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Abstract
Abrupt changes in water depth are known to lead to abnormal free-surface wave statistics. The present study considers
whether this translates into abnormal loads on offshore infrastructure. A fully non-linear numerical model is used which is
carefully validated against experiments. The wave kinematics from the numerical model are used as input to a simple wave
loading model. We find enhanced overturning moments, an increase of approximately 20%, occur over a distance of a few
wavelengths after an abrupt depth transition. We observe similar results for 1:1 and 1:3 slopes. This increase does not occur
in linear simulations.
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1 Introduction

Oceanwaves are central to the studyof ocean engineering and
are a key design driver formanymarine energy devices. Stan-
dard models of wave statistics assume that the underlying
freely propagating components are uncorrelated. However,
situations may arise where correlations are present between
components, and this leads to a greater number of largewaves
than would otherwise be expected. Such waves can be con-
sidered rogue or freak waves (see reviews by Dysthe et al.
(2008); Adcock and Taylor (2014)).

One mechanism which can cause an increased number of
large waves is where waves propagate over a rapid change
in water depth. This mechanism was identified a decade
ago (Trulsen et al. 2012) and has since motivated many
researchers (Gramstad et al. 2013;Ducrozet andGouin 2017;
Bolles et al. 2019; Zhang et al. 2019; Zheng et al. 2020;
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Monsalve et al. 2022). One mechanism that has been pro-
posed attributes the enhanced number of large waves to the
interaction between second-order bound and the free waves
additionally released due to a depth transition (Li et al.
2021b, c). For a train of Stokes waves experiencing abrupt
depth transitions, a second-order theory was derived byMas-
sel (1983), in agreement with the experimental observations
by Monsalve Gutiérrez (2017). Li et al. (2021b, c) have
extended the theory to allow for a narrow-band wavepacket
and a statistical analytical model for a train of irregular ran-
domwaves, respectively. These have been found to be in good
agreement with both numerical and laboratory observations.
An alternative explanation, which may also be important, or
indeed coupled, is that sea-states are pushed out of equilib-
rium leading to an increase in rogue waves as the sea-state
adjusts to the new equilibrium (e.g., Viotti and Dias (2014);
Mendes et al. (2022); Zeng and Trulsen (2012)). Such effects
can also contribute to the number of extreme waves gener-
ated.

The focus ofmost of the pastworkhas beenon free-surface
wave statistics. However, for practical engineering purposes
such as loading on offshore wind turbines, the wave kine-
matics may be of greater interest, as they are more closely
related to the loads. Recent research has started to investi-
gate the wave kinematics. A new method for the calculation
of water–particle kinematics based on the fully non-linear
Variational Boussinesq model was developed and applied to
the problem of waves propagating over a slope by Lawrence
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et al. (2021a) and Trulsen et al. (2020). The statistics of wave
kinematics in long-crested irregular waves propagating over
a shoal is studied by Lawrence et al. (2021b) using a Monte
Carlo approach. The evolution of kurtosis and skewness of
the horizontal velocity is discussed, and the statistical prop-
erties are compared to laboratory experiments. Trulsen et al.
(2020) conduct the experiments of long-crested irregular
water surface waves propagating over a shoal. The location
of local maximum and local minimum of skewness and kur-
tosis are investigated in terms of the surface elevation and the
horizontal fluid velocity. In addition, Bateman et al. (2003)
investigate the calculation of the water particle kinematics
generated by the propagation of surface gravity waves.

Our work seeks to examine the wave kinematics and loads
induced on an idealised structure in the vicinity of an abrupt
depth transition. We use fully non-linear potential-flow sim-
ulations which explicitly solve for the wave kinematics.

2 Numerical and experimental methodology

2.1 Experimental setup

In this paper, the experimental data are taken from Li et al.
(2021a, b). In the experiment, only surface elevation is mea-
sured. The experimental setup is presented in Fig. 1. A total
of 16 gauges were used to measure the waves and the loca-
tions of 16 gauges are shown in Table 1. Our study primarily
focus on the results at gauges 1, 3, 8, and 11 and the measure-
ments at these 4 gauges are selected for comparison with the
numerical simulations. The width of the flume is 0.6 m and
the length is 35m. The top of the slope is 7.5m away from the
wave-maker. The water depth of the deeper water side, hd, is
0.55 m and the water depth of the shallower water side, hs,
is 0.2 m. Thus, the height of the slope is fixed as 0.35 m. The
slopes are indicated by the dashed lines in Fig. 1, showing a
slope of both 1:1 and 1:3.

2.2 Numerical setup

OceanWave3D (OW3D) is used to model the waves (see
Engsig-Karup et al. (2009)) and the governing equations of
OW3D are shown in Appendix A.

Potential-flow equations for surface gravity waves are
solved by OW3D in a three-dimensional Eulerian frame
, which gives the kinematics information not only at the
free-surface boundary but also at all the vertical nodes
hence allowing full kinematic reconstruction. Thus, the wave
kinematics are extracted directly during the time-marching
process without any further assumptions. A classical fourth-
order Runge–Kutta time-marching scheme is used. A σ -
coordinate transformation is applied to map the vertical
solutions to a time-invariant grid, which can also be used

to solve the fully non-linear potential-flow equations with
variable bathymetry.

Wave breaking is implemented using a local smoothing
function. This local smoothing functionmonitors the particle
downward acceleration of the free surface (w̃ in the govern-
ing equations of OW3D, see Appendix A) and it removes
a small amount of energy locally until the acceleration is
below the threshold. In our simulation, the local smooth-
ing function is triggered when the detected acceleration is
greater than 0.4g (where g is the gravitational acceleration),
which follows previous work (Tang et al. (2021)). Interest-
ingly, in this study, we have experienced unusual breaking
events especially around the abrupt depth transitions. These
strong breaking waves caused difficulties to get convergence
with this simplified breaking model, which helps further sta-
bilise the numerical scheme. The simplified breaking model
can only be applied once at each time step. Thus, we found
a small number of events occurred where it is presumed, the
wavewas breaking caused the code to stop. This suggests that
breaking at the top of the slope may have significant differ-
ences from waves on a flat bathymetry, which is consistent
with the recent work of Draycott et al. (2022). When the
code stops, a finer resolution in temporal domain is applied
to allow the breaking model to trigger over more timesteps
allowing the code to compute through the point at which it
could not converge with the normal time step. After passing
this point, we change to the original resolution until meeting
the next crash point.

The model also has a ‘linear’ version which we use in
this paper. This version solves the classic linear form of the
water wave equations. In the linear model of OW3D, the
surface elevation profile is set to zero in the σ -coordinate
transformation and the non-linear terms in the free-surface
boundary conditionswere also neglected,which leads to gen-
erated waves follow the linear wave theory (see Bingham and
Zhang (2007) for detailed implementation of this model).

The numerical domain is almost identical to that used in
the experimental case, and the relative location of gauges
is the same as in the experiment. In our numerical domain,
we use gauge 3 as our datum (x = 0 m in the numerical
domain), so locations upstream of this are negative. In our
simulations, the peak frequency of the input waves is 0.8 Hz.
Thewavelength is 2.23mand 1.6mondeep and shallow side,
respectively. The water depth on the deep side and shallow
side is 0.55 m and 0.2 m, respectively, which is the same as
experimental setup. we consider two different slopes: a slope
of 1:1 and one of slope 1:3. The input waves and numerical
domain are the same for both cases. The length of the numer-
ical domain, Lx , is 54 m (from x = − 21.88 m to x = 32.12
m a length of 24wavelengths) and the number of nodes on the
x-axis, Nx , is 3500. The number of nodes on the z-axis, Nz ,
is 20. The timestep, �t , is 0.03125 s (40 time steps per wave
period) and a total time duration of 3.5 h of wave propagation
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Table 1 The locations of 16
gauges in the experiment Gauge no. 1 2 3 4 5 6 7 8

Position x (m) − 1.88 − 0.10 0.00 0.10 0.30 0.50 0.70 0.90

Gauge no. 9 10 11 12 13 14 15 16

Position x (m) 1.10 1.50 5.00 7.50 10.0 14.0 15.0 18.0

Position x indicates the distance to the top of the slope, and positive value indicates gauges after the top of
the slope (from Li et al. (2021a))

Fig. 1 Diagram of experimental setup including gauges, step, beach, and wave-maker positions (from Li et al. (2021b))

is simulated for both cases.Waves are generated using a dou-
ble relaxation zone to help absorb reflected waves, which is
located from− 21.88 to− 1.88m (9wavelengths). At the end
of the domain, waves are absorbed using a pressure bound-
ary condition. Thus, a damping zone is applied at the end of
the domain and the length is 10 m (from x = 22.12 m to
x =32.12 m and corresponding to 4.5 wavelengths). The top
of the slope is located at x = 0 m in the numerical domain
for both cases, which is 1.88 m away from the end of the
relaxation zone (x = −1.88 m). The same numerical setup
is adapted for both linear and non-linear model of OW3D
simulations. The steepness of the slope is changed by chang-
ing the length of the slope. The discretisation used is based
on the study of Barratt et al. (2020) and a grid convergence
study on the same geometry used here is presented in Li et al.
(2022).

2.3 Input waves

In this paper, we primarily consider random wave simu-
lations. In the experiments, the waves are drawn from a
JONSWAP spectrum with peak enhancement factor, γ =
3.3, and the JONSWAP spectrum is developed by Hassel-
mann et al. (1973)

S(ω) = αg2

ω5
e−5/4(ωp/ω)

4
γ
exp

(

−1/2(ω−ωp/sωp)
2
)

, (1)

in which ωp is the peak frequency (ωp = 2π/Tp) and the
parameter s =0.07 for ω < ωp and s = 0.09 for ω > ωp.
The input measured significant wave height at the first gauge
of the experiments was Hs = 0.045 m giving a significant
steepness of 1

2Hskp = 0.064 (the peak wave number, kp, is
2.81m−1 on the deep side). The peak frequency of the input
waves is 0.8 Hz giving a non-dimensional water depth on the
deep side of kphd = 1.55 and, assuming linear shoaling, a

non-dimensional depth on the shallow side of kphs = 0.79.
In our simulations, the experimental data at gauge 1 are used
as input for the OW3D simulations. We ignore the first 300 s
of the experiment to allow the waves to reach a steady state.

3 Validation against experiments

Extensive verification and validation, in addition to a con-
vergence study, of the model used in the present paper was
undertaken in Li et al. (2022) and is not repeated here. This
previous work focused on deterministic wave groups rather
than random waves as are studied here. As such, we here
focus on the aspects of the modelling that apply to random
waves but not to deterministic groups. These aspects are prin-
cipally thewave generation andwave breaking (as the groups
in the previousworkwere designednot to break).Wenote that
the wave generation in the numerical model is different from
that in the experimental model. In addition, this potential-
flow solver can never fully capture the non-potential-flow
physics induced bywave breaking (e.g., Eeltink et al. (2022))
and vortex shedding due to the sharp edge at the top of the
slope. The experiments and numerics will also differ in that
some dissipation from the side walls will occur in the experi-
ments and also differ in wave absorption with more complete
absorption being expected in the numerical scheme. Another
expected source of inaccuracy is that we use experimental
data at gauge 1 as input to the numerical model. However,
these data include waves reflected off the depth transition
which are travelling in the opposite direction. In our valida-
tion, we present results for the 1:1 slope as similar results
are observed for the 1:3 case, and intuitively, the latter case
is expected to be marginally easier to simulate as non-linear
physics is likely to be less severe.
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Fig. 2 Representative time
histories of surface elevation at
different gauges comparing
experimental and numerical
result (1:1 slope case), where x
indicates the distance from the
top of the slope, η the surface
elevation, and t time

Despite the aforementioned limitations due to thepotential-
flow solver used, we generally find good agreement between
experiments and numerics. Figure 2 shows a representative
time series of the free surface η for the 1:1 slope case at sev-
eral gauges. Given the differences between experiment and
numerics, the agreement is generally good. Waves are well
aligned in time and the magnitudes are adequately captured.
The differences between the numerically generated waves
and experimental results at Gauge 1 can be attributed to vari-
ous causes.Weassume that all thewave componentmeasured
at Gauge 1 during experiments are propagating downstream,
whereas they are actually composed of both incident waves
and reflected waves from the step and from the beach dur-
ing the experiments. The numerical results measured at the
end of relaxation zone also include reflections, especially
from the slope, which also contribute to the deviation. We
have applied a double relaxation zone to absorb these reflec-
tions, but there is also a compromise between being able to
make the exact waves and reducing the influence of reflected
waves. There also seems to be a systematic horizontal shift
especially at gauge 11. One of the reasons for this can be the
minor error between experiments and simulations in terms
of the exact location of gauges or the slope. Bed and sidewall
frictions could also contribute to horizontal shifts at far away
gauges.

Next, we look at the significant wave height Hs at our four
gauges. The significant wave height is defined by the mean

of the largest 1/3 of the waves and the individual wave is
determined by zero up crossing. The significant wave height
of numerical and experimental results are shown in Fig. 3.
In terms of the experimental and numerical results at gauge
1, 3, 8, and 11, they are shown in Table 2. Our simulations
are based on the experimental results at gauge 1. The 1%
difference in Hs at gauge 1 is a result of combined reasons
mentioned above, and the discrepancy at all locations is small
with both experiment and numerics showing similar trends.

We now turn to height statistics. Figure 4 presents the
probability that a given wave height is exceeded at a partic-
ular location. We include both fully non-linear simulations
as well as otherwise identical simulations using the linear
model. The agreement between non-linear simulation and
experiment is generally good, showing similar departures
from the Rayleigh distribution and linear simulation after the
step. The Rayleigh distributionwithout modification is based
on a narrow-band assumption and it is the most commonly
adopted distribution for the crest to trough wave heights
as well as the starting point for many other models. The
exceedance probability of wave height follows the Rayleigh
distribution for narrowbanded linear waves. The Rayleigh
distribution is given by

Pr = − exp

(

− H2

8m0

)

, (2)
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Fig. 3 The significant wave
height Hs at different gauges for
numerical and experimental
results (1:1 slope case)

Table 2 Significant wave height (Hs) of numerical (1:1 slope case) and
experimental results at gauge 1, 3, 8 and 11

Gauge no. 1 3 8 11

NumericalHs (m) 0.0455 0.0467 0.0451 0.0442

Experimental Hs (m) 0.0450 0.0462 0.0459 0.0430

Relative differences (%) 1.1 1.1 1.7 1.9

where m0 is the zeroth-order moment of the spectrum and
this equation describes the probability of a wave height is
bigger than a given wave height H .

Although within the confidence intervals, the numerical
simulation does seem to slightly under-predict the number
of large waves at gauge 8 (x = 0.90 m) and more clearly
(although still within confidence intervals), does so at gauge
11 (x = 5.00 m) some way after the change in depth. This
contrasts with a smaller over-prediction by the non-linear
model at gauges 1 and 3. Given the multiple minor differ-
ences in setup between experiment and simulation, it is hard
to identify the reason for these small differences. However,
agreement is sufficient to have confidence in our simulation.
There is also an unexpected discrepancy between the linear
simulations and the Rayleigh distribution at gauge 11.

We also consider the average shape of an extreme event.
Although, here,we are primarily using this for validation, this
is, to our knowledge, the first time this has been examined for
the wave over a steep slope problem. In our analysis, we are
focused on the average shape of an extreme event at gauges
1, 3, 8, and 11. Based on our simulation results, there are
approximately 12,000 waves at each gauge in both the 1:1
and 1:3 slope cases. We find the largest 40 waves measured
at each gauge and find their average shape. The number of
waves chosen is a trade-off between capturing the extremes
and statistical variability. Under a theoretical linear model,
the expected shape of an extreme event is given by the scaled
autocorrelation function—the ‘NewWave’ (Lindgren 1970;

Boccotti 1983; Tromans et al. 1991)

η(t) = 1

m0

∫ ∞

0
E( f ) cos(2π f t)d f , (3)

in which E( f ) is the spectrum, and m0 is the zeroth-order
moment of the spectrum. f is the peak frequency, and t is
time. η(t) indicates the NewWave profile. The linear model
predicts a symmetric wave packet around an extreme event.
Deviation from the linear model is expected at all gauges as
bound harmonics will significantly modify the shape. How-
ever, we include the linear-model prediction for reference.

We analyse the resulting shape in Fig. 5. At the input
gauge 1, there is a minor asymmetry in the numerical simu-
lations. At gauge 3 (at the top of the slope), both numerics and
simulation suggest some minor asymmetry with the trough
preceding a largewave being slightly deeper than that follow-
ing it. Gauge 8, roughly half of thewavelength after the top of
the slope, shows some clear discrepancies from the standard
‘NewWave shape’. The trough preceding the largest wave is
relatively sharp, whereas, at this location, the trough after is
far flatter. This is consistentwith the shape observed for deter-
ministic wavegroups and has been explained by the release
of bound waves at the step (Li et al. 2021b). Both experi-
ments and numerics show similar results, suggesting strongly
that the simulations are capturing the physics of bound wave
release. The results at the final gauge (gauge 11), after the
point we are primarily interested in, show the waves return-
ing to a more standard symmetrical shape, although some
deviation from this can still be seen in both experiments
and numerics. There are also some significant differences
between the shapes predicted computationally and observed
experimentally at gauge 11 (as results for wave height statis-
tics also suggested). It is unclear why there is this difference.
However, gauge 11 is beyond the main area we are interested
in, so, whilst we note the discrepancy, we do not think this
should invalidate the main conclusions of this paper.
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Fig. 4 Comparison of
experimental and simulated
wave height statistics with 90%
confidence intervals at gauge 1,
3, 8, and 11 for the 1:1 slope
case. Wave heights (H ) are
normalised by the significant
wave height (Hs)

Fig. 5 Average of the 40 large
crests normalised by the value at
the largest crest for the 1:1 slope
case with 90% confidence
intervals, where t is the time
relative to the largest crest and x
indicates the distance from the
top of the slope

4 Results

We consider the engineering aspects of the enhanced rogue
wave activity at the top of slopes. There are many different
wave/structure interactions one could consider all with their
different characteristics. In the present paper, we consider a
simplest model of waves interacting with a column as this is

a useful general example. For simplicity, we follow the gen-
eral approach taken recently by Klahn et al. (2021) of using a
model based only on the fluid kinematics so as to avoid hav-
ing to solve any complexwave/structure interaction problem.
The choice of this model is not critical to the conclusions of
this paper—the aim is to do a calculation which relies on the
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Fig. 6 Comparison of moment
statistics for slope 1:1 and slope
1:3 at gauge 3 and 8. Two
gauges are shown with 90%
confidence intervals. Moment is
the total moment around the
sea-bed after the slope

kinematics rather than the free surface considered in most
studies.

We model the structure using the drag term of the Mori-
son’s equation (Morison et al. 1950). In this case, a monopile
of a diameter (D) of 0.5 m (D/λ = 0.225) is selected, and
the load per unit length on the monopile is a function of the
undisturbed horizontal velocity, which is given by

F(x, t) = 1

2
ρDCDu|u|, (4)

where F(x, t) is the force per unit length on a fixed vertical
cylinder located at a specific spatial location x , ρ is the water
density, CD is the drag coefficient (CD = 1.2), and u is the
horizontal velocity at corresponding time and location.

We choose to analyse the moment around the sea-bed as
this is probably the most important feature for the design of a
typical offshore structure. From the OW3D simulations, we
calculate the horizontal velocity. We can calculate the total
moment around the sea-bed by integration before calculating
the peakmoment in each loading cycle.We only consider this
after the top of a slope as the different water depths before
this point would confuse the analysis as the change in the sea-
bed depth would dominate the change in moments. In Fig. 6,
moment exceedance is presented for gauges 3 (top of slope)
and 8 (slightly after top of slope) and both 1:1 and 1:3 slopes
showing both linear and non-linear simulation results. The
linear simulations predict very similar moments in all cases
and these are always lower than that predicted by the non-
linear model. However, the departure from the linear is very

much larger for gauge 8 than just at the top of the slope at
gauge 3. This difference is greater for the steeper slope (1:1
case). Interestingly, at gauge 3, there is a bigger difference
between linear and non-linear for the milder slope (1:3 case),
likely due to the different phase shifts of second-order bound
and free waves between the two cases. At the top of a slope,
a steeper slope may lead to the second-order waves more out
of phase and, therefore, smaller amplitude of second-order
waves.As a consequence, it would lead to smaller differences
between the non-linear and linear simulations for a steeper
slope case, as noted. This finding is consistent with the obser-
vations in both Li et al. (2021b) and Zheng et al. (2020) due
to the following. The former found both a larger skewness
and kurtosis at gauge 3 for the case of 1:3 slope (i.e., their
Figs. 2 and 3) compared to the case of 1:1 slope. Zheng et al.
(2020) (i.e., their Table VI) suggests a slope gradient plays an
important role in the location of the peak kurtosis and skew-
ness relative to the top of a slope, which is the furthest and
nearest for the steepest slope (a step) and the mildest slope,
respectively.

To analyse extremes, we consider the overturningmoment
which corresponds to the 1-in-1000 wave event. Thus, in
Fig. 7, the moment is the moment corresponding to a proba-
bility of 10−3 in the moment exceedance figure as a function
of spatial location.

We see very similar behaviour for both slopes except in the
non-linear simulations very near the top of the slope where
higher loads are predicted for the flatter (1:3) case. This may
be the result of a slightly higher significant wave height for
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Fig. 7 Overturning moment about the sea-bed predicted by the numer-
ical model. 90% confidence intervals are shown. The moment is the
moment corresponding to the probability of 0.1% (one-in-1000 wave)
in the moment exceedance figure for different spatial locations. The
locations of gauge 3 (At the top of the slope) and gauge 8 (0.9 m after
the top of the slope) are indicated by dotted black lines

the flatter case due to less breaking in OW3D. However, the
moment behaviour is consistent with the previous work on
this setup where very similar physics was found for the two
slopes. There appears to be enhanced moment around the top
of the step, which increases approximately 20%, consistent
with the increased number of large waves observed in both
simulation and experiment. The ‘peak’ in this lasts for several
wavelengths beyond the top of the slope before decreasing
and plateauing. The non-linear simulations consistently pre-
dict larger moments than the linear ones. However, the linear
simulations do not produce a significant peak and are essen-
tially uniform across the region considered. Thus, we can
have confidence that the peak in the moments observed is the
result of non-linear physics.

5 Conclusions

This paper has related the theoretical problemof excess rogue
waves occurring at the top of slopes to a practical problem in
ocean engineering. In doing so, this enables us to draw the
following conclusions regarding the wave kinematics of the
problem.

We have run a fully non-linear potential-flowmodelwhich
directly solves for the wave kinematics. This model has been
found to be in good agreement with experimental results
for surface elevation including for the expected shape of an
extreme wave events which to our knowledge has not pre-
viously been studied. We then use these kinematics to drive
a simple wave loading model. We find enhanced loads for
several wavelengths after the abrupt depth transition. This
study suggests that extra care is needed when designing

ocean infrastructure at the top of slopes and that the abnormal
free surface wave statistics previously observed at the top of
slopes also leads to unusual moment or unusual kinematics
occurred at the top of the slope.
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Appendix A

Governing equations for OW3D

OceanWave3D solves the potential-flow equations. The fluid
velocity (u, v,w) can be calculated by the gradient of a scalar
velocity potential φ(x, y, z, t)

(u, v, w) = (�φ, ∂zφ), (5)

in which � = (∂x , ∂y) is the horizontal gradient opera-
tor. Based on the equations established by Zakharov (1968),
the kinematic and dynamic free surface boundary conditions
[given in Eqs. (6) and (7)] can be expressed using the chain
rule on the non-linear version of Bernoulli equation and non-
linear kinematic boundary condition

∂tη = − � η · �˜φ + w̃(1 + �η · �η), (6)

∂t˜φ = −gη − 1

2
(�˜φ · �˜φ − w̃2(1 + �η · �η)), (7)

in which˜φ = φ(x, y, η, t) is the velocity potential at the free
surface (z = η), and w̃ = ∂zφ|z=η is the vertical velocity at
the free surface. To obtain the exact value of the vertical
velocity in a specific time, the Laplace equation in the fluid
volume is required to be solved, together with the kinematic
and dynamic boundary conditions.
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