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Abstract

Motivation: The evolution of bacterial drug resistance and other features in biology, the progression of cancer and
other diseases and a wide range of broader questions can often be viewed as the sequential stochastic acquisition
of binary traits (e.g. genetic changes, symptoms or characters). Using potentially noisy or incomplete data to learn
the sequences by which such traits are acquired is a problem of general interest. The problem is complicated for
large numbers of traits, which may, individually or synergistically, influence the probability of further acquisitions
both positively and negatively. Hypercubic inference approaches, based on hidden Markov models on a hypercubic
transition network, address these complications, but previous Bayesian instances can consume substantial time for
converged results, limiting their practical use.

Results: Here, we introduce HyperHMM, an adapted Baum–Welch (expectation–maximization) algorithm for hyper-
cubic inference with resampling to quantify uncertainty, and show that it allows orders-of-magnitude faster infer-
ence while making few practical sacrifices compared to previous hypercubic inference approaches. We show that
HyperHMM allows any combination of traits to exert arbitrary positive or negative influence on the acquisition of
other traits, relaxing a common limitation of only independent trait influences. We apply this approach to synthetic
and biological datasets and discuss its more general application in learning evolutionary and progressive pathways.

Availability and implementation: Code for inference and visualization, and data for example cases, is freely avail-
able at https://github.com/StochasticBiology/hypercube-hmm.

Contact: iain.johnston@uib.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many questions in biology, medicine and beyond concern the dy-
namics by which a set of traits or ‘characters’ is acquired over time.
These traits could be, e.g. evolving drug resistance features in patho-
gens, other physiological characters in evolutionary biology, muta-
tions in cancer progression, symptoms in progressive disease, task
completions in a workflow and more. Efficient ways of learning
about these dynamics from available data—which may be single-
time snapshots, without longitudinal tracking of individuals—can
be challenging to implement.

Specific fields of study have given rise to different approaches to
this question. The field of cancer evolution (Schwartz and Schäffer,
2017) has developed methods focussing on the construction of mu-
tation graphs describing the ordering and dependence of mutational
changes. Several of these approaches use a Bayesian networks pic-
ture (Beerenwinkel et al., 2015; Loohuis et al., 2014; Montazeri
et al., 2016; Ramazzotti et al., 2015, 2019; Ross and Markowetz,

2016; Szabo and Boucher, 2002), which may describe dependencies
between mutations as deterministic and one-way (i.e. detecting
when X is required for Y, but not when Z has the effect of lowering

the probability of Y). These restrictions are relaxed in approaches
allowing more general influences between features. Hypercubic
transition path sampling [HyperTraPS (Johnston and Williams,
2016)] and mutual hazard networks [MHN (Schill et al., 2020)]

both consider general (positive or negative, two-way) pairwise inter-
actions between features (in the same form, though the inference
approaches differ); the HyperTraPS picture has also been general-
ized further to include different structures of influence (Greenbury
et al., 2020), and the pairwise-interaction picture has been recently

developed and accelerated (Gotovos et al., 2021). Other approaches
for cancer progression have been developed that use alternative
methods based, for example, on the analysis of permutations
(Peterson and Kovyrshina, 2017; Zhang and Wang, 2018), and

Markov modelling (Hjelm et al., 2006); meta-studies have compared
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the performance of several of these approaches (Diaz-Colunga and
Diaz-Uriarte, 2021; Diaz-Uriarte and Vasallo, 2019).

In the (not disconnected) field of evolutionary biology, several
approaches have been developed for describing and predicting the
appearance of traits (typically called ‘characters’ in an evolutionary
setting) on phylogenies. The well-known ‘Mk’ model (Lewis, 2001;
Pagel, 1994) and its extensions, for example, use a Markov model
picture to consider how a discrete-valued character changes on a
phylogeny. In an evolutionary setting, the combined problem of
inferring character evolution on a phylogeny and the phylogeny
structure itself is often considered (Ronquist, 2004; Yang, 2014).
Bayesian approaches for phylogenetic reconstruction (Bollback,
2006; Pagel and Meade, 2006) are often combined with Markov
models for character dynamics (Ronquist, 2004), describing the dif-
ferent states of a character or characters and allowing stochastic
transitions between those states with some rates that are model
parameters to be estimated. Recent developments including general-
izing the influences between evolving characters to include depend-
ence and conditionality (Bianchini and Sánchez-Baracaldo, 2021),
employing flexible hidden Markov models (HMMs) to describe
character dynamics (Boyko and Beaulieu, 2021), and simulation-
free approaches allowing computationally tractable treatment of
problems involving ensembles of possible trees (Pasqualin et al.,
2017). Notably, the acquisition of resistance in HIV has been
explored with a ‘mutagenic tree’ approach—akin to the mutation
graphs above—combining an HMM and bootstrap resampling
(Beerenwinkel and Drton, 2007). The links between the cancer and
evolutionary fields have been explicitly explored by several studies
picturing cancer progression as an evolutionary process (Greenbury
et al., 2020; Youn and Simon, 2012).

In parallel, several studies have considered a particular class of
applied problems, which we will call ‘hypercubic inference’, applied
in cancer progression (Greenbury et al., 2020; Schill et al., 2020),
evolutionary biology (Greenbury et al., 2020; Johnston and
Røyrvik, 2020; Johnston and Williams, 2016) and progression of
other diseases including severe malaria (Johnston et al., 2019). In
terms of the systems involved, this picture involves evolution pro-
gressing via the sequential, irreversible, stochastic acquisition of dis-
crete traits [also referred to as monotonic accumulation (Ramazzotti
et al., 2019)]. Rather than focussing on individual traits/characters
as the elements of the system, these approaches consider every pos-
sible state of a system involving L traits—thus, explicitly considering
every combination of trait values, and thus accounting for complete-
ly general influences of any subset of current trait values and the sto-
chastic acquisition of another. There are therefore no assumptions
of deterministic or one-way relationships (Greenbury et al., 2020;
Schill et al., 2020). The transition graph linking possible states is
then a directed hypercubic graph, and edge weights (model parame-
ters to be estimated) can be used to control the probabilities of dif-
ferent dynamic pathways (Fig. 1). We are concerned with the inverse
problem of learning the structure of, and variability in, pathways on
this hypercube from observed samples of the evolving system. The
set of observations used to parameterize the hypercubic model may,
in different scientific contexts, be cross-sectional, longitudinal or
phylogenetically coupled (Greenbury et al., 2020). The ability to ac-
count for samples linked by temporal or phylogenetic relationships,
rather than only independent cross-sectional samples, is another
strength of this class of approach.

HyperTraPS (Greenbury et al., 2020; Johnston and Williams,
2016) and its precursor phenotypic landscape inference (Williams
et al., 2013) are Bayesian approaches, using likelihood estimates to
build posterior distributions over the parameterizations of the
hypercube. The representation of parameters is flexible, with a func-
tion used to construct each edge weight from some potentially
lower-dimensional representation, including the proportional haz-
ards picture also used in Schill et al. (2020). Regularization
approaches have been used to seek the parameter representation
most compatible with given data, which itself informs on the genera-
tive relationships between features (Greenbury et al., 2020).
HyperTraPS has been used to infer the evolution of efficient photo-
synthesis in plants (Williams et al., 2013), gene loss in mitochondria

(Johnston and Williams, 2016), as well as the progression of severe
malaria (Johnston et al., 2019), the emergence of tool use in animals
(Johnston and Røyrvik, 2020) and the participation of students in
digital learning (Peach et al., 2021).

In addition to relaxing the common deterministic, acyclic, one-
way dependencies as cited in Schill et al. (2020), these hypercubic in-
ference approaches have several features, which potentially allow a
more general analysis than alternative methods. First, the complete
state space of all possible presence/absence combinations is consid-
ered, rather than a restricted set of pathways as in the mutagenic
network picture (Beerenwinkel and Drton, 2007). Second, no
restrictions are placed on how traits influence each other. The adop-
tion of the parameterization protocol called L2 [in Johnston and
Williams (2016) and Greenbury et al. (2020)] or mutual hazards [in
Schill et al. (2020) and Gotovos et al. (2021)] means that each trait
can independently influence the acquisition of another; the less
restricted parameterization allowed by hypercubic inference sup-
ports (positive and negative) synergistic influence of pairs, triplets
and any combinations of traits. If there is sufficient data, any state-
specific transition probability can be inferred (and if there is insuffi-
cient data, model selection and uncertainty quantification
approaches can be used to place bounds on such probabilities).

While general, these Bayesian approaches, which to date rely
both on Markov chain Monte Carlo (MCMC) and a sampling ap-
proach to estimate likelihoods, are computationally expensive and
approximate. The inclusion of prior information is natural and argu-
ably important for low sample sizes, to avoid overfitting a small
sample. However, for larger samples, we may expect lower influence
of priors on the posterior. We may also wish to avoid the Bayesian
paradigm outright. We can thus naturally ask if a computationally
cheaper approach can provide an output akin to a maximum-
likelihood estimate for hypercube parameters—as MHN (Schill
et al., 2020) and their extension (Gotovos et al., 2021) have done
for the pairwise-interaction picture. Here, we will develop and apply
HyperHMM, an alternative approach for inference of dynamic
pathways on directed hypercubes without restrictions on state space
or trait interactions.

2 Materials and methods

Hypercubic Baum–Welch algorithm. The derivation and intuition
behind the hypercubic Baum–Welch algorithm is given more fully in
the Supplementary Material. Here, we simply state the essential
aspects. We are concerned with estimating the probabilities
ai;j ¼ PðXn ¼ sjjXn�1 ¼ siÞ, for a stochastic process Xt on the hyper-
cubic graph, where each state s is a node and edge si ! sj exists iff j
differs from i by exactly one feature acquisition (Fig. 1). The algo-
rithm broadly considers the set of possible paths on the hypercube
that could lead to observations being ‘emitted’ that are compatible
with our observations (see Supplementary Figs S1–S3 for examples),
and seeks to find transition weights that maximize the probability of
these paths.

The data, we will use are a set of potentially sequential observa-
tions O, where Or ¼ or;0; . . . ; or;T , is the rth sequence of observa-
tion, each labelled by an observation ordering 0; . . . ;T. Any of these
observations may be absent.

The key idea is to find probabilities, ai;j, that maximize the likeli-
hood of seeing all of our observations. This is done by first calculat-
ing the probabilities going forward and backward in time and
storing the values for each time step. The forward probability is the
probability of seeing everything up to a given time t given our cur-
rent estimate of the transition matrix, A, and the backward prob-
ability is the probability of seeing everything from a given time t
until the end. The forward probability of observation i at time t is
defined recursively as:

atðiÞ ¼
X

j

at�1ðjÞaj;i; (1)

being the sum of probabilities of a transition to state i over previous
states j, weighted by the probability of being at j at time t�1. The
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recursion is bounded by a0ð0LÞ ¼ 1, since our first observation will
always be 0L, and a0ðiÞ ¼ 0 for all other states i. The backward
probabilities are similarly defined as:

btðiÞ ¼
X

j

btþ1ðjÞai;j; (2)

summing weighted probabilities of transitions from state i at time t
to state j at time tþ1, where the recursion now follows backwards
in time bounded by bTðiÞ ¼ 1 for all i, as an observation at t¼T
begins a backwards-time pathway.

Combining these probabilities will give us a ‘skeleton’ with all
possible pathways given the observation (Supplementary Figs S1–
S3). Using this, we can calculate the probability of being in any two
states at times t and tþ1 and update the transition matrix based on
this information. These probabilities are called the n-probabilities
and are defined as:

ntði; jÞ ¼ Pðot ¼ i;otþ1 ¼ jjO;AÞ ¼ atðiÞai;jbtþ1ðjÞ
PðOjAÞ ; (3)

where PðOjAÞ is the probability of seeing the given observation se-
quence given our current estimate of the transition matrix A. We
then update the transition probabilities for each round according to
Equation (4), which is just a normalization of the n-probabilities
(see Supplementary Material for derivation):

âi;j ¼
PR

r¼1

PT�1
t¼1 nt;rði; jÞPR

r¼1

PN
k¼1

PT�1
t¼1 nt;rði; kÞ

: (4)

To assess convergence of the algorithm, we calculate the max-
imum change in any transition probability. For all of the cases in
Section 2, we have used a convergence criterion of 0.001, so that if
no transition probability changes by more than an absolute value of
0.001 between one iteration and the next, we terminate the
algorithm.

Bootstrap resampling. We used 100 bootstrap resamples of
observed transitions for estimating uncertainty in the HBW algo-
rithm, and report the standard deviation of summary statistics over
the set of resamples.

HyperTraPS. HyperTraPS was implemented following
Greenbury et al. (2020), using 2� 103 samples to estimate

likelihoods and a reduced parameterization mapping L2 values to
the edges of the hypercubic transition network. Priors involved a
uniform probability of any remaining feature being acquired at any
time step. The results from HyperTraPS were obtained after prelim-
inary investigation to find the optimal perturbation kernel for
MCMC convergence. For the simple synthetic cases this was
r ¼ 0:75; for the ovarian and TB cases it was r ¼ 0:25.

Convergence. For the HyperHMM approach, we recorded how
long it took for the inferred parameter set to converge to a 0.001
level, with 100 bootstraps to quantify uncertainty. For HyperTraPS,
we recorded how long it took for the inferred ordering posteriors to
converge to a 0.001 level. We did not focus on the posteriors on in-
dividual transition parameters, because many of these are uncon-
strained by a given dataset and (in the absence of a sparsity prior)
take a long time to recapture the prior, for negligible contribution to
the inferred dynamics. In a sense this criterion allows HyperTraPS a
looser definition of convergence; however, even given this laxity, the
speedup from the HyperHMM approach is striking (see text).

Summary of inferred dynamics with ordering probabilities. To
summarize HyperHMM outputs, 105 random walkers are simulated
on the maximum-likelihood hypercube, and the ordering of trait ac-
quisition for each walker is recorded. Where the bootstrap is used,
this process is repeated for each resampled dataset, and the standard
deviation of each ordering probability over the resampled set is
recorded. To summarize HyperTraPS outputs, 103 random walkers
are simulated on each of 105 sampled hypercubes from the posterior,
and the corresponding sampled trait-ordering posteriors are
recorded.

Ancestral reconstruction for TB dataset. Here, we followed the
minimum evolution approach in Greenbury et al. (2020), where the
ancestor of two descendants was inferred to possess a trait iff both
descendants also possess it. This approach assumes that the acquisi-
tion of traits is rare, so convergent acquisition is correspondingly
rare; in cases where this assumption is not safe, our approach can
readily be applied across an ensemble of possible phylogenies and
the resulting inferred dynamics summarized accordingly.

Implementation. The implementation of the code is in Cþþ; R
scripts are provided for preparing data, externally running the Cþþ
code and retrieving and plotting results. Currently, the implementa-
tion of the HyperHMM algorithm works readily for a system of at
least 20 traits on a normal laptop. The implementation is made

Fig. 1. Overview of hypercubic inference. (A) Observed data in the form of presence/absence ‘barcodes’ for each observation, which may be incomplete or noisy, and may be

independent (cross-sectional), longitudinal or phylogenetically coupled; here, TB resistance data from Casali et al. (2014). (B) The hypercubic transition network model for dy-

namics, where a system proceeds via a series of transitions from one vertex to another. Each vertex is a different ‘barcode’ state, edges give transition probabilities between

states. Hypercubic inference learns these transition probabilities from data, finding the parameterization most compatible with a set of emitted observations. (C) The learned

parameterization can be interpreted in several ways—as a probability map of which feature is likely acquired at which stage, explicit pathways through the hypercube space,

relationships between feature orderings and more. (D) Scientific insight follows from interpreting these results
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using the Compressed Row Storage format for representing sparse
matrices. Code for inference and visualization is freely available at
https://github.com/StochasticBiology/hypercube-hmm.

3 Results

3.1 A hypercubic Baum–Welch algorithm for efficient

inference of paths on a transition hypercube
Under a hypercubic transition graph model, every possible state of
the system is represented as a binary string of length L, where 0 and
1 at the ith position correspond, respectively, to absence or presence
of the ith trait (Fig. 1). Traits are acquired stochastically and irre-
versibly, meaning once a trait has been acquired it cannot be lost
(Greenbury et al., 2020). A hypercubic transition graph is then con-
structed, with each node corresponding to a state, and a weighted
edge from node a to node b if b differs from a by the acquisition of
exactly one trait. We usually picture a given instance of the system
(e.g. a patient with a progressive disease) moving over the hypercube
from the binary string of all 0s towards (but not necessarily

reaching) the binary string of all 1s, probabilistically following out-
going edges from a given state according to their relative weights.
The goal of hypercubic inference is to learn the set(s) of edge weights
that are most compatible with the observed dynamics of a given sys-
tem. To this end, we consider a HMM likelihood based on emissions
from processes on this transition graph (Rabiner and Juang, 1986).
In the simplest case, an emission corresponds simply to the state at
the current node, but an HMM approach also allows us to account
for noisy and incomplete emissions.

HyperTraPS is an algorithm estimating the likelihood of a given
observed transition from some state a to some state b (not necessar-
ily only one trait apart). Given the large number of paths that can
generally exist between two nodes, HyperTraPS uses biased random
walkers to estimate this likelihood, which is then embedded in a
Bayesian framework using MCMC for parameter estimation. The
fact that this likelihood is approximate raises issues of MCMC con-
vergence, which require corresponding algorithmic complexity to
address (Greenbury et al., 2020; Murray and Graham, 2016) and
the Bayesian nature of the parameter search require substantial com-
puter time.

Here, we propose HyperHMM, an alternative using (i) an adap-
tation of the well-known Baum–Welch algorithm (Baum et al.,
1970; Rabiner and Juang, 1986) for the hypercubic transition graph
to estimate parameters without requiring an approximate likeli-
hood, and (ii) a frequentist approach using resampling rather than
the fully Bayesian approach for uncertainty quantification. Both (i)
and (ii) allow substantial computational gains over the usual imple-
mentation of HyperTraPS, reducing runtimes from hours to seconds
(see below). A similar computational paradigm has been used previ-
ously [e.g. in Beerenwinkel and Drton (2007)]—here, following
HyperTraPS, it is instead applied to learn the hypercubic transition
network without restrictions on parameter structure or state space.
The Baum–Welch algorithm is an expectation–maximization algo-
rithm that learns maximum-likelihood transition probabilities in an
HMM from a given set of observations, and provides the maximum-
likelihood counterpart to the Bayesian approach previously used
with HyperTraPS (Greenbury et al., 2020; Johnston and Williams,
2016). The core hypercubic Baum–Welch algorithm is given in
Algorithm 1, illustrated in Figure 1 and derived in Section 4 and
Supplementary Material.

3.2 Synthetic test cases requiring different interaction

structures between traits
We will start by looking at two synthetic cases involving simple pre-
constructed datasets, previously used to test HyperTraPS
(Greenbury et al., 2020). In the first case, we construct a dataset
reflecting a single evolutionary pathway, where the acquisition of
features proceeds from the first to the last indexed. We begin with
this simple system with L¼5 traits, with corresponding ‘data’ con-
sisting of the observations 10000;11000; 11100; 11110. To demon-
strate the algorithm’s ability to capture distinct pathway structures,
and negative interactions between traits, we also consider a case
with two competing pathways. Here, the first trait to be acquired is
equally likely to be the first or last indexed. If the first, evolution
proceeds as previously, but if the last, it proceeds in the ‘opposite
direction’, with traits being acquired last to first in indexing order.
The first step on each pathway thus represses the other pathway.

Figure 2A and B shows the results of HyperHMM inference for
these two example cases. Supplementary Figure S4 expands these
results to compare inference results for different sample size N, trait
count L, and to compare HyperHMM and Bayesian HyperTraPS
approaches. The single pathway structure is intuitively captured,
with increasing certainty as the dataset size increases. The uncer-
tainty derived from resampling with the HBW algorithm agrees well
with the posteriors from HyperTraPS (Supplementary Fig. S4).
HyperTraPS, as a Bayesian approach, is informed by its priors,
which in this case are simply uniform acquisition probability over
all options. For low N the influence of these priors on the posteriors

Algorithm 1 The Baum–Welch algorithm for inference on

hypercubic transition graphs. The algorithm proceeds by

iteratively estimating forward and backward probabilities of

the different transitions observed in the dataset, given a

current estimate of the hypercubic transition matrix, then

updating this estimate to increase the probabilities of these

observations, until a convergence criterion is met. The

specific form of the Pð. . .Þ functions, providing the

probability estimates, is given in Section 4.

Input: L ¼ the number of traits, and O ¼ O1; . . . ;OR ¼ all

the R independent observations. Each Or ¼ or;0; . . . ;or;T is a

sequence of specific states, or markers denoting an unknown

state, that arises from observed data (e.g. 000; 001; ?; ? corre-

sponds to an observation of 000! 001 for an L¼3 system).

Output: estimated transition matrix Â describing the prob-

ability of a transition between two states.

1: Select a first estimation of transition matrix Â. A natural

choice is uniform probabilities over all outgoing edges

from a given node.

2: Let N ¼ 2L be the number of states, and T ¼ Lþ 1.

3: while Not convergence do

4: for r¼1,. . .,r¼R do

5: for t¼0,. . .,t¼T do

6: atðiÞ ¼ Pðor;1; . . . ;or;t ¼ ijÂÞ
7: btðiÞ ¼ Pðor;tþ1; . . . ;or;T jor;t ¼ i; ÂÞ
8: end for

9: for t¼0,. . .,t¼T�1 do

10: nr;tði; jÞ ¼ Pðor;t ¼ i;or;tþ1 ¼ jjÂÞ ¼ atðiÞai;jbtðiÞ
PðOjÂÞ

11: end for

12: end for

13: âi;j ¼
P

r

P
t
nr;tði;jÞP

r

P
k

P
t
nr;tði;kÞ

; 8i; j

14: Â ¼

â1;1 â1;2 � � � â1;N

â2;1 â2;2 � � � â2;N

..

. ..
. . .

. ..
.

âN;1 âN;2 � � � âN;N

0
BBBB@

1
CCCCA

15: end while
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is greater, and correspondingly the uncertainty quantified from
HBW resampling is higher.

Supplementary Figure S5 further compares the output of other
inference approaches, including Capri (Ramazzotti et al., 2015)
[from TRONCO (De Sano et al., 2016)], Oncotree (Szabo and
Pappas, 2022) (https://CRAN.R-project.org/package=Oncotree) and
MHN (Schill et al., 2020), for the double-pathway case. As Capri
and Oncotree cannot account for mutually repressing pathways,
they do not capture the full structure of this system, instead identify-
ing a single path or putting uniform probability over many. MHN
and HyperTraPS allow mutual repression, and hence capture this
structure (to a very similar extent, as the target of MHN inference is
the same as that of HyperTraPS).

A strength of HyperHMM is its ability to capture arbitrary influ-
ences of sets of multiple traits on the acquisition of other traits
(other approaches allow individual, but not synergistic, influences).
To demonstrate this ability, we consider another synthetic case con-
sisting of L¼6 traits. Initially, the final three traits have zero acqui-
sition probability, and the first three traits have equal and
independent acquisition probabilities. What happens next depends
on whether Trait 1 is acquired before both Traits 2 and 3 are

acquired. If Traits 1 and 2 (but not 3) or Traits 1 and 3 (but not 2)
are acquired, evolution then proceeds to acquire Traits 4, 5 and 6,
before acquiring the remaining 3 or 2. If both 2 and 3 are acquired
before 1, evolution proceeds down the different pathway 6, 5 and 4,
before acquiring the remaining 1. Succinctly, 1 AND (2 XOR 3)—
states 110000 and 101000—leads to the 4–5–6 path; and 1 AND (2
AND 3)—state 111000—leads to 6–5–4. These multiple, bidirec-
tional logic interactions cannot be precisely captured in a reduced-
order system like HyperTraPS’ L2 or mutual hazards approaches
(Greenbury et al., 2020; Schill et al., 2020). Supplementary Figure
S6 shows a comparison of inference outputs for these and other
approaches; while the pairwise approaches approximate the shape
of the system, they include many spurious transitions and omit the
full logical dependence between features (Supplementary Fig. S6C
and D). As above, as the target of inference for MHN and
HyperTraPS is the same L2 parameter structure, the models produce
very similar approximations. By contrast, HyperHMM captures the
higher-order behaviour through the corresponding explicit paths on
the hypercubic space (Fig. 2C)—although neither summary of average
ordering behaviour reveals this logical dependence (Fig. 2Ci and iii), it
is revealed by considering the explicit hypercubic paths (Fig. 2Cii).

Fig. 2. Inferred dynamics for synthetic test datasets. Synthetic examples from the text: (A) single pathway; (B) double competing pathways; and (C) synergistic logical interac-

tions between traits. (i) Summary output of HyperHMM algorithm reflecting averaged trait orderings. Bubbles show the probability of acquiring trait y at time x; black circles

in the HyperHMM plots shows the standard deviation after 100 bootstraps. (ii) Visualization of inferred paths on the hypercubic transition network. Individual edge labels de-

scribe which feature is changed at each transition; edge weights correspond to the probability of a given transition. (iii) Probabilistic feature graphs for orderings of features

changes. An edge from a to b corresponds to acquisition of b directly following acquisition of a in inferred dynamics—gives the initial state with no features. Edge weights cor-

respond to the frequency with which given transitions are observed in simulated dynamics
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3.3 Ovarian cancer data
Following the verification of the HyperHMM approach on synthetic
datasets, we next turned to a medical dataset that, while dated, has
been used to test several algorithms for evolutionary inference
(Greenbury et al., 2020; Loohuis et al., 2014; Szabo and Boucher,
2002). This dataset consists of snapshots of patterns of chromosom-
al aberrations in 87 ovarian cancer patients (Knutsen et al., 2005).
These are labelled by chromosome (1� 23 and X), chromosomal
arm (p or q) and variant type (addition þ or loss �). HyperTraPS
and others have used these data to test and benchmark inference
approaches (Greenbury et al., 2020). The questions include: do
some aberrations occur systematically before others, does the pres-
ence of one aberration influence the acquisition probability of an-
other and how distinct or separate are the different pathways by
which cancer can evolve in this dataset?

Figure 3 shows the inferred orderings from the HyperHMM ap-
proach and from HyperTraPS. The same features are clear in both
cases, with sampled hypercubic trajectories and probabilistic feature
graph (Fig. 3C and D) displaying notable similarities with the
HyperTraPS output found in Greenbury et al. (2020)—including
strong weighting to the 8qþ ! 3qþ ! 1qþ sequence, then a more
diverse range of potential dynamics thereafter. The supported trajec-
tories here underline the ability of HyperHMM to characterize com-
peting pathways (and negative influence of one trait on the
acquisition probability of another). As discussed in Greenbury et al.
(2020), this leads to increased flexibility in pathway identification
compared to other approaches: e.g. the HyperHMM output sup-
ports acquisition of 4q� prior to 5q�, observed in 12% of samples
in the data but not identified by inference approaches based on
Bayesian networks (Montazeri et al., 2016; Ramazzotti et al.,
2015). Further comparisons with other approaches are shown in
Supplementary Figure S7. HyperHMM favours the same set of ini-
tial steps as Oncotree, but thereafter shares clear similarities in
inferred hypercubic transitions with HyperTraPS (and MHN, which
here assigns a more uniform spread of probabilities over pathways).
Generally, hypercubic inference approaches allow a relaxation of
the graph of trait relationships away from the tree structure enforced
by many approaches to allow bidirectional interactions; and they

also capture more detailed information about transitions between
individual states, allowing general representations of trait
dependencies.

Several examples exist in this inferred example of where higher-
order interactions than simple pairwise influences (as in MHN or L2

HyperTraPS) are present. A non-exhaustive set of examples for which
such higher-order interactions are important can easily be found by
recording instances of PðAj1Þ > maxðPðAjBÞ;PðAjCÞÞ < PðAjB
and CÞ. In other words, B and C both independently decrease the prob-
ability of A, but their combination re-increases its probability. Several
examples of this behaviour exist in the ovarian cancer dataset. One ex-
ample is the influence of 5q� and 1qþ on the probability of acquiring
8qþ. The base probability of the 8qþ feature is 0.473; this is substan-
tially reduced to 1:04� 10�11 and 0.0485 by the individual prior ac-
quisition of either 5q� or 1qþ, respectively (the base probabilities of
which are 0.196 and 0.234 respectively). However, the prior acquisi-
tion of both these traits re-elevates the probability of 8qþ to 0.132. Of
course, this condition is sufficient but not necessary for higher-order in-
fluence; many other possibilities exist, but we use this as a simple
example.

3.4 Multidrug resistance in tuberculosis
As a final test of the approach using biomedically pertinent data, we
next turned to an evolutionary question—how multidrug resistance
evolves in tuberculosis (TB). This global problem involves the TB
bacterium acquiring resistance to the antimicrobial drugs used to
treat it. We again use a dataset that has previously been used to test
HyperTraPS (Greenbury et al., 2020): specifically, the study of
Casali et al. (2014). Here, drug resistance profiles of different but
related strains of TB were experimentally characterized, producing
barcodes of resistance/susceptibility that are connected by an esti-
mated phylogeny.

Because of this phylogenetic relationship between samples
(Fig. 1A), cross-sectional approaches that assume sample independ-
ence cannot be applied, and we use the longitudinal form of
HyperHMM, where pairs of observations (ancestor–descendant) are
considered as the fundamental sampling elements. Following

Fig. 3. Inferred dynamics for ovarian cancer progression. Summary results using (A) HyperTraPS using an L2 parameterization and (B) HyperHMM on the ovarian cancer

dataset. (i) Bubbles show the probability of getting trait y at time x; black circles in the HyperHMM plots show the standard deviation after 100 bootstraps. (ii) Visualization

of inferred paths on the hypercubic transition network. Individual edge labels describe which feature is changed at each transition; edge weights correspond to the probability

of a given transition. (iii) Probabilistic feature graphs for orderings of features changes. An edge from a to b corresponds to acquisition of b directly following acquisition of a

in inferred dynamics; 0 gives the initial state with no features. Edge weights correspond to the frequency with which given transitions are observed in simulated dynamics.

Feature labels: 1 8qþ, 2 3qþ, 3 5q�, 4 4q�, 5 8p�, 6 1qþ and 7 Xp�
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Greenbury et al. (2020), we estimate the barcodes of ancestral states
using maximum parsimony and hence extract the set of transitions
that have occurred throughout the whole lineage. This transition set
is the input for our inference algorithms.

Once more, the structure and variability of multidrug resistance
pathways is readily revealed by the HyperHMM algorithm. Again,
the inferred ordering probabilities from HyperHMM agree well
with the fully Bayesian approach, with some instances where
HyperHMM assigns marginally increased confidence to some order-
ings (as above), due to the influence of the uniform priors used in
HyperTraPS. Following findings in Greenbury et al. (2020), a strong
weighting to the initial steps INH !RIF !PZA is apparent, after
which the potential pathways diversify around a central ‘core’ path-
way. Interestingly, this suggests that acquisition of multidrug resist-
ance in each lineage in these samples follows one of a related set of
evolutionary pathways, with some variability around later steps but
the same qualitative patterning (there are not multiple, distinct,
competing pathways in Fig. 4C to the extent seen in Fig. 2B). This
raises the possibility of predicting the next evolutionary step for a
strain with a given drug resistance profile, with potential applica-
tions to optimal treatment design [akin to Johnston et al. (2019) and
Diaz-Colunga and Diaz-Uriarte (2021)].

The TB dataset also contains several examples where higher-order
interactions are inferred. One striking example is PðAMIj1Þ ¼ 0:0778;
PðAMIjINHÞ ¼ 0:0382; PðAMIjPZAÞ < 10�90; PðAMIjINH þ
PZAÞ ¼ 0:0687 (where PðINHj1Þ ¼ 0:762 and PðPZAj1Þ ¼
0:0136). In other words, the probability of acquiring resistance to AMI
is decreased by the acquisition of either INH or PZA independently, but
their combination re-elevates the probability of acquiring AMI almost
to its original level.

3.5 Comparison to Bayesian approach: benchmarking

performance, prior information and model selection
Throughout the above investigations, we observed that the hypercu-
bic Baum–Welch algorithm yielded results much more quickly than
the HyperTraPS approach—intuitively, as a maximum-likelihood
approach will typically involve less computation than Bayesian

inference attempting to summarize the full parameter space. To
quantify the difference in speeds, we considered simple synthetic test
cases of the single- and double-pathway systems introduced above
with L¼5, 7 and 9, along with the real-world datasets (see Section
4). HyperHMM typically converges 2–3 orders-of-magnitude more
quickly than the Bayesian implementation of HyperTraPS, without
requiring preliminary or parallel tuning of the MCMC parameters
(Supplementary Table S1). Quantitative details on the convergence
time overall and per iteration with number of features L are given in
Supplementary Figure S8. In Supplementary Figures S5–S7, we show
comparisons with other approaches from TRONCO (De Sano et al.,
2016), Oncotree (Szabo and Pappas, 2022) and MHN (Schill et al.,
2020). Implementation issues made it hard to precisely benchmark
the runtimes of each of these approaches on the same machine, but
we generally observed that Capri and Oncotree ran very quickly,
with MHN taking longer (on the order of seconds with our trial
datasets), but using less time than HyperHMM—as expected, as the
associated parameter space is smaller.

One sacrifice in going from the fully Bayesian HyperTraPS is a
reduced ability to include prior information in the inference process
(Greenbury et al., 2020). However, this can be partly addressed
within HyperHMM by changing the structure of the hypercubic
transition network that underlies our model—which also allows us
to perform model selection and regularization within HyperHMM.
In the Supplementary Material, we outline how edge removal can
capture prior information and different model structures within
HyperHMM, and how simple information-based comparison statis-
tics like the Akaike Information Criterion can be used to select an
appropriate model structure for a given dataset.

4 Discussion

We have shown that a hypercubic Baum–Welch algorithm is an effi-
cient alternative for inferring dynamic pathways on hypercubic tran-
sition graphs with arbitrary, potentially high-order interactions
between features. Samples linked by a longitudinal or phylogenetic
relationship (as in the TB case) can readily be used in the inference

Fig. 4. Inferred dynamics for multidrug resistance evolution in TB. Summary results using (A) HyperTraPS using an L2 parameterization and (B) HyperHMM on the TB drug

resistance dataset. Each trait code is a particular drug (three-letter codes below). (i) Bubbles show the probability of getting trait y at time x; black circles in the HyperHMM

plots show the standard deviation after 100 bootstraps. (ii) Visualization of inferred paths on the hypercubic transition network. Individual edge labels describe which feature

is changed at each transition; edge weights correspond to the probability of a given transition. (iii) Probabilistic feature graphs for orderings of features changes. An edge from

a to b corresponds to acquisition of b directly following acquisition of a in inferred dynamics; 0 gives the initial state with no features. Edge weights correspond to the fre-

quency with which given transitions are observed in simulated dynamics. Feature labels: 1 INH, 2 RIF, 3 STR, 4 EMB, 5 PZA, 6 PRO, 7 OFL, 8 MOX, 9 CAP and 10 AMI
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process, generalizing beyond independent cross-sectional samples.
Arbitrary (not just pairwise) influences of sets of features on acquisi-
tion probabilities can be captured. The considerable speedup
afforded over the original HyperTraPS implementation increases the
set of problems that can be addressed; at the same time, no case-
specific choices about perturbation kernels and likelihood estima-
tion parameters need to be made. This simplification and speedup
does not substantially challenge the approach’s ability to capture
and quantify uncertainty, making it a competitive choice for infer-
ring the structure of, and variability in, dynamic pathways—and for
predicting future behaviour given current states (Diaz-Colunga and
Diaz-Uriarte, 2021). In particular, HyperHMM directly gives pre-
dictions about the next step(s) that will occur from any specific
state, providing potentially actionable information—e.g. to which
drug a given bacterial strain will likely next evolve resistance, help-
ing to choose a safer treatment alternative.

One advantage of the likelihood estimation process here is that
noisy and incomplete observations can very easily be included in the
source data, via appropriate choices for emission probabilities in the
algorithm. Accounting for noisy observations is achieved by assign-
ing each state a non-zero probability of emitting a signal that differs
from its signature. The choice of this probability can be informed by
the particular system, and could involve, e.g. a constant error prob-
ability � per bit, so that the probability of emitting a signal that dif-
fers by l bits from the current state is �l (appropriately normalized).
Incomplete observations can be modelled by assigning each state
compatible with a signal an equal probability of emitting that signal
(e.g. 100 and 110 may emit 1?0 with equal probability). This emis-
sion probability does not itself influence the probability of those
states arising in the dynamics, which is determined by the inferred
parameterization.

The hypercubic Baum–Welch algorithm considers every transi-
tion edge on the hypercube—allowing arbitrary interactions be-
tween traits, as in 2C. In the examples above, because of the
dramatic increase in computational efficiency, we have not coarse-
grained the associated parameter space in any way. Examples up to
around L¼24 traits can readily be analysed on a modern computer,
with that value requiring about 4 GB of memory during processing;
higher trait numbers will require more memory. However, faced
with larger problems, the same strategies for dimensionality reduc-
tion that were employed with HyperTraPS (Greenbury et al.,
2020)—and have been employed in similar hypercubic models
(Schill et al., 2020) could readily be employed here. This would in-
volve a potentially simple function in Algorithm 1 mapping a
reduced parameter set h0, e.g. involving a proportional hazard
mapping as in Greenbury et al. (2020) and Schill et al. (2020) to
transition edge weights, and its inverse being used in the parameter
update step each iteration.

It should be noted that technically the uncertainty obtained here
from bootstrap resampling can be viewed as a measure of the uncer-
tainty of the outcome of the algorithm rather than directly as a
measure of the uncertainty of the parameter estimation, and that
this difference can be considerable in some cases, particularly for
non-identifiable parameters (Fröhlich et al., 2014). In most cases,
there will be edge weights in the hypercubic network that cannot be
precisely estimated given a dataset (e.g. those that fall far from any
likely paths generating the observations), but the contribution of
these parameters to the summary behaviour of an inferred model is
by nature very small. Nonetheless, uncertainty analysis without
resampling, e.g. via automatic or numerical calculation of likelihood
derivatives and Fisher information, would be an appropriate future
extension for this approach.

Comparisons with alternative approaches for inferring dynamics
in a similar way to the hypercubic picture have been shown in
Johnston and Williams (2016) and Greenbury et al. (2020), and in
Supplementary Figures S5–S7 here. Classes of approach for this
problem broadly include simple logistic regression, approaches
based on Bayesian networks, approaches for modelling and learning
stochastic processes on phylogenies and approaches harnessing top-
ology and/or dimensionality reduction before performing inference
(Greenbury et al., 2020). Previous comparisons have demonstrated

that HyperTraPS typically has advantages of scaling and generality
over several other approaches. Of particular note are the early
method of Hjelm et al. (2006), where a Markov chain picture is

used to construct networks describing longitudinal observations
with pairwise trait interactions; Beerenwinkel and Drton (2007),

who use a HMM with bootstrapping to infer mutagenic tree repre-
sentations of resistance dynamics in HIV (but do not consider the
dynamics through an unrestricted space of presence/absence sets);

and Schill et al. (2020), who apply a different set of inference
approaches to a very similar hypercubic model setup, while using

the mutual hazards parameterization (corresponding to individual,
but not pairwise or above, influences of trait on each other’s acquisi-
tion)—extended and accelerated in Gotovos et al. (2021). We be-

lieve that hypercubic inference approaches (HyperHMM and
HyperTraPS) complement these approaches by relaxing assumptions

on both the state space considered and the influences between traits,
generalizing both aspects of the model (while being restricted to
learning orderings, rather than continuous timings). Our aim here is

to demonstrate that the HyperHMM matches HyperTraPS output—
and hence retains these and other advantages—while allowing a
considerable speedup that will render more large-scale problems

computationally tractable.
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