted for a more
user-friendly graphical interface for creating transformations [44].

1 <statement type="ExpressionStmt">

2 <expression type="AssignExpr" operator="ASSIGN">

3 <target type="NameExpr">

4 <name type="SimpleName" identifier="a" />

5 </target >

6 <value type="BinaryExpr" operator="PLUS">

7 <left type="NameExpr">

8 <name type="SimpleName" identifier="x" />

9 </left>

10 <right type="IntegerLiteralExpr" value="1" />

11 </value>

12 </expression >

13 </statement >

Listing 4.11: An XML AST representation of the Java statement a = x + 1;

The better option seemed to be displaying the source code instead, since it
is more concise, and the author of a programming assignment is already very
familiar with this representation. Then they could select different parts of the
source code and mark them as specific assignment components, such as the
solution to an exercise. Remember that the code in MPS is always structured
as an AST, even though the representation in the editor might be different.
Instead of editing the AST directly, a selection could be done on the textual
representation of the code. Along with some clever implementation, it is also
possible to infer what nodes in the AST the selection corresponds to. MPS
also makes it possible to have custom code or programs that can be executed
through a button click, keyboard combination, or popup menu. This program
code could, for example, target the current selection from the editor, and modify
the underlying nodes in the AST with assignment meta-information. Figure 4.3
shows an example of how this could look like.

Figure 4.3: An example of how the first prototype could look like.

42

The top left part shows the editor that user interacts with, which is just the
textual representation of the code. Below is the underlying representation of
that code in the DSL, i.e., the AST of the code as concepts within the DSL.
The figure shows that selecting the code in editor also selects the corresponding
nodes in the AST. The idea is that this selection could be marked as an exercise
solution for example, either through a pop-up menu or some keyboard combi-
nation, and the underlying AST would be transformed into the tree seen at the
right side of the figure.

The big hurdle with this approach though, is that displaying the textual rep-
resentation of the source code is easier said than done at this point in the
transformation pipeline, even with all the information from the AST. For ex-
ample, the semicolon from the program statement is not explicitly represented
in the AST in Listing 4.11, and the plus sign is turned into a specific attribute
instead of a character. Unparsing an AST would be trivial with the tools that
were used to create the original AST, but they would not work at this point
since the AST object is already transformed into the DSL.

The mentioned tools for creating ASTs for Java and Python programs includes
information about each node in the tree concerning their start and end positions
in the source file, i.e., the line number and column offset that each node starts
and ends on. This information can also be included for each node in the JSON
file after the second transformation in the pipeline. If the entire source code
was added as a string in the JSON file as well, then it would be easy to display
the source code as regular text in MPS. It would also be possible to figure out
which nodes in the AST were selected based on the start and end position of
the selection in the textual representation of the source code. Including the
concrete syntax in the JSON file does also mean that the fifth transformation
would essentially be just writing text to a file, instead of a complicated process
of reconstructing an AST object in the source language that could eventually
be unparsed.

At this point though, the original AST is not used to display the source code,
nor is it used in the final transformation to generate new source code. The
textual representation of the source code is what is presented, used for editing,
and for generating the final artefacts. Updating the AST based on the edited
textual source code would be an unneeded complexity that do not really matter
in the end. This led to the initial prototype being abandoned, while focus shifted
towards a revised implementation with a much simpler approach.

4.2.2 Second Prototype

Displaying the textual representation of the source code still felt like the natural
choice going forward. Not needing an AST of the source code simplifies the
process tremendously. All that is needed is some sort of reader that can parse
text files and construct concepts in the DSL. This is all possible to do within
MPS, no matter the programming language of the text file that is parsed. When
selecting parts of the source code in MPS, as described earlier, there still need
to be a concept in the DSL that has been selected also. This was supposed
to be nodes in the AST previously. A line of code felt like an appropriate
substitute for representing a structural component of a programming file, but

43

there is an argument to be made for having each individual character to be
a separate component for more fine-grained control over the selection process.
This seemed unnecessary for the purpose of this project, since selecting code
related to a programming assignment would rarely need the ability to select
only some part of a line. The updated transformation pipeline can be seen in
Fig. 4.4

Figure 4.4: The transformation pipeline for the second prototype.

A language in MPS consists of structural components called concepts. These
concepts can have properties, inherit other concepts, have child concepts or
reference other concepts. Only root concepts can be created as a file in the lan-
guage, but other concepts can be a part of a root concept. In the language for
the prototype, one root concept is File, a concept that represents a program-
ming file. The only properties of File are a string to represent the name of a file,
and another string that represents the extension of the file (e.g., .java or .py).
A File has a list of IFileComponent as its child concepts. IFileComponent is
an interface concept that is as an abstract representation of a component in a
programming (assignment) file. Inheriting concepts of this interface can be as
simple as a line of code, or more complex concepts such as an exercise solution.

Programming files containing exercise solutions are imported to the DSL with
a button click after specifying the file path. This button click runs a small
program within the DSL that is written in MPS’s counterpart to Java, called
BaseLanguage13. The program reads the imported file line by line and generates
a new File instance with only lines of text as its file components. A new
LineOfText concept instance is created for each line of code in the original file.

There are also different aspects of a language in MPS other than the structure,
such as editors, constraints, type rules, generators and more, which are all based
on the concepts of a language. The File editor simply shows the file name and
extension at the top, and then lists all of it child concepts, displaying them using
their own editor definitions. A LineOfText just displays the text it is holding in
the editor, meaning that a newly generated File is almost displayed identically
as in the IDE it was created in.

As previously mentioned, there may be one or several lines of code that have
a conceptual meaning within an assignment, such as a solution to an exercise.

13https://www.jetbrains.com/help/mps/base-language.html

44

https://www.jetbrains.com/help/mps/base-language.html

Annotation variables were used in FREJA to mark where a solution started
and where it ended. Similarly, concepts in the source code can be marked by
inserting temporary file components at the start and end lines of the concept.
Keyboard shortcuts are used to easily insert these marking components. For
example, a SolutionStart concept can be inserted using Alt + Enter at the
first line of solution, and the end can be marked by using Ctrl + Alt + Enter

at the last line of the solution. Alternatively, these markings can be inserted
with the mouse using a right-click popup menu. Figure 4.5 and 4.6 shows the
steps to mark a code fragment as an exercise solution with the DSL.

Figure 4.5: The starting line of a solution being marked.

Figure 4.6: The end line of a solution being marked.

Each figure shows the editor view at the top, which uses the editor definition for
each concept to determine how to display them. Underneath is the reflective edi-
tor14, which ignores the editor definitions and uses a default tree-like view of the

14https://www.jetbrains.com/help/mps/finding-your-way-out.html#reflectiveeditor

45

https://www.jetbrains.com/help/mps/finding-your-way-out.html#reflectiveeditor

file. This view explicitly shows the structure of the file, and highlights the con-
cept type of a node in green, such as LineOfText and SolutionStart. Figure
4.5 shows the custom-made popup menu option that inserts a SolutionStart

marker at the selected line, which is present in the code in Fig. 4.6. After the
end is marked, a Solution concept is automatically created and inserted into
the file, replacing the marking components and the contained lines, as seen in
Fig. 4.7

Figure 4.7: The resulting Solution concept that was created.

This concept provides additional options that can be specified, such as what
to do with the solution when generating the start code for the assignment.
The TransformOption for the Exercise annotation in FREJA is analogous,
which provides the ability to remove or replace the solution. Both options are

46

also possible in the DSL, although replacing the solution requires creating and
referring to a SolutionReplacement concept. SolutionReplacement is another
root concept, and it has an identifier and a list of text lines. It can be created in
the same way a Solution concept is created, or by manually writing the code
that should be used a replacement.

MPS has also many tools for creating custom generators for a language, includ-
ing both M2M and M2T transformations. This prototype uses MPS’s TextGen15

for creating M2T transformations. TextGen is its own language that comes
bundled with MPS, allowing users to define M2T transformations for their own
custom-made DSL. For the prototype language, the transformations convert all
file components to lines of text according to the specified transformation op-
tions. The end-product is a start code file that can be compiled in the source
language of the assignment. MPS has a built-in function that allows a user to
select an instance of a root concept and preview what the generated file will
look like, but only if a TextGen transformation is defined for that root concept.
An example of this can be seen in Fig. 4.8, using the created Solution concept
from earlier examples.

Figure 4.8: The top part shows a File editor with a solution to a Java exercise.
Below that is the code that the solution should be replaced with. At the bottom
is a preview of the generated output.

15https://www.jetbrains.com/help/mps/textgen.html

47

https://www.jetbrains.com/help/mps/textgen.html

48

Chapter 5

Architecture

This chapter goes into detail about the implementation of FREJA and the
programming language agnostic prototype. Compared to the last chapter, this
chapter focuses more on what goes on behind the scenes, i.e., the architecture,
structure, logic, and the design of the source code. In essence, these are details
that an ordinary user does not need to know about to use the frameworks.
However, this chapter is important to read and understand for any developer
that is interested in continuing the work that is done in this thesis.

5.1 Architecture of FREJA

FREJA is built as a Maven project that is split into three separate modules. The
freja-test-example module does not contain any implementation that affect
the logic of the framework, but as it name suggests, is used as an assignment
example for testing. Testing will be covered in more detail later in this chapter,
but for now it is only important to know that the reason this module exist is to
have a somewhat big example that asserts the correctness of the implementation
of FREJA as a whole, from parsing files to generating files, through unit tests,
and not just manual testing.

The content of the freja-annotationsmodule was mostly covered in the previ-
ous chapter. Again, this module does not contain any logic, only the definitions
of all the custom annotations for FREJA, and any enums that are used as a
type for an annotation element. This module is on its own to maintain a modu-
lar design of the implementation, separating the parts of FREJA that the user
interacts with, i.e., the annotations, from the program logic of the framework,
i.e., the parsing, transformation, and generation of files. This was also beneficial
during the development of FREJA when the main method was often used to
do quick manual testing. The main method allows for executing the framework
in the same way it can be executed as a Maven plugin by running the mvn

freja:generate command. However, configuration details need to be specified
programmatically within the main method, instead of through a POM file. Ad-
ditionally, the source path of the assignment project that should be parsed must
be specified since the framework is executed from another location, as opposed

49

to the Maven plugin that is always executed within the same project as the
source path. Creating an example assignment project for manual testing is very
quick because only the freja-annotations dependency is required, and not
the FREJA Maven plugin. The dependency does not require the use of Maven
or a POM file since the module can be imported as a JAR instead.

The last module, freja-maven-plugin, is by far the biggest in size, and contains
all the logic and tests for FREJA. There are multiple packages in the module that
groups related or similar classes within the same package, e.g., the exceptions
package contains all the custom FREJA exceptions. The classes in this module
will be explained mostly in the order of when they are introduced into the
program flow when executing FREJA. The program starts by initializing an
object of the Configuration class, filling it values that hold different FREJA
configuration settings for a programming assignment. This includes information
such as the source path of the annotated assignment project, target path of the
output folder, and any files in the source project that should be ignored.

5.1.1 Maven

As mentioned earlier, these configuration values can be set directly in the main
method, but much more work is needed to extract those values from the pom.xml
file into the program memory. In short, this forces the creation of a custom
Maven plugin1. Official Maven dependencies, such as the maven-plugin-api,
are added to the pom.xml file in the freja-maven-plugin module to be able
to create a custom plugin. This POM file also has the maven-plugin-plugin2

Maven plugin included in the build life cycle3, as seen in Listing 5.1. The prefix
of the plugin goal (i.e., the freja part of the mvn freja:generate command)
for the FREJA plugin is defined in the configuration settings at line 8.

1 <build>

2 <plugins >

3 <plugin >

4 <groupId >org.apache.maven.plugins </groupId >

5 <artifactId >maven -plugin -plugin </artifactId >

6 <version >3.6.4</version >

7 <configuration >

8 <goalPrefix >freja </goalPrefix >

9 </configuration >

10 <executions >

11 <execution >

12 <id>help -goal</id>

13 <goals>

14 <goal>helpmojo </goal>

15 </goals>

16 </execution >

17 </executions >

18 </plugin >

19 </plugins >

20 </build >

Listing 5.1: The build lifecycle in the FREJA Maven plugin pom.xml file.

1This web-page goes into great detail about Maven plugin development: https://maven.

apache.org/plugin-developers/index.html
2https://maven.apache.org/plugin-tools/maven-plugin-plugin/
3https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.

html

50

https://maven.apache.org/plugin-developers/index.html
https://maven.apache.org/plugin-developers/index.html
https://maven.apache.org/plugin-tools/maven-plugin-plugin/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

maven-plugin-plugin is used to create a plugin descriptor for custom plugins
by looking through the source code for Maven plain Old Java Object (MOJO)s.
A MOJO is an executable goal in Maven, which is distributed through a plugin
and can be defined in terms of a Java class. In the maven package, there is a
class called FrejaMojo, which is the MOJO for this custom Maven plugin. It
extends the AbstractMojo class and implements the execute method, which
determines the behavior of the plugin goal. In this case, the method instantiates
a Configuration object with configuration options from a POM file. Each
option that can be set in the POM file for the FREJA Maven plugin has a
corresponding field variable in the FrejaMojo class, as seen in Listing 5.2. These
field variables are annotated with @Parameter, both to specify that they are
configuration options for the MOJO, and to also define other properties of the
option, such as its name. Listing 5.2 also shows that the class has a Mojo

annotation, which defines the name of the goal (i.e., ”generate”), and binds the
goal to the compile phase of the build life cycle.

1 @Mojo(name = "generate", defaultPhase = LifecyclePhase.COMPILE)

2 public class FrejaMojo extends AbstractMojo {

3

4 @Parameter(property = "targetPath", required = true)

5 private String targetPath;

6

7 @Parameter(property = "ignore")

8 private List <String > ignore;

9

10 @Parameter(property = "keepOldDescriptions")

11 private boolean keepOldDescriptions;

12

13 ...

14 }

Listing 5.2: A snippet of the FrejaMojo class and its field variables.

5.1.2 Parsing

Whether its from the main method or from the execute method in the MOJO,
the Configuration object is used to create a Generator object. Afterwards, the
generate method of the Generator object is promptly executed. This method
orchestrates the high-level flow of the program by first parsing the source files,
transforming them, and finally generating the desired artefacts. The parsing is
done by creating a Parser object and initiating it with the path of the source
project. Except for finding the source folder for the Java files in the source
project, this class hands over the responsibility of parsing to the JavaParser
library. The result of a successful parsing is a list of CompilationUnit objects,
one for each Java file. The CompilationUnit class extends the abstract Node
class, and can be thought of as the root node in an AST. Every node in an
AST is an instance of a class that is subclass of the Node class, either directly
or indirectly. These objects have references to their parent and child nodes,
and also have additional information about themselves, such as their range and
concrete syntax. For anyone looking to continue development on FREJA, it
is vital to get a good understanding of the node system from the JavaParser
library first. The book JavaParser: Visited4 is free and a good place to start

4https://leanpub.com/javaparservisited

51

https://leanpub.com/javaparservisited

learning the JavaParser API, as well as the official documentation of the source
code5.

5.1.3 Transforming

After the parsing is done, the generate method starts transforming the syntax
trees. This is done by creating an Assignment object that represents a pro-
gramming assignment in the context of FREJA. This object store information
about the parts that composes a FREJA assignment, such as the exercises, re-
placement code, and the syntax trees from the source project. Figure 4.1 from
the previous chapter shows the structure of the Assignment hierarchy. The
reason for creating this assignment representation through Java objects is to
get a better overview of the different parts of an assignment, while also pro-
viding a way to navigate between them easily. It also makes things easier in
the generation phase afterwards, as well as making testing and debugging more
straightforward.

The Assignment class and other assignment concepts can be found in the
concepts package. These classes are only vessels of data, but the creation of
them are complex tasks. The architecture of FREJA draws inspiration from the
separation of concerns6 design principle and single-responsibility principle7 to
alleviate some of the responsibility of the concept classes. The builder pattern8 is
used for the creation of these classes, which dedicates a separate builder class for
each concept class. The sole purpose of a builder class is just to create an object
of another class. For example, the Assignment class has an AssignmentBuilder

class that instantiates an Assignment object, as seen in Listing 5.3. The build
method starts off by initiating other assignment concepts, such as replacements
and exercises, by calling the methods findReplacements and findExercises,
respectively. These methods will find nodes in the ASTs from the parsed files
that are annotated with the corresponding FREJA annotation, and invoke the
build method of those classes again. The creation of objects in the assignment
hierarchy will be initiated recursively top-down from assignment to either tasks,
replacements or solutions, but finished in the order of bottom-up.

1 public Assignment build() {

2 Assignment assignment = new Assignment ();

3 parsedFiles = parser.getCompilationUnitCopies ();

4 assignment.setParsedFiles(parsedFiles);

5 assignment.setReplacements(findReplacements ());

6 assignment.setExercises(findExercises ());

7 assignment.setStartCodeFiles(createStartCode ());

8 assignment.setSolutionCodeFiles(createSolutionCode ());

9 assignment.setFileNamesToRemove(fileNamesToRemove);

10 return assignment;

11 }

Listing 5.3: The build method of the AssignmentBuilder class.

5https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/latest/

index.html
6https://en.wikipedia.org/wiki/Separation_of_concerns
7https://en.wikipedia.org/wiki/Single-responsibility_principle
8https://en.wikipedia.org/wiki/Builder_pattern

52

https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/latest/index.html
https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/latest/index.html
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Builder_pattern

It is important to understand the difference between a Task object and an
Exercise object. Although a little confusing, a Task object is created for each
Exercise annotation. This is due to the ability of having several tasks for
an exercise, which can be done by annotating different code structures with
Exercise annotations using the same value for the id element. Such tasks will
be grouped together within the same Exercise object, but an Exercise object
does not necessarily need to have a corresponding Task object. The reason
for this is that Exercise objects are created to represent the full hierarchy of
exercises and sub-exercises. A common occurrence is that an Exercise object is
created to represent a root exercise with only a collection of sub-exercises, and
no Task objects linked directly to the root exercise. However, the sub-exercises
lowest in the hierarchy must always have at least one corresponding Task object.

After all the assignment parts are created, the build method from Listing 5.3
above, invokes two other methods: createStartCode and createSolutionCode,
which will create two new lists of ASTs, one for each project that should be gen-
erated. Since there are several projects that are generated, the ASTs are cloned
before transforming them to not mutate the original syntax trees, since that
can cause unintended changes and hard-to-spot bugs. Both of these transfor-
mations start off the same way by removing all meta-information related to
FREJA. This includes entire nodes of an AST that are annotated with Remove,
and all FREJA annotations and import statements. This information is no
longer needed since it is stored in the assignment concept objects. Afterwards,
the transformations differ when the nodes in the AST that are encapsulated
by an Exercise annotation, i.e., the Task objects, should be transformed. For
the solution project, all nodes in the tree will be kept to maintain the exercise
solution, except for any potential SolutionStart or SolutionEnd variable dec-
larations. The start code project transforms the nodes according to the value of
the transformOption in the Exercise annotation. Transformations for both
the start code project and solution project are done using methods from the
TaskOperations interface shown in Listing 5.4.

1 public interface TaskOperations {

2

3 BodyDeclaration <?> createSolutionCode(BodyDeclaration <?>

nodeToUpdate);

4 BodyDeclaration <?> createStartCode(BodyDeclaration <?>

nodeToUpdate);

5 }

Listing 5.4: The TaskOperations interface.

The BodyDeclaration type is from the JavaParser API, which is a common
parent class for any other node types that can be annotated with the Exercise
annotation, such as MethodDeclaration or FieldDeclaration. The methods
take an old node as an argument and returns a new one with the appropri-
ate transformations, which then replaces the old node in the AST. This in-
terface is implemented by the abstract Task class, but it only implements the
createSolutionCode method and not the createStartCode method. Instead,
there is a different subclass of the Task class for each type of TransformOption
that implements the method differently. This allows the AssignmentBuilder

53

class to conform to the open-closed principle9, since it does not need to modify
the createNewTaskNodemethod in Listing 5.5 whenever a new TransformOption

is introduced. A new subclass of the Task class is created instead to handle such
an extension.

1 private BodyDeclaration <?> createNewTaskNode(TargetProject

targetProject , Task task , BodyDeclaration <?> newTaskNode) {

2 if(targetProject.equals(TargetProject.SOLUTION)){

3 newTaskNode = task.createSolutionCode(newTaskNode);

4 }else if (targetProject.equals(TargetProject.START_CODE)){

5 newTaskNode = task.createStartCode(newTaskNode);

6 }

7 removeAnnotationTypeFromNode(newTaskNode , EXERCISE_NAME);

8 return newTaskNode;

9 }

Listing 5.5: A method for transforming a Task node.

A significant amount of work has gone into keeping the source code of FREJA
as clean as possible. This is comprised of several practices, such as short method
bodies and classes, explicit and meaningful naming, ordering of code in terms of
program flow, and reducing the amount of responsibility a method or class has.
This has led to the creation of several utility classes with static methods that
removes responsibilities from other classes. For example, the TaskBuilder class
needs to know the value of the transformOption in the Exercise annotation
to know which type of task class it should create. However, the sole purpose
of this class is to build Task objects, so the responsibility of finding this value
is shifted to the AnnotationUtils class, which can find this value through the
getAnnotationMemberValue method in Listing 5.6.

1 public static Expression getAnnotationMemberValue(

NodeWithAnnotations <?> node , String annotationName , String

memberName){

2 Optional <AnnotationExpr > annotation = node.

getAnnotationByName(annotationName);

3 if(annotation.isPresent ()){

4 return getAnnotationMemberValueFromAnnotationExpr(

annotation.get(), memberName);

5 }else{

6 throw new NodeException ((Node) node ,

7 String.format("Could not find annotation \"%s\"

on the node:%n%s", annotationName , node));

8 }

9 }

Listing 5.6: A method for finding the value of a annotation element/member.

Listing 5.6 also serves as an example of the error-handling of FREJA. Normal
Java error logs that show where in the call stack an error was thrown from is
not very helpful in most cases for FREJA. It is often the case that the problem
lies with a node from one of the ASTs from the parsed Java files. There can be
two reasons for this: a developer misuses a method or some other code, or the
end-user of FREJA have done a semantic mistake while using an annotation,
e.g., using a replacementId in an Exercise annotation that does not exist in
any ReplacementCode annotation. In both cases it is helpful to print out the

9https://en.wikipedia.org/wiki/Open-closed_principle

54

https://en.wikipedia.org/wiki/Open-closed_principle

node and the location and file it was parsed from, which is exactly what the
custom NodeException class does. An example of an error message for the
aforementioned scenario can be seen in Fig. 5.1. Most other custom exceptions
in the FREJA implementation is a subclass of this exception, enabling more
specific exceptions and error messages.

Figure 5.1: A console showing a NodeException error message.

5.1.4 Generating

Going back to the generate method of the Generator class, the next step is to
generate the solution project and the start code project. The relevant classes
for this are in the writers package. A ProjectWriter object is created next
in the generate method by taking the Configuration object and Assignment

object as arguments in the constructor. The createAllProjects method in
this class is then called to begin generating the projects. The first step in
this process is to delete all files in the target folder to not create duplicate
files. Modification of files follows the vistor pattern10 by having classes that
implement the FileVisitor interface from the official Java file library. This
interface provides methods that can be implemented to perform some operation
at certain points when traversing depth-first down a file tree. These points are
either before visiting a directory, while visiting a file, after visiting a directory, or
if a file visit failed. The DeleteFileVisitor class implements the visitFile

method to delete a file from the file system, while the postVisitDirectory

method is implemented to delete the folders after they have been visited. This
visitor is used to traverse the file tree that is rooted in the target path folder.
Before deleting a file, it checks if it is an AsciiDoc exercise description file. In
that case, the content of the file needs to be saved before deleting, to retain any
manual changes of the description. The preVisitDirectory method also skips
visiting any Git folders to both avoid run-time errors when deleting them (due
to restrictive access by the operating system), and to not destroy any potential
Git repositories in the target folder.

After the target folder is cleared, the files in the source project (i.e., the anno-
tated solution project) are copied over using the CopyFileVisitor class. This

10https://en.wikipedia.org/wiki/Visitor_pattern

55

https://en.wikipedia.org/wiki/Visitor_pattern

works in the same way as DeleteFileVisitor by implementing the same inter-
face, only that files are copied instead of deleted. All file paths are checked if
they match any of the glob patterns to ignore that are listed the in the pom.xml
file, in which case they are not copied over. Copying regular files is easy due to
the Java file library providing a method to do exactly this. However, copying
over Java files must include all the transformations that were done previously.
These changes are stored in the list of ASTs in the Assignment object. Luckily,
the JavaParser API offers the ability to print an AST, or a CompilationUnit

rather, to a string. This string is then simply written to a file, maintaining the
transformations in the process.

The next task is to generate the exercise descriptions. This is done by the
DescriptionWriter class, which contains a small home-brewed API for cre-
ating AsciiDoc files and attributes. The hierarchical structure of an exercise
description is created by going through the Exercise and Task objects in a
recursive manner. Depending on configuration settings, any previous descrip-
tions that were saved before deleting them with the DeleteFileVisitor may
also play a part in generating the new descriptions. Finally, the last part of
the generate method is to clear the POM file for the source project of any
FREJA information, similar to how the syntax trees removed this information
previously. This is done by the MavenWriter class, which navigates the XML
tree-like structure of the original pom.xml file, and creates two new POM files
without the FREJA information. Any other information that were included in
the original pom.xml file will be kept.

5.1.5 Testing

Test-driven development has been incorporated extensively during the develop-
ment of FREJA. The result of this is a large test-suite and high confidence
that the behavior of the framework is working as intended. The tests are
mostly grouped together based on what class they are testing. For example,
the MavenWriterTest class has multiple tests that check the behavior of the
MavenWriter class. The nature of how FREJA functions has made it a difficult
to test it. First of all, there needs to be test data, which in this case is Java code
represented as syntax trees. Creating this programmatically is tedious and too
cumbersome [55]. Therefore, the test folder has a package with example Java
files that are used for testing. These are parsed using the JavaParser library to
easily create syntax trees. However, sometimes there is only a specific part of
an AST that is needed for a test. The TestId annotation is created to make it
much easier to target specific code fragments. This annotation takes an integer
as a value that can be thought of as an identification for a code fragment that
should be used for testing. With the help of methods from the TestUtils class,
this system provides an easy way of creating test data for tests. An example of
marking code with the TestId annotation can be seen in Listing 5.7, which is
then used as test data for a test in Listing 5.8.

1 @TestId (1)

2 @Exercise(id = {1,2}, transformOption = REMOVE_EVERYTHING)

3 public int fieldVariable;

Listing 5.7: An example of test data that is identified by the TestId annotation.

56

1 @Test

2 void testGettingIdValueFromNormalExerciseAnnotation () {

3 NodeWithAnnotations <?> node = TestUtils.getNodeWithId(

parser.getCompilationUnitCopies (), 1);

4 assertIdArraysAreEqual(new int[]{1, 2},

getIdValueInExerciseAnnotation(node));

5 }

Listing 5.8: The test data from Listing 5.7 is retrieved using the getNodeWithId
method.

5.2 Programming Language Agnostic Prototype
Architecture

This section covers the architecture of the DSL that is created with MPS, while
also explaining the language thoroughly. However, for anyone interested in de-
veloping the language further, we recommend acquiring a deep understanding of
MPS before starting development. The scope of this thesis does not provide the
opportunity to explain all the intrinsics of MPS. Instead, we refer to the official
resource page for learning MPS11 to help in this regard. In either case, one
important concept to understand is that a language in MPS consists of several
models, each defining a certain aspect of the language. The most important
aspect is the structure aspect.

5.2.1 Structure

The structure aspect is the only required aspect for a language, and any po-
tential other aspects are based on the definitions from the structure aspect. It
describes the nodes and the structure of the language AST through concepts.
This is similar to how terminals and non-terminals from a grammar defines the
structure of a formal language. Since MPS store files as ASTs and not text
files, the nodes of the AST are defined directly through concepts. A concept
defines the properties of a node, along with additional information such as child
concepts, parent concepts, and references. The File concept is the basis of the
whole language. Its definition can be seen in Fig. 5.2 on the following page,
which shows that it extends the BaseConcept. This is by default, and is sim-
ilar to how Java classes automatically extend the Object class. The interface
INamedConcept is implemented, and allows File nodes to have a name. The
name value for this concept is just the filename of the imported file. The string-
type extension property has the value of the file extension, e.g., .java. The
definition also shows that instances of this concept can be root nodes. Lastly,
the child nodes of a File node can be any number of concept nodes that imple-
ment the IFileComponent interface.

The concepts LineOfText, SolutionStart, SolutionReplacementStart, and
Solution all implement this interface. The LineOfText concept has only
a string property that represents a single line of text. Both Solution and
SolutionReplacement can have multiple LineOfText child nodes to represent

11https://www.jetbrains.com/mps/learn/

57

https://www.jetbrains.com/mps/learn/

Figure 5.2: The definition of the File concept.

a bigger code fragment. A Solution node has two properties, taskNumber and
transformOption. The former is just an integer, while the latter uses a value
from the TransformOption enumeration, i.e., REMOVED or REPLACED. Depending
on this value, a Solution node can have a reference to a SolutionReplacement
node. Both the SolutionStart concept and the SolutionReplacementStart

concept are meant to be temporary ”marker” nodes, used to ease the process of
creating Solution and SolutionReplacement nodes, respectively.

5.2.2 Editor

Building ASTs of a language in MPS takes place inside an editor. The editor
aspect defines how this editor should look like, and some of its functionality.
Each concept in a language can have its own editor definition. Editor definitions
uses a dedicated editor language to describe cells that make up the editor.
Figure 5.3 shows the editor definition for the File concept, which have multiple
rectangular boxes that each represent a cell.

Figure 5.3: The editor definition for the File concept.

58

The different symbols refer to different cell types. In this case, there is an outer-
most vertical collection cell, which has a horizontal collection at the beginning
that displays constants (”File” and ”extension”), and also shows the value of
the name and extension properties. Below it is another vertical collection that
displays all of the fileComponents child nodes, which will refer to the editor
definition of each child node concept. There is a lot more customization that
can be done for each cell by right-clicking it and selecting Inspect Node. The
vertical collection cell of the Solution editor uses this to add a stylesheet to
that cell, which draws a border around the node in the editor.

However, the editor aspect has the ability to define much more than just the
visuals of the editor. Each concept can also have several defined keybindings
that does something different each. For example, the LineOfText concept has
multiple such definitions in the markText KeyMap file. One of those definitions
can be seen in Fig. 5.4, and is used to mark the end of a solution. The keybinding
is Ctrl + Alt + Enter, and is applicable whenever the caret (i.e., the ”text
cursor”) is placed inside a LineOfText node in the editor. The figure also
shows the code that will get executed whenever the key combination is pressed.
The code is written in BaseLanguage, and is essentially just the MPS version
of Java. In this case, the code will navigate the parent File node and find the
lines that make up the solution, remove them from the File node, and add
them to a new Solution node that will get inserted in the same place.

Figure 5.4: A keybinding definition and the code that gets executed by it.

5.2.3 Input and Output

There was a brief mention earlier that programming files could be imported into
the DSL through a button click. The concept and editor for this import button
is defined in another language called file.importer. The editor definition has

59

a cell with a Java Swing12 component for the button. Inspecting this cell shows
the code that will get executed on a button click. This code attempts to call the
importData method of the ImportLogic Java class. The class is located under
the util models aspect of the first language. The purpose of this method is
to create a new File root node for the imported file. It iterates through every
line in the file and creates a LineOfText node for each, which are then added
as child nodes for the File node.

The TextGen aspect can have generators for each concept, that determine how
to transform a node in an AST into text. This aspect contains the logic for
generating a text file from a File root node. In practice, this will generate
a programming file that has the start code for one or more exercises. The
implementation for this is very simple, mostly due to the simple nature of the
language itself. There are only two generators, one for the LineOfText concept,
and one for the File concept. The generation builds a text string by going
through the AST and appending text by invoking the generator for each node
in the tree. The LineOfText generator simply just appends the text property
and a newline. The Solution concept and SolutionReplacement concept does
not need its own generators, since they can refer to the LineOfText generator to
append the necessary parts. The File generator can be seen in Fig. 5.5, which
handles the logic of making other concepts use the LineOfText generator. The
append${text} line at the end will implicitly use the LineOfText generator
since the concept type for the text variable is LineOfText.

Figure 5.5: The TextGen definition for generating a File node into text.

12https://en.wikipedia.org/wiki/Swing_(Java)

60

https://en.wikipedia.org/wiki/Swing_(Java)

Chapter 6

Installation and Usage

This chapter explains how to install FREJA in a step-by-step guide. All an-
notations, annotation elements, and other options are presented with thorough
explanations about what they do and how they should be used. A short tu-
torial is included, which demonstrates how to use FREJA on a small example
assignment. The second half of the chapter covers the same points for the
programming language agnostic prototype.

6.1 Installing FREJA

To install FREJA, head over to the GitHub repository for it: https://github.
com/ErlendBerntsen/freja. Get a local copy of the framework by either
cloning, forking or downloading the repository. The project relies on Maven1 so
make sure to have it installed before continuing. Open a terminal and navigate
to the root folder where FREJA was installed. This is easiest done by opening
the project in an IDE and using the built-in terminal interface, which will most
likely already be in the correct directory. Once inside the right directory, run
the following Maven command:

mvn clean install

to install the framework into the local Maven repository. This will install two
JARs, one Maven dependency for the annotations, and one Maven plugin that
handles the parsing and artefact generation. The JDK source and target version
properties in the pom.xml file may need to be configured to be compatible with
a different development environment. This will be set to Java 16 when first
cloning FREJA, as seen in Listing 6.1. If Java 8 is used for example, then the
value 16 must be changed to 1.8.

1 <properties >

2 <maven.compiler.source >16</maven.compiler.source >

3 <maven.compiler.target >16</maven.compiler.target >

4 </properties >

Listing 6.1: The default JDK version in the pom.xml file.

1https://maven.apache.org/install.html

61

https://github.com/ErlendBerntsen/freja
https://github.com/ErlendBerntsen/freja
https://maven.apache.org/install.html

To start using the framework, create a new Maven project in a Java IDE. Open
up the pom.xml file in the new project and include the freja-annotations

dependency from Listing 6.2, which will enable the use of FREJA annotations
in the project:

1 <dependency >

2 <groupId >no.hvl</groupId >

3 <artifactId >freja -annotations </artifactId >

4 <version >1.1</version >

5 </dependency >

Listing 6.2: FREJA annotations Maven dependency.

Next, reload the POM file or the entire project. If for some reason the IDE can-
not find the dependency at this point, add the JAR to the project as an external
library instead. The JAR is found in the target folder in the freja-annotations
module in the local FREJA project.

The freja-maven-plugin must be added to the Maven build life cycle in the
pom.xml file, to be able to execute FREJA. This plugin has a configuration

attribute called targetPath, which defines the path of the target folder to
generate the artefacts in. An example of this is shown in Listing 6.3 below:

1 <build>

2 <plugins >

3 <plugin >

4 <groupId >no.hvl</groupId >

5 <artifactId >freja -maven -plugin </artifactId >

6 <version >1.1</version >

7 <configuration >

8 <targetPath >C:\Users\Acer\IntelliJProjects\

HelloWorldOutput </targetPath >

9 </configuration >

10 </plugin >

11 </plugins >

12 </build >

Listing 6.3: The FREJA Maven plugin specifying the target folder.

The targetPath configuration option is the only one that is required. There
are more options that are optional:

• keepOldDescriptions is a boolean attribute that when set to true, pre-
vents the old exercise descriptions (if any) from being overwritten by the
default description templates when regenerating them. If there are not
any old description files in the target folder, then the default template is
used instead. This option is set to false by default.

• ignore is an attribute that takes a list of strings as arguments. This is
used to specify files and folders that should be ignored when generating the
artefacts. The path of these files and folders should be specified relative
to the root folder of the source project, using glob patterns2. Use the
<ignore> element tag for both the list and for each list element. An
example is shown in Listing 6.4 on the next page with some common
patterns:

2https://en.wikipedia.org/wiki/Glob_(programming)

62

https://en.wikipedia.org/wiki/Glob_(programming)

1 <ignore >

2 <ignore >.idea</ignore >

3 <ignore >HelloWorld.iml</ignore >

4 <ignore >src/test</ignore >

5 <ignore >src/main/java/no/hvl/IgnoreThisFile.java</ignore >

6 <ignore >** IgnoreThisFileToo.java</ignore >

7 <ignore >**.txt</ignore >

8 </ignore >

Listing 6.4: Different types of glob patterns for the ignore configuration.

• The pattern at line 2 ignores a folder called .idea (and all of its content)
in the project root folder.

• Line 3 ignores a file called HelloWorld.iml in the project root folder.

• Line 4 ignores a folder called test that is in the src folder (the src folder
is located in the project root folder).

• Line 5 ignores a file called IgnoreThisFile.java by specifying its com-
plete path from the project root.

• Line 6 ignores every file called IgnoreThisFileToo.java no matter its
location relative to the project root.

• Line 7 ignores every file in the project ending with .txt

Make sure that the root folder for Java files is either called src or
source. To generate artefacts from the source project, run the following com-
mand:

mvn freja:generate

from the terminal. Make sure to be in the same directory as the POM file.
This will not transform the original project in any way if there has not been
used any FREJA annotations in the project. At this point, the development
of the assignment solution can start, along with annotations that specify the
transformation details. Whenever there is a need to regenerate the artefacts,
simply run the above command again. To learn more about how to use the
annotations, or attributes in AsciiDoc, check out the Implementation chapter, or
the README file in the GitHub repository. There is also a tutorial in the next
section that demonstrates how to use the framework on a simple assignment.

6.2 Example

To give a glimpse into how FREJA is used, a short tutorial example is given
here. The assignment has only one exercise, and it is the popular HelloWorld
exercise. The only thing that should be implemented is a method that prints out
”Hello World!” to the console. Different annotations, transformation options,
and configuration settings, are used to explain the functionality of FREJA and
its usefulness.

Start by creating a new Maven project in a Java IDE. The name of the project
is not that important, but ”FrejaTutorial” is the project name that is used
throughout the example in this tutorial. Create another folder for storing the

63

artefacts that will be generated later. The tutorial uses ”FrejaTutorialOutput”
as the name for this folder. Open the pom.xml file in the ”FrejaTutorial” project
and add the dependency and plugin from Listing 6.5 at the end of the file:

1 <dependencies >

2 <dependency >

3 <groupId >no.hvl</groupId >

4 <artifactId >freja -annotations </artifactId >

5 <version >1.1</version >

6 </dependency >

7 </dependencies >

8

9 <build>

10 <plugins >

11 <plugin >

12 <groupId >no.hvl</groupId >

13 <artifactId >freja -maven -plugin </artifactId >

14 <version >1.1</version >

15 <configuration >

16 <targetPath >C:\Users\Acer\IntelliJProjects\

FrejaTutorialOutput </targetPath >

17 </configuration >

18 </plugin >

19 </plugins >

20 </build >

Listing 6.5: FREJA tutorial POM file.

Remember to change the targetPath to the absolute path of the folder created
to store the generated projects. Go back to the beginning of this chapter if the
FREJA Maven plugin and dependency are not already installed, and follow the
installation steps explained there. After changing the pom.xml file, the project
might need to be reloaded so that the IDE has knowledge of the imported Maven
plugins and dependencies.

If there is not already a folder called src at the root level in the project, create
one now. Right-click it to add a package with the name no.hvl.freja. Right-
click the package and add new Java class called HelloWorld. Add a method with
the same name as the class that simply prints ”Hello World!” to the console.
The class should look like the one in Listing 6.6 at this point. This is the
complete solution to the exercise.

1 package no.hvl.freja;

2

3 public class HelloWorld {

4

5 public void helloWorld (){

6 System.out.print("Hello World!");

7 }

8 }

Listing 6.6: The simple HelloWorld class so far.

The exercise is targeted at beginner programmers so the implementation task
should not be too difficult. The start code can remove the print statement,
but still have the skeleton of the method to keep it simple. To do this, add an
Exercise annotation on top of the method declaration. Since this is the only ex-
ercise for the assignment, the id of the exercise is 1. Set the transformOption to

64

TransformOption.REMOVE BODY so that only the method body will be removed,
as seen in Listing 6.7.

1 @Exercise(id = {1}, transformOption = TransformOption.

REMOVE_BODY)

2 public void helloWorld (){

3 System.out.print("Hello World!");

4 }

Listing 6.7: The helloWorld method with the Exercise annotation.

Open the terminal in the root folder of the project. This path might vary
depending on storage location and naming, but this tutorial uses the following
path for the folder:

C:\Users\Acer\IntelliJProjects\FrejaTutorial>

Run the command below to generate the solution project and start code project
in the target folder:

mvn freja:generate

Open the target folder and there should be two new folders, one called solution

and one called start code. Open the solution project in a Java IDE3, and it
should still be very similar to the source project. Opening the HelloWorld.java
file reveals that the Exercise annotation is removed, along with the import
statements for the annotation. The only other difference should be in the
pom.xml file, which has removed all information related to FREJA. The so-
lution project will always be very similar to the original project since all of the
solutions to the exercises are kept. All FREJA related information is removed
to create a clean and uncluttered solution project.

Close the solution project and open the start code project instead. The same
changes are made to the pom.xml file in this project as well, since those Maven
dependencies and plugins are not needed for the start code either. Open the
HelloWorld.java file and see that the print statement is removed from the
helloWorld method, but the rest of the code remains, just as intended. Again,
the Exercise annotation and import statements are also removed.

There is a new folder created in the start code project called descriptions.
Open it and there should be an AsciiDoc file there called Exercise1. Make
sure to have an AsciiDoc IDE plugin installed so that both the editor window
and the output window of the AsciiDoc file are shown. Open the file and the
editor should like the one in Fig. 6.1 at the following page. This is a screenshot
of the IntelliJ AsciiDoc plugin editor window, so it may look a little different if
something else is used, but the text in the editor should remain the same. Figure
6.1 shows that there are six attributes created at the top. Three of them concern
the location of the exercise (file and package information), and the other three
is about the implementation task in the exercise, i.e., the helloWorld method.

Below the attributes is an automatically generated template description of the
exercise. This is a good starting point for the exercise description, and demon-
strates how attributes are used to create substitutions. However, the template

3Read the following if Eclipse is used: https://github.com/ErlendBerntsen/freja/blob/
master/README.md#eclipse

65

https://github.com/ErlendBerntsen/freja/blob/master/README.md#eclipse
https://github.com/ErlendBerntsen/freja/blob/master/README.md#eclipse

Figure 6.1: A screenshot of the IntelliJ AsciiDoc plugin editor window.

66

description does not describe the purpose of the code, so often there is a need
to expand the description to further explain what exactly the method should
do. Go to the bottom of the file in the editor view and add an extra sentence:

The {Task1 1 SimpleName} method should print out "Hello World!" to

the console.

Now the exercise description has information about what method to implement,
where it is located, and what it should do. The AsciiDoc output window at this
point should be the same as the one in Fig. 6.2.

Figure 6.2: A screenshot of the AsciiDoc output window.

When an exercise description is manually changed, the configuration in the
pom.xml in the FrejaTutorial project must also be updated, as to not overwrite
the changes when executing FREJA again. Add the configuration option

<keepOldDescriptions>true</keepOldDescriptions>

below targetPath inside the configuration element of the Maven plugin. Fur-
thermore, the POM file is not needed in the generated projects since it does not
import any libraries, so it might as well be removed. To do this, add an ignore

element in the configuration element. Add another ignore element within the
first one, with ”pom.xml” as its value. The configuration element at this point
should look like Listing 6.8 (the targetPath will of course be different).

1 <configuration >

2 <targetPath >C:\Users\Acer\IntelliJProjects\FrejaTutorialOutput </

targetPath >

3 <keepOldDescriptions >true</keepOldDescriptions >

4 <ignore >

5 <ignore >pom.xml</ignore >

6 </ignore >

7 </configuration >

Listing 6.8: Configuration settings.

67

The program for the exercise is not very exciting since it cannot be executed
to see the message being printed to the console. To fix this, make the method
static and change its name to main that has an array of String objects called
args as a parameter, as seen in Listing 6.9.

1 @Exercise(id = {1}, transformOption = TransformOption.

REMOVE_BODY)

2 public static void main(String [] args){

3 System.out.print("Hello World!");

4 }

Listing 6.9: A main method.

There has been a fair bit of changes to the assignment at this point, so this is
a good time to regenerate the projects to update them with the new changes.
Execute the mvn freja:generate command again, and then open the start code
project. Notice that the pom.xml file is not copied over this time. Navigate to
the exercise description file and open it. The manual change to the description
has been kept, but the text in the output window, shown in Fig. 6.3, has been
updated automatically to reflect the change in the method declaration.

Figure 6.3: A screenshot of the updated AsciiDoc output window.

Taking a closer look at the editor window seen in Fig. 6.4 reveals that the
exercise description has not changed at all! It is only the value of the AsciiDoc
attributes at line 4 and 5 that has been updated.

Figure 6.4: Only the attribute values at line 4 and 5 has changed, while the
attribute references at line 16 and 19 remain unchanged.

68

Hopefully this showcases the power and potential by connecting the assignment
description to the source code through attributes. Lastly, an example of marking
an exercise solution, and replacing it, is shown to finish the tutorial. Since the
HelloWorld example is famously a beginner exercise for newcomers, it might
be wise to make the implementation task of the method as simple as possible.
Instead of removing the entire body of the method, the output message will
be kept in a string variable that is present in the start code. The exercise is
then to simply call the print method with the string variable. To make it even
more straightforward, the solution is not removed entirely, but replaced with an
empty call to the print method.

Implement the described changes to the solution. Add a SolutionStart vari-
able declaration after the string variable and before the print statement, and a
SolutionEnd variable declaration after the print statement. In the Exercise an-
notation, change the transformOption to TransformOption.REPLACE SOLUTION.
Add the replacementId annotation element, and set its value to ”1”. The re-
placement code needs to be written somewhere, so create a new void method
below the main method that will store the replacement code. It does not matter
what the method is called, as long as it only contains the empty print statement:

System.out.print("");

Annotate the replacement method with @ReplacementCode, and then add the
id annotation element and set its value to ”1”. Now it will be linked to the
replacementId in the Exercise annotation, since they have the same value.
The replacement code does not need to be present in the start code, so add
the @Remove annotation on top of the @ReplacementCode annotation to make
sure the replacement code will be removed entirely. The code should now look
like the source code in Listing 6.10. Execute the Maven command as before to
regenerate the projects with the new changes. The generated start code for the
main method should now be the same as in Listing 6.11.

1 @Exercise(id = {1}, transformOption = TransformOption.

REPLACE_SOLUTION , replacementId = "1")

2 public static void main(String [] args){

3 String helloWorldMessage = "Hello World!";

4 SolutionStart start;

5 System.out.print(helloWorldMessage);

6 SolutionEnd end;

7 }

8

9 @Remove

10 @ReplacementCode(id = "1")

11 public void replacement (){

12 System.out.print("");

13 }

Listing 6.10: The final source code.

1 public static void main(String [] args) {

2 String helloWorldMessage = "Hello World!";

3 // TODO - START

4 System.out.print("");

5 // TODO - END

6 }

Listing 6.11: The start code after the solution has been replaced.

69

6.3 Installing the Programming Language Ag-
nostic Prototype

MPS must be installed to be able to use the prototype. Following the official
installation guide4 for MPS is the easiest way to install it. After MPS is installed,
open it and select the Get from VCS option in the welcome dialog box. If the
IDE is already opened with another project, select the VCS option in the toolbar
at the top, and then Get from Version Control. Clone the GitHub repository
for the prototype: https://github.com/ErlendBerntsen/Paastel by pasting
the URI into the dialog box. Enable the Logical View in the project window,
which might be a little slow to update when the IDE first clones and indexes
the project, so give it some time to do its job. Afterwards, right-click the root
folder of the project and select Rebuild Project.

There should be two languages that are imported, Paastel5 and file.importer.
The latter is just a helper language to import programming files into MPS, and
convert them into the Paastel DSL. The languages contain definitions of several
language aspects, such as concepts, editors, and generators. It is not necessary
to worry about all the implementation details to use the languages. A Solution

in MPS has instances, or models, of a language. A model is a collection of files
that are instances of a root node for a language. Find the assignments solution
in the logical view and open it, and then open the files model. This model
contains a file, called Import, which is an instance of the ImportConfiguration
root concept of the file.importer language. The editor for this concept can
be seen in Fig. 6.5.

Figure 6.5: The Import editor.

This editor imports a programming file and converts it into an instance of the
File root concept of the Paastel language. By pressing the Import button,
a File instance will be created and automatically added to the files model.
The programming files that are imported should be part of an assignment, and
should contain the implemented exercise solutions before importing them. Any
file that should be imported must be within the same location as the MPS
project. The relative path is then specified in the Import editor window, along
with the number of spaces in tabs for the source file. The last point is important
for any programming language that rely on indentation, such as Python.

4https://www.jetbrains.com/help/mps/installation-guide.html
5This name stuck around after the initial prototype. It is short for Programming

Assignment AST Editor Langage.

70

https://github.com/ErlendBerntsen/Paastel
https://www.jetbrains.com/help/mps/installation-guide.html

After importing a file, the corresponding File concept can be opened. This
will bring up the editor for it, which gives the ability mark assignment concepts
and specify transformation rules. The next section goes into more detail about
how to do this. Once the editing of a file is completed, the start code can
be previewed by right-clicking the editor window and selecting the Preview

Generated Text option in the popup menu. If the output is not satisfactory,
repeat the process of editing the File instance and previewing it until it is. To
transform the preview to an actual file, right-click the assignments solution
in the logical view, and select the Rebuild Solution ’assignments’ option.
This will generate the output file in a place that can be found by switching from
the logical view to Project Files, and navigating to

solutions\assignments\source gen\assignments\files

6.4 Example

This section explains how to use the DSL and its editor, and showcases what
options and functionality it can provide through a small tutorial. The same
Hello World assignment example that was used in the tutorial for FREJA is
also used in this tutorial. The solution to the assignment is implemented in
the HelloWorld.java file, which is already included in the MPS project. It
will not show up in the logical view, but switching to the Project Files view
will reveal it in the input folder. Open up the Import editor, and the source
file should already be set to the correct path if it has not been changed after
cloning the project. If it has been changed, set the source file path back to
input/HelloWorld.java now. Press the import button to create a File root
node for the file, and then open it to bring up its editor, which should look like
the editor in Fig. 6.6.

Figure 6.6: The editor for the HelloWorld file.

The goal is the same as before, i.e., creating the start code for the exercise where
the solution is removed, but the method skeleton is kept. The first step is to
mark the start of the solution, i.e., the first line of code in the method body.
Select the first line by placing the caret (the ”text cursor”) anywhere on that
line, and then press Alt + Enter. Alternatively, use the mouse to right-click

71

the line, and select the mark solution start option in the popup menu. This
will insert a SolutionStart concept before that line. Select the last line in the
method body the same way, but use the keyboard combination Ctrl + Alt +

Enter, or the mark solution end option instead.

Once the end is selected, the editor then searches for the closest SolutionStart
concept that is above the end line, and replaces the contained lines with a
Solution concept. The lines that were selected as part of the solution can
be seen by the border of the solution box. Whenever a Solution is cre-
ated, the options for it are not set to any values. Specify these values for
the Solution concept that was just created by setting the taskNumber to
1, and the transformOption to REMOVED. Pressing Ctrl + Space anywhere
in MPS will bring up a suggestion menu for things that can inserted wher-
ever the caret is placed. For example, placing the caret where it says <no

transformOption> and pressing Ctrl + Space will bring up the menu of pos-
sible TransformOptions that can be used. An option from this menu can be
selected by hitting Enter. After the values are set, right-click anywhere in the
editor and select Preview Generated Text to see the preview of the start code.
The editor for the HelloWorld file should look like the top part of Fig. 6.7 at
this point, while the preview can be seen underneath the editor.

Figure 6.7: The marked solution and a preview of the start code.

The FREJA tutorial showcased that the solution could not only be removed,
but also replaced. This is also possible with the MPS prototype framework, and
the next step is to do exactly that. Instead of removing the entire method body,

72

the string variable will be preserved, and the print statement will be replaced.
To preserve the string variable for the start code, it should not be marked as
a part of the solution. Fortunately, the power of having a customized editor
makes this easy to fix. Select the last line of the method body, i.e., the print
statement, as the start of the solution the same way as before. The solution
should be updated to only have the print statement, while the string variable is
moved above the solution.

An instance of a SolutionReplacement needs to be created to be able to have
code replacements. There are two ways to do this. One is to right-click the files
model folder in the assignments solution, and selecting new -> Paastel ->

solutionReplacement from the popup menu. The replacement code must be
created from scratch doing it this way, as well as specifying all of the replacement
settings. However, since the solution should be replaced with an empty print
statement, the solution itself can be used as a starting point for the replacement
code. Move the caret to the line containing the print statement for the solution,
and press Alt + Comma. This works exactly the same way as marking a solution
by inserting a marker concept before the selected line. Select the same line again
and press Ctrl + Alt + Comma to create a SolutionReplacement. This will
show up in the files model folder as SolutionReplacement0. Open it, and
change the print statement to be empty. Remove the leading indentation also,
as seen in Fig. 6.8.

Figure 6.8: The editor for the SolutionReplacement.

Go back to the HelloWorld editor and change the transformOption for the
solution to REPLACED. Notice that the editor programmatically changed based
on the value of transformOption. Now the Solution editor provides the ability
to specify a SolutionReplacement to use, by referring to its name. Trying to
write a name that does not exist will immediately be pointed out by the editor
with bright red text. Place the caret where the replacement code name should
be inserted. Ctrl + Space will again bring up all the possibilities, which in
this case is only SolutionReplacement0. Open up the preview again once the
correct replacement name has been selected. The editor for the HelloWorld

file, and the corresponding preview at this point should look like Fig. 6.9 at
the next page. The preview shows the desired start code, so generate the file
by right-clicking the assignments solution in the logical view, and select the
Rebuild Solution ’assignments’ option. Switch from the logical view to
Project Files, and the generated start code file should be located here:

solutions\assignments\source gen\assignments\files\HelloWorld.java

73

Figure 6.9: The updated solution that should now be replaced, and its corre-
sponding output below.

74

Chapter 7

Evaluation

This chapter goes into detail on how we tested both frameworks, with most of
the focus being on FREJA. The results from these experiments are presented
and discussed, including both shortcomings and benefits of each framework.
Resulting changes to the implementations from these tests are also discussed.

7.1 A First Evaluation of FREJA

An assignment from DAT100 2021 fall semester was used to evaluate the first
version of FREJA. This assignment was meant to be solved in groups with up
to four members. With this first version we were confident that most of the
functionality was working as intended, and that it could be efficiently used to
create an assignment identical to the one it is primarily designed after. Eval-
uating the framework on another assignment was insightful for determining if
it is too tailor-made for one assignment, or if it is useful in general for Java
assignments. Testing FREJA this way would reveal any missing functionality,
and also highlight things that work well. The results of the first evaluation
are uploaded to GitHub, with one repository created for the FREJA-annotated
source project1, and another repository containing the generated output2.

7.1.1 Details of the Assignment

The DAT100 assignment is split into four main artefacts. The first artefact
is the solution project which was shared between lecturers and teacher assis-
tants through GitHub3, with no access to students. This project contains the
solutions for every exercise in the assignment. A second project, located in a
different GitHub repository4, was created for the start code, which students
were instructed to fork and then clone locally. Another separate GitHub reposi-
tory5 was created for unit tests that students could clone to test their solutions.

1https://github.com/ErlendBerntsen/dat100-jplab11-solution-annotated
2https://github.com/ErlendBerntsen/dat100-jplab11-output
3https://github.com/dat100hib/dat100-jplab11-complete
4https://github.com/dat100hib/dat100-jplab11-startkode
5https://github.com/dat100hib/dat100-jplab11-testing

75

https://github.com/ErlendBerntsen/dat100-jplab11-solution-annotated
https://github.com/ErlendBerntsen/dat100-jplab11-output
https://github.com/dat100hib/dat100-jplab11-complete
https://github.com/dat100hib/dat100-jplab11-startkode
https://github.com/dat100hib/dat100-jplab11-testing

Finally, the assignment description was uploaded to the main repository for
DAT1006, separate from all the other repositories.

The overall theme of the assignment is to develop a basic blog system for the
web, however, none of the exercises concern networking or web services. The
point of the assignment is to learn how a blog system can be split into different
concepts that can be represented as Java classes. The goal of the exercises
vary, ranging from learning how to implement simple constructors, getters and
setters, understanding inheritance through abstract classes and sub classes, to
more complex implementation of input/output operations using local files.

The assignment is split into seven main exercises, with three of them being
optional. There are 19 sub-exercises, with one exercise having as many as 13,
and others having none at all. The source code is split into seven folders,
one for each root exercise. The files for an exercise and its sub-exercises are
mostly grouped together in the same folder, but there are some exceptions to
this. There are a total of 11 Java files between the exercises, with one file that
is unrelated to all exercises. Most of the exercises are contained within one
file, but a couple exercises span across two or three files. The structure of the
project is identical in the solution project and the start code project, with both
containing exactly the same files and folders. Obviously, the implementations
of the exercise solutions are removed from the start code.

The assignment description is written in markdown (more specifically GitHub
flavored markdown7) and delivered as one large file. This is different from the
assignment the implementation of FREJA is based on, where each exercise had
its own separate markdown file. The description file of the testing assignment
is structured into several parts. First, there is an introduction explaining the
theme and purpose of the assignment. Then there is a section about how to
hand in the solution, followed by another section that explains how the students
can get the start code locally on their computer. There is also a section detailing
the necessary steps to test their own solution using the test project.

Finally, there is an explanation for each exercise and sub-exercise concerning
what the student should implement. The text uses different markdown header
levels8 to clearly display the hierarchical structure of exercises and sub-exercises.
The individual exercise descriptions includes an explanation of what to imple-
ment, and information about which class or classes the start code is in. There
are also many additional references to the source code, such as method names
or declarations. In total there are 85 non-unique references to the source code
in the assignment description, such as package name, file name, and method
names. All of these are hard-coded, and there are also eight additional refer-
ences to the test source code and test files as well.

7.1.2 Testing and Results

By having access to all the different artefacts from the start, we had a clear
blueprint of what the generated artefacts should look like. Testing FREJA on

6https://github.com/dat100hib/dat100public/blob/master/programmering/jplab11/

JP11.md
7https://github.github.com/gfm
8https://www.markdownguide.org/basic-syntax/#headings

76

https://github.com/dat100hib/dat100public/blob/master/programmering/jplab11/JP11.md
https://github.com/dat100hib/dat100public/blob/master/programmering/jplab11/JP11.md
https://github.github.com/gfm
https://www.markdownguide.org/basic-syntax/#headings

the assignment described above started with cloning the complete solution lo-
cally, then adding both the Maven dependency for the annotations, and the
Maven plugin for FREJA. The original project was an Eclipse project, but a
POM file was created to be able to use the necessary Maven tools. Addition-
ally, IntelliJ IDEA was used to test the framework, which did not pose any
extra problems, even though the original project was developed in Eclipse. The
solution project was annotated with the relevant annotations in the order of
the exercises. The necessary transformation settings was specified to ensure
the generated artefacts resembled the original solution, start code, and descrip-
tion as much as possible. After each exercise and sub-exercise, the plugin was
executed to ensure the generated output was correct.

The very first sub-exercise is to implement four field variables in a class. Due
to the rules of the annotation API, each field variable must be annotated in-
dividually. All of the field variables belong together in the same sub-exercise,
and every variable should be removed from the start code, meaning that each
Exercise annotation is identical. This makes for easy copy-paste work, but
does clutter up the annotated solution file a bit. In the start code for this sub-
exercise, there is one comment: //TODO - declare field variables, where
the field variables should be implemented. It is not possible to specify that
all field variables should be replaced with only one piece of code or comment,
since they are all annotated individually. One option is to make one variable be
replaced with the comment, and specify that the rest of the variables should be
removed.

Unfortunately, the implementation of FREJA assumes that the replace option
is used for bodies or solutions, both of which are block statements in the AST.
A field variable is either a variable declaration or an assignment statement, so
this option does not actually work. However, the comment is left in the original
solution project as well, so just having the comment above the field variables
in the source project will correctly imitate the original start code and solution.
Ideally, the comment would only be in the start code, but this is not possible
due to the limitations of the replace option in this initial version. The generated
solution code differed slightly from the original by having a line of white space
between each field variable. This is because the annotations will leave an empty
line when they are removed, but the difference this makes is inconsequential
enough that a change in the implementation to address this issue will likely not
be a good use of resources.

The rest of the sub-exercises for exercise 1 was to implement constructors, get-
ters and setters, or other simple methods. The start code for all of these sub-
exercises had the same pattern. The solutions were swapped out for a throw-
statement that informs the student that a method is not implemented. An
example of this can be seen Listing 7.1.

1 public int getId () {

2 throw new UnsupportedOperationException(TODO.method ());

3 }

Listing 7.1: The original start code where the solution is replaced with a throw
statement.

77

This is to allow students to test their implementation as they go. If not for
this, the tests would not compile for later exercises that have not yet been im-
plemented. Instead, implemented exercises can be tested, while unimplemented
exercises will throw harmless run-time errors with useful error messages, in-
cluding information about the unimplemented method name, or possibly the
constructor and class name. A class called TODO contained methods that used
reflection to figure out this information, and was included in the start code so
that the error messages does not need to be hard coded. FREJA eliminates the
need for this, since the parser has access to this information when constructing
ASTs. This is achieved by having it as the default configuration, i.e., setting
transformOption to REPLACE BODY or REPLACE SOLUTION without specifying
a replacement id will replace the solution with this standard throw-statement.
The thought behind this is to increase ease-of-use, and eliminate repetition by
taking use of the convention over configuration9 design paradigm.

The generated exercise descriptions revealed a few bugs with FREJA’s imple-
mentation. This is mostly due to relying on nested lists in AsciiDoc to create a
hierarchical structure of exercises and sub-exercises in the description text. It is
difficult to properly structure these lists when adding code listings and attribute
substitutions inside of them. This resulted in changing the implementation to
use section titles and levels10 instead to structure the exercises in the assign-
ment description. Sections are equivalent to headers in regular markdown. The
original assignment description used alphabetical numbering for sub-exercises,
e.g., the first sub-exercise of exercise 1 is referred to as 1a, and so on. Again,
this was not possible with the first version of FREJA, but the framework was
updated to switch between numerical and alphabetical numbering between each
level of exercise and sub-exercise to accommodate for this.

Another insight that was gained from exercise 1 was the amount of repetition in
the generated exercise description. There are 6 sub-exercises which are all in the
same Java class, but the generated description for each sub-exercise include a
brief explanation of which file and package the start code is in. This is obviously
identical for each sub-exercise and can be seen as redundant. However, it is really
useful to include this information when sub-exercises does span across several
classes. Unsurprisingly, the generated template description did not match the
original exercise descriptions perfectly, leading to manual changes to make the
description mimic the original. Removing the unnecessary repetition of file name
and package information was not a time consuming task when manually editing
the description. It is quicker to have that information already available, and
have the option to quickly manually remove any potential redundancy, than to
not have the information available at all. In the latter case, this information
must be written manually, which is undoubtedly slower than removing it.

Several more shortcomings of the framework was revealed by the second ex-
ercise. The task was to implement two subclasses of an abstract class, which
included implementing two constructors in both subclasses. The solutions were
replaced the same way as exercise 1, but the start code included an extra empty
constructor that was not in the solution project. This is to prevent subclass
compiler warnings concerning default constructors, and it is obviously impor-

9https://en.wikipedia.org/wiki/Convention_over_configuration
10https://docs.asciidoctor.org/asciidoc/latest/sections/titles-and-levels

78

https://en.wikipedia.org/wiki/Convention_over_configuration
https://docs.asciidoctor.org/asciidoc/latest/sections/titles-and-levels

tant to include this constructor in the start code so that students do not think
they may have done something wrong to cause errors. To be able to handle such
situations, the Remove annotation was expanded to include the option of spec-
ifying which of the generated projects it should be removed from. The default
option is still to remove it from both the start code and solution.

The original exercise description for exercise 2 is not split into sub-exercises, even
though there are two separate subclasses that should be implemented. This is
a problem for FREJA since it presumes a one-to-one relationship between a
single exercise and a Java class. There is an argument to be made to change
the implementation so that an exercise can be linked to several classes, but the
problem can be simply solved by splitting the exercise into two sub-exercises.
We could not think of any immediate disadvantage or limitations by enforcing
the user to adhere to the one-to-one relationship rule, which resulted in us
not changing this behavior. Instead, this keeps the implementation of FREJA
simpler, while the assignment description will have a clearer structure.

After the entire solution project was annotated to accurately generate projects
that mimic the original artefacts, another test was done to examine if the inclu-
sion of the popular version control system, Git, would complicate matters. A
Git repository was created for the annotated solution project, which was located
in the same folder. Executing FREJA at this point would also copy over the hid-
den Git folder to both generated projects. There are clear differences between
the content of the files in the generated projects, and the annotated solution
project, suggesting that this is always an unwanted behavior. To accommodate
for this, FREJA was changed to always ignore any Git folders in the annotated
solution project when copying over files to the generated projects. Another
change was added to ignore any potential Git folders in the generated projects
when deleting files in the target folder, since this caused FREJA to crash when
attempting to modify files that were restricted by the operative system (e.g.,
the .git folder).

Other drawbacks of the framework included not being able to remove the POM
file from the generated projects, even if that was explicitly stated in the configu-
ration. This was due to an oversight in the implementation. Also, the generated
description templates are only available in English, even though the original de-
scription is in Norwegian. There is also no way to connect an exercise to a
certain unit tests trough FREJA’s annotations. Because of this, there are no
AsciiDoc attributes in the assignment description that can refer to test infor-
mation. Every exercise have tests that accompanies them, and three exercises
explicitly referred to their tests in the exercise description. This demonstrates
an area where FREJA could further reduce hard-coded references in the assign-
ment description.

Out of the 85 source code references in the original assignment text, 50 of them
were automatically created as AsciiDoc attributes by FREJA. Their substitu-
tions was also used in the template descriptions. Several more attributes were
also generated, although not all were needed to match the original description.
The other 35 references that did not have attributes created for them were
mostly similar to each other, with 13 of them being method parameter refer-
ences, 3 referred to the root class in subclass exercises, another 13 referred to
methods, variables, or some other part of the Innlegg class of exercise 1. The

79

last 6 were mostly due to exercise 7 not really being an exercise, and therefore
the files for it were not annotated.

Testing FREJA on this assignment also highlighted many benefits and useful
functionalities of the framework. First of all, the start code did not contain any
classes that were unrelated to the exercises, such as the original TODO class to
infer names of methods and classes. Also, the order of the exercises within a
class did not matter as well. For example, exercise 2 can be listed before exercise
1 in the same class without any problems, and the structure and ordering of
the generated descriptions will also not be affected by this. Having additional
annotations unrelated to FREJA on the same code structure as an Exercise

annotation proved to be unproblematic as well. Executing the framework to
generate the artefacts took about one to four seconds each time.

Implementing FREJA as a Java library allows the user to take advantage of
the IDE’s built-in functionality for Java. This includes syntax highlighting,
code completion, and much more, which was very helpful when annotating the
solution project. Installing an AsciiDoc plugin for the IDE was also useful when
manually editing the assignment description, especially the smart suggestions
and auto-completion of attributes. The custom run-time error messages were
also immensely helpful to locate and understand the issue whenever a problem
occurred.

The total amount of Java expressions was measured for each project in the
assignment, including both the original projects, and the FREJA projects. This
is to quantitatively compare the amount of code that is manually produced and
maintained using different methods of assignment creation. Figure 7.1 shows an
comparison of the number of expressions between each project.

Figure 7.1: Comparison of the amount of expressions between the different
projects.

80

Java expressions11 are small code fragments like literals, method calls, and anno-
tations. This felt like an appropriate unit of measurement that focuses more on
the code that make up the logic of the program, compared to something like the
lines of code metric, that would include things like comments and empty lines.
Furthermore, FREJA annotations does not need to be declared on a separate
line, potentially leading to some annotations not being counted as additional
code using lines of code as a measurement.

The annotated solution project and the generated projects did contain the test
files for the exercises, but these were not counted since they were not included
in the original projects. The original solution project contained 701 expressions,
while the original start code project had 317 expressions. The annotated so-
lution had 49 FREJA annotations with 972 total expressions. The generated
solution and start code projects contained 683 and 252 expressions, respectively.
The reduction in expressions in the generated projects compared to the original
ones comes from the removal of the TODO class, since it was no longer needed
due to reasons discussed earlier.

384 expressions spread across 11 files were manually removed from the original
solution project to create the start code. In total, 1018 expressions and 22 files
in two separate projects needs to be manually maintained when the assignment
is created the old traditional way. Although 271 additional expressions related
to FREJA needed to be included in the annotated solution, there is only one
project with 10 files and 972 expressions that need to be maintained manually.
That is a 55% reduction in manually maintained files, and 4.5% reduction in
manually maintained expressions.

7.2 A Second Evaluation of FREJA

Again, the results of this evaluation are uploaded to GitHub. One repository
contains the annotated assignment solution12, and a different repository has the
generated output13. For the second evaluation of FREJA, an updated version of
the framework was used to test it. This update included many changes from the
first test, both new functionality and bug fixes. The most important changes
were:

• A new annotation, called DescriptionReference, that can be used on
any code structure to create arbitrary code references in the assignment
description. Using the annotation on a piece of code will create an at-
tribute in an exercise description that has the annotated code as its value.
The annotation has an annotation element, called exercises, that takes
an integer array as a value. The integers in this array should be root ex-
ercise numbers from an assignment, to specify which exercise description
file to create the attribute in. For example, setting exercises to {1,2}
would create an AsciiDoc attribute in the description file of exercise 1 and
2.

11The exact definition of an expression in the Java grammar can be found here: https:

//docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
12https://github.com/ErlendBerntsen/dat100-javainnlevering2-solution-annotated
13https://github.com/ErlendBerntsen/dat100-javainnlevering2-output

81

https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
https://github.com/ErlendBerntsen/dat100-javainnlevering2-solution-annotated
https://github.com/ErlendBerntsen/dat100-javainnlevering2-output

• The Remove annotation has an added annotation element, called removeFrom,
that can be used to specify which of the generated projects the anno-
tated code will be removed from. For example, setting removeFrom to
TargetProject.START CODE will remove the annotated construct only
from the start code project, not the solution. Leaving it unspecified will
use the default value, which is to remove it from all projects (this is how
it worked previously).

• POM file can be removed, or ignored rather, from the generated projects.

• Fixed bugs with the generated descriptions.

• Many other general bug fixes, mostly concerning comments.

The first evaluation was done using IntelliJ IDEA, which is also the IDE that is
used to develop FREJA. The first test went without any noticeable IDE issues,
mostly due to them being discovered and accounted for during the development
of FREJA. Eclipse is the second most popular Java IDE, and together with
IntelliJ they account for 83% of the market share for Java IDEs [6]. The second
evaluation was done using Eclipse to test FREJA in a different environment,
which makes it easier to asses the fulfilment of the Accessibility requirement.
Being synergetic with the IDEs that the majority of Java developers uses would
certainly help in this aspect. A different assignment from the DAT100 2021
fall semester was used to test the framework a second time. Another benefit
of using Eclipse for the evaluation is that all DAT100 assignments are created
using Eclipse. Therefore this second test will give insight into how well the
framework works with the same development environment as the assignment
was created in.

7.2.1 Details of the Assignment

This assignment is much smaller than the previous one, but still an assignment
that should be solved in groups. There are only two Java files that should be
implemented, one for each exercise in the assignment. Two additional Java files
are also included, containing tests for each of the exercises. There are only two
projects for the assignment, one for the start code, and one for the solution. The
start code is again shared to a public GitHub repository14, which the students
must fork and clone. The solution repository15 was publicly shared to the
students after the assignment deadline, so that they could compare their own
solutions to the intended one. The description text for the exercises differ from
the previous assignment by being located in two entirely separate repositories,
one for the first exercise16, and one for the second exercise17, as opposed to being
in one large file. This is due to exercises being part of two different voluntarily
weekly exercise sets that were handed out a few weeks before the assignment.
The text is still written in GitHub flavored markdown.

14https://github.com/dat100hib/dat100-javainnlevering2
15https://github.com/lmkr/dat100-javainnlevering2-solution
16https://github.com/dat100hib/dat100public/blob/master/programmering/jplab5/

JP5.md#obligatoriske-oppgave-o1-a
17https://github.com/dat100hib/dat100public/blob/master/programmering/jplab6/

JP6.md#obligatorisk-oppgave-o1-b

82

https://github.com/dat100hib/dat100-javainnlevering2
https://github.com/lmkr/dat100-javainnlevering2-solution
https://github.com/dat100hib/dat100public/blob/master/programmering/jplab5/JP5.md#obligatoriske-oppgave-o1-a
https://github.com/dat100hib/dat100public/blob/master/programmering/jplab5/JP5.md#obligatoriske-oppgave-o1-a
https://github.com/dat100hib/dat100public/blob/master/programmering/jplab6/JP6.md#obligatorisk-oppgave-o1-b
https://github.com/dat100hib/dat100public/blob/master/programmering/jplab6/JP6.md#obligatorisk-oppgave-o1-b

There is one less project compared to the assignment in the previous evaluation,
since the unit tests are bundled with the start code, instead of being stored
in a separate repository. The start code repository has a README file that
explains different details about the assignment, such as how to import the start
code locally, how to give access to other group members, submission details and
hyperlinks to each exercise description. There are four references to the source
code in this README file, all of which reference the file name for each exercise
and their test classes. The structure of the project is identical between the start
code and the solution project, with both having one folder for the Java class and
its test class for the first exercise, and another folder for the second exercise.

The purpose of the assignment is to teach the students about arrays, with
exercise 1 focusing on one-dimensional arrays, while exercise 2 covers two-
dimensional arrays. There a total of 15 sub-exercises, with exercise 1 being
split into eight sub-exercises and exercise 2 split into seven, with the last two
being optional. The task for each sub-exercise is to implement a single method.
The start code for each sub-exercise follows the same pattern, which is to keep
the skeleton of the method, while replacing its body with a throw statement.
This throw statement is similar to those in the previous assignments, though
in this case the error message is hard-coded, and not created with a dedicated
helper class. For example, one exercise solution from the assignment can be
seen in Listing 7.2, and its corresponding start code is shown in Listing 7.3.

1 public static int[] reverse(int[] array) {

2 int length = array.length;

3 int[] newArray = new int[length];

4 for (int i = 0; i < length; i++) {

5 newArray[i] = array[length -1-i];

6 }

7 return newArray;

8 }

Listing 7.2: The solution to an exercise for reversing an array.

1 public static int[] reverse(int[] array) {

2 throw new UnsupportedOperationException("reverse is not

implemented");

3 }

Listing 7.3: The start code for the reverse method.

The description for each sub-exercise also follows the same pattern. They are
short and concise, and tells the student to implement a specific method, by
referencing the method definition in the text. Afterwards is a small explanation
of what the method should do. The description for the above exercise can be
seen in Fig. 7.2.

Figure 7.2: The description of an exercise where the goal is to reverse an array.

83

In total there are 28 references to the source code of the assignment (32 if includ-
ing the README file in the start code repository). 14 of these are references
to various method parameters in the exercises. All of these are copied from the
source code and pasted into the description text. The disadvantage of this can
be seen in the description of the fourth sub-exercise for exercise 2, as seen in
Fig. 7.3. The text in this description refers to the parameters a and b, while
the method definition has the parameters mat1 and mat2.

Figure 7.3: The code reference to the method definition is incorrect.

Looking at the source code of the exercise, as seen in Listing 7.4, reveals that
it is the method definition in the description that is incorrect. There are two
such mistakes in total for the assignment, most likely due to changes to the code
after the description texts are created.

1 // d)

2 public static boolean areEqual(int [][] a, int [][] b) {

3 throw new UnsupportedOperationException("areEqual is not

implemented");

4 }

Listing 7.4: The source code of the exercise shows that correct parameter names
are a and b.

7.2.2 Testing and Results

We also had access to all the artefacts for this assignment as well, so we knew
exactly how they should look like when finished. The same approach was used
as for the first test, by cloning the original solution project and injecting the nec-
essary annotations. As mentioned, DAT100 assignments are created in Eclipse
so there was no trouble importing the assignment, however, it still needed to be
converted to a Maven project to use FREJA. Eclipse fortunately provides the
ability to easily convert Eclipse projects to Maven projects. Once converted,
the Exercise annotation seen in Listing 7.5 was added to the method for the
first sub-exercise for exercise 1. The FREJA Maven plugin was then executed
for the first time for this assignment.

1 @Exercise(id= {1,1}, transformOption= TransformOption.REPLACE_BODY)

Listing 7.5: The Exercise annotation for the very first sub-exercise.

Afterwards, the generated projects were opened in Eclipse to ensure the gener-
ated start code was created as intended. The method body in the start code
was replaced with something along the lines of what is seen in the areEqual

method in Listing 7.4 from before, which is correct. While checking that the

84

code in the generated solution project was also correct, a new issue was dis-
covered. Eclipse gave compilation errors that complained about the Java class
for the exercise was already defined. It is true that the same class is defined
both in the solution project and the start code project, but this problem never
occurred while using IntelliJ. The root folder for both of the generated projects
was selected when opening them as a project for the first time in Eclipse. To
try to fix this issue, an attempt was made at opening them as two separate
projects instead, but Eclipse would not allow this for some reason. In the end,
the cause of the problem was that both projects were listed as source folders on
the build path for the root folder. To avoid the issue, only one of the projects
can be listed as the source folder at a time. Luckily, it is very fast to change the
defined source folder in Eclipse. The rest of the sub-exercises in exercise 1 were
almost identical, i.e., the task is to implement a single method, and the start
code follow the same pattern. This made annotating the rest of the exercises
very easy since the annotation from Listing 7.5 above could be copy and pasted
each time. Only the id value of the annotation needed to be changed.

An Eclipse AsciiDoc plugin18 was installed to be able to work with the generated
exercise descriptions. This plugin worked fine to write regular AsciiDoc text,
but lacked useful attribute functionality compared to the IntelliJ plugin, such as
attribute suggestions and substitution preview. Another problem occurred when
trying to write the description in Norwegian (due to the special letters æ-ø-̊a).
This was fixed by setting the text encoding in Eclipse to UTF-8 instead of the
default CP-1252. Although IntelliJ provided a somewhat smoother experience
overall, this test showed that FREJA manages to work with Eclipse just fine.

The generated template descriptions for each exercise were a little more ver-
bose than the original. For example, the original description for one of the
sub-exercises was seen in Fig. 7.3 on the previous page, while the FREJA gen-
erated description of the same exercise can be seen in Fig. 7.4, which includes
more boilerplate information about the location of the exercise. However, the
referenced method definition in the generated description does not include the
wrong parameter names as the original did.

Figure 7.4: An automatically generated description template.

Editing the template to emulate the original is easy since the unnecessary
information can quickly be removed, but the explanation of the method be-
havior in the original description references the parameter names. The new

18https://marketplace.eclipse.org/content/asciidoctor-editor

85

https://marketplace.eclipse.org/content/asciidoctor-editor

DescriptionReference annotation was used on both parameters to able to
reference them without hard-coding them in the text. This ensures that there
can not be any mismatch between the method definition and the parameter
references, such as the mistake in the original description.

All 28 code references in the original exercise descriptions have attributes created
for them using FREJA. 14 of these were created automatically and the other 14
references needed 11 DescriptionReference annotations to produce the nec-
essary attributes. The result of this is that the FREJA exercise descriptions
corrected both code references in the original descriptions that were inconsis-
tent with the source code. These attributes will also automatically update the
description again if the source code is at some point changed.

Although the DescriptionReference annotation ensures more consistency be-
tween description text and source code, it still had room for improvement.
The attribute key name for a description reference attribute is automatically
created, which is just DescriptionReference followed by a number, e.g.,
DescriptionReference 1. An exercise description file can have multiple de-
scription reference attributes, where each have a different suffix number that
counts upwards from 1. The numbering is decided by the order that the an-
notations are parsed in. This was a little confusing for exercise 1 which had 8
description references, with some even having the same attribute value. This
was due to some methods sharing the same name for certain parameters. It was
difficult to figure out which attribute corresponded to which value when using
them in the description text, without double-checking the attribute definition
and the source code. A new annotation element, called attributeName, was
added to the DescriptionReference annotation to fix this, which allows the
user to define the attribute key name for a specific description reference. At
first this was an optional setting, defaulting back to the previous method if not
specified. This was quickly changed to being required, since relying on the pars-
ing order of the annotations to create the numbering for the attribute names is
very unintuitive for the user. There is also potentially a big problem in the case
that a new DescriptionReference annotation is added at a later stage when
creating an assignment, by possibly creating inconsistencies in older description
reference attribute names if the new annotation is parsed before the old ones.

Lastly, the number of Java expressions were also measured for this test, and a
comparison of these numbers between each project can be seen in Fig. 7.5 at
the following page. All projects had only 4 files, which includes test files since
those were part of the original solution and start code. For this assignment, the
generated projects managed to match exactly the same amount of expressions
that were in the original projects. Both the original and generated solution
had 847 expressions. The original start code, as well as the generated, had
425 expressions. The FREJA annotated solution contained 964 expressions, an
increase of 117 expressions, or 13.8%, compared to the original solution. The
increase in expressions is due to the 25 FREJA annotations. That is about an
additional 8 expressions per sub-exercise, on average. In total, there are 1272
expressions, 8 files, and two projects, that needs to be manually maintained with
the original assignment. With FREJA, the amount of manually maintained
expressions are reduced to 964, contained in one project with four files. That is
a 24% reduction in expressions, and a 50% reduction in files and projects.

86

Figure 7.5: Number of expressions among the different projects.

7.3 Evaluating a Language Agnostic Framework

The prototype of the language agnostic framework was tested on the same
DAT100 assignment that FREJA based most of its design and implementation
on. Since the implementation of the prototype is much simpler, it can only han-
dle one programming file at a time, instead of a complete project. Most of the
examples given here are taken from the first exercise of the assignment, which
concerns implementing field variables, a constructor, get- and set methods, and
other simple methods for a Java class. The language agnostic framework is
compared against FREJA and the conventional method for this first test, only
to evaluate its performance as an assignment framework in the context of other
methods. Afterwards, its generic capability is evaluated by testing the prototype
on exercises written in different programming languages.

7.3.1 Using the Language Agnostic Framework DSL

With this method, the solution file is easily imported into MPS with a single
button click that generates a new File instance. Marking the start and end
of a solution is fast and easy with keyboard shortcuts, or by using the right-
click popup menu. Being able to include any line as part of a solution gives
much flexibility, but opens the possibility for generating syntactically incorrect
programs, e.g., accidentally including an additional curly bracket as part of a
solution, causing an imbalance in the brackets in the generated file. This may be
hard to spot since the preview of the generated file does not give any warnings
or red lines about incorrect syntax. Additionally, MPS has syntax highlighting
for Java programs, even in previews, so this may give a false sense of security
that the program is syntactically correct.

Creating replacement code is also straightforward, and the ability to preview
the generated code makes it easy to ensure the new code is created as intended.
The code that is replacing a solution may need accompanying import statements
so that the generated file will compile, which is an issue if the solution and

87

replacement code is in different files. This is the case for the first sub-exercise of
the assignment, but this dependency relationship is not possible to portray in
the DSL currently. Though, a workaround is to include the import statements
in the solution file before the generation. Once the user is happy with preview,
the file can be created with a simple right-click.

7.3.2 Using FREJA

Instead of importing the solution file into another program, this method works
directly on the same file by expanding it with annotations. These annotations
are similar to the concepts in the DSL, denoting meaning related to program-
ming assignments. Defining what should be part of a solution is more limited
since the file still needs to be syntactically correct to be able to compile. This
is done by either annotating entire method bodies, or by wrapping the solution
between specific statements that will be recognized later in the transformation
phase.

Everything that should be implemented in an exercise needs to be annotated
individually, which can create a more bloated file, and most likely take more
time than the DSL method. For example, the field variables can be grouped
together and be thought of as one thing to implement with the DSL, but needs
a separate annotation for each field variable when using FREJA.

Exercise annotations in FREJA must reference an identifier when replacing
a solution, but there is no way to guarantee that the specified identifier ac-
tually exists before running the program. As shown earlier, FREJA does not
complete the generation in this scenario, but instead throws a custom excep-
tion at run-time, explaining the issue in detail. In contrast, the DSL pro-
grammatically changes the editor to only give the possibility of referencing a
SolutionReplacement when the transformOption is set to REPLACED. The ref-
erence also refers to the concept node directly, instead of through an intermedi-
ate string identifier, ensuring that it actually exists. Aside from that, replacing
solutions works practically the same way.

7.3.3 Using the Conventional Method

The basis of this method is to copy the entire solution file to another file, and
edit it afterwards. This is done by manually removing the implemented exercise
solutions from the new file copy, or replacing the solutions with some different
code. An advantage of this is having full control over how the start code should
be, without any of the limitations from the previous methods. There is also
the benefit of working with the output file directly, since this easily confirms
whether the start code can be compiled or not, instead of having to wait after
generating the start code file to confirm it does work as expected.

7.3.4 Comparing the Different Methods

This section highlights the differences between each method in the context of the
requirements that were described earlier in the Requirements section of chapter
3. With the language agnostic framework, the actual solution file would be
created independently before importing it into MPS, since the DSL does not

88

provide syntax highlighting, code completion or other similar functions for the
source language of the assignment that other IDEs might do. This means that
refactoring the solution file after importing it would require re-importing it into
MPS, and edit it from scratch again, or manually refactor the MPS solution
file directly. There is no possible way MPS can give any automatic refactoring
help, since the underlying assignment code is represented as regular text strings
within the DSL. Additionally, manual refactoring creates a big opportunity for
causing inconsistencies between the solution and start code, and re-importing
would overwrite any previous work done on the MPS file. The latter option is
obviously a big time waste if the synchronization between an updated solution
file and an updated MPS file simply ignores the modified content of the MPS
file.

In terms of bidirectional transformations, restoring consistency through a re-
import, where the old MPS file is taken into consideration, is more similar to
a put function than a get function. As discussed, defining and implementing a
satisfying put function can be incredibly difficult. FREJA restores consistency
between artefacts in a manner comparable to a get function, while the language
agnostic framework did not manage to do this, since the solution is developed
outside MPS.

One of the biggest motivations behind creating a programming assignment
framework was to remove such inconsistency and redundancy issues. The de-
scription for any exercise must also be independently created using the DSL,
which is no better than the conventional method of creating assignments. This
is due to the loss of meta-information by having a generic framework, since it
has no knowledge of the syntactical structure of the underlying program. It
is clear that this prototype has failed to meet the Consistency requirement,
and it is no better than the conventional method concerning the Non-redundant
requirement either.

On the other hand, the main advantage of FREJA is that it fulfills these two
important requirements. Consistency is semi-automatically guaranteed when-
ever changes are made, and there is only a single source of information, since
everything is (mostly) contained within one project that generates the other
assignment artefacts. Both the annotation-free solution and start code is gen-
erated, therefore it is necessary to update information in only one place when
changing an assignment. Additionally, the exercise descriptions are generated
based on a description template, by receiving meta-information from the anno-
tated code. This includes information about what to implement, e.g., a method
or a field variable, its name, file location, and so on. Propagating changes from
the source project to the other assignment artefacts is done by simply executing
the FREJA Maven plugin, which will promptly restore consistency between the
artefacts again.

This difference in performance between each assignment development method,
concerning consistency and redundancy, is mostly due to how each method
create assignment artefacts. With each method, there are different relationships
between assignment artefacts, since some artefacts are dependent on information
from others. For example, the assignment solution must be created first with the
DSL method, since the MPS file is completely dependent on it. A comparison
of how each assignment development method create assignment artefacts can

89

be seen in Fig. 7.6. Artefacts that are used to create other artefacts, either
partially or completely, are marked with an outgoing arrow into the other one.
If the line is dashed, it is a manual creation, otherwise, the artefact with an
incoming arrow is generated. An artefact that do not have any arrow to it is
created in isolation.

Figure 7.6: Comparison of how assignment artefacts are created using different
assignment development methods.

The DSL does not entirely satisfy the Accessibility requirement either. Although
it is independent of the underlying operating system, it is completely dependent
on the MPS IDE. On the other hand, the other methods mostly use tools from
the Java language, which the user most likely already have at their disposal.
Additionally, both methods are independent of the IDE being used, as well as
the operating system. Concerning the Dependencies requirement, FREJA does
rely on Maven to execute the program, and an Asciidoctor engine to process
AsciiDoc files. Though, the latter is easily accessible as an IDE plugin, and
both dependencies are also platform independent, so they do not sacrifice the
accessibility of FREJA. JavaParser is not counted as a dependency since it is
bundled with the installment of FREJA. The conventional method clearly does
not have any external dependencies, while the DSL method depends on MPS,
as mentioned.

The Learning ability requirement is where the DSL method come up short com-
pared to the other methods. This is due to the user needing to learn MPS, which
differs greatly from regular text-based editors, and has a steep learning curve.
However, once the user is comfortable with MPS, the language itself should not
be difficult to learn. It should be about as much overhead as learning how to use
the annotations properly with FREJA. FREJA is not difficult to learn either
since it is so small, and it has meaningful names for annotations, annotation
elements, and other configuration settings. The entire framework that the user
interacts with is composed of only six annotations, seven annotation elements,
two Java enums, and three different Maven configuration options. The DSL is
also small in size, and has only 6-7 important language concepts, one enum, and
an additional concept for import configuration.

FREJA also necessitates learning Maven, but does not require a deep knowledge
of it. The user must also learn the AsciiDoc language if they want to manually
expand the description files. Learning a new markup language should not be
a difficult task if the user is already familiar with one, such as the widespread

90

Markdown language. Furthermore, FREJA generates a template description
that demonstrates how to use different syntax and common features of AsciiDoc.
The conventional method thrives the most in this aspect, as it requires nothing
new to be learned.

It is not only negatives for the DSL method. MPS have almost endless pos-
sibilities when it comes to customization of the editor, giving the creator of a
DSL an opportunity to make the language as user-friendly as possible. Marking
solutions, specifying options and any potential replacements, is effortless with
the DSL because of this. FREJA needs to comply with the Java grammar,
which makes this process a little more rigid. On the other hand, FREJA has an
enforced syntax, which benefits from Java’s type safety and the underlying IDE
functionality pertaining to Java’s type system. The framework also provides
detailed explanations whenever there is an error, allowing the user to quickly
locate the issue and determine its cause. In comparison, the DSL is just a
prototype of a language agnostic framework, and implementing a fully fledged
type-system with extensive error handling has not been prioritized, but MPS
does provide the tools to do this. FREJA also incorporates the convention over
configuration paradigm wherever possible, to reduce the amount of editing that
needs to be done. As for the conventional method, it is very easy to use, since it
mostly boils down to manually copy-pasting code, and removing certain pieces
of code. However, it is an undeniably tedious and error-prone way of creating
programming assignments. In the end, all three methods satisfy the Ease of use
requirement, with no real distinction between their performances in this regard.

The Effectiveness requirement is arguably the most important one, and is where
FREJA outshines the other methods. Both time and effort are saved by gener-
ating a description template directly from the source code, with semi-automatic
updates to any code references in the text. In comparison, both the DSL and
the conventional method has to write the assignment description manually from
scratch, and also manually update it if there is any change in the referenced
source code. FREJA can also handle an entire assignment project, as opposed
to a single file at a time with the DSL. In addition, the evaluations of FREJA
presented quantitative results that highlighted the reduction of elements that
needed to be manually maintained, such as the number of projects, files, and
expressions. As discussed, the DSL needs to develop the solution in isolation
before importing it into MPS, and therefore there is no such reduction compared
to the conventional method. In fact, the DSL method might cause an increase
in this number. The effectiveness of FREJA is best felt whenever changes to an
assignment needs to be made, especially late in the development.

7.3.5 Other Programming Languages

The main purpose of the DSL was to be more generic than FREJA, i.e., it can
be used with other programming languages as well. We did not have the same
level of access to non-Java programming assignments, so we used HackerRank19

to find programming exercises in different languages. Simple programming ex-
ercises for Python and Haskell was used to test the broadness of DSL. Python
is an object-oriented, dynamically typed language that relies on indentation to

19https://www.hackerrank.com

91

https://www.hackerrank.com

define structure in a program. A small rewrite of the import and export logic
was needed to ensure that the indentation was properly kept, both when im-
porting the programming file and generating the start code. After that, the DSL
was just as effective as with Java. On the other hand, Haskell is a functional
programming language with a very different style and design compared to the
other languages. In the end, it is just lines of text, and the effectiveness of the
DSL was about the same as with the other languages. An example of using
Haskell and Python exercises with the DSL can be seen in Fig. 7.7. The figure
shows two solutions to a simple HackerRank exercise20, where the goal is to sum
up the numbers in a list of integers. Both solutions are outlined by the DSL
and replaced with a comment, just how the start code to the exercise is given.
On the left is the solution and start code written in Python, while Haskell is on
the right side.

Figure 7.7: The solution and start code for an exercise in two different languages.
Python is on the left and Haskell on the right.

Every programming language is presented in the MPS editor with no distinction
between syntactic concepts within the language. This makes it impossible to
generate descriptions the same way FREJA does. There could be a chance of
implementing this by including the AST of the underlying program, as with
the initial design, but it would still be incredible difficult finding a general
solution for all programming languages. This syntactic indifference also makes
it unreasonable to develop the solution to an exercise within the DSL.

Another possibility is using the Language Server Protocol (LSP)21, which is
a standardized protocol for bringing editorial features such as auto complete,
code suggestions, and go-to definition, to different editors and languages with
minimal effort. Support for many languages have already been implemented,
but the list of supporting tools is not that big yet. None of JetBrains’s IDEs
are supported, including MPS, so the integration of LSP would be in the hands
of the developers at JetBrains, or as a community developed 3rd party plugin,
if possible. LSP is also based on positions in text files, which may be difficult
to integrate with MPS’s way of treating files like ASTs.

Developing programming exercises within MPS, using LSP or not, forces the
user to also sacrifice traditional text-based development for MPS’s code com-

20https://www.hackerrank.com/challenges/simple-array-sum/problem
21https://microsoft.github.io/language-server-protocol

92

https://www.hackerrank.com/challenges/simple-array-sum/problem
https://microsoft.github.io/language-server-protocol

pletion22, which may be too unconventional for some. In short, code completion
forces the user to explicitly select the specific language concept to insert from a
popup menu, when editing a file or program. Additionally, the program for an
exercise cannot be compiled in MPS either, forcing the user to use another IDE
anyway if they want to check that the program runs as expected.

22https://www.jetbrains.com/help/mps/auto-completing-code.html

93

https://www.jetbrains.com/help/mps/auto-completing-code.html

94

Chapter 8

Conclusions and
Future Work

This chapter gives a brief summary of the entire thesis by recapitulating the
most important details from each chapter. The main results from our tests
are condensed into tables to quickly summarize the performance of each frame-
work. Following this is a analysis of those results in the context of the research
questions defined earlier, ending with a discussion of the main conclusions of
this thesis. Lastly, there is a section detailing the next logical steps forward
for FREJA, and a description of ideas and other relevant work that could be
interesting to pursue further.

8.1 Summary

The inspiration for this thesis is rooted in the subpar methods that are cur-
rently used for creating programming assignments. Developing a programming
assignment is composed of developing several smaller artefacts that make up
a complete assignment, such as a solution project, a start code project, and
an assignment description that explains the exercises of an assignment. Even
though these artefacts are deeply related to each other due to the numerous
references and repetition of code between them, they are still completely in-
dependent. Maintaining consistency between them is tedious and error-prone,
since any potential modification to an assignment may need to be manually
reflected in multiple artefacts.

There is a lot of related work on programming assignments in an educational
context, at least in the area of feedback and automatic evaluation of student
solutions. To our knowledge, there has not been any previous work done on
streamlining the process of creating assignments that are specifically aimed at
computer science majors. This thesis has taken a first step in this regard, by de-
veloping a new framework that can centralize assignment development to a single
source, both to reduce redundancy, and ensure consistency between assignment
artefacts. The design of the framework is based on previous assignments from
courses at the university level, while some of the functionality has been imple-

95

mented by identifying the needs of assignment creators. Requirements such as
effectiveness, consistency, non-redundancy, accessibility, having few dependen-
cies while still being easy to learn and use, were imposed on the framework to
increase its chance of success and adoption in a real-life setting.

The result of this work is FREJA, a framework for creating Java assignments.
The implementation for this framework draws inspiration from several areas,
such as Model Driven Software Engineering, the Single Source of Truth architec-
ture, Bidirectional Transformations, and earlier work on code generation, code
transformation, and code documentation. FREJA is centered around the idea
of having custom Java annotations that can mark code fragments with special
meaning within a programming assignment. The development of a program-
ming assignment with FREJA is limited to a single project, which contains the
assignment solution intertwined with FREJA annotations. Annotations are also
used to define meta-information with transformation rules, which are used to
specify how to generate the regular solution project, start code, and assignment
description.

A small prototype of another framework was also implemented, to determine
the feasibility of creating a programming language agnostic version of FREJA.
This prototype is a DSL, created using the MPS language workbench. The DSL
can in theory handle any regular text-based programming language by treating
a programming file simply as a collection of text lines. Code fragments can be
marked by selecting multiple lines, and transformed by utilizing special language
concepts that correspond to FREJA’s annotations.

FREJA was evaluated using two earlier assignments from the introductory pro-
gramming course DAT100. The goal of these tests were to mimic the original
artefacts, exclusively using the functionality of FREJA, while also limiting re-
dundancy and ensuring consistency between assignment artefacts. The ensuing
results were discussed to gauge how well FREJA performed in this aspect. These
tests also served as a way of improving the framework in an iterative process.
Shortcomings or other lacking features that were identified by these tests led
to implementation changes to further enhance FREJA. The language agnos-
tic prototype was tested with exercises from multiple languages, such as Java,
Python, and Haskell, to determine its generic capability. The process of cre-
ating programming assignments using FREJA, the DSL, and the conventional
method, were all compared against each other in context of our requirements
for an assignment development method. This presented both pros and cons of
each method, though FREJA came out ahead for most requirements.

8.2 Conclusions

Testing FREJA on multiple assignments showed that it can handle differently
structured assignments with different types of exercises. Although the first
evaluation identified some shortcomings of the framework, an update to the im-
plementation addressed most of these issues. However, FREJA did not manage
to completely recreate some of the original exercise descriptions, but this was
mostly due to the unorganized structure of them. We think it is reasonable that
users must adhere to some ground rules, which in this case will enforce a clearer

96

structure of assignment descriptions. Thus, we did not change the implementa-
tion to allow for complete freedom in this regard. As for the second evaluation,
FREJA could fully emulate the original artefacts, and link them together so they
remain consistent. There was no missing functionality for FREJA to recreate
the second assignment, but small changes were made to improve the ease of use.

The requirements of FREJA are mostly fulfilled by looking at the results of
these tests. A summarization of how each assignment development method
fulfill the requirements can be seen in Tab. 8.1. FREJA is clearly the method
that best satisfies the prescribed requirements, especially the first three. These
are arguably the most important requirements to meet, since they essentially
capture the goal of this thesis.

Requirement FREJA DSL Conventional
Effectiveness High Ok Ok

Consistency
Semi-automatically
guaranteed

Not guaranteed Not guaranteed

Non-redundant Yes No No
Accessibility Good Poor High

Dependencies
Maven
AsciiDoctor

MPS None

Learning ability Easy Difficult Very easy
Ease of use Easy Easy Easy

Table 8.1: Comparison of how the different methods meet each requirement.

The amount of files and projects that needed to be manually maintained using
FREJA were halved in both evaluations, as well as a reduction in Java expres-
sions. With the help of AsciiDoc attributes, the amount of hard-coded references
to the source code in the assignment description was massively decreased, and
outright nullified for the second test. Table 8.2 show the reduction in manually
maintained components for each evaluation.

First Evaluation
Component Original FREJA Reduction
Projects 2 1 50%
Files 22 10 55%
Expressions 1018 972 4.5%
Hard-Coded References 85 30 65%

Second Evaluation
Component Original FREJA Reduction
Projects 2 1 50%
Files 8 4 50%
Expressions 1272 964 24%
Hard-Coded References 28 0 100%

Table 8.2: Reduction in the number of components that must be manually
created and maintained for both evaluations.

97

These reductions make it much simpler to perform changes to an assignment.
All assignment information is constrained to a single source, and consistency
between the different artefacts can be restored through a single command. The
benefit of this could be seen in the assignment description for the second test,
where FREJA removed the inconsistent code references. By identifying the
different artefacts in a programming assignment, and the relationships between
them, we have found an answer to the first research question:

RQ1: How can we centralize programming assignment development
to a single source to ensure consistency and avoid redundancy?

The key to this answer is to limit the assignment development to only the so-
lution project. This is because the entire start code can be extracted from
the solution project. Code references in the assignment description can also be
solely created from the solution project. However, the solution project must be
expanded with additional meta-information that allows for generating the other
assignment artefacts in the manner that the user wishes. Centralizing assign-
ment information this way encapsulates the Single Source of Truth architecture,
and guarantees a semi-automatic consistency between the assignment artefacts.
FREJA has also taken inspiration from the simplicity of restoring consistency
with get functions in asymmetric lenses. However, consistency insurance is also
equally contingent on a suitable solution for the second research question:

RQ2: How can we automatically, or semi-automatically, generate the
necessary programming assignment artefacts from that source?

For FREJA, this problem was predominantly solved by the Java annotation API.
Custom annotations allows the user to mark code fragments that carry special
meaning within a programming assignment. Annotations can also store small
amounts of data, granting the user the means to specify transformation rules for
generating the start code and assignment description. Additional configuration
settings are also specified in the Maven POM file.

The other piece of the puzzle is having some way of parsing an annotated as-
signment, transforming it, and finally generating the desired output artefacts.
Fortunately, there has been a lot of work done already in regards to parsing
source code, so there was no need to reinvent the wheel in this aspect. Java-
Parser provided all the necessary tools to do this for Java files, along with the
ability to generate Java files from AST objects. It was mostly the transforma-
tion process that needed to be developed from the ground up. Even though
the generation process is not fully automatic, since the user needs to manually
execute the framework to start the generation, it is not necessarily a bad thing.
The manual labor required to execute the framework is composed of writing a
single command in the terminal, and 1-4 seconds of waiting while the program
runs, which is negligible in the grand scheme of things. Also, a semi-automatic
process lets the user start the generation whenever they think it makes sense,
instead of a fully automatic system that might start the generation process with
an incomplete or erroneous input assignment.

The evaluations for FREJA proved that it can successfully be used to create Java
assignments, at least very well for the DAT100 course. Testing the framework on
more assignments from different courses would likely reveal new issues or lacking
features that could be improved upon. As with most software, this framework

98

could constantly evolve and improve with more testing and feedback. But for
the scope of this thesis, we are happy with the current effectiveness of FREJA
as an initial release. However, the language agnostic framework did not provide
anywhere near the same capability as FREJA did. Our results point to a bleak
response to the last research question:

RQ3: To what degree is making a general language agnostic frame-
work possible?

This thesis showed that it is technically possible to create such a framework.
There is no denying the generic quality of the prototype, showing about equal
effectiveness for programming assignments written in very different program-
ming languages, such as Java, Python and Haskell. Both advantages and dis-
advantages become apparent when comparing the prototype to other methods
of creating programming assignments. Relying on a niche development plat-
form, such as MPS, makes is very inaccessible, but allows for creating a rich
tailor-made editor. This makes the language itself very easy to learn and use.
However, the striking difference between FREJA and the generic prototype is
FREJA’s ability to constrain assignment development to a single source. On
the other hand, the language agnostic framework have multiple places of de-
velopment, and even some artefacts must be created in isolation. This isolated
development causes a big concern for time waste and inconsistency issues when
refactoring. As discussed earlier, developing the solution to programming as-
signments within MPS is highly unimaginable, leaving the DSL method with
this isolation problem no matter how the language is designed. LSP does po-
tentially bring an opportunity for developing the underlying assignment source
code in other editors, however, it lacks support for language workbenches such
as MPS.

The usefulness of a programming language agnostic framework for creating as-
signments is questionable with these results. The comparative examples showed
that a generic framework accomplishes less than a language specific framework
in almost every way. Furthermore, a teacher might only use one programming
language in their own courses, resulting in them needing a framework to just
handle that language. Then the benefits of having a generic framework is en-
tirely useless for them. On the other hand, FREJA is the culmination of trying
to solve the problems posed in the first two research questions. Our results
showed that FREJA is a sufficient solution to these problems. The framework
is efficient and provides valuable benefits in assignment development. Our re-
sults suggest that making use of FREJA to create programming assignments in
a real-life setting will prove itself useful. We hope that the work in this thesis is
only the first step of many in the neglected, yet undervalued task of improving
assignment development.

8.3 Future Work

It is difficult to determine the impact and practicality of FREJA from the results
of this thesis alone. Experiences from a real scenario would be important to
conclude its effectiveness in an authentic setting. A sensible next step would
be to employ FREJA into the development of assignments at university-level

99

courses. This would provide a good opportunity to perform qualitative research
by getting feedback from teachers and students in the form of questionnaires.

As mentioned earlier, software is seldom complete, in the sense that there is al-
most always room for improvement. This extends to FREJA also, and feedback
from a real-life setting would certainly reveal areas of improvement. FREJA is
open source, and we welcome anyone to continue enhancing the framework if
they wish to. This thesis also serves as a starting guide in this aspect, with mul-
tiple chapters that covers installation steps, implementation details, and code
architecture. Currently, FREJA has only a basic integration with Git. Although
it is possible to have a separate Git repository for each generated project, prop-
agating changes from the source project to each online cloud repository still
requires the user to manually push the changes for each repository. Improv-
ing FREJA in this aspect could be very useful. Another area of improvement
for FREJA is to define a pure get function for consistency restoration between
assignment artefacts. This requires the assignment description to be entirely
generated from the source project, and not depend on previous generated de-
scriptions. Although a challenging task, combing FREJA with natural language
models such as OpenAI Codex could bring forth an interesting solution.

Unfortunately, the inferiority of a language agnostic framework compared to
a language specific one seems to be almost intrinsic, suggesting that focusing
on developing and improving language specific frameworks is more beneficial
going forward. We discussed the logical steps forward for FREJA, but Java is
just one programming language of many. Python is also a prominent language
in education, so building a Python specific framework may also be a sensible
next step. However, if development of a generic framework were to continue,
then focusing on enabling development of DSL programs within a regular IDE,
instead of a language workbench, could potentially be fruitful. That would
allow taking advantage of LSP, which strengthens the possibility of combining
the development of DSL programs and assignment solutions to the same source.

100

List of Figures

1.1 Workflow of FREJA compared to the conventional method of
creating programming assignments. 8

3.1 An example of an exercise description. 25
3.2 An exercise description that explains the semantics of the exercise. 27
3.3 A model of the artefacts for a FREJA assignment. The generated

artefacts have an incoming arrow. 28

4.1 A simplified view of the assignment object hierarchy. 37
4.2 The transformation pipeline from source code to the DSL, and

back. 41
4.3 An example of how the first prototype could look like. 42
4.4 The transformation pipeline for the second prototype. 44
4.5 The starting line of a solution being marked. 45
4.6 The end line of a solution being marked. 45
4.7 The resulting Solution concept that was created. 46
4.8 The top part shows a File editor with a solution to a Java exer-

cise. Below that is the code that the solution should be replaced
with. At the bottom is a preview of the generated output. 47

5.1 A console showing a NodeException error message. 55
5.2 The definition of the File concept. 58
5.3 The editor definition for the File concept. 58
5.4 A keybinding definition and the code that gets executed by it. . . 59
5.5 The TextGen definition for generating a File node into text. . . 60

6.1 A screenshot of the IntelliJ AsciiDoc plugin editor window. . . . 66
6.2 A screenshot of the AsciiDoc output window. 67
6.3 A screenshot of the updated AsciiDoc output window. 68
6.4 Only the attribute values at line 4 and 5 has changed, while the

attribute references at line 16 and 19 remain unchanged. 68
6.5 The Import editor. 70
6.6 The editor for the HelloWorld file. 71
6.7 The marked solution and a preview of the start code. 72
6.8 The editor for the SolutionReplacement. 73
6.9 The updated solution that should now be replaced, and its cor-

responding output below. 74

101

7.1 Comparison of the amount of expressions between the different
projects. 80

7.2 The description of an exercise where the goal is to reverse an array. 83
7.3 The code reference to the method definition is incorrect. 84
7.4 An automatically generated description template. 85
7.5 Number of expressions among the different projects. 87
7.6 Comparison of how assignment artefacts are created using differ-

ent assignment development methods. 90
7.7 The solution and start code for an exercise in two different lan-

guages. Python is on the left and Haskell on the right. 92

102

List of Tables

8.1 Comparison of how the different methods meet each requirement. 97
8.2 Reduction in the number of components that must be manually

created and maintained for both evaluations. 97

103

104

Listings

3.1 An excerpt of the start code for an exercise. 24
3.2 An excerpt of a test to the above exercise. 24
3.3 Solution to a simple Java exercise. 27
3.4 Start code for the above exercise. 27
4.1 The definition of the Exercise annotation. 32
4.2 An example of the Exercise annotation being used. 32
4.3 An example of the ReplacementCode annotation being used . . . 33
4.4 The solution to an exercise that highlights which statements are

part of the exercise solution through comments. 33
4.5 The start code to the above exercise with only the solution removed. 34
4.6 The solution wrapped in annotation variables 34
4.7 The generated start code with a syntax error. 35
4.8 A simple exercise. 39
4.9 An exercise description with an attribute reference. 39
4.10 An exercise description with a substitution for the attribute ref-

erence. 39
4.11 An XML AST representation of the Java statement a = x + 1; 42
5.1 The build lifecycle in the FREJA Maven plugin pom.xml file. . . 50
5.2 A snippet of the FrejaMojo class and its field variables. 51
5.3 The build method of the AssignmentBuilder class. 52
5.4 The TaskOperations interface. 53
5.5 A method for transforming a Task node. 54
5.6 A method for finding the value of a annotation element/member. 54
5.7 An example of test data that is identified by the TestId annotation. 56
5.8 The test data from Listing 5.7 is retrieved using the getNodeWithId

method. 57
6.1 The default JDK version in the pom.xml file. 61
6.2 FREJA annotations Maven dependency. 62
6.3 The FREJA Maven plugin specifying the target folder. 62
6.4 Different types of glob patterns for the ignore configuration. . . 63
6.5 FREJA tutorial POM file. 64
6.6 The simple HelloWorld class so far. 64
6.7 The helloWorld method with the Exercise annotation. 65
6.8 Configuration settings. 67
6.9 A main method. 68
6.10 The final source code. 69
6.11 The start code after the solution has been replaced. 69

105

7.1 The original start code where the solution is replaced with a throw
statement. 77

7.2 The solution to an exercise for reversing an array. 83
7.3 The start code for the reverse method. 83
7.4 The source code of the exercise shows that correct parameter

names are a and b. 84
7.5 The Exercise annotation for the very first sub-exercise. 84

106

Acronyms

API Application Programming Interface.

AST Abstract Syntax Tree.

BX Bidirectional Transformations.

DRY Do Not Repeat Yourself.

DSL Domain Specific Language.

DW Data Warehouse.

EMF Eclipse Modeling Framework.

ESB Enterprise Service Bus.

FREJA FRamework for Engineering Java Assignments.

LSP Language Server Protocol.

M2M Model-To-Model.

M2T Model-To-Text.

MDSE Model Driven Software Engineering.

MOJO Maven plain Old Java Object.

POM Project Object Model.

SOA Service Oriented Architecture.

SSOT Single Source of Truth.

107

108

Appendix A

Source Code

The source code for FREJA is available at this URL: https://github.com/
ErlendBerntsen/freja.

The source code for the language agnostic framework is available at this URL:
https://github.com/ErlendBerntsen/Paastel.

109

https://github.com/ErlendBerntsen/freja
https://github.com/ErlendBerntsen/freja
https://github.com/ErlendBerntsen/Paastel

110

Bibliography

[1] Nahla Abid et al. “The evaluation of an approach for automatic gener-
ated documentation.” In: 2017 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME). IEEE. 2017, pp. 307–317.

[2] Faris Abou-Saleh et al. “Introduction to Bidirectional Transformations.”
eng. In: Bidirectional Transformations. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2018, pp. 1–28. isbn: 3319791079.

[3] F Bancilhon and N Spyratos. “Update semantics of relational views.” eng.
In: ACM transactions on database systems 6.4 (1981), pp. 557–575. issn:
0362-5915.

[4] Elisa Baniassad et al. “STOP THE (AUTOGRADER) INSANITY: Re-
gression Penalties to Deter Autograder Overreliance.” In: Proceedings of
the 52nd ACM Technical Symposium on Computer Science Education.
SIGCSE ’21. Virtual Event, USA: Association for Computing Machin-
ery, 2021, pp. 1062–1068. isbn: 9781450380621. doi: 10.1145/3408877.
3432430. url: https://doi.org/10.1145/3408877.3432430.

[5] Jacob Beningo. “Documenting Firmware with Doxygen.” In: Reusable
Firmware Development. Springer, 2017, pp. 121–148.

[6] Andrew Binstock and Simon Maple. The Largest Survey Ever of Java
Developers. url: https://blogs.oracle.com/javamagazine/post/
the-largest-survey-ever-of-java-developers (visited on Oct. 6,
2022).

[7] Anastasiia Birillo et al. “Hyperstyle: A Tool for Assessing the Code Qual-
ity of Solutions to Programming Assignments.” In: Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 1. 2022,
pp. 307–313.

[8] Douglas S Blank et al. “nbgrader: A tool for creating and grading as-
signments in the Jupyter Notebook.” In: The Journal of Open Source
Education 2.11 (2019).

[9] Hannah Blau and J Eliot B Moss. “Frenchpress gives students automated
feedback on Java program flaws.” In: Proceedings of the 2015 ACM Con-
ference on Innovation and Technology in Computer Science Education.
2015, pp. 15–20.

[10] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. “Model-driven soft-
ware engineering in practice.” In: Synthesis lectures on software engineer-
ing 3.1 (2017), pp. 1–207.

[11] Jordi Cabot. “Positioning of the Low-Code Movement within the Field
of Model-Driven Engineering.” In: Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and

111

https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/3408877.3432430
https://blogs.oracle.com/javamagazine/post/the-largest-survey-ever-of-java-developers
https://blogs.oracle.com/javamagazine/post/the-largest-survey-ever-of-java-developers

Systems: Companion Proceedings. MODELS ’20. Virtual Event, Canada:
Association for Computing Machinery, 2020. isbn: 9781450381352. doi:
10.1145/3417990.3420210. url: https://doi.org/10.1145/3417990.
3420210.

[12] Mark Chen et al. “Evaluating large language models trained on code.” In:
arXiv preprint arXiv:2107.03374 (2021).

[13] Lucas Cordova et al. “A Comparison of Inquiry-Based Conceptual Feed-
back vs. Traditional Detailed Feedback Mechanisms in Software Testing
Education: An Empirical Investigation.” In: Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education. SIGCSE ’21. Vir-
tual Event, USA: Association for Computing Machinery, 2021, pp. 87–
93. isbn: 9781450380621. doi: 10.1145/3408877.3432417. url: https:
//doi.org/10.1145/3408877.3432417.

[14] Paul Denny et al. “Codewrite: supporting student-driven practice of java.”
In: Proceedings of the 42nd ACM technical symposium on Computer sci-
ence education. 2011, pp. 471–476.

[15] D. Dig and R. Johnson. “The role of refactorings in API evolution.” In:
21st IEEE International Conference on Software Maintenance (ICSM’05).
2005, pp. 389–398. doi: 10.1109/ICSM.2005.90.

[16] Mickaël Duruisseau et al. “VisUML: a live UML visualization to help
developers in their programming task.” In: International Conference on
Human Interface and the Management of Information. Springer. 2018,
pp. 3–22.

[17] Martin Fowler. Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018.

[18] Yaroslav Golubev et al. “One thousand and one stories: a large-scale sur-
vey of software refactoring.” In: Proceedings of the 29th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2021, pp. 1303–1313.

[19] Jim Gray et al. “The Dangers of Replication and a Solution.” In: Proceed-
ings of the 1996 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’96. Montreal, Quebec, Canada: Association for Com-
puting Machinery, 1996, pp. 173–182. isbn: 0897917944. doi: 10.1145/
233269.233330. url: https://doi-org.galanga.hvl.no/10.1145/
233269.233330.

[20] Wang Haoyu and Zhou Haili. “Basic Design Principles in Software Engi-
neering.” In: 2012 Fourth International Conference on Computational and
Information Sciences. 2012, pp. 1251–1254. doi: 10.1109/ICCIS.2012.
91.

[21] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. “Symmetric Lenses.”
eng. In: SIGPLAN notices 46.1 (2011), pp. 371–384. issn: 0362-1340.

[22] Bettina Kemme and Gustavo Alonso. “Database Replication: A Tale of
Research across Communities.” In: Proc. VLDB Endow. 3.1–2 (2010),
pp. 5–12. issn: 2150-8097. doi: 10.14778/1920841.1920847. url: https:
//doi-org.galanga.hvl.no/10.14778/1920841.1920847.

[23] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. “A tutoring system
to learn code refactoring.” In: Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education. 2021, pp. 562–568.

[24] Zeba Khanam. “Barriers to Refactoring: Issues and Solutions.” In: 2454-
4248 4 (Feb. 2018), p. 232.

112

https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1145/3408877.3432417
https://doi.org/10.1145/3408877.3432417
https://doi.org/10.1145/3408877.3432417
https://doi.org/10.1109/ICSM.2005.90
https://doi.org/10.1145/233269.233330
https://doi.org/10.1145/233269.233330
https://doi-org.galanga.hvl.no/10.1145/233269.233330
https://doi-org.galanga.hvl.no/10.1145/233269.233330
https://doi.org/10.1109/ICCIS.2012.91
https://doi.org/10.1109/ICCIS.2012.91
https://doi.org/10.14778/1920841.1920847
https://doi-org.galanga.hvl.no/10.14778/1920841.1920847
https://doi-org.galanga.hvl.no/10.14778/1920841.1920847

[25] Diksha Khurana et al. “Natural language processing: State of the art,
current trends and challenges.” In: Multimedia Tools and Applications
(2022), pp. 1–32.

[26] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. “A
Field Study of Refactoring Challenges and Benefits.” In: Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering. FSE ’12. Cary, North Carolina: Association for
Computing Machinery, 2012. isbn: 9781450316149. doi: 10.1145/2393596.
2393655. url: https://doi-org.galanga.hvl.no/10.1145/2393596.
2393655.

[27] Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. “Rascal: A domain
specific language for source code analysis and manipulation.” In: 2009
Ninth IEEE International Working Conference on Source Code Analysis
and Manipulation. IEEE. 2009, pp. 168–177.

[28] Donald Ervin Knuth. “Literate programming.” In: The computer journal
27.2 (1984), pp. 97–111.

[29] Gábor Kövesdán and László Lengyel. “Meta3: a code generator framework
for domain-specific languages.” en. In: Software & Systems Modeling 18.4
(Aug. 2019), pp. 2421–2439. issn: 1619-1374. doi: 10.1007/s10270-018-
0673-6. url: https://doi.org/10.1007/s10270-018-0673-6 (visited
on Mar. 3, 2022).

[30] Douglas Kramer. “Api documentation from source code comments: a case
study of javadoc.” In: Proceedings of the 17th annual international con-
ference on Computer documentation. 1999, pp. 147–153.

[31] Algirdas Laukaitis. “Code Transformation Pattern Alignments and In-
duction for ERP Legacy Systems Migration.” In: Perspectives in Business
Informatics Research. Ed. by Raimundas Matulevičius and Marlon Du-
mas. Cham: Springer International Publishing, 2015, pp. 228–240. isbn:
978-3-319-21915-8.

[32] Haden Hooyeon Lee. “Effectiveness of Real-Time Feedback and Instruc-
tive Hints in Graduate CS Courses via Automated Grading System.” In:
Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education. SIGCSE ’21. Virtual Event, USA: Association for Comput-
ing Machinery, 2021, pp. 101–107. isbn: 9781450380621. doi: 10.1145/
3408877.3432463. url: https://doi.org/10.1145/3408877.3432463.

[33] Yannis Lilis and Anthony Savidis. “A survey of metaprogramming lan-
guages.” In: ACM Computing Surveys (CSUR) 52.6 (2019), pp. 1–39.

[34] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsman-
ship. 1st ed. USA: Prentice Hall PTR, 2008. isbn: 0132350882.

[35] Robert Cecil Martin. Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[36] Florencia Miranda. “Using Failing Test Cases to Semi-Automate Feed-
back for Beginner Programmers.” In: Proceedings of the 52nd ACM Tech-
nical Symposium on Computer Science Education. SIGCSE ’21. Virtual
Event, USA: Association for Computing Machinery, 2021, p. 1384. isbn:
9781450380621. doi: 10.1145/3408877.3439696. url: https://doi.
org/10.1145/3408877.3439696.

[37] Stas Negara et al. “A Comparative Study of Manual and Automated
Refactorings.” In: ECOOP 2013 – Object-Oriented Programming. Ed. by

113

https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1145/2393596.2393655
https://doi-org.galanga.hvl.no/10.1145/2393596.2393655
https://doi-org.galanga.hvl.no/10.1145/2393596.2393655
https://doi.org/10.1007/s10270-018-0673-6
https://doi.org/10.1007/s10270-018-0673-6
https://doi.org/10.1007/s10270-018-0673-6
https://doi.org/10.1145/3408877.3432463
https://doi.org/10.1145/3408877.3432463
https://doi.org/10.1145/3408877.3432463
https://doi.org/10.1145/3408877.3439696
https://doi.org/10.1145/3408877.3439696
https://doi.org/10.1145/3408877.3439696

Giuseppe Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 552–576. isbn: 978-3-642-39038-8.

[38] Christian D. Newman et al. “Simplifying the construction of source code
transformations via automatic syntactic restructurings.” In: Journal of
Software: Evolution and Process 29.4 (2017). e1831 JSME-16-0041.R1,
e1831. doi: https://doi.org/10.1002/smr.1831. eprint: https:
/ / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / smr . 1831. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1831.

[39] Nhan Nguyen and Sarah Nadi. “An empirical evaluation of GitHub copi-
lot’s code suggestions.” In: Proceedings of the 19th International Confer-
ence on Mining Software Repositories. 2022, pp. 1–5.

[40] Candy Pang and Duane Szafron. “Single Source of Truth (SSOT) for
Service Oriented Architecture (SOA).” In: Service-Oriented Computing.
Ed. by Xavier Franch et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 575–589. isbn: 978-3-662-45391-9.

[41] Andrei Papancea, Jaime Spacco, and David Hovemeyer. “An open plat-
form for managing short programming exercises.” In: Proceedings of the
ninth annual international ACM conference on International computing
education research. 2013, pp. 47–52.

[42] Nea Pirttinen et al. “Crowdsourcing programming assignments with Crowd-
Sorcerer.” In: Proceedings of the 23rd Annual ACM Conference on Inno-
vation and Technology in Computer Science Education. 2018, pp. 326–
331.

[43] IBM Redbooks. Eclipse Development using the Graphical Editing Frame-
work and the Eclipse Modeling Framework. eng. 1st ed. IBM Redbooks.
Durham: I B M, 2004. isbn: 9780738453163.

[44] Markiyan Rizun, J-C Bach, and Stéphane Ducasse. “Code transforma-
tion by direct transformation of asts.” In: Proceedings of the International
Workshop on Smalltalk Technologies. 2015, pp. 1–7.

[45] Rohan Roy Choudhury, Hezheng Yin, and Armando Fox. “Scale-driven
automatic hint generation for coding style.” In: International Conference
on Intelligent Tutoring Systems. Springer. 2016, pp. 122–132.

[46] Sami Sarsa et al. “Automatic Generation of Programming Exercises and
Code Explanations Using Large Language Models.” In: Proceedings of the
2022 ACM Conference on International Computing Education Research-
Volume 1. 2022, pp. 27–43.

[47] Valeriy V Savchenko et al. “NOBRAINER: A Tool for Example-Based
Transformation of C/C++ Code.” In: Programming and Computer Soft-
ware 46.5 (2020), pp. 362–372.

[48] Robert M Siegfried et al. “Trends Of Commonly Used Programming Lan-
guages in CS1 And CS2 Learning.” In: 2021 16th International Conference
on Computer Science & Education (ICCSE). IEEE. 2021, pp. 407–412.

[49] Cleidson R. B. de Souza and David F. Redmiles. “On The Roles of APIs
in the Coordination of Collaborative Software Development.” In: Com-
puter Supported Cooperative Work (CSCW) 18.5 (Sept. 2009), p. 445.
issn: 1573-7551. doi: 10.1007/s10606-009-9101-3. url: https://doi.
org/10.1007/s10606-009-9101-3.

[50] Peter Sovietov. “Automatic generation of programming exercises.” In:
2021 1st International Conference on Technology Enhanced Learning in
Higher Education (TELE). IEEE. 2021, pp. 111–114.

114

https://doi.org/https://doi.org/10.1002/smr.1831
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1831
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1831
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1831
https://doi.org/10.1007/s10606-009-9101-3
https://doi.org/10.1007/s10606-009-9101-3
https://doi.org/10.1007/s10606-009-9101-3

[51] Daniel E Stevenson and Paul J Wagner. “Developing real-world program-
ming assignments for CS1.” In:ACM SIGCSE Bulletin 38.3 (2006), pp. 158–
162.

[52] Hiroyuki Takizawa et al. “A Use Case of a Code Transformation Rule Gen-
erator for Data Layout Optimization.” In: Sustained Simulation Perfor-
mance 2016. Ed. by Michael M. Resch et al. Cham: Springer International
Publishing, 2016, pp. 21–30.

[53] Hiroyuki Takizawa et al. “Xevolver: An XML-based code translation frame-
work for supporting HPC application migration.” In: 2014 21st Interna-
tional Conference on High Performance Computing (HiPC). 2014, pp. 1–
11. doi: 10.1109/HiPC.2014.7116902.

[54] Robert Waszkowski. “Low-code platform for automating business pro-
cesses in manufacturing.” In: IFAC-PapersOnLine 52.10 (2019). 13th IFAC
Workshop on Intelligent Manufacturing Systems IMS 2019, pp. 376–381.
issn: 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2019.10.
060. url: https://www.sciencedirect.com/science/article/pii/
S2405896319309152.

[55] Daniel Weise and Roger Crew. “Programmable syntax macros.” In: Pro-
ceedings of the ACM SIGPLAN 1993 conference on Programming language
design and implementation. 1993, pp. 156–165.

[56] Jacqueline L Whalley et al. “An Australasian study of reading and com-
prehension skills in novice programmers, using the Bloom and SOLO tax-
onomies.” In: Conferences in Research and Practice in Information Tech-
nology Series. 2006.

[57] Wikipedia. Single source of truth — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=Single%20source%

20of%20truth&oldid=1120485355. [Online; accessed 09-November-2022].
2022.

115

https://doi.org/10.1109/HiPC.2014.7116902
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.10.060
https://www.sciencedirect.com/science/article/pii/S2405896319309152
https://www.sciencedirect.com/science/article/pii/S2405896319309152
http://en.wikipedia.org/w/index.php?title=Single%20source%20of%20truth&oldid=1120485355
http://en.wikipedia.org/w/index.php?title=Single%20source%20of%20truth&oldid=1120485355

	Introduction
	Research Questions
	Methodology
	Contribution
	Outline

	Background
	Code Generation and Transformation
	Refactoring
	Single Source of Truth

	Model Driven Software Engineering
	Code Documentation
	Related Work on Programming Assignments

	Design and Requirements
	Requirements
	Artefacts of a Programming Assignment
	Solution Project
	Start Code Project
	Assignment Description

	Modelling a Programming Assignment Framework
	Defining Meta-Information

	Implementation
	FREJA
	Annotations
	Parsing
	Execution Phase
	Exercise Descriptions

	Programming Language Agnostic Framework
	First Prototype
	Second Prototype

	Architecture
	Architecture of FREJA
	Maven
	Parsing
	Transforming
	Generating
	Testing

	Programming Language Agnostic Prototype Architecture
	Structure
	Editor
	Input and Output

	Installation and Usage
	Installing FREJA
	Example
	Installing the Programming Language Agnostic Prototype
	Example

	Evaluation
	A First Evaluation of FREJA
	Details of the Assignment
	Testing and Results

	A Second Evaluation of FREJA
	Details of the Assignment
	Testing and Results

	Evaluating a Language Agnostic Framework
	Using the Language Agnostic Framework DSL
	Using FREJA
	Using the Conventional Method
	Comparing the Different Methods
	Other Programming Languages

	Conclusions andFuture Work
	Summary
	Conclusions
	Future Work

	List of Figures
	List of Tables
	Listings
	Acronyms
	Appendix A: Source code

