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Abstract

In this work, the development of a two dimensional computational model for predicting the
aeroelastic response is presented. In the aeroelastic model presented here, the aeroedynamic
and the structural models are considered elements of a single dynamic system. The aerody-
namic model is based on the unsteady vortex particle method , while the structural model is
based on the paired Adam Bashforth - Adam Moulton second order numerical predictor cor-
rector method.

The unsteady vortex particle method is used for computing the aerodynamic forces coming
from the free stream velocity and for covecting the wake particles. Usually the wake particles
are convected using the explicit Euler method in the wake scheme, which is fast and easy to
implement. Here, the explicit linear multistep Adam Bashforth methods are implemented in
the wake scheme part of the aerodynamic model. Contrary to the explicit Euler method, these
methods depends on the velocities from previous time steps.

The nonlinear analysis of the aeroelastic system is more complex and makes it harder to
predict the aeroelastic flutter compared to the linear analysis. For this reason, a neural network
generated function for computing the correct force and moment terms in the structural model is
realized and compared to the analytical linear and nonlinear spring force and moment response.
In this thesis, a cubic spring term is added in the structural model of the aeroelastic system.
The experimental results using the trained neural network generated spring have shown similar
results compared to the case using the analytical expression for the spring, for both the linear
and nonlinear structural model.

The results presented here illustrate how one can utilize a relatively simple neural network
in order to train and predict the subcritical, critical and supercritical flow for the aeroelastic
model, when adding a cubic nonlinearity in the structural model of the system.
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Introduction

0.1 Background

The current global energy demand is increasing rapidly. At the same time, the total net an-
thropogenic greenhouse gas emissions have kept rising during the period 2010 to 2019 and the
cumulative net CO2 emissions have been rising since the year 1850 (IPCC). Although the aver-
age greenhouse gas emissions were higher in the 2010s compared to any previous decades, the
growth rate of greenhouse gas emissions in the 2010s was less when compared to the growth
rate in the 2000s (IPCC). As one can observe from Fig. 1, the total annual greenhouse gas
emissions per year has been increasing rapidly, especially since the 1950s. The transformation
of the global energy system needs to accelerate substantially to meet the objectives of the Paris
agreement, which aim to keep the rise in average global temperatures closer to 1.5 ◦C in the
present century, when compared to pre-industrial levels. Therefore, to meet todays global en-
ergy demand while reducing carbon emissions, we must move to cleaner and greener power
generation.

Figure 1: The total annual green house gas emissions per year by world regions (Ritchie et al. (2017)).
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The global weighted average cost of electricity (GWACE) from all commercially avail-
able renewable power generation technologies continued to fall in 2018. For projects related
to onshore wind commissioned in 2018, the GWACE reached a minimum of USD 0.056 per
kilowatt-hour (kWh), a 13% decrease from 2017 and a 35% drop in price compared to 2010.
The global weighted-average levelised cost of electricity for onshore wind was at USD 0.039
kWh in 2020 (IRENA). As the price of electricity produced from onshore wind has been steadily
dropping in the 2010s, it is starting to become competitive against fossil-fueled produced elec-
tricity (IRENA (2019)).

Wind power has the potential to supply more than one third of the total electricity demand
by 2050 (IRENA (2019)) and is well aligned with energy transformation scenarios conducted
by numerous institutions. It highlights the importance of scaling the wind power generation
in order to mitigate carbon gas emissions and decarbonise the energy system in the next three
decades (IRENA (2019)). A combination of decreasing prices in electricity costs, low operating
costs (IRENA) and the fact that wind energy is an abundant clean natural resource makes it a
great candidate in the transition from from fossil fuels to renewable energy.

0.2 Wind energy

0.2.1 Development of wind turbines
The use of wind as a source of energy dates as far back as to the ancient Egypt (Pasqualetti
(2014)), where the egyptians used the power of the wind to propel sailing crafts (made of linen
and papyrus). Around the 10th century AD in Persia, primitive windmills were used to grind
grain and lifting water from streams to irrigate gardens. It was not until 1886 that the scientist
Charles Brush invented the first practical large-scale wind turbine (Pasqualetti (2014)).

Over the years, the development of wind power has followed several trends. In particular,
over the past twenty-five years, the size of wind turbines has increased dramatically, from ap-
proximately 50 kW of power and rotor diameters of 15 to 20 meters to today’s commercial
machines of 14 MW and rotor diameters of 185 meters. The increase of the rotor size is mainly
driven by cost reductions. Bigger wind turbines are able to extract more energy compared to
smaller ones, which makes it possible to extract more energy per turbine, leading to a reduction
in manufacturing and installation costs. Such technological progress has meant a substantial
change in the context of numerical models for the design of wind turbines. Specifically, Stan-
dard aerodynamic calculations, where a profile of constant spatial and temporal velocities was
assumed, had to be replaced with unsteady aerodynamic models, capable of being integrated
with structural models to simulate the aeroelastic behavior of the entire turbine.

0.2.2 Wind power production
According to the global wind report (GWEC), the global cumulative wind power capacity had
risen to 837 GW, where 93.6 GW of new installations were added since 2021, showing a
year over year growth of 12%. However, reaching the goal of net zero emissions by 2050
requires having installed approximately 7900 TWh of wind power by 2030 (see Fig. 2). This
progression means increasing average annual capacity to 250 GW, which is more than double
the record growth of 2020 (IEA). Achieving 7900 TWh by 2030 requires increasing wind power
generation by 18% per year during 2022-2030 (IEA). Although large-scale wind turbines have
increased their efficiency over the past 40 years, the cost and maintenance of these turbines are
still relatively high.
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A wind turbine is a huge rotating machine that converts the kinetic energy contained in the
wind (air in motion) into a torque acting on the rotor shaft. Clearly, there is a theoretical limit
to the amount of power that a wind turbine is capable of producing, the so-called Betz’s limit,
Cp = 0.59 (Hansen (2008)). Although such a boundary sets a limit on how much energy wind
turbines can extract from the wind, the actual efficiency is lower than Betz’s limit. Wind tur-
bines are typically installed in places characterized by highly unstable environment conditions.
As consequence, the aerodynamic loads acting on the blades and the tower are unsteady in
nature, showing a very complex temporal and spatial distribution. For all these reasons, an ac-
curate and reliable prediction of the aerodynamic/aeroelastic behavior of large horizontal-axis
wind-turbines is currently a challenge in computational mechanics (Leishman (2002)).

Figure 2: Figure showing wind power generation in the net zero scenario 2010 - 2030, from IEA

0.2.3 Aeroelastic flutter
A flexible body immersed in a fluid flow can experience oscillations as a consequence of in-
teractions between inertial, elastic, dissipative, control, and aerodynamic forces (Hodges and
Pierce (2011)). Among the different aeroelastic phenomena, flutter has been extensively stud-
ied and pinpointed as the cause of many catastrophic civil and aeronautical events. A historical
incident related to this aeroelastic mechanism is associated with the collapse of the famous
Tacoma Narrows bridge in 1940 (Billah and Scanlan (1990)).

Although fluttering is typically classified as a destructive phenomenon, recent studies have
shown that it is possible to take advantage of it as a means for electric energy generation.
By using piezoelectric or electromagnetic devices, one can convert self-sustained mechanical
vibrations into usable energy. Piezoelectric materials can accumulate electric charge as con-
sequence of mechanical deformations (through the direct piezoelectric effect). Erturk et. al.
(Erturk et al. (2010)) considered a single piezoelectric harvester to develop an experimental
and analytical model for predicting the electrical power produced at flutter speed. Moreover,
Erturk’s team used a thin, symmetrical, rigid, and a large aspect-ratio wing linked, through
torsional springs, to a supporting piezoelectric structure. Although the power output of such
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systems is much lower when compared to traditional horizontal wind turbines, these devices
are intended for low power generation to be located in hostile or inaccessible places, such as
the Antarctica.

In the field of energy harvesting, a large number of analytical, numerical and experimen-
tal investigations were carried out to understand the basic physics involved in flutter-based
piezoelectric harvesters (Bryant and Garcia (2009),Dias et al. (2015), Erturk et al. (2010)).
Although those models are mostly linear, they allowed us to get important insights regarding
the aeroelastic behaviour, energy generation and how the flutter boundary changes as a func-
tion of system parameters. Despite the relevance of these works, further studies are needed
to fully understand the role of nonlinearities in harvester power production. The nonlinear re-
sponse of a flutter-based aeroelastic system generally involves a combination of very different
nonlinearities, such as: geometric, material, inertial, electrical, and those from the flowfield
(Roccia et al. (2020)).

Nonlinear analysis is often more complex and computationally more expensive than linear
approaches (Roccia et al. (2020)), depending on the number of nonlinearities present in the
system. A good prediction of the nonlinear response is important in order to improve the
prediction of the system’s output. Along this path, artificial neural networks (ANNs) have been
gaining ground for surrogate modeling based on a data-driven machine learning approach, for
instance: computer vision (Krizhevsky et al. (2017)), natural language processing (Kumar et al.
(2016)) and for identifying nonlinear systems of equations (Genc (2017)).

0.2.4 Aerodynamic model

A number of different aerodynamic models can be used for computing the loads from the
surrounding flow acting on the structure. Among the large number of methods, beam ele-
ment moment methods (BEMMs), boundary element methods (BEMs), and computational
fluid dynamics (CFD) techniques are the most popular depending on the problem to be solved.
BEMM-based solvers are computationally efficient, but lack accuracy when compared to CFD
methods. Moreover, CFD solvers are the right choice from a precision point of view, but their
computational cost is extremely high, often prohibitive for studying fluid-structure interaction
problems. Because of this, BEM approaches, such as the well-known unsteady vortex-lattice
method (UVLM), are frequently used in the context of computational aeroelasticity; actually, it
presents an excellent trade-off between precision and computational cost (Lee and Lee (2019)).
Different versions of the UVLM have been used to investigate flapping-wing kinematics (Roc-
cia et al. (2013)), rotorcraft (Rados et al. (2001)), and wind-turbines (Gebhardt et al. (2010);
Strganac and Mook (1990)). Many works about the aeroelastic behavior of planes were car-
ried out by researchers at Virginia Polytechnic Institute and State University. They extended
the UVLM capabilities and coupled it with several structural models in order to investigate,
mostly, different aircrafts configurations (de Souza et al. (2012); Wang et al. (2010)). More
recently, Gebhardt and Roccia used a modified version of the unsteady vortex-lattice method
coupled with a geometrically non-linear structural model to study the aeroelastic behavior of a
large horizontal-axis wind-turbine (Gebhardt and Roccia (2014)).

Two-dimensional versions of the UVLM were also used to study different aerodynamic and
aeroelastic problems. In particular, Roccia et al. used a modified version of a 2D UVLM, here-
after called unsteady vortex-particle method (UVPM), for predicting the aeroelastic response
of piezoelectric energy harvesting devices (Roccia et al. (2020)).
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0.2.5 Structural model
Although several structural models are possible, such as those based on lumped- or distributed-
parameter models, researchers often select reduced-order models to gain insight into the under-
lying physics of a given problem. On this basis, Roccia et al. (2020) considered a 3 degrees-
of-freedom (DOFs) lumped-parameter model for studying energy harvesting devices. They
used the four-order predictor-corrector method of Hamming to numerically integrate all the
governing equations in the time domain. In this thesis, a 2-DOFs nonlinear structural model
was considered to predict the response of the system. In addition, several numerical schemes
were implemented to integrate the set of ordinary differential equations (ODEs) describing the
temporal evolution of the aeroelastic system.

0.3 Objectives

The main objective of this thesis is to develop a nonlinear two-dimensional aeroelastic model
well-suited to investigate the fluid-structure interaction of a typical airfoil. Such a main goal
will be achieved by considering the following specific objectives:

• Implement a modified version of the unsteady vortex-particle method by including sev-
eral numerical schemes to propagate the wakes.

• Develop a two-dimensional (plunge and pitching) nonlinear structural model to predict
the airfoil response.

• Implement an inter-connection model to exchange information between the aerodynamic
and structural models.

• Implement an ANNs to replace the constitutive law associated with the nonlinear springs.

• verification of the aerodynamic, structural, and aeroelastic numerical implementations by
considering classic results available in the literature.

• Use the Hausdorff distance as an additional comparison criteria to measure to what extent
two wakes are in agreement or not.

• Assess the performance of the designed ANN in the context of computational aeroelas-
ticity.

• Study flutter for the proposed aeroelastic problem.

0.4 Thesis outline

The rest of the thesis will be structured as follows. Chapter 1 will cover the necessary back-
ground theory. Then, in chapter 2, the discrete numerical implementation of the UVPM will be
presented, where all the steps of the method are carefully explained. In chapter 3 the structural
model of the airfoil is presented and the equations of motion are derived. Then, in chapter 4,
the aeroelastic model for the system is described and the coupling simulation scheme between
the aerodynamic and structural models is explained in detail. The numerical results are pre-
sented in chapter 5, which is divided into two parts. The first part contains the verification of
the different models implemented, and the second part contains the new cases of study. Finally,
in chapter 6, concluding remarks are presented.



Chapter 1

General aerodynamics

1.1 The governing equations

In this section, the governing equations for the two dimensional continuous model are pre-
sented. For a more in depth explanation of the theory and the full derivation of the equations,
see Kundu and Cohen (2003) and Katz and Plotkin (2001).

1.1.1 Navier - Stokes equations
The fundamental equations governing a flow field are given by the Navier - Stokes equations.
For two dimensional flows, the velocity vector at a given position and time is defined as u =
u(r, t), where r= r(x,y)∈R2. Here, r(x,y)= xex+yey, where ex,ey are Cartesian basis vectors
and x∈R and y∈R are scalar coefficients corresponding to the position in the two dimensional
xy plane. In the most general form, the Navier-Stokes equations can be written as

ρ

(
∂u
∂ t

+u ·∇u
)
= ρg+∇ ·T. (1.1)

In equation (1.1) above, ρ is the mass density [ kg
m2 ],

∂u
∂ t is the time derivative of the velocity [m

s2 ],
u ·∇u is the convective acceleration term of the flow [m

s2 ], g = [0,−g] is the two dimensional
gravitational acceleration vector, where g = 9.81m/s2, ∇ = ∂

∂xex+
∂

∂yey is the two dimensional
gradient operator and ∇ ·T is the divergence of the stress tensor T [ N

m2 ]. For a Newtonian
flow with constant viscosity, the divergence of the stress tensor can be written as ∇ · T =
−∇p+ µ∇2u+ µ

3 ∇(∇ ·u) (Kundu and Cohen (2003)), where p is the pressure [N
m ], µ is the

dynamic viscosity [ kg
ms ]

ρ

(
∂u
∂ t

+u ·∇u
)
= ρg−∇p+µ∇

2u+
µ

3
∇(∇ ·u). (1.2)

The Navier-Stokes equations in equation (1.2) is written in vector form, and is a statement of
the conservation of momentum of the flow.

1.1.2 Continuity equation
The total mass of a fixed control area can be computed by integrating the differential mass
dm = ρdA, over the entire fixed control area. A fixed control area is defined as a stationary
area, in which the total mass is conserved at all times. In figure 1.1, the total mass of the area
enclosed by the boundary curve S.



1.1 The governing equations 7

Flow velocity vector -
u

S boundary curve of the control area

n ·dS = dS

Mass flux = ρu ·dS

mtot =
∫

A ρdA

Figure 1.1: Control area for a flow

mtot =
∫

A
ρdA. (1.3)

The transport of mass due to the flow velocity u is given as ρu · dS, which is the mass flux
through the boundary S, illustrated in figure 1.1. dS is the normal surface vector on the surface
of the boundary S. Since mass must be conserved, the time derivative of the total mass of the
fixed control area be equal to zero, which leads to

dmA

dt
=

∂

∂ t

∫
A

ρdA+
∫

A
ρ(u ·n)dS = 0. (1.4)

The second integral
∫

A ρ(u ·n)dS in equation (1.4) is the line integral of the mass flux of the
entire boundary surface, where n is the normal vector to the surface of the control area. It
computes the total mass flux leaving and entering the boundary surface of the area. From the
divergence theorem, the expression for the line integral can be transformed to the area integral
(Katz and Plotkin (2001) pg.8)

dmA

dt
=

∂

∂ t

∫
A

ρdA+
∫

A
∇ · (uρ)dA =

∫
A
(
∂ρ

∂ t
+∇ · (uρ))dA = 0. (1.5)

The time derivative can be taken inside the integral since the control area is assumed to be
stationary. In order for the integral to be valid for an arbitrary control area, the sum of the
terms inside the integral in equation (1.5) must be zero

∂ρ

∂ t
+∇ · (uρ) = 0. (1.6)

This equation is the continuity equation for the flow, which states the conservation of mass in
differential form.

1.1.3 Potential flow conditions
By making a few assumptions of the flow, the governing equations for the flow can be simplified
to a great extent. From the Helmholtz decomposition theorem, the velocity vector of the flow
can be decomposed into a rotational part ∇×Ψ and an irrotational part ∇φ (Joseph (2006)),
such that

u = ∇×Ψ+∇φ . (1.7)

In the equation above, Ψ = Ψ(x,y) and φ = φ(x,y) are scalar functions in the two dimensional
flow field.
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Incompressible flow condition

An incompressible flow is defined as a flow where the mass density is constant (Kundu and
Cohen (2003) pg.81). By imposing this condition on the flow, the expression for the continuity
equation can be simplified to

∂ρ

∂ t
+∇ · (uρ) = 0+(∇ ·u)ρ +(∇ ·ρ)u = (∇ ·u)ρ = 0. (1.8)

Since ρ is nonzero and constant, dividing both sides by ρ gives the following expression

∇ ·u = 0. (1.9)

Inviscid flow condition

Another simplification of the governing equations of motion is to assume the flow to be invis-
cid. An inviscid flow is a flow where the viscous effects from the viscous forces are not present
(Kundu and Cohen (2003) pg.149). Thus, the dynamic viscosity constant must be zero for an
inviscid flow, µ = 0. The viscosity of the flow is a measure of the flows resistance to move.
Such an inviscid flow will have a nonzero tangential velocity at a solid surface.

µ = 0, non visous flow near solid boundary

u∞

- free stream velocity

µ > 0, visous flow near solid boundary

u∞

- free stream velocity

Figure 1.2: Illustration of invscid vs non inviscid flow

In figure 1.2, the difference between an insvicid flow and non inviscid flow is illustrated. As
one can see, near the solid boundary the insvicid flow maintains the same horizontal velocity,
contrary to the non inviscid flow, where the flow slows down near the solid surface due to
viscous effects.

Irrotational flow

For a flow with velocity vector u, the vorticity vector is defined as the curl of the velocity vector

ω = ∇×u. (1.10)

For an irrotational flow, this quantity is zero everywhere in the flow domain: ω = 0. Thus, if
a flow satisfies both the irrotational, inviscid and the incompressible condition, the flow can be
defined as a potential flow, where the velocity vector can be defined as u = ∇φ .
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1.1.4 Laplace’s equation
From the irrotational flow condition, the rotational part of the decomposed velocity vector has
to be zero, ∇×Ψ = 0 and the velocity vector becomes u = ∇φ . By replacing this expression
for the velocity in the incompressible continuity equation of the flow, leads to the following
expression:

∇ ·u = ∇ ·∇u = ∇
2
φ = 0. (1.11)

This is known as the Laplace’s equation of the flow, which is a linear second order differential
equation.

1.1.5 Incompressible Euler’s equations
From the incompressible flow condition, ∇ ·u = 0. Based on this condition, the Navier-Stokes
equations can be simplified to

∂u
∂ t

+u ·∇u = g− ∇p
ρ

+µ∇
2u. (1.12)

If the insvicid condition for the flow is met as well, then µ = 0, which leads to the viscous term
µ∇2u = 0 and the final equations for the flow becomes the incompressible Euler’s equations

∂u
∂ t

+u ·∇u = g− ∇p
ρ

. (1.13)

As one can see in equation (1.13), the viscous terms disappear in the Euler’s equation and the
only force terms left are the pressure gradient and the gravitational body force.

1.1.6 Boundary conditions
By solving the Laplace’s equation, one can obtain the expression for the velocity potential for
the velocity field. However, there exists an infinite number of different solutions to the problem
∇2φ = 0. In order to obtain a unique solution for the problem, a set of boundary conditions
need to be specified first.

Non-penetration condition

The flow velocity component normal to the boundary surface needs to be equal to the normal
velocity of the boundary surface itself. This is to ensure the fluid doesn’t penetrate the solid
boundary surface, which is physically not possible. If the boundary surface is stationary, the
normal component of the flow must be zero here

u ·n = ∇φ ·n = uboundary ·n = 0. (1.14)

Here, u ·n is the normal velocity of the flow, which must be equal to the normal velocity of the
boundary wall uboundary ·n at this location.
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Boundary condition at infinity

u∞, free-stream velocity

u = u∞ + uD

u = u∞

y

xo

Figure 1.3: Boundary conditions at infinity.

For an the airfoil immersed in a flow with uniform horizontal velocity in the x direction, the
velocity vector near the airfoil is given by: u = ∇φD +∇φ∞. Here, ∇φ∞ = u∞ is the velocity
coming from the free stream, while ∇φD = uD is the velocity coming from the disturbance due
to the airfoil. As the free stream flow leaves the trailing edge of the airfoil, the velocity gets
restored to its initial velocity again u = u∞. This condition is know as the boundary condition
at infinity and is given by

lim
r→∞

∇φD = lim
r→∞

uD = 0. (1.15)

In equation (1.15), the velocity disturbance coming from the airfoil uD decreases as the distance
r goes to infinity. The r value in the subscript of the limit is the Euclidean distance from a point
on the airfoil and to an arbitrary point in the flow domain. Thus, as the distance from the airfoil
grows, the free stream velocity turns back to its original state.

1.1.7 Vortex point solution
One of the fundamental elementary solutions to the Laplace’s equation is the two dimensional
vortex point. The vortex point is a singularity element, which means the Laplace’s equation is
only satisfied for the flow outside the core of the vortex point. The full derivation of the the
velocity potential for vortex point located at position (x0,y0) can be found in Katz and Plotkin
(2001), pg.70, and is given by

φ(x,y) =− Γ

2π
arctan(

y− y0

x− x0
). (1.16)

In equation (1.16), (x0,y0) is the center coordinate of the vortex point, given in Cartesian
coordinates. Γ is the circulation strength of the vortex point, which is defined as Γ =

∫
C u ·dl,

where u is the velocity vector of the flow and dl is an infinitesimal length element of the curve
c. Thus, the circulation Γ [m2

s ] of the flow is the closed line integral of the flow field around
the curve c, enclosing the vortex point. (x,y) is an arbitrary point in the flow. The velocity
components can be found by taking the gradient of the velocity potential, where u = ∇φ(x,y),
and the expression for the velocity components in polar form is given as ur = 0 and uθ =− Γ

2πr .
r =
√
(x− x0)2 +(y− y0)2 is the Euclidean distance between vortex point and point (x,y) in the



1.1 The governing equations 11

flow. Based on the velocity components, the induced velocity from the vortex point decreases
as the distance r from the vortex point increases.

1.1.8 Biot - Savart law
By using the Biot - Savart law, one can obtain the velocity field for any points in the two
dimensional flow domain. For a full derivation for the formula, see (Katz and Plotkin (2001)
pg.44). The expression for the velocity vector at a position r and at time t is given as

u(r, t) =
1

2π

∫
A(r,t)

ω(r, t)× (r− r1)

r2 dA(r, t)+u∞. (1.17)

In the equation above, u∞ is the velocity contribution from the free stream velocity of the flow,
which is assumed to be constant everywhere in the flow domain. The integral term is the
induced velocity from a region of with vorticity in the flow. The value ω(r, t) is the vorticity
vector at r, A(r, t) is the flow domain region, r1 is the point where the induced velocity is being
computed, r = ||r− r1|| is the Euclidean distance between the two points r and r1. In the flow
domain where the flow is irrotational, the integrand term in equation (1.17) is zero, since by
definition ω(r, t) = 0 when the flow is irrotational.

1.1.9 Kelvins theorem
For a closed curve surrounding a body immersed in an potential flow, the expression of the
total derivative of the circulation for this curve is given by

DΓ

Dt
=

D
Dt

∫
C

u ·dl =
∫

C

Du
Dt

·dl+
∫

C
u · D

Dt
dl. (1.18)

In the equation above, Γ is the total circulation around the closed curve C, u is the velocity
vector and dl is an infinitesimal curve element. Its clear from the expression above that Du

Dt = a,
which is the acceleration term and that D

Dt dl = du is an infinitesimal velocity element. Based
on this, the equation becomes

DΓ

Dt
=
∫

C
a ·dl+

∫
C

u ·du =
∫

C
a ·dl. (1.19)

The second term
∫

C u ·du=
∫

C d(u·u
2 ) =

∫
C d(u2

2 ) in the equation is zero since the closed integral
of an exact differential which is a function of the coordinates and time only must be zero (Katz
and Plotkin (2001) pg.31). Here, u ·u = u2 is the dot product of the velocity vector with itself,
where u = |u| is the absolute value of the velocity vector. From the incompressible Euler’s
equation, the expression for the acceleration can be replaced by

DΓ

Dt
=−

∫
C

∇(
p
ρ
) ·dl+

∫
C

g ·dl =−
∫

C
d(

p
ρ
)+

∫
C

g ·dl = 0. (1.20)

The expression for DΓ

Dt is zero since
∫

C d p
ρ

is just p
ρ

evaluated at the end points of the curve,
which are the same since the curve is closed and thus must be zero.The second term is zero
sine the force is gravity and the work done by any conservative force around a closed curve
must be zero.
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Airfoil

Airfoil

C1

Γ1 = 0

u∞ = 0

a

b

u∞

C2

Γ2

Γ1

Γ1 +Γ2 = 0

Figure 1.4: Development of circulation for closed curve around airfoil.

As one can see from figure 1.4, the total circulation around the airfoil enclosed by curve C1
is zero at the beginning, since the free stream velocity u∞ = 0 and thus Γ1 =

∫
C1

u ·dl= 0. In the
airfoil below in figure 1.4, the circulation around the airfoil is positive, but the sum of the wake
circulations cancel the positive contribution and thus total circulation for the curve C2 which
encloses the airfoil and the wake is still 0. The line connected by the points b and d divides the
circulation part around the airfoil and the circulation values of the wakes. Thus, for any curve
enclosing both the wake and the airfoil, the total derivative of the circulation enclosed by this
curve must satisfy

DΓ(t)
Dt

=
Γair f oil(t)+Γwake(t)

∆t
= 0. (1.21)

1.1.10 The Kutta - Joukowski theorem
From the results of Kelvins theorem, the total circulation from the airfoil and the wake must add
to zero, thus the circulation around the airfoil has different sign to the circulation for the wake.
If the airfoil produces lift, the circulation Γ =

∫
S u ·dl must be finite (Anderson (2011) pg.245),

where S is a curve enclosing the airfoil. The lift of airfoil is given by the Kutta-Joukowski
theorem, where

L = ρu∞Γair f oil. (1.22)
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The Kutta-Joukowski theorem states that the lift of the airfoil is directly proportional to the
circulation around the airfoil (Anderson (2011) pg.245). In the equation, L is the total lift [kg·m

s2 ]
of the airfoil, perpendicular to the free stream velocity u∞ and Γair f oil is the total circulation
around the airfoil.

1.1.11 The unsteady Bernoullis equation
From the flow is assumed to be a potential flow, the velocity vector for the flow field can
be written in terms of the velocity potential of the flow, where u = ∇φ . Based on this, the
incompressible Euler’s equation can be rewritten as

∂u
∂ t

+u ·∇u =
∂u
∂ t

+
∇u2

2
−u×ω = g−∇

P
ρ
, (1.23)

where u2 = u · u. Since the flow is irrotational, ω = 0 and the velocity vector u = ∇φ , the
equation becomes

∇
∂φ

∂ t
+∇

p
ρ
+∇

u2

2
−g = ∇

(
E +

p
ρ
+

u2

2
+

∂φ

∂ t

)
= 0. (1.24)

The term g is written in terms of g =−∇E since its assumed to be a conservative body force,
where E is the gravity potential (Katz and Plotkin (2001) pg.34). The equation is valid if the
sum of the terms inside the brackets only depend on time, and the final expression turns into:

E +
p
ρ
+

u2

2
+

∂φ

∂ t
=C(t), (1.25)

where C(t) is some time dependent term, since the left hand side of eq.(1.24) only depends on
time. eq.(1.24) is the unsteady Bernoulli equation for the potential flow. By considering two
different points in the flow, the unsteady Bernoulli equation must satisfy(

E +
p
ρ
+

u2

2
+

∂φ

∂ t

)
=

(
E +

p
ρ
+

u2

2
+

∂φ

∂ t

)
∞

, (1.26)

where left handside of eq.(1.24) is some arbitrary point point and the right handside is a refer-
ence point at infinity. If one assumes that E∞ = 0, φ∞ = const and u∞ = 0, the pressure jump
or the pressure difference between the two points can be found by

p∞ − p
ρ

=
∂φ

∂ t
+E +

u2

2
. (1.27)

1.2 Thin airfoil theory

For a thin airfoil, one can approximate the flow field around this body by modelling the camber
line of the airfoil as a vortex sheet. The purpose of placing a vortex sheet on the camber line is
to transform the airfoil to a streamline of the flow, which satisfies the boundary conditions and
the Laplace’s equation.
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Mean camber line

Trailing edge - TE

Leading edge -
LE

Chord line

c - Chord

Figure 1.5: Cambered airfoil - description

Figure 1.5 shows a general cambered airfoil. The mean camber line is the line connected
between the leading edge and trailing edge with equal distance to the upper and lower part of
the airfoil. The chord line is the straight line connected from the leading edge to the trailing
edge. For an symmetric airfoil, the mean camber line is equal to the straight chord line (see
figure 1.6).

1.2.1 Continuous vortex sheet approximation
A vortex sheet is defined as a continuous segment in which a vortex density function γ = γ(s)
is defined over some interval.

Symmetric airfoil

γ(s)ds

Continuous vortex sheet , γ = γ(s)

Figure 1.6: Approximation of the airfoil by a vortex sheet

Figure 1.6 shows how the thin symmetric airfoil can be modelled by approximating the
camber line of the airfoil as a continuous vortex sheet.The induced velocity of a small segment
of this vortex sheet can be found using Biot - Savarts law, such that

du(x) =−γ(s)ds
2πr

. (1.28)

Here, r is the Euclidean distance from the infinitesimal vortex segment γds to the position
vector x = (x,y), where the velocity is induced from the vortex segment. For the rest of this
chapter, the model is assumed to be continuous and only valid for small angle approximations.

1.2.2 Non penetration boundary condition
In order for the camber line to be a streamline, the normal velocity component must be zero, in
which

u∞,n +w(s) = 0. (1.29)

Here, u∞,n is the normal component of the free stream velocity and w(s) is the induced normal
component from the vortex sheet at the position vector s on the vortex sheet along the chord
line. The normal free stream velocity expression for an symmetric airfoil with an incoming
flow at an angle of attack α is then

u∞,n = u∞ ·n = u∞ sinα. (1.30)
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u∞

x

y

α - angle of attack

Figure 1.7: The angle of attack for an airfoil, with horizontal free stream velocity

In figure 1.7, the angle of attack is defined as the angle between the free stream velocity and
the chord line of the thin symmetric airfoil. For small angles, sinα ≈ α , and equation (1.30)
becomes

u∞,n = u∞α. (1.31)

In order to calculate the total velocity at position x induced from the vortex sheet, one can
integrate du(x) along the whole vortex sheet, which is from the leading edge to the trailing
edge (Anderson (2011), pg.301)

u(x) =−
∫ c

0

γ(s)ds
2πr(x)

, (1.32)

where r(x) is the Euclidean distance from x to ds on the chord line.

1.2.3 Kuttas condition
For a given airfoil at a small angle of attack relative to the steady free stream velocity, the flow
needs to leave the trailing edge of the airfoil smoothly at the top and the bottom (Anderson
(2011) pg.291). In order for this to happen, both the upper and lower velocities at the trail-
ing edge must cancel each other, such that this point becomes a stagnation point. Thus, the
circulation strength at the trailing edge must satisfy γ(T E) = 0.

Kutta condition satisfiedu∞

u∞

Kutta condition not satisfied

Figure 1.8: The kutta condition - illustration for an airfoil
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In figure 1.8, the top airfoil satisfies the Kutta condition at the trailing edge, while the lower
airfoil does not, since the flow leaves the trailing edge smoothly for the airfoil on the top.

1.2.4 Fundamental equation of thin airfoil theory
The value of w(s) can be computed using equation (1.32), which leads

w(s) =−
∫ c

0

γ(s)ds
2πr(s)

. (1.33)

Based on this new expression for w(s), the non penetration condition for the continuous model
becomes

− 1
2π

∫ c

0

γ(s)ds
r(s)

= u∞α. (1.34)

This expression is known as the fundamental equation of the thin airfoil theory, assuming the
airfoil is symmetric. The integral can be solved by a variable transformation (Anderson (2011)
pg.302) given by

s =
c
2
(1− cosθ), (1.35)

and substituting for this in equation (1.31) leads to the integral

1
2π

∫
π

0

γ(θ)sinθdθ

cosθ − cosθ0
= u∞α. (1.36)

For the limits in the integral, θ = 0 corresponds to the position at the leading edge and θ = π

corresponds to the position at the trailing edge of the airfoil. θ0 corresponds to the given x
value in terms of θ . The solution of the integral can be found in Anderson (2011), page 302.
The explicit solution for γ(θ) becomes

γ(θ) = 2αu∞

(1+ cosθ)

sinθ
. (1.37)

1.2.5 Analytical coefficients
In this part, the analytical lift and moment coefficients are derived for the continuous model.
The analytical coefficients for the continuous model will become important for verifying the
discrete numerical method discussed in chapter 3.

Analytical lift coefficient

The analytical lift coefficient can be found by first finding the total circulation around the
airfoil, which is done by integration of the expression for γ(s) along the vortex sheet

Γ =
∫ c

0
γ(s)ds =

c
2

∫
π

0
γ(θ)sinθdθ = αcu∞

∫
π

0
(1+ cosπ)dθ = παcu∞. (1.38)

The expression for the circulation can be replaced in the Kutta- Joukowski equation for the lift
L, which leads to the following expression

L = ρ∞u∞Γ = παcρ∞u2
∞. (1.39)
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Thus, the expression for the nondimensional lift coefficient turns into

cl =
L

1
2ρu2

∞c
=

παcρu2
∞

1
2ρu2

∞c
= 2πα, (1.40)

where α is the angle of attack in radians. The following result state that lift coefficient is
linearly proportional to the angle of attack, for small angle approximations (Anderson (2011)
pg.304). Its the steady state solution of the lift coefficient.

Analytical moment coefficient

The total moment about the leading edge of the vortex sheet can be found by integrating dM =
−s ·dL along the vortex sheet

M′
LE =−

∫ c

0
s ·dL =−ρu∞

∫ c

0
s · γ(s)ds =−1

2
u2

∞ρc2 πα

2
, (1.41)

and the expression for the moment coefficient becomes

cm,le =
M′

LE
1
2ρu2

∞c2
=−πα

2
. (1.42)

But from the expression of the lift coefficient, one can see that πα = cl
2 . Thus, in terms of cl ,

the moment coefficient can be rewritten as

cm,le =−cl
4
, (1.43)

and the moment coefficient about the quarter chord point becomes

cm,c/4 = cm,le +
cl

4
= 0. (1.44)

Equation (1.44) shows that the center of pressure is at the quarter chord point for the thin airfoil
approximation.



Chapter 2

Aerodynamic model

In this chapter, the unsteady vortex particle method is presented. This method will be used for
computing the aerodynamic loads acting on the airfoil and for convecting the wake particles
behind the airfoil. The flow around the airfoil is assumed to be inviscid, irrotational and incom-
pressible, except at the boundary surface of the body and for the wakes (Roccia et al. (2020)).
The flow chart below shows the steps for the method.

2.1 Superposition principle

If a set of n velocity potentials φ1,φ2, ...,φn satisfy the Laplace’s equation individually, then
one can construct another velocity potential, φ , which is a linear combination of these other
velocity potentials, where

φ =
n

∑
i=1

ciφi. (2.1)

Here, the ci are arbitrary constants and this equation must satisfy the Laplace’s equation

∇
2
φ =

n

∑
i=1

ci∇
2
φi = 0. (2.2)

The thin airfoil continuous vortex approximation described in chapter 2 can be simplified by
replacing the continuous vortex function γ(s) with a number of discrete vortex points on the
camber line of the airfoil instead.

2.1.1 Vortex point solution
Lumped vortex element

Instead of using a continuous vortex distribution to represent the airfoil as described in chapter
1.2, one can use a set of discrete vortex point elements instead. This is done by placing the
total lift L = ρu∞Γ at the center of pressure, which is located at the c

4 position. For a single
vortex point placed on the airfoil surface, the non penetration boundary condition on the airfoil
is given by

− Γ

2π(kc− 1
4c)

+u∞α =− πcu∞α

2π(kc− 1
4c)

+u∞α = 0. (2.3)

Here kc is the unknown position on the airfoil where the induced velocity is located. Solving
for k in equation (2.3) leads to k = 3

4 . This 3
4c position is known as the collocation point.

The Kutta condition is automatically satisfied when the boundary condition is evaluated at this
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point (Katz and Plotkin (2001) pg.135). The vortex point solution is used as the singularity
element to model both the airfoil and the free wake particles behind the airfoil.The airfoil will
be represented as a set of discrete vortex particles placed along the camber line of the airfoil.
The induced velocity at a collocation point i from a vortex point j is given by the formula (Katz
and Plotkin (2001) pg.303)

u =

[
u
v

]
=

Γ j

2πr2
j

[
0 1
−1 0

][
xi − x j
yi − y j.

]
(2.4)

Here, Γ j is the vortex strength and r2
j = (xi − x j)

2 +(yi − y j)
2. u and v are the horizontal and

vertical velocity components.

Cutoff radius

When the distance between the vortex point and the point of interest goes to zero, the factor
Γ j

2πr2
j

goes to infinity, limr j→0
Γ j

2πr2
j
= ∞.

Γ j

2πr2
j

(0,0)
r j

Figure 2.1: Plot of the induced velocity from a vortex singularity as a function of the distance r to the point
where the velocity is induced.

In figure 2.1, the term Γ j

2πr2
j

for vortex singularity point is plotted as a function of the Eu-

clidean distance r j. As one can observe, this term goes to infinity as r j goes to zero. Due to
this problem, a cutoff radius needs to be defined such that the induced velocity does not go to
infinity as the distance between the point where the velocity is induced and the position of the
vortex point decreases.

r j =
√

(xi − x j)2 +(yi − y j)2 >= rcuto f f . (2.5)

In Algorithm 1, the induced velocity at point (xi,yi) is only computed when the Euclidean
distance between this point and the vortex point located at (x j,y j) is greater than the cutoff
radius. Otherwise, u = 0. By following this approach, the large induced velocity from the
vortex point is avoided as the distance gets smaller. At the boundary surface of the airfoil, this
cutoff is set to zero, rcuto f f = 0. As a consequence of setting rcuto f f = 0 for the vortex points
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Algorithm 1 Calculate induced vortex velocity - VOR2D(Γ,xi,yi,x j,y j,rcuto f f )

1: r j =
√

(xi − x j)2 +(yi − y j)2

2: if r j > rcuto f f then
3: u = Γ

2πr2
j
(yi − y j)

4: v =− Γ

2πr2
j
(xi − x j)

5: else
6: u = 0
7: v = 0
8: end if

at the boundary surface, the numerical discretization error will increase, depending on how
many vortex points are used for modelling the airfoil surface and how close they are. When the
number of vortex points on the surface goes to infinity, the model used for the airfoil should be
rendered, since the numerical discretization will grow and become too large.

2.2 Airfoil panel discretization

The airfoil is discretized by dividing the chord of the airfoil into N number of panels, where
each panel has an equal length of ∆l = c

N . Here, c is the chord length [m] and N is the total
number of panels.

Γ1(t)

Wake

Trailing vortex

Boundary layer

Free vortices

Γ2(t)
Γ3(t)

Γ4(t)

c4

Control points (CPs)

Vortex points (VPs)

n̂4

VP CP

3
4c4

1
4c4

Aerodynamic element

Figure 2.2: Discretization of the airfoil, using discrete vortex particles on the airfoil and the wake points.

Figure 2.2 shows how the thin airfoil and its wake is discretized using discrete vortex parti-
cles. As one can observe from figure 2.2, the singularity vortex particle elements are placed on
each panel at the 1

4 point of each panel along the chord line, and similarly the collocation point
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is placed at the 3
4 point of the panel. The collocation points are the points on the airfoil panels

where the non-penetration boundary condition is computed.

Computation of vortex and collocation points

The vortex points and collocation points can be computed using a for loop and storing the
values in a vector. The procedure for this is shown in Algorithm 2

Algorithm 2 Discretization of the airfoil
1: for i = 1 to i = N do
2: xi

vort = cosα(∆l(i−1)+ 1
4∆l)

3: yi
vort =−sinα(∆l(i−1)+ 1

4∆l)
4: xi

colloc = cosα(∆l(i−1)+ 3
4∆l)

5: yi
colloc =−sinα(∆l(i−1)+ 3

4∆l)
6: end for

x

y

α

Control points (CPs)
Vortex points (VPs)

(x1
vort ,y

1
vort) =

(1
4∆lcosα , - 1

4∆lsinα)

(x1
colloc, y1

colloc) = (3
4∆lcosα , -3

4∆lsinα)

∆l t4 =
(cosα,−sinα)

Figure 2.3: airfoil coordinates - vortex point and collocation point.

In figure 2.3, one can see the values of the corresponding collocation and vortex points for
the first panel at the airfoil. In figure 2.3, the leading edge of the airfoil is assumed to be at the
origin of the coordinate system. In the formula above, the latest shed wake vortex point moves
a distance of

∆xwake = 0.25u∞∆t (2.6)

for each time step, and leaves the trailing edge smoothly. Here, ∆t is the value of the time
increment [s].

Normal and tangential vectors

The values of the normal and tangent vectors depends only the angle of attack of the airfoil and
thus it is the same for all the panels, since the airfoil is assumed to be uncambered. In figure
2.2 and figure 2.3, the normal vector and the tangent vector for the fourth panel are displayed.
The angle of attack is assumed to be positive in the clockwise direction. Thus, the formulas for
the normal and tangential vectors for the airfoil becomes

n j = n = (sinα,cosα), (2.7)
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t j = t = (cosα,−sinα). (2.8)

2.3 Influence matrix

The normal velocity components at each of the collocation points need to satisfy the non pen-
etration boundary condition, which states that

(u j
W +u j

B +u∞ −up) ·n = 0. (2.9)

In equation (2.9), u j
W is the velocity at collocation point j induced by the free wake particles, u j

B
is the induced velocity at collocation point j from the vortex particles on the airfoil boundary
surface, u∞ is the free stream velocity vector and u j

p is the velocity of the solid at collocation
point j. By transferring all the known terms to the right hand side of equation (2.9) leads to

u j
B ·n = (−u∞ −u j

W +up) ·n. (2.10)

The expression for the total induced velocity due to the vortex particles placed on the boundary
surface of the airfoil and the latest shed vortex point at collocation point j is given by

u j
B = a j1Γ1 +a j2Γ2 + ...+a jNΓN +a jW ΓW . (2.11)

The a ji coefficients in equation (2.11) are the influence coefficients. The influence coefficient
is defined as the induced normal velocity at a given collocation point i from a vortex particle j
with unit circulation strength Γ j = 1,

ai j = (u,v)i j ·n. (2.12)

The expression for (u,v)i j can be found from the formula for the induced velocity of a vortex
particle with strength Γ = 1. If the airfoil is assumed to be rigid and is not going through any
deformation, these values must be constant. Thus, the full no penetration boundary condition
at a collocation point can be summarized as

a j1Γ1 +a j2Γ2 + ...+a jNΓN +aiW ΓW =−(u∞ +u j
W −u j

p) ·n. (2.13)

Since theres a total of N collocation points, the total system of linear equation becomes
a11 a12 ... a1N a1W
a21 a22 ... a2N a2W

...
... ...

...
aN1 aN2 ... aNN aNW
1 1 ... 1 1




Γ1
Γ2
...

ΓN
ΓWi

=


RHS1
RHS2

...
RHSN

Γ(t −∆t)

 . (2.14)

The (N + 1)× (N + 1) matrix on the left hand side of equation (2.14) is known as the influ-
ence matrix A. The last row of matrix A comes from Kelvins condition, which states that the
total circulation of the wake particles and the vortex particles on the airfoil combined must be
conserved for each time step. Γ(t)+Γ(t −∆t)+ΓWi = 0, where Γ(t) = ∑

N
j=1 Γ j is the total

airfoil circulation around the airfoil at time t and ΓWi is the circulation strength of the newly
shed wake vortex particle. The other components for the right hand side vector are defined as
RHS j =−(u∞ +u j

W −u j
p) ·n.
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Algorithm for computing A

The A matrix containing all the influence coefficients can be computed by replacing the vortex
strength on each vortex point with Γ = 1. Algorithm 3 below shows how this is done, by using
the subroutine VOR2D defined in Algorithm 1. The ai j components can be computed using
two for loops, where the first loop scans each collocation points while the inner loop scans the
vortex points.

Algorithm 3 Calculate influence matrix A
1: for i = 1 to i = N do
2: for j = 1 to = N do
3: (u,v)i j =VOR2D(Γ = 1,xi,yi,x j,y j,0)
4: ai j = (u,v)i j ·ni
5: end for
6: end for

Once the influence matrix is calculated, the only unknown term left is the circulation
strengths vector Γ. In matrix form, the equation becomes

AΓ(ti) = RHS(ti). (2.15)

In the equation (2.15), A is the (N +1)× (N +1) influence matrix, Γ is a (N +1)×1 column
vector with the circulation strengths for the vortex particles and RHS is the (N + 1)× 1 right
hand side vector, containing all the known terms. The Γ vector solved by approximating the
left hand side with the right hand side of equation (2.15), using an iterative method and not by
inverting matrix A, since inverting matrix A is computationally more expensive.

2.4 Computation of the aerodynamic loads

With the values of the circulation vector Γ(ti), one can compute the applied jump of pressures
and aerodynamic loads on each of the panels of the airfoil. The formula used to derive the ex-
pression for the pressure and loads comes from the unsteady Bernoulli equation 1.25, described
in the chapter 2.

Pressure jump

From the unsteady Bernoulli equation, for two points with different pressure values at the chord
line must satisfy

Pl

ρ
+

u2
l

2
+

∂φl

∂ t
=

Pu

ρ
+

u2
u

2
+

∂φu

∂ t
. (2.16)

The subscript l stands for lower and u for upper camber line. The gravitational potential E =
−gy is neglected here, since the difference in height ∆y ≈ 0 for the thin airfoil. The pressure
difference between the upper and lower camber line then becomes

∆p = pl − pu = ρ[(
u2

t

2
)u − (

u2
t

2
)l +(

∂φ

∂ t
)u − (

∂φ

∂ t
)l]. (2.17)

The ut is the absolute value of the tangential velocity. The expression for the tangential velocity
vector at the collocation point j on the airfoil can be found by

u j
t = u j

tot · t j ±
∂φ

∂ t j
. (2.18)
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The ±sign stands for above and below the surface and u j
tot = u∞ +u j

W +u j
B −up, is the total

velocity at collocation point j. The equation for the tangential velocity at panel j is the dot
product of the total velocity at the collocation point on this panel with the tangent vector. The
tangential derivative of the velocity potential is approximated by

±∂φ

∂ t j
≈±

Γ j

2∆l j
. (2.19)

The expression for the time derivative of the velocity potential is computed using the formula

±
∂φ j

∂ t
≈± ∆

∆t

j

∑
k=1

Γk

2
=± 1

∆t

j

∑
k=1

Γk(ti)−Γk(ti−1)

2
. (2.20)

In equation (2.20), the local velocity potential at panel number j is the sum of the vortices from
the leading edge to the vortex point number j. Combining all the terms, the full numerical
expression for computing the pressure difference between the upper and lower panel surface j
of the airfoil becomes

∆p j(ti) = ρ

(
u j

tot · t j
Γ j(ti)
∆c j

+
1
∆t

j

∑
k=1

Γk(ti)−Γk(ti−1)

2

)
. (2.21)

Lift force

The total lift force can be computed by approximating the integral of the pressure difference
along the chord line of the airfoil, such that

L = Fy =
N

∑
j=1

∆p j∆c j cosα. (2.22)

The lift in equation (2.22) is valid when the free stream velocity u∞ is assumed to be horizontal.

Horizontal force

The horizontal force component is computed by integrating the force which passes in the hori-
zontal direction of the airfoil

Fx =
N

∑
j=1

∆p j∆c j sinα. (2.23)

Moment

The moment about the leading edge of the airfoil can be computed by the formula

M0 =−
N

∑
j=1

∆p j cosα∆c jx j (2.24)
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Figure 2.4: Pressure force decomposition of the airfoil.

Non dimensional lift coefficient

If the lift of the airfoil is known, then the numerical non dimensional lift coefficient can be
computed as

CL =
L

1
2ρu2

∞c
. (2.25)

u2
∞ = u∞ ·u∞ is the dot product of the free stream velocity with itself, L is the total lift of the

airfoil, ρ is the air mass density and c is the length of the chord line.

Non dimensional drag coefficient

From the horizontal force, the non dimensional drag coefficient is defined as

CD =
Fx

1
2ρu2

∞c
. (2.26)

Jump of pressure coefficient

Similarly, the numerical non dimensional jump of pressure coefficient at panel j can be com-
puted as

∆C j
P =

∆Pj
1
2ρu2

∞

. (2.27)

2.5 Wake particle convection

The wake vortex particles have to move with the local stream velocity, due to the constraint
that the vortex wake is force free (Katz and Plotkin (2001) pg.475). The local velocity for a
wake vortex point is calculated as a combination of the total velocity induced by the other wake
vortex particles and the vortex particles on the airfoil
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ui
w =

N

∑
j=1

∇φ j(xi)+
Nw

∑
k=1

∇φk(xi)+∇φ∞. (2.28)

In the equation above, xi is the location of the wake vortex particle of interest, ui
w is the total

induced velocity at this wake vortex particle. The induced velocity is written as a superposition
of the different velocity potentials, where ∑

N
j=1 ∇φ j(xi) is the sum of the induced velocities

from the bound vortex points at the boundary surface on the wake vortex point. The value of
∇φ j(xi) can be found using the formula for the induced velocity from a vortex point given in
eq.(2.4). The second term ∑

Nw
k=1 ∇φk(xi) is the sum of the induced velocities from the wake

vortex particles and the last term ∇φ∞ is the free stream velocity contribution. The vortex
strengths of the wake particles Γk are assumed to be constant. The flow chart in figure 2.5
shows the steps for the unsteady vortex particle method.

Unsteady vortex particle
method - steps

Compute RHS vector
for the time ti+1

Compute the
aerodynamic loads

Convect the wake

ti+1 = ti +∆t

Solve for the
Γ(ti+1) vector

End

Discretization of the airfoil

Compute influence matrix
(Assume rigid airfoil)

Figure 2.5: Flow chart of the unsteady vortex method.



Chapter 3

Structural model

In this chapter, the structural model of the airfoil is presented and explained. A structural model
for the airfoil is necessary in order to predict the consistent response of the mechanical system
when the aerodynamic loads are applied to the system. A two degrees of freedom system
is considered in this case, allowing pitching and plunging motion of the rigid airfoil. The
equations of motion for the structural model are derived using the Lagrange’s equations. The
chapter ends with introducing the concept of a neural network generated spring term, which
can be used as a replacement for the analytical spring terms in the equations of motion for the
airfoil.

3.1 Physical system

i1

i2

b2

b1

kh

θ P

b
2

b
2

(1+ e)b

(1+a)b

Q

T

kθ

C

Figure 3.1: Structural model - details.

The setup for the airfoil with two degrees of freedom is illustrated in figure 3.1. Based figure
3.1 above, b is the half chord length of the airfoil, P is the reference point, C is the center of
mass, Q is the aerodynamic center and T is the three quarter chord. The aerodynamic center
Q is defined as the position where the aerodynamic moment remains constant, independent of
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the angle of attack. For symmetric airfoils, the aerodynamic moment about the aerodynamic
center is always 0 for all angles of attack (NASA). e and a are dimensionless numbers, where
e,a ∈ [−1,1]. kθ and kh are the stiffness coefficients related to the torsional spring and the
vertical plunging spring. The rotation angle θ is the rotation of the body frame coordinate
system with basis vectors b1,b2 of the airfoil, relative to the stationary inertial frame with basis
vectors i1, i2.

3.1.1 Plunging airfoil motion
The airfoil structure can undergo plunging oscillations about some reference point. This type
of motion is characterized by a motion in the vertical direction varying with time. The change
of vertical position can be described using a sinusoidal function

h(t) = h0 · sin(ω · t). (3.1)

In equation (3.1) ω is the angular frequency, while h0 is the maximum amplitude. Figure 3.2
illustrates this type of motion.

x x

−h0 θ0

−θ0
+h0

Plunging motion Pitching motion
y y

Figure 3.2: plunging and pitching airfoil illustration.

3.1.2 Pitching airfoil motion
The pitching oscillation is described as varying the angle of rotation of the structure with re-
spect to some reference point on the airfoil edge. This can be illustrated in figure 3.2, where
the airfoil is undergoing pitching motion about the leading edge of the airfoil. The pitching
motion in figure 3.2 is periodic and given by the formula

θ(t) = θ0 · sin(ω · t). (3.2)

In equation (3.2), θ0 is the max pitching angle.
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3.2 Equations of motion

For deriving the equations of motion for the airfoil structural system, the Lagrange’s equations
are used. In order to use Lagrange’s equations, its first necessary to identify the potential and
kinetic energy terms of the structural system.

Potential energy

The general formula for the potential energy of a spring with a stiffness coefficient k is given
by (Young et al. (2006)) Ep =

1
2kx2. Here, x is the displacement from the equilibrium position

of the system and k is the stiffness coefficient. Thus, the total energy potential for the airfoil
structural model in figure 3.2, which consists of a vertical and torsional linear spring becomes

U =
1
2

khh2 +
1
2

kθ θ
2. (3.3)

Here h is the vertical plunging distance and θ is the torsional twist angle from the equilibrium.

Kinetic energy

The kinetic energy is derived using the center of mass as the point for the velocity. The total
velocity at the center of mass is given by

vC = vP + θ̇b3 ×b[(1+a)− (1+ e)]b1. (3.4)

In equation (3.4), vP is the plunging velocity of the reference point P, vP = ḣi2. The overdot
used in ḣ and θ̇ is the same as the time derivative of h and θ . The unit vector b3 is the unit
vector pointing outside of the two dimensional plane, orthogonal to vector b1 and b2 in figure
3.1. By performing the cross product of the second term, the total velocity of the center of
mass becomes

vC = ḣi2 +bθ̇(a− e)b2. (3.5)

Thus, the total kinetic energy can be written as

T =
1
2

mvC ·vC +
1
2

ICθ̇
2. (3.6)

The relationship between the unit vectors in the body reference system expressed in terms of
the unit vectors of the stationary system is expressed as

b1 = cos(θ)i1 + sin(θ)i2, (3.7)

b2 =−sin(θ)i1 + cos(θ)i2. (3.8)

This relationship between unit vectors in the body reference system and the unit vectors of the
stationary system is shown in figure 3.1. The IC term is the moment of inertia about the center
of mass of the airfoil. In order to get the expression of the kinetic energy T, the velocity of the
center of mass can be written in terms of inertial unit vectors

vC =−bθ̇(a− e)sin(θ)î1 +(cos(θ)bθ̇(a− e)+ ḣ)î2. (3.9)

Thus, the first part of the expression for the kinetic energy becomes

1
2

mvC ·vC =
1
2

m(b2
θ̇

2(a− e)2 sin(θ)2 + cos(θ)2b2
θ̇

2(a− e)2 +2ḣcos(θ)θ̇(a− e)b+ ḣ2),

(3.10)
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which can be further simplified to

T =
1
2

m(b2
θ̇

2x2
θ +2ḣcos(θ)bθ̇xθ + ḣ2)+

1
2

ICθ̇
2. (3.11)

xθ = a− e in equation (3.11) and is defined as the chordwise offset of the center of mass from
the reference point. By using the parallell axis theorem, the kinetic energy term can be written
as

T =
1
2

m(2ḣcos(θ)bθ̇xθ + ḣ2)+
1
2

IPθ̇
2, (3.12)

where IP = IC +mb2x2
θ

is the moment of inertia about the reference point P.

Generalized forces

The generalized forces related to the generalized coordinates h and θ can be found using the
concept of virtual work. This is done by first computing the virtual displacement done by the
aerodynamic lift about the center of mass C and similarly by computing the virtual rotation
done by the pitching moment about C. The virtual displacement for the center of mass is ob-
tained by replacing the derivatives in the expression for the velocity with the differential d
instead. Thus, the virtual displacement of the point C is

dPC = dhi2 +bdθ(a+
1
2
)b2. (3.13)

Furthermore, since the angular velocity of the airfoil is θ̇b3, the virtual rotation simply becomes
δθb3. The total virtual work for this point then is expressed as

dW = FL(dh+b(a+
1
2
)dθ)+M1

4
dθ . (3.14)

Here, FL is the lift force and M1
4

is the moment about the reference point P coming from the
angular velocity of the system. Thus, collecting the terms for dθ and dh, the generalized forces
becomes

Qh = FL, (3.15)

and
Qθ = FLb(a+

1
2
)+M1

4
= M. (3.16)

Thus, the generalized force associated with h is the lift and the generalized force associated
with θ is the pitching moment about the reference point P.

Lagrange’s equations

Lagrange’s equation of the system can be derived by using q1 = h and q2 = θ .The general form
of Lagrange’s equations are given by

d
dt

∂L
∂ q̇

− ∂L
∂q

= Qi. (3.17)

L = T −U is the difference between the kinetic and potential energy and q is the generalized
coordinate and Qi is the generalized force. By setting q = h, one can solve for the plunge
coordinate first

d
dt

∂T
∂ ḣ

− ∂T
∂h

+
∂U
∂h

=−msin(θ)θ̇ 2bxθ +mcos(θ)bθ̈xθ +mḧ+ khh = Qh. (3.18)
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Similarly setting for q = θ leads to

d
dt

∂T
∂ θ̇

− ∂T
∂θ

+
∂U
∂θ

= mθ̈b2x2
θ+

mbxθ ḧcos(θ)−mbxθ ḣsin(θ)θ̇ +mbxθ sinθθ̇ ḣ+ ICθ̈ + kθ θ = Qθ , (3.19)

which is further simplified to

mθ̈b2x2
θ +mbxθ ḧcos(θ)+ ICθ̈ + kθ θ = Qθ . (3.20)

In matrix form, this system of equations can be written as[
m mbxθ cosθ

mbxθ cosθ IP

][
ḧ
θ̈

]
+

[
0 −mbxθ sinθθ̇

0 0

][
ḣ
θ̇

]
+

[
kh 0
0 kθ

][
h
θ

]
=

[
Qh
Qθ

]
(3.21)

Nonlinear spring

The system of equations discussed so far assumed the torsional spring and the plunging spring
to be linear. In order to investigate the effects structural nonlinearities have on system, a cubic
term is introduced in the spring moment and the spring force, and the equation of motions
becomes

mḧ+mbxθ cosθθ̈ −mbxθ sinθθ̇
2 + khh+ khnlh3 = Qh (3.22)

for the plunge and
mbxθ cosθ ḧ+ IPθ̈ + kθ θ + kθnlθ

3 = Qθ (3.23)

for the pitching motion. The values of the nonlinear coefficients are chosen to be khnl = 0.01kh
and kθnl = 0.01kθ . The cubic terms have a hardening effect since they are positive. The choice
of using a cubic term is because this makes the spring moment Fθ (θ) = kθ + knonlin−θ θ 3 and
the spring force Fh(h) = khh+ knonlin−hh3 nonlinear functions. Furthermore, the cubic spring
terms must come from an elastic potential of fourth order. The elastic potential function for the
cubic force and moment terms will therefore have a parabola shape, which makes it bounded
below. This is an requirement to avoid stability of the system.

System of equations

The full system of equations in matrix for for the linear spring can be written as

Mq̈(t)+Dq̇(t)+klinq(t) = F(t), (3.24)

and similarly for the nonlinear spring, the full system of equations in matrix form becomes

Mq̈(t)+Dq̇(t)+klinq(t)+knonlinq3(t) = F(t). (3.25)

Here,

M =

[
m mbxθ cosθ

mbxθ cosθ IP

]
(3.26)

is known as the mass matrix and

D =

[
dh −mbxθ sinθθ̇

0 dθ

]
(3.27)
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is the matrix containing the damping terms dh,dθ , related to the plunging and torsional springs
and additionally the nonlinear term −mbxθ sinθθ̇ .

klin =

[
kh 0
0 kθ

]
(3.28)

contains the linear spring coefficient terms and

knonlin =

[
knonlin−h 0

0 knonlin−θ

]
(3.29)

is the nonlinear spring matrix, containing the nonlinear spring terms. q(t) =
[

h(t)
θ(t)

]
is the state

vector for the airfoil, containing the plunging height h(t) and pitching rotation angle θ(t) at
time t from the equilibrium position.

F(t) =
[

FL
M

]
(3.30)

is a 1×2 column vector, which contains the lift force FL and the total moment M at time t.

3.2.1 Neural Network generated spring
In the equations of motion for the structural model, the analytical spring force and moment
contribution from the plunging and pitching nonlinear springs is

Fh(h) = khh+ knonlin−hh3, (3.31)

and
Fθ (θ) = kθ θ + knonlin−θ θ

3. (3.32)

The idea is to use a neural network as a tool for reproducing or approximating the analyti-
cal expressions for the plunging and pitching nonlinear spring terms and replace them in the
equation of motions.

Short description of neural networks

The domain of artificial neural networks belongs to the bigger domain known as machine learn-
ing. The field of machine learning can be divided into three main parts which are supervised
learning, unsupervised learning and reinforcement learning. Supervised learning is defined as
the process of using labeled input datasets for training algorithms in classifying the output data
(IBM). Unsupervised learning differs from supervised learning where contrary to supervised
learning, it does not use labeled input data for training algorithms in order to classify the out-
put data. Reinforcement learning is based on training an agent to maximize its reward, based
on previous training experience and does not need labeled input data during the training. The
field of artificial neural networks belongs to the supervised learning part of machine learning.

Multilayered perceptors

The concept of multilayered perceptrons (MLP) was originally presented by McCulloch and
Pitts (Mcculloch and Pitts (1943)), who tried to explain the mechanisms behind which the
human brain tries to solve complex tasks. A multilayered perceptor consists of one input layer,
one output layer and multiple hidden layers in between the input and output layer.The input
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data are fed to the input layer, then processed through the hidden layers and subsequently the
final results are presented in the output layer. The training process of an MLP consists of two
parts, forward propagation and backward propagation(Hecht-Nielsen (1992)).

IL HL 1 HL 2 OL

Neural network
node

Figure 3.3: Neural network, IL = Input Layer, HL = Hidden Layer and OL = Ouput Layer.

Training process

The forward propagation process describes how the input data is propagated from the input
layer to the output layer. The output value for a given neuron node from the input layer k is
given by the formula:

yk
j = f (

n

∑
i=1

wk
i jxzi +bk

j), j = 1, ...m, (3.33)

Where yk
j is the j-th output neural network node from the hideen layer k. In figure 3.3, the

green nodes represent the input values, the grey nodes are the hidden neural network nodes and
the yellow are the output neural network nodes. The lines connecting the neural nodes have
each a weight associated with it, given by wi j. The subcsript of wi j denotes the weight between
the i’th neuron in the k− 1 layer and the j’th neuron in the layer k. The bk

j values are known
as the bias terms, where the j subscript denotes the bias of the j’th neuron in layer k. The
f function is the activation function for the network. When it comes to the back propagation
process, algorithms based on gradients are the most common used algorithms. For a more
detailed explanation of how back propagation works, refer to Hastie et al. (2009).

Training of the spring moment function

The torsional spring is responsible for the spring moment in the system of equations. For the
linear spring, the moment from the torsional spring due to some rotation angle θ(t) is given by

Mlinear−spring(t) = kθ θ(t), (3.34)
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and for the nonlinear spring it is given by

Mnonlinear−spring(t) = kθ θ(t)+ knonlin−θ θ
3(t). (3.35)

The goal is to train an artificial neural network which approximates the functions Mlinear−spring(t)
for the linear spring moment and Mnonlinear−spring(t) for the nonlinear spring moment such
that one gets MNN

linear−spring(t) ≈ Mlinear−spring(t) and MNN
nonlinear−spring(t) ≈ Mnonlinear−spring(t),

where MNN
linear−spring(t) is the trained linear neural network moment function and MNN

nonlinear−spring(t)
is the trained nonlinear neural network moment function.

Training of the spring force function

Similar to the moment function of the spring, the force function of the spring is computed as a
function of the plunging height h(t) given by

Flinear−spring(t) = khh(t), (3.36)

for the linear spring and

Fnonlinear−spring(t) = khh(t)+ knonlin−hh3(t), (3.37)

for the nonlinear spring. By using an artificial neural network, one can generate a linear and
nonlinear function which approximates these analytical functions, such that FNN

linear−spring(t)≈
Flinear−spring(t) for the linear spring and FNN

nonlinear−spring(t)≈Fnonlinear−spring(t). Here, FNN
linear−spring(t)

is the trained linear neural network force function and FNN
nonlinear−spring(t) is the trained nonlin-

ear neural network force function.

Modification of equations of motion

From the equation of motions for the spring airfoil system, the force and moment contributions
from the spring terms are given by

Fspring(t) = Klinearq(t), (3.38)

for the linear spring and similarly for the nonlinear spring

Fnonlin−spring(t) = Klinearq(t)+Knonlinearq3(t). (3.39)

These functions are only dependent on the state of the system, since the stiffness matrices
Klinear and Knonlinear are constant. The linear neural network generated spring moment and

spring force can be put in vector form, such that FNN
linear−spring(t) =

[
FNN

linear−spring(t)
MNN

linear−spring(t)

]
and

similarly for the nonlinear case FNN
nonlinear−spring(t) =

[
FNN

nonlinear−spring(t)
MNN

nonlinear−spring(t)

]
.Thus, the equations

of motion can be modified for the linear and nonlinear model to involve these terms such that

Mq̈(t)+Dq̇(t)+FNN
linear(t) = F(t) =

[
FL
M

]
(3.40)

and

Mq̈(t)+Dq̇(t)+FNN
nonlinear(t) = F(t) =

[
FL
M

]
. (3.41)
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Aeroelastic model

In this chapter, the coupling strategy used between the structural model and the aerodynamic
model is defined to make an aeroelastic model for the system. The steps in the simulation
scheme for transferring the information between the aerodynamic model and the structural
model are presented. Furthermore, the numerical integration schemes for the wake convec-
tion part of the aerodynamic model and for the integration of the equations of motion in the
structural model are then defined.

4.1 Simulation scheme

The model for solving the dynamics of the structural airfoil can be combined with the unsteady
vortex particle method, which is used for solving the aerodynamic loads to create an aeroelastic
model. The information of the state of the airfoil from the structural model can be used as
input data when computing the corresponding aerodynamic loads and vice versa. Between
the aerodynamic model and the structural model, one can transfer information bi-directionally
in an iterative sequence (see figure 4.1). This iteration between the structural model and the
aerodynamic model is done to continuously improve the estimation of the response of the
structural model and the aerodynamic loads from the aerodynamic model. In this work, the
body is assumed to be rigid which simplifies the exchange of information between the two
models. The chosen time increment is dependent on the discretization of the airfoil

∆t =
∆l
u∞

, (4.1)

where ∆l is the panel length and u∞ =
√

u∞ ·u∞ is the Euclidean norm of the free stream
velocity vector. One major advantage of partitioning the system into two models, one for the
aerodynamics and the other for the structural part is that for each domain (flow and structure),
well established modelling, discretization and solution methods can be applied (Reimer et al.
(2010), Braun (2007)). For instance, the unsteady vortex particle method can be found in the
literature (eg. Katz and Plotkin (2001), Roccia et al. (2020)). The time increment is assumed
to be the same for the structural model and the aerodynamic model.

4.2 Simulation scheme - steps

• At the current time step ti, use the aerodynamic model to convect the wake vortices, from
rvp(ti) to rvp(ti +∆t). For the rest of the time t, the wake particles are frozen.
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• From the computed aerodynamic loads, the corresponding response of the airfoil is cal-
culated by solving the equation of motions for the airfoil. This is done by replacing the

force vector with F(ti) =
[

FL(ti)
M(ti)

]
, which contains the computed lift FL(ti) and the mo-

ment term M(ti).

• With the current state of the structural model q(ti), the aerodynamic model is used again
to compute the updated aerodynamic loads, without convecting the wake vortex parti-
cles. The loads computed from the aerodynamic model are then used as input for the
structural model again. This is repeated until convergence is reached or the max number
of iterations maxiter is reached. Usually 5-6 iterations are necessary in order to reduce
the error to be less than 1010. The error is computed as the absolute value of the differ-
ence between the two state vectors |qn+1(ti)−qn(ti)| < tol, where n and n+ 1 indicate
the iteration step for the time step ti.

• After reaching a converging state q(ti), this state of the airfoil is used as input for the
aerodynamic model for computing the flow field and the final aerodynamic loads.

Structural model Structural model

Iteration

Airfoil response
at ti

Aerodynamic
loads computed
at ti

ti Time step ti+1

Aerodynamic modelAerodynamic model

Iteration

Figure 4.1: Coupling between the structural model and the unsteady vortex particle method.

Figure 4.1 shows how the two models transfer information between each other. The blue ar-
rows is the information exchanged between the models during the iteration step, and the black
arrows is the information exchanged from the previous time step to the next time step. Although
the aerodynamic model and the structural model are independent computational implementa-
tions of the physical fields, the coupling procedure is indeed strong because information is
bi-directionally exchanged, and the chosen step, which advances the solution in time, is unique
for both simulation environments.
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4.3 Numerical integration schemes

In this part, the numerical integration schemes used for convecting the wake particles and for
integrating the equation of motions for the structural model are explained.

4.3.1 Wake model
From the velocity of the wake particle, one can approximate the position of the wake particle
at time ti = ti−1+∆t. The accurate description of the next position of the wake particle is given
by the integral

xw(ti) =
∫ ti

ti−1

uw(τ)dτ +xw(ti−1). (4.2)

The integral can be approximated using a numerical convection scheme.

Explicit Euler scheme

The explicit Euler scheme is the simplest convection scheme for the wake. The formula for
this method is given by

xw(ti) = xw(ti−1)+∆t ·uw(ti−1). (4.3)

In the equation above, xw(ti) denotes the position for the vortex wake particle at time ti and ∆t
is the time increment and uw(ti−1) is the velocity of this wake vortex particle at time ti−1.

Adam Bashforth schemes

The Adam Bashforth schemes are a family of multistep methods. This means they depend not
only on the velocity at the current time step ti, but also on previous values of the velocity for the
wake particles. The Adam Bashforth schemes are an alternative to the explicit Euler scheme
and the first three Adam Bashforth schemes are presented below:

Wake scheme name Formula
Adam Bashforth 2 step method xw(ti) = xw(ti−1)+∆t · (3

2uw(ti−1)− 1
2uw(ti−2))

Adam Bashforth 3 step method xw(ti) = xw(ti−1)+∆t · (23
12uw(ti−1)− 16

22uw(ti−2)+
5

12uw(ti−3))

Adam Bashforth 4 step method xw(ti) = xw(ti−1)+∆t · (55
24uw(ti−1)− 59

24uw(ti−2)+
37
24uw(ti−3)− 9

24uw(ti−4))

Table 4.1: Adam Bashforth 2-4 step method formulas

As one can see from the formulas in table 2.1 of the multistep methods, they depend on the
velocity vector computed at earlier time steps. They need enough points before one can use
them. Thus for the starting phase, one can use the explicit Euler to compute enough points.

4.3.2 Structural model
The equations of motion for the structural model are a second order differential equation. In
order to solve for the equations numerically, these equations must be converted to a set of
first order differential equations. Some initial condition state vector q(t0) = [h(t0),θ(t0)] and
initial force vector F(t0) at the beginning of the simulation is necessary. Then one can define
z1(t) = q(t) and z2(t) = q̇(t). By taking the time derivative of these vector, one gets ż1(t) =
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q̇(t) = z2(t) and ż2(t) = q̈(t). If the initial conditions are defined, one can find ż2(t) = q̈(t) by
solving for q̈(t0) in

Mq̈(t0)+Dq̇(t0)+klinq(t0)+knonlinq3(t0) = F(t0), (4.4)

In order to solve the equations of motion, a prediction correction method is implemented. The
prediction correction method is used because the corrector method adds stability and accuracy
to the solution. The disadvantage of using this method is the added computational cost during
the correction step of the method. (Sauer (2012) pg.342). The formulas used here can be found
in Sauer (2012).

Algorithm 4 Eulerpred−corr(q(ti), q̇(ti),∆t, tol,maxiter)

1: q(ti+1)pred = q(ti)+∆tq̇(ti)
2: iter = 1
3: while Error > tol and iter <= maxiter do
4: q(ti+1)new = q(ti)+ ∆t

2 (q̇(ti)+ q̇(ti+1)pred)
5: Error = |q(ti+1)new −q(ti+1)pred|
6: iter = iter+1
7: q(ti+1)pred = q(ti+1)new
8: end while
9: return q(ti+1)new

In algorithm 4, the q(ti) is the state vector at the current time ti, maxiter is the maximum
number of iterations, tol is the tolerance value, and q̇(ti) is the time derivative of the state vector
at time ti.

Adam Bashforth 2 Adam Moulton - prediction correction method

The Adam Bashforth 2 order predictor corrector method is one degree higher order than the
Euler predictor corrector method. The algorithm of the method is given below.

Algorithm 5 Adam2pred−corrector(q(ti−1),q(ti), q̇(ti−1), q̇(ti),∆t, tol,maxiter)

1: q(ti+1)pred = q(ti)+ ∆t
2 (3q̇(ti)− q̇(ti−1))

2: iter = 1
3: while Error > tol and iter <= maxiter do
4: q(ti+1)new = q(ti)+ ∆t

12(5q̇(ti+1)pred +8q̇(ti)− q̇(ti−1))
5: Error = |q(ti+1)new −q(ti+1)pred|
6: iter = iter+1
7: q(ti+1)pred = q(ti+1)new
8: end while
9: return q(ti+1)new

In algorithm 5, qpred(ti+1) is the prediction step using the Adam Bashforth 2 step method.
The qnew(ti+1) is the correction step, using the Adam Moulton 2 step method.

Structural model - combined integration scheme

Since the Adam Bashforth - Adam Moulton 2 step prediction correction method depends on
a previous solution from a one step method, one can combine the two methods, where for the
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first step the Euler predictor - corrector method is used, and for later steps the Adam Bashforth
- Adam Moulton 2 step method is used.

Algorithm 6 U pdatestructural−state(q(ti−1),q(ti), q̇(ti−1), q̇(ti),∆t, tol,maxiter, timestep)

1: if timestep == 1 then
2: q(ti+1)new = Eulerpred−corr(q(ti), q̇(ti),∆t, tol,maxiter))
3: else
4: qnew = Adam2pred−corr(q(ti−1),q(ti), q̇(ti−1), q̇(ti),∆t, tol,maxiter))
5: end if
6: return q(ti+1)new

In Algorithm 6, the timestep is the current time step of the simulation.



Chapter 5

Results and Discussion

5.1 Results

In this chapter, the results regarding the use of the aerodynamic model, the structural model
and the aeroelastic model are presented. The chapter is divided into two main parts, where the
first part will be focused on the numerical verification of the models, in which the numerical
results from the aerodynamic model will be verified using the analytical solution from the thin
airfoil theory in chapter 2. The numerical integration scheme used for solving the equations
of motion will be verified by solving the linear pendulum problem which has an analytical
solution. For the aeroelastic model, an already solved problem known studied by Fung (1955)
is analyzed, and the results of this problem are available in the literature. The second part of
this chapter is the numerical experimentation, where the some interesting cases of study are
presented, including the neural network part related to the spring terms in the structural model.

5.2 Numerical verification

The different models are verified seperately, starting with the aerodynamic model, then the
structural model and finishing with the aeroelastic model at the end.

5.2.1 Aerodynamic model
Precision quotient

In order to verify the order of the numerical methods used in convecting the wake particles,
the numerical precision quotient for the different wake schemes is computed. The order of the
Euler method can be derived using the Taylor expansion for a given position vector r(t)

r(t +∆t) = r(t)+
dr
dt

(∆t)+O(∆t2)≈ r(t)+
dr
dt

(∆t). (5.1)

Here, the error term O(∆t2) is raised to the power of 2. Thus, the order of the explicit Euler
scheme is: p = 2−1 = 1, which is a first order method. The precision quotient for a numerical
method is computed by first evaluating the position vector rw(t) using the time increments ∆t,
∆t
2 and ∆t

4 for the numerical scheme. Then the following precision quotient is given by the
formula (Kreiss and Ortiz (2014) pg.35)

Q(t) =
(rw1(t)− rw2(t))
(rw2(t)− rw3(t))

≈ 2p. (5.2)
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In the equation above, rw1(t), rw2(t) and rw3(t) correspond to the position vector for a given
wake particle, using time increment ∆t for rw1(t), ∆t

2 for rw2(t) and ∆t
4 for rw3(t). Thus, for

each of the methods, the simulation needs to run three times, one for ∆t, ∆t
2 and for ∆t

4 . Since
all the Adam Bashforth wake schemes are using the Euler scheme for the first step, the value
of the precision quotient q factors should be 2 for all the cases. The precision quotient q for the
wake is calculated by following a specific wake particle and comparing its value using three
simulations with different time increments.

Property name Symbol Value Unit
Number of panels Npanels 10
Time increment ∆t 0.1 s

Chord c 1 m
Angle of attack α

10π

180
Number of iterations I 75

Air mass density ρ 1.255 kg/m2

Horizontal free stream velocity u∞ 1 m/s
Cutoff vortex radius cuto f frad 0.0001 m

Table 5.1: System parameters - q factor verification

In order to compute the precision quotient for the wake, a specific wake particle must be
chosen. In this simulation, the wake particle number 30 is chosen as the reference wake vortex
when computing the precision quotient for the different wake schemes. The wake particle
number 30 corresponds to the wake particle 60 when the time increment is ∆t

2 and 120 when
the time increment is ∆t

4 . The reason for why the reference wake particle is chosen to be 30 is to
avoid calculating the precision quotient near the far end of the wake, where the wake particles
are clustered and will affect the value of the precision quotient.
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Adam Bashforth 3 step method Adam Bashforth 4 step method

Adam Bashforth 2 step methodExplicit Euler method

Figure 5.1: precision quotients q for the wake schemes.

Figure 5.1 shows the precision quotients for the different wake schemes. The y axis shows
the precision quotient and the x axis shows the time step of the simulation which is using a time
increment of ∆t. As one can observe, the plots show the correct numerical precision quotients
for each time step according to the theory, since the explicit Euler is used for the starting phase
for the other Adam Bashforth methods.

Numerical coefficients

To verify the method of the unsteady vortex method, the lift coefficient for the airfoil is calcu-
lated. In order for the method to be correct, the lift coefficient has to approach the analytical
lift coefficient, which for small angles of attack (α ∈ [−15π

180 ,
15π

180 ]) is given by

Cl = 2πα. (5.3)
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Property name Symbol Value Unit
Number of panels Npanels 10
Time increment ∆t 0.025 s

Chord c 0.25 m
Angle of attack α

10π

180
Number of iterations I 1000

Air mass density ρ 1.255 kg/m2

Horizontal free stream velocity u∞ 1 m/s
Cutoff vortex radius cuto f frad 0.0001 m

Table 5.2: System parameters - unsteady vortex particle verification

Figure 5.2: Plot of the numerical lift coefficient vs analytical lift coefficient on the left, plot of the drag coefficient
on the right.

Figure 5.2 shows the numerical and analytical lift coefficient as a function of time on the
left, while it shows the drag coefficient as a function of time for the airfoil on the right. As
one can observe, the numerical lift coefficient is approaching the analytical solution as time
increases. The rapid increase in the lift coefficient at the beginning is explained by the fact
that the wind speed starts at zero and then suddenly the wind speed increases to the steady free
stream velocity. This leads to a rapid increase in the Γ(t+∆t)−Γ(t)

∆t term when computing the pres-
sure jump across the airfoil, and thus a rapid increase in the lift coefficient at the beginning. As
time progresses, the change of the total circulation around the airfoil ∆Γ(t) = Γ(t)−Γ(t −∆t)
becomes smaller and thus the lift coefficient approaches the steady state analytical solution.
Similarly, the horizontal force coefficient or drag force is rapidly decreasing during the tran-
sient since the change in total circulation around in the airfoil ∆Γ(t) goes to zero as time
increases and thus the horizontal force component becomes smaller. Based on the lift coeffi-
cient plot in figure 5.2, the steady state lift coefficient is CL = 1.0272, which is 0.0728 lower
than the analytical lift coefficient. The numerical lift coefficient will approach the analytical
lift coefficient, as the angle of attack decreases.
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Figure 5.3: Plot of the steady pressure coefficient as a function of the airfoil coordinates in the left figure. The
right figure is the steady lift coefficient plotted against the angles of attack in the small angle domain.

Number of panels: 10 Number of panels: 20

Figure 5.4: Plot of the numerical Cp and the analytical Cp, for both 10 and 20 panels used in the discretization
of the airfoil.

In in the left figure of figure 5.4, the steady pressure coefficients for the airfoil are plotted
against the airfoil coordinate along the chord line. The pressure coefficient has the highest
value at the leading edge and decreases towards the trailing edge of the airfoil. The analytical

pressure jump for a thin symmetrical airfoil is given by the formula ∆Cp = 4
√

c−x
x α , where c

is the chord length and x is the x coordinate of the airfoil. (Katz and Plotkin (2001) pg.131). As
one can see from figure 5.4, the pressure coefficient for the numerical and analytical solution fit
when well except near the leading edge. This is because near the leading edge, the symmetrical
thin airfoil is singular and thus the model is not correct. The figure on the right of figure 5.4
shows the steady lift coefficient plotted against the angle of attack used for the airfoil. As one
can see, the analytical and numerical solutions are almost identical for small angles, but as the
angles increases, the difference between the analytical and numerical coefficients increases.
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Pitching and plunging motion - verification

To verify the pitching and plunging motion of the airfoil is correct, the numerical results are
compared to the analytical Garrick solution (Garrick (1936)). For harmonic plunging mo-
tions h(s) = −h0 cos(khs), Garrick’s solution can be written in dimensionless form as (Gülçat
(2010))

Cl(s) =−2πkh
kh

b
[(G(kh)+0.5kh)cos(khs)+F(kh)sin(khs)], (5.4)

where b is the half chord, s = u∞t
b is the dimensionless time, kh =

ωhb
u∞

is the reduced plunging
frequency, and C(k) = F(k)+ iG(k) is the Theodorsen function. Theodorsen’s function is used
for modelling changes in amplitude and phase of the unsteady sinusoidal aerodynamic forces
relative to the quasi-steady forces for different reduced frequencies. The function is a complex
quantity, expressed as a function of reduced frequency

C(k) = F(k)+ iG(k) =
H(2)

1 (k)

H(2)
1 (k)+ iH(2)

0 (k)
=

K1(ik)
K0(ik)+K1(ik)

, (5.5)

where the K j(ik) for j = 0,1, .... are modified Bessel functions of the second kind and H(2)
n (k)

are Hankel functions of the second kind. For the reduced frequency k <= 0.5, an approxima-
tion for C(k) is can written as

C(k) = 1− 0.165
1− 0.0455

k i
− 0.335

1− 0.30
k i

. (5.6)

For the pitching motion, the lift coefficient is given as

Cl(s) =πθ0[kθ cos(kθ s)+ak2
θ sin(kθ s)+2F(kθ )

(
sin(kθ s)+(

1
2
−a)kθ cos(kθ s)

)
+

2G(kθ )(cos(kθ s)−
(

1
2
−a
)

kθ sin(kθ s))].
(5.7)

In equation (5.7), a is a dimensionless parameter by the half chord, which defines the center
of the airfoil and is measured from the mid chord (positive in the aft shaft). In the Garrick
formulas, theres no initial angle of attack, which means that for plunging motion the angle of
attack is zero and for the pitching motion there’s no initial angle of attack (just symmetrical
oscillation around the horizontal plane). The effective angle of attack for the plunging motion
is

αe(s) = arctan
(

ḣ(s)
u∞

)
, (5.8)

and for the pitching motion the effective angle is the same as the kinematic angle of attack

αe(s) = θ(s). (5.9)

Plunging case

In this section the values of the lift coefficient for the plunging airfoil is verified by comparing
the numerical values with Garrick’s formula for the lift coefficient in the plunging case. The
table below shows the data used for the numerical simulation of the airfoil.
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Property name Symbol Value Unit
Wake scheme Eulers method
Wind speed u∞ 1 m/s

Air mass density ρ 1.255 kg/m2

Number of panels Npanels 10
Angle of attack α 0

Chord c 1 m
Max plunging amplitude h0 0.1 m

Plunging function h(s) −h0 cos(khs)

Table 5.3: Parameter values for the plunging motion of the airfoil - comparison between different kh values.

kh = 0.1

Figure 5.5: Garricks solution vs numerical solution, plunging case, kh = 0.1

Figure 5.5 shows the numerical lift coefficient CL and Garrick’s solution when the reduced
frequency kh = 0.1 for the plunging case. The plot in the left upper corner is the numerical
and Garrick’s solution for the lift coefficient plotted against the effective angle of attack. The
figure in the right upper corner is the lift coefficient plotted against the dimensionless time for
the numerical and Garrick’s solution and the figure in the bottom is the shifted plot of the lift
coefficient plotted against time. As one can see, the analytical Garrick solution fits well with
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the numerical solution. Since Garrick’s solution are the steady state solutions, the numerical
lift coefficient needs to be shifted in order to overlap the analytical solution as one can see in
the bottom figure of figure 5.5.

kh = 0.25

Figure 5.6: Garricks solution vs numerical solution, plunging case, kh = 0.25.

Figure 5.6 shows the similar results as for figure 5.5 for the plunging case when the reduced
frequency is kh = 0.25. Although they are similar to the case when kh = 0.1, one can see that
the numerical and analytical solutions don’t fit as well in the right figure of figure 5.6.
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kh = 0.5

Figure 5.7: Garrick’s solution vs numerical solution, plunging case, kh = 0.5.

Similar to figure 5.5 and 5.6, figure 5.7 shows the comparison of Garrick’s solution and the
numerical solution for the case when kh = 0.5 for the plunging motion. Although the numerical
and analytical solutions seems to fit, one can clearly see a difference in phase of the curves from
the figure on the right. As one can see on the figure on the right in figure 5.7, the numerical
solution is shifted relative to the analytical solution and to a greater extent compared to the
cases when kh = 0.1 and kh = 0.25. The reason for this increase in difference between the
analytical solution and the numerical solution can be due to the approximation used for the
analytical lift coefficient, which was valid for when kh <= 0.5. Thus when kh = 0.5, it is at the
end of the range where the approximation is valid.

Number of panels - convergence

Here, figure 5.8 shows how the difference between the analytical and numerical solution for
the lift coefficient decreases as the number of panels increases, using all the different wake
schemes for the wake particles convection. The metric used for calculating the error is the
euclidean norm. Based on figure 5.8, the difference decreases rapidly as the number of panels
increases in the beginning, then it flattens out.
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Figure 5.8: Cl error vs number of panels - different wake schemes, plunging case

Pitching case

In this section the values of the lift coefficient for the pitching airfoil is verified by comparing
the numerical values with Garrick’s formula for the lift coefficient in the pitching case. The
table below shows the data used for the numerical simulation of the airfoil.

Property name Symbol Value Unit
Wake scheme explicit Euler method

Horizontal free stream velocity u∞ 1 m/s
Air mass density ρ 1.255 kg/m2

Number of panels Npanels 10
Angle of attack α 0

Chord c 1 m
Max angle displacement αmax pi/180

Pitching function θ(s) αmax sin(kθ s)

Table 5.4: Parameter values for the pitching motion of the airfoil - comparison between different k values.
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kθ = 0.1

Figure 5.9: Garricks solution vs numerical solution, pitching case, k=0.1

Figure 5.9 shows the numerical lift coefficient and the analytical Garrick’s lift coefficient for
the pitching case when the reduced frequency is kθ = 0.1. The top left figure is the numerical
and analytical lift coefficient plotted against the effective angle of attack, the top right figure is
the plot of the numerical and analytical lift coefficients at the same time and the bottom figure
is the shifted numerical solution at the steady state portion to fit the analytical solution. The
reason behind the change in phase between the two plots is the same as for the plunging case.
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kθ = 0.25

Figure 5.10: Garricks solution vs numerical solution, pitching case, k=0.25

Again, figure 5.10 shows similar plots for the pitching case as in figure 5.9, but for the reduced
frequency kθ = 0.25.
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kθ = 0.5

Figure 5.11: Garricks solution vs numerical solution, pitching case, k=0.5

Figure 5.11 shows the comparison of the numerical and analytical lift coefficients for the pitch-
ing airfoil when kθ = 0.5. The figure on the top right of figure 5.11 shows that the numerical
solution is shifted to the right relative to the steady state analytical solution. Similarly to the
plunging case, the difference between the numerical and analytical solution seems to increase
as the reduced frequency increases. Since the approximation of the analytical lift is only valid
in the range kθ <= 0.5, when kθ = 0.5 the analytical solution is at the end of the range where
the approximation is valid and this might explain the difference in the lift coefficients as shown
the figure 5.11.
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Number of panels - convergence

Figure 5.12: Cl error vs number of panels - different wake schemes, pitching case.

Figure 5.12 shows the difference between the lift coefficient from Garrick’s solution and the
numerical solution as the number of panels increases. The different subplots shows which
wake scheme is used for the numerical solution. Similar to the plunging case, the difference
decreases and then flattens out as the number of panels exceeds beyond Npanels = 100.

5.2.2 Structural model

In order to verify that the numerical integration scheme used for solving the equations of mo-
tion in the structural model is correct, the numerical integration scheme is used for solving
linear pendulum problem. The linear pendulum problem a second order differential equation
given by

θ̈ +
g
L

θ = 0. (5.10)

Since the linear pendulum has an analytical solution, one can compare the analytical solution
to the numerical solution to see how close the numerical solution is to the analytical one.
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Figure 5.13: Rotating pendulum.

Figure 5.13 shows the setup of the pendulum, where θ is the angle between the pendu-
lum line and the vertical line, g = (0,−g) is the gravitational acceleration vector and L is the
length of the line of the pendulum. This system can be decomposed into a set of first order
differentials, such that

z1(t) = θ(t),z2(t) = θ̇(t). (5.11)

Thus, the state vector of the system is summarized by z(t) = (z1,z2). The derivative of this
vector is given by

dz
dt

= (z2,−
g
L

z1), (5.12)

and the initial conditions for the simulation of the pendulum is given in the table below.

Property name Symbol Value Unit
line length L 1 m

gravitational constant g 9.81 m/s2

tolerance tol 0.0001
time increment ∆t 0.01 s

Initial angle θ0
π

180
Initial angle velocity dθ0

dt 0 s−1

Number of iterations I 1000
Max iterations Maxiter 100

Table 5.5: Linear pendulum system parameters

In order for the integration scheme to be correct, it must approximate the analytical solution

θ(t) = θ0 cos
√

g
L

t. (5.13)
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The numerical integration scheme used for this problem is the combined predictor corrector
scheme described in chapter 5.

Figure 5.14: Numerical vs analytical solution to the linear pendulum and the error plot between the numerical
and analytical solution.

As one can observe from figure 5.6, the figure in the left showing the numerical and analyt-
ical solutions of θ seems to fit well. Similarly, the error on the right in figure 5.6 shows that the
error is within the tolerance value of 0.0001 and decreasing. Its important to note that the nu-
merical solution is highly dependent on the time increment and thus when the time increment
is high the numerical solution fits poorly relative to the analytical solution (Sauer (2012)).

5.2.3 Aeroelastic model
Aeroelastic flutter of a suspension bridge

In order to verify that the aeroelastic code is at least partially correct under sub-critical, critical
and super-critical conditions, the well known suspension bridge problem taken from Fung
Fung (1955) is considered. The suspension bridge is modelled as a symmetric thin airfoil with
uniform mass distribution.

Definition of aeroelastic flutter

Aeroelastic flutter can be described as a dynamic instability of a flight vehicle assoiated with
the interaction of aerodynamic, elastic and inertial forces (Hodges and Pierce (2011) pg.175).
It’s a self-excited oscillatory instability, in which case the aerodynamic forces acting on the
body and the natural modes of the vibration of frequency of the body produce an oscillatory
motion with increasing amplitude as time progresses.

Parameter Symbol Value Unit
Semi chord b 9.144 m

Mass per length m 12879.78698 kg/m
Radius of gyration rα 0.788796

Bending natural frequency ωh 0.88034 s−1

Torsion natural frequency ωα 1.5524 s−1

Table 5.6: Suspension bridge - parameters.
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Trimmed wake

Due to the high computational cost of convecting the wake particles in the simulation, the
following approach for convecting the wake particles is used. When the horizontal distance
between the wake particle and the trailing edge of the airfoil is ∆x >= 10 · c, where c is the
chord length of the airfoil, the influence from this wake particle on the airfoil and other wake
particles closer to the airfoil is set to 0. This approximation will reduce the computational
cost significantly and can be justified since the wake particles far away from the airfoil will
have little to no influence on the airfoil. The table above shows the necessary properties of the
bridge and the velocities for the sub-critical, critical and super-critical velocities and there’s no
damping involved. From the radius of gyration, one can find the moment of inertia bout the

reference point: rα =
√

Ip
mb2 . The spring coefficients can be found using the formula ωθ =

√
kθ

IP

for the pitching spring coefficient and ωh =
√

kh
m for the vertical spring coefficient. Since the

mass of the bridge is assumed to be distributed uniformly, xθ = 0 and the equations of motions
becomes [

m 0
0 IP

][
ḧ
θ̈

]
+

[
kh 0
0 kθ

][
h
θ

]
=

[
FL
M

]
. (5.14)

a) Subcritical velocity b) Critical velocity c) Supercritical velocity

Figure 5.15: Plunging motion - subcritical, critical and supercritical velocities.
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a) Subcritical velocity c) Supercritical velocityb) Critical velocity

Figure 5.16: Pitching motion - subcritical, critical and supercritical velocities.

Figure 5.15 shows the plots of the plunging motion for the subcritcal, critical and super-
critical cases. The first row shows the vertical displacement plotted against time, the second
row shows the plunging velocity plotted against the vertical displacement and the last row is
the fast Fourier transform of the vertical displacement. The damping is assumed to be purely
aerodynamic, since it is considered that the structure does not have any means of dissipation.
Figure 5.16 shows the plots of the pitching motion for the subcritical, critical and supercriti-
cal cases. Similarly to figure 5.15, the first row shows the pitching angle plotted against time,
the second row shows the pitching velocity plotted against the pitching angle and the third row
shows the fast Fourier transform of the pitching angle. One can see a limit cycle oscillation is
developed in row column b) for both the pitching and plunging motion at the critical velocity.
The frequencies collapses into one frequency as well in the frequency plot for the plunging and
pitching motion at this velocity.

Although the aerodynamic model is inviscid and the structure is modeled without consider-
ing any type of dissipation, there is an aerodynamic damping, which is evident when the energy
is transferred between the fluid and the structure. At speeds below the critical velocity, the free
wind stream represents an energy sink, since energy is transferred from the structure towards
the flow. On the other hand, at speeds higher than the critical velocity, the free stream wind
represents a source, since the energy is transferred from the flow to the structure. As the wind
speed approaches the critical velocity, the frequencies collapses into one for the plunging and
pitching case. This phenomena is known by the name of flutter (Fung (1955)).
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The critical was set to ucritical = 51.1728m/s, which is about 4.28% higher than the critical
velocity for the suspension bridge given in Fung (1955). This error can be explained due to the
discretization of the suspension bridge, where a total of 10 panels were used. A low panel dis-
cretization is used to reduce the computational cost for the simulation. To investigate this fur-
ther, the suspension bridge is discretized using 20 and 30 panels to see if this affects the critical
velocity speed of the system. As one can see in figure 5.17, the critical velocity for the sus-
pension bridge when the number of panels has increased to 20 is ucritical = 50.2728m/s, which
is about 2.44% higher than the experimental one given in Fung (1955). Similarly, the critical
velocity for the suspension bridge when the number of panels is 30 is ucritical = 50.1778m/s,
which is 2.28% higher than the experimental one in Fung (1955). Clearly the accuracy is in-
creasing as the number of panels increases. However due to the long computation time it takes
for the 20 and 30 panel discretizations, the 10 panel discretization is used for the aeroelastic
system.

Critical velocity: ucritical = 50.2728m/s Critical velocity: ucritical = 50.1728m/s

Figure 5.17: Critical velocities for the 20 and 30 number of panels discretization of the suspension bridge

The velocities have bee converted from imperial units to metric units. The subcriti-
cal veloity is given by usubritical = 119.970472 f t/s = 36.576m/s, critical velocity ucritical =
161 f t/s = 49.0728m/s and the supercritical usupercritical = 175 f t/s = 53.34m/s. The initial
vertical displacement for the simulation was h(0) = 0m and the initial pitch angle was set to
θ(0) = 10π

180 . The pitching velocity and plunging velocity were all set to zero at the beginning,
dh(0)

dt = 0 and dθ(0)
dt = 0.

5.3 Numerical experiments

In this part of the thesis, the results regarding the use of different wake scheme implementa-
tions for the aerodynamic model are presented. The wake shape are computed for the pitching,
plunging and steady state using the different wake schemes to investigate the relationship be-
tween the methods. In addition to this, the use of a nonlinear spring instead of a linear spring in
the aeroelastic model is investigated further. A trained neural network for both the linear and
nonlinear spring in the structural model is used and compared against the analytical springs, to
see if one can use neural networks as a means of replacing terms in the equations of motion of
the structural model for the airfoil.
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5.3.1 Aerodynamic model

CL vs angles of attack - for different wake schemes

Figure 5.18: CL vs angles of attack - for the different wake schemes.

In figure 5.18, the lift coefficient for the steady state is calculated for different values of the
angle of attack. The top left figure shows the lift coefficient using the Adam Bashforth 2 step
method, the figure in the top right uses the Adam Bashforth 3 step method and the figure in
the bottom uses the Adam Bashforth 4 step method. All the methods uses the explicit Euler
method in the starting phase. The results shows that the different wake schemes seems to fit
the analytical solution well when the angle of attack is small. As the angle of attack increases,
the difference between the numerical lift coefficient and the analytical one increases. The
parameters used for the simulation using the different wake schemes are the same given in
table 5.7.
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Wake shape comparison

Parameter Symbol Value Unit
chord c 0.25 m

Air mass density ρ 1.255 kg/m3

Cutoff vortex radius Cuto f frad 0.0001 m
Horizontal free stream velocity u∞ 1 m/s

Angle of attack α
10π

180
Number of iterations I 500
Number of panels Npanels 10
Time increment ∆t 0.025 s

Table 5.7: Simulation parameters - wake.

Figure 5.19: Comparison between the wake shapes for the different schemes.

Figure 5.18 shows the wake shape at the final time step for the simulation, using the different
wake schemes for convecting the wake particles. The parameters used for this simulation are
given in table 5.7. As one can observe from the figure, the shape of the wake is similar for all
the cases, except at the near end of the wake. The motion is assumed to be a steady horizontal
wind speed with constant velocity, where u∞ = 1m/s. At the end of the airfoil, the shape of the



5.3 Numerical experiments 61

wake particles differ between the different methods. Since the wake particles start to cluster
near the end, the total induced velocity for each wake particle by the other wake particles
increases and thus the wake shape near the end varies between the methods.

Hausdorff distance

In order to further investigate the wake shape using different wake schemes, the wake shapes
for the different wake schemes are compared using the Hausdorff distance. The Hausdorff dis-
tance metric is a method commonly used in computer vision and image processing tasks for
computing the distance between two sets of points, and is regarded as an ideal choice to com-
pute relatively more accurate distances between objects (Maiseli (2020)). Compared to other
metric methods, the Hausdorff distance takes into account critical details of the objects position
and shape to output reasonable distances between pairs of point sets. Still, one disadvantage of
using this method is the highly sensitivity to outliers and noisy data.

Definition of Hausdorff distance

Given two sets of points A and B, where a ∈ A and b ∈ B, the directed forward and backward
Hausdorff distances between the two sets are defined as

h(A,B) = maxa∈A(minb∈B( f (a,b))), (5.15)

h(B,A) = maxb∈B(mina∈A( f (b,a))), (5.16)

then, the Hausdorff distance is the maximum of these two values

H(A,B) = max(h(A,B),h(B,A)). (5.17)

The function f (x,y) is an arbitrary distance function, such as the second norm or the infinity
norm. In this case, the infinity norm and the second norm are used.

Property name Symbol Value Unit
Horizontal free stream velocity uin f 1 m/s

Air mass density ρ 1.255 kg/m2

Number of panels Npanels 10
Angle of attack α

10π

180
Chord c 0.25 m

Time increment ∆t 0.025 s
Time steps I 200

Table 5.8: Setup for the HDD comparison for the airfoil

Three cases are considered when comparing the wake shape using the different wake con-
vection schemes, which are the steady case, plunging case and the pitching case. For each of
the figures shown below, the title above the figure denotes which wake scheme that is used for
comparing with the rest. This is why for some of the subplots, the Hausdorff distance is zero
for all the time step, which is the case when the method is compared with itself.
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Steady motion - second norm

b) Adam Bashforth 2 step methoda) Euler method

c) Adam Bashforth 3 step method d) Adam Bashforth 4 step method

Figure 5.20: Evolution of the HDD for the wake vortices steady flow - comparison between the wake schemes,
with the euclidean norm as the distance function.
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Steady motion - infinity norm

a) Euler method b) Adam Bashforth 2 step method

c) Adam Bashforth 3 step method d) Adam Bashforth 4 step method

Figure 5.21: Evolution of the HDD for the wake vortices steady flow - comparison between the wake schemes,
with the infinity norm as distance function.

From the observation of figure 5.20 and 5.21, one can see that for all the cases the HDD
increases as the simulation time increases. The largest value in the HDD is found when between
the Adam Bashforth 4 step method and the other methods, where one can observe a HDD of
0.2m near the end of the simulation. The smallest difference in the HDD was found between the
Adam Bashforth 3 step method and the Adam Bashforth 2 step method, where the maximum
HDD was at 0.005m at the end of the simulation.

Pitching motion - second norm

The pitching motion added to the arifoil is given as: α(t) = αmax sin(ωt). Here, ω = 0.2s−1

and αmax =
π

180 .
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a) Euler method b) Adam Bashforth 2 step method

c) Adam Bashforth 3 step method d) Adam Bashforth 4 step method

Figure 5.22: Evolution of the HDD for the wake vortices, added pitching motion - comparison between the wake
schemes, with the euclidean norm as distance function.
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Pitching motion - infinity norm

a) Euler method b) Adam Bashforth 2 step method

c) Adam Bashforth 3 step method d) Adam Bashforth 4 step method

Figure 5.23: Evolution of the HDD for the wake vortices, added pitching motion - comparison between the wake
schemes, with the infinity norm as distance function.

Figure 5.23 and 5.22 shows the HDD for the wake at each time step using the different wake
schemes for the pitching airfoil. The HDD for both the infinity and second norm increases as
the number of time steps increases. The biggest value of the HDD appears between the Adam
Bashforth 4 step method and the other methods, where one can observe a HDD of about 0.2m,
when both using the infinity norm and the second norm. The smallest difference in the HDD
is between the Adam Bashforth 3 step method and the Adam Bashforth 2 step method, where
the HDD is 0.01m at the end. The HDD between the explicit Euler and the Adam Bashforth 2
and 3 step methods seem to be increase near the end, where the HDD reaches a value of 0.2m.

Plunging motion - second norm

The added plunging motion of the airfoil is given as the function: h(t) = −h0 cos(ωt), where
ω = 0.2s−1 and h0 = 0.1m.
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a) Euler method b) Adam Bashforth 2 step method

c) Adam Bashforth 3 step method d) Adam Bashforth 4 step method

Figure 5.24: Evolution of the HDD for the wake vortices, added plunging motion - comparison between the wake
schemes, with the euclidean norm as distance function.
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Plunging motion - infinity norm

a) Euler method b) Adam Bashforth 2 step method

c) Adam Bashforth 3 step method d) Adam Bashforth 4 step method

Figure 5.25: Evolution of the HDD for the wake vortices, added plunging motion - comparison between the wake
schemes, with the infinity norm as distance function.

Figure 5.24 and 5.25 shows the HDD for the wake at each time step using the different wake
schemes for the plunging airfoil. Again, the HDD increases as the number of time steps in-
creases, except for the Euler method, where the HDD seems to decrease near the end when the
infinity norm is used. The HDD is biggest when comparing the Adam Bashforth 4 step method
to the other methods, where the HDD reaches a value of 0.2m, and the lowest HDD is between
the Adam Bashforth 3 step method and the Adam Bashforth 2 step method, where the HDD
reaches a maximum of 0.005m.

For all the results regarding the HDD in figures 5.20, 5.21, 5.22, 5.23, 5.24 and 5.25, the
HDD increases near the end of the simulation for all the cases. One explanation of this may be
due to the formation of a wake rollup near the end of the wake. In the beginning, wake particles
are convected with the free stream velocity and the number of wake particles are low. As time
increases, the number of wake particles will increase and the wake particles start clustering
near the end. Near the end of the wake, the wake particles will be relatively close to each other
and thus their influence on each other will be greater.
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5.3.2 Aeroelastic model

In this part, the result regarding the use of a nonlinear spring is presented. The data used for
the airfoil are the same as for the data in the numerical verification of the suspension bridge
case with the linear spring. Furthermore, a neural network is used for generating the linear
and nonlinear spring terms for the structural model. This is then replaced with the linear and
nonlinear analytical spring terms for the aeroelastic model to see if one can use a neural network
trained spring term as a replacement in the aeroelastic model of the airfoil.

Nonlinear spring

Here the nonlinear spring for the structural model is used in the aeroelastic model. There’s
no additional damping, thus dh = 0 for the plunge and dθ = 0 for the pitch. Since the mass
distribution of the airfoil is uniform, the chordwise offset xθ = 0. the nonlinear spring constants
are set to knonlin−h = 0.01kh and knonlin−θ = 0.01kθ and the equations of motion becomes

[
m 0
0 IP

][
ḧ
θ̈

]
+

[
kh 0
0 kθ

][
h
θ

]
+

[
knonlin−h 0

0 knonlin−θ

][
h3

θ 3

]
=

[
FL
M

]
. (5.18)

The data used for this simulation is the same as for the modelling of the suspension bridge
in the numerical verification part of the aeroelastic model, given table 5.9 below.

Property name Symbol Value Unit
Number of panels Npanels 10
Air mass density ρ 1.255 kg/m2

Chord c 18.288 m
Initial angle of attack α

10π

180
Mass per unit span m 12879.78698 kg/m
Moment of inertia Ip 6700056.033 kg ·m

Half chord b 9.144 m
Chordwise offset xθ 0

Linear torsional stiffness coefficient kθ 1614835.039 N/m2

Nonlinear torsional stiffness coefficient knonlin−θ 16148.35039 N/m
Linear plunging stiffness coefficient kh 9981.834 N/m

Nonlinear plunging stiffness coefficient knonlin−h 99.81834 N/m

Table 5.9: Suspension bridge parameters
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b) Critical velocitya) Subcritical velocity c) Supercritical velocity

Figure 5.26: Plot of the subcritical, critical and pitching motion for the nonlinear aeroelastic model

Figure 5.26 shows the pitching results of the aeroelastic model using the nonlinear spring.
As one can see, the approximation for the subcritical, critical and supercritical velocity of the
model is similar to the linear spring model. The subcritical, critical and supercritical velocities
for this simulation were the same as for the linear model. Figure 5.27 shows the aeroelastic
results for the plunging case, using the nonlinear spring. The flutter speed for the nonlinear
model was a bit lower compared to the linear model, where ucrit = 50.6728m/s, and the in-
crease and decrease in the plunging height at the supercritical and subcritical velocity differs
from the linear aeroelastic model.
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a) Subcritical velocity b) Critical velocity c) Supercritical velocity

Figure 5.27: Plot of subcritical, critical and supercritical plunging motion for the nonlinear aeroelastic model.

Neural network generated spring

Here, the neural network generated spring terms for the linear and nonlinear model is presented.
In this case, only one hidden layer was for the neural network during the training process. The
trained neural network spring terms are then replaced with the analytical spring terms in the
aeroelastic model, to see if this new function predicts the correct aeroelastic response as the
analytical one.

Training parameters

In table 5.10, the data used for training the neural network is shown.

Name Symbol Value Unit
Plunging height range Ih (−30,30) m
Pitching angle range Iθ (−0.75,0.75)

Number of input data points Ndata 10000
Number of neurons in the hidden layer Nneurons 10

Table 5.10: Data - neural network

For all the cases, the data is split into 50 % training, 35 % validation and 15 % testing.
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The training input data are presented to the network during the training process. The validation
data are used to measure network generalization, and to halt training when generalization stops
improving. Finally, the testing data is used to measure the network performance during and
after training. These have no effect on training process of the network. The values for the
plunging height h and the pitching angle θ are picked randomly from the Ih and Iθ vectors.
The algorithm used for the back propagation is the Levenberg-Marquardt. A two-layer feed
forward network with sigmoid hidden neurons and linear output neurons is used.

Neural network training - Linear spring

The linear spring terms in the structural model are linear functions given by Flinear(t) = khh(t)
for the plunging spring force and Mlinear(t) = kθ θ(t) for the pitching moment. The values of
the linear constants are kh = 1614835.039Nm−1 and kθ = 16148.35039Nm, which is the same
used for the verification of the aeroelastic model.

Figure 5.28: Plot showing the linear neural network spring term for pitching and plunging vs the analytical
spring term, given some random input data for testing.

In figure 5.29, the trained linear neural network generated spring terms for the plunging
and pitching is tested, using some testing data. A total of N = 21 data points in the interval
Iθ = (−0.5,0.5) for the pitching angle and Ih = (−10m,10m) for the plunging height was
chosen in figure 5.29 and 5.28.As one can see, the linear neural network spring for the plunging
and pitching fit well to the analytical solution for the pitching and plunging.

Neural network training - nonlinear spring

The expression for the nonlinear spring force and nonlinear spring moment for the plunge and
pitching is given by Fnonlin(t)= khh(t)+knonlin−hh(t)3 and Mnonlin(t)= kθ θ(t)+knonlin−θ θ(t)3.
The linear terms have the same value as before and the nonlinear terms are given by knonlin−h =
0.01kh and knonlin−θ = 0.01kθ .
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Figure 5.29: Plot showing the nonlinear neural network spring term for pitching and plunging vs the analytical
nonlinear spring term, given some random input data for testing.

Figure 5.29 shows the plot of the nonlinear analytical spring force and the nonlinear neural
network spring force on the left and the nonlinear analytical spring moment and the nonlinear
neural network spring moment on the right. Similar to the linear spring, a total of N = 21
data points in the interval Iθ = (−0.5,0.5) for the pitching angle and Ih = (−10m,10m) for
the plunging height was chosen in figure 5.29 and 5.28. The neural network seems to fit the
analytical solution well when tested against the random input data.

Neural network spring term - comparison

In this part, the neural network generated spring terms are replaced in the aeroelastic model
for the linear and nonlinear cases. As one can already observe from figure 5.87 and 5.29, the
neural network generated spring terms seems to fit well when given random input data relative
to the analytical spring.

Linear spring

Here, the linear neural network spring is used and compared against the analytical spring for
the subcritical, critical and supercritical velocities. To see if the initial angle of attack has any
effect on the result, three different angles are chosen: α = π

180 , α = 5π

180 and α = 10π

180 .
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Subcritical velocity - α = π

180

Figure 5.30: Plot of the linear analytical spring vs the linear neural network sspring, pitching and pluniging,
α = π

180

Subcritical velocity - α = 5π

180

Figure 5.31: Plot of the linear analytical spring vs the linear neural network sspring, pitching and pluniging,
α = 5π

180
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Subcritical velocity - α = 10π

180

Figure 5.32: Plot of the linear analytical spring vs the linear neural network spring, pitching and plunging,
α = 10π

180

Figure 5.30, 5.31 and 5.32 show the plunging height and pitching angle plotted against time
in the left column of the figures and the difference between the computed height and rotation
angle from the analytical spring and the neural network generated spring. The figure in the
top right shows the difference between the plunging height between the analytical and neural
network spring as function of time, the figure on the bottom right shows the difference between
the pitching angle between the analytical and neural network spring as a function of time. As
one can see, the difference between the two solutions seems to increase, as the initial angle of
attack increases, for both the pitching and plunging. Still, the neural network seems to fit well
according to the aeroelastic model for the subcritical velocity in the linear model.
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Critical velocity - α = π

180

Figure 5.33: Plot of the linear analytical spring vs the linear neural network spring, pitching and plunging,
α = π

180

Critical velocity - α = 5π

180

Figure 5.34: Plot of the linear analytical spring vs the linear neural network spring, pitching and plunging,
α = 5π

180
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Critical velocity - α = 10π

180

Figure 5.35: Plot of the linear analytical spring vs the linear neural network spring, pitching and plunging,
α = 10π

180

In figures 5.33, 5.34 and 5.35 one can see the plunging height and pitching angle plotted against
time in the left column of the figures and the difference between the computed height and
rotation angle from the analytical spring and the neural network generated spring in the right
column at the critical velocity for the different angles of attack. As one can see, the difference
between the two solutions seems to increase, as the initial angle of attack increases, for both
the pitching and plunging.
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Supercritical velocity - α = π

180

Figure 5.36: Plot of the linear analytical spring vs the linear neural network spring, pitching and plunging,
α = π

180

Supercritical velocity - α = 5π

180

Figure 5.37: Plot of the linear analytical spring vs the linear neural network spring, pitching and plunging,
α = 5π

180
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Supercritical velocity - α = 10π

180

Figure 5.38: Plot of the linear analytical spring vs the linear neural network spring, pitching and plunging,
α = 10π

180

In figures 5.36, 5.37 and 5.38 one can see the plunging height and pitching angle plotted against
time in the left column of the figures and the difference between the computed height and
rotation angle from the analytical spring and the neural network generated spring in the right
column at the supercritical velocity for the different angles of attack. The error plot seems to
increase for the supercritical velocity in the linear model for all initial angles.

Nonlinear spring

Here the analytical nonlinear spring for the plunge and pitch is compared against the neural
network generated nonlinear spring for the aeroelastic model in the subcritical, critical and
supercritical velocities. Here, the angle of attack is set to α = 1 for all the simulations in the
initial conditions.
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Subcritical velocity - α = π

180

Figure 5.39: Plot of the nonlinear analytical spring vs the nonlinear neural network spring, pitching and plung-
ing, α = π

180

Critical velocity - α = π

180

Figure 5.40: Plot of the nonlinear analytical spring vs the nonlinear neural network spring, pitching and plung-
ing, α = π

180
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Supercritical velocity - α = π

180

Figure 5.41: Plot of the nonlinear analytical spring vs the nonlinear neural network spring, pitching and plung-
ing, α = π

180

Figures 5.39, 5.40 and 5.41 show the plots of the aeroelastic results using the nonlinear spring.
As one can see, the aeroelastic model using the nonlinear analytical spring seems to fit well with
the aeroelastic model using the nonlinear neural network generated spring. For the subcritical
velocity in figure 5.39, the error seems to decrease as time increases for the plunging motion.
Similarly to the linear spring, the error increases in the supercritical velocity case. One reason
why this error increases may be due to the input values for the height h and pitching angle θ

are increasing. If theses values exceed the training range Ih for the plunge and Iθ for the pitch,
the model using the neural network generated spring will not predict the correct response.

Wake shape comparison

Here, the wake shape for the two aeroelastic models using the neural network generated spring
and the regular analytical spring are compared at the final time step. The wake scheme used
for both are the explicit Euler method. Both the linear and nonlinear spring cases are displayed
below. The angle of attack chosen for the wake shape comparison was set to α = 1, for both
the linear and nonlinear case.



5.3 Numerical experiments 81

Linear spring - wake shape comparison

a) Subcritical velocity) b) Critical velocity)

c) Supercritical velocity

Figure 5.42: Comparison of the wake shapes for the analytical linear spring and neural network generated
linear spring.

From figure 5.44, one can see that the wake shape pattern for the linear model using the trained
neural network spring and for the regular analytical spring are more or less the same for all the
three cases.
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Nonlinear spring - wake shape comparison

a) Subcritical velocity) b) Critical velocity)

c) Supercritical velocity

Figure 5.43: Comparison of the wake shapes for the analytical nonlinear spring and neural network generated
nonlinear spring.

Similarly to figure 5.45, the wake shape for the nonlinear neural network spring and the ana-
lytical spring share the same pattern, but with some wake particles that are deviating.



Chapter 6

Conclusions and Future Work

In this study, an aeroelastic model was made, using the unsteady vortex particle method as the
aerodynamic model and a predictor corrector numerical scheme for the structural model. In the
beginning, the aerodynamic model was verified by comparing the numerical lift coefficient of
the model with the analytical lift coefficient from the thin airfoil theory. The structural model
for solving the equations of motion was verified by solving the linear pendulum problem and
the aeroelastic model was verified, using the experimental results from the Fung (1955) case.

Furtermore, the Adam Bashforth methods were used and compared against the explicit
Euler method for convecting the wake particles in the aerodynamic model. The results shows
that using the Adam Bashforth methods in the wake scheme for the aerodynamical model has
little influence in terms of the computed numerical lift coefficient. The Hausdorff distance
shows that the wake shape for the different wake schemes are quite similar to each other,
especially at the beginning of the simulation. This was consistent for both the steady flow state
and for the periodical pitching and plunging flow conditions. From this observation, one can
conclude that using linear multistep methods such as the Adam Bashforth methods will make
little to no difference compared to the explicit Euler method.

As of right now, the trained neural network spring has shown promising results for the
aeroelastic model. The aeroelastic model using the neural network trained spring terms have
been able to accurately predict the plunging and pitching motion for the subcritical, critical and
the supercritical velocity compared to the model using the analytical spring terms. This shows
that even using the simple one hidden layer forward neural network for training the nonlinear
and linear spring terms can accurately predict the correct fluttter onset for the aeroelastic model.
Although these results are promising, its important to note that the cubic structural nonlinearity
used is relatively simple, and other nonlinearities arising in the aeroelastic system have not been
considered. In the future, it would be interesting to train a neural network for the other terms
in the equation of motions, such as the martix for the damping of the airfoil.
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