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ABSTRACT
We consider a generalization of standard vector optimiza-
tion which is called vector optimization with variable ordering
structures. The problem class under consideration is charac-
terized by a point-dependent proper cone-valued mapping:
here, the concept of K-convexity of the incorporatedmapping
plays an important role. We present and discuss several prop-
erties of this class such as the cone of separations and the
minimal variable K-convexification. The latter one refers to a
general approach for generating a variable ordering mapping
for which a given mapping is K-convex. Finally, this approach
is applied to a particular case.
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1. Introduction

In this paper, we present some properties of a K-convex mapping in variable
ordering settings, that is, a vector mapping F : C ⊂ Rn → Rm such that

λF(x)+ (1 − λ)F(y)− F(λx + (1 − λ)y) ∈ K(λx + (1 − λ)y) (1)

for all λ ∈ [0, 1] and all x, y ∈ C, where C is a convex set and K : x ∈ Rn �→
K(x) ⊂ Rm is a proper cone-valued mapping. This class of mappings arises in
vector optimization with a variable ordering structure, given as

K-min F(x), (2)

which consists in finding a point x̄ ∈ C such that

F(x)− F(x̄) �∈ −K(x̄) \ {0}

for all x ∈ C (see [1]). We refer to Definition 2.3, where a proper cone-valued
mapping, or synonymously variable ordering cone mapping, is defined. The
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K-convexity of a mapping has been extensively studied in standard vector opti-
mization, in particular, in the context of convergence results for numerical
solution methods [2–5]. The K-convexity of F in (2) allows to give a sufficient
first-order optimality condition [1]. Furthermore, for the (generalized) concept
of vector optimization with variable ordering structures, recent results on the
convergence of solution methods can be found in [1,6]. We also mention [7],
where a variable ordering setting for set-valued optimization was introduced and
studied.

Several applications of Problem (2) arise, e.g. in medical diagnosis and port-
folio optimization [8,9]; for a summary of these applications, we refer to [10,
Section 1.3.1]. We briefly expose here an application in medical diagnosis. After
obtaining information from images, the data are transformed into another pre-
sentation and, based on that, the diagnosis is made. In order to determine the
best transformation from the original data to the desired pattern, different cri-
teria for measuring can be used which lead to the optimization of a vector of
functions. It is well known that the solution of that model, which uses a classical
weighting technique, may yield inadequate results. However, if the set of weights
is point-dependent, then better results are reported [10].

The goal of this paper is twofold. Firstly, we define the so-called cone of sep-
arations and relate its properties to K-convexity; in particular, under certain
assumptions, the set of K-convex mappings is reduced to the class of affine
functions. Secondly, we introduce a particular cone-valued mapping that pro-
vides a theoretical approach for obtaining K-convex mappings. This particu-
lar mapping is called minimal variable K-convexification. We study several of
its properties, for example, the Lipschitz continuity of related cone generator
mappings.

This paper is organized as follows. Section 2 contains basic notation and def-
initions as well as some preliminary results. Section 3 presents the concept of
the cone of separations. Section 4 discusses the main results of this paper: a spe-
cial cone-valuedmapping, theminimal variableK-convexification, is defined and
corresponding properties are shown. In Section 5, this approach is applied to a
particular case, and Section 6 gives some conclusions.

2. Notations and preliminary results

Throughout this paper, we will use the following standard notations. The inner
product inRn is denoted by 〈·, ·〉 and the Euclidian normby ‖ · ‖. The ball and the
sphere centred at x ∈ Rn with radius r>0 are B(x, r) = {y ∈ Rn : ‖y − x‖ ≤ r}
and S(x, r) = {y ∈ Rn : ‖y − x‖ = r}, respectively. The set Ck(Rn,Rm) repre-
sents the set of k-times continuously differentiable mappings F : Rn → Rm with
derivative DF(x) and Hessian D2F(x) at a point x ∈ Rn. For a set C ⊂ Rn, let
intC, convC, bdC and clC denote the set of its interior points, its convex hull,
its boundary and its closure, respectively.
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The following definition recalls some well-known notations related to cones
(see, e.g. [11]).

Definition 2.1: • A non-empty set K ⊂ Rm is called a cone if αz ∈ K for all
z ∈ K and all real numbers α ≥ 0.

• A cone K is called solid if intK �= ∅.
• A cone K is called pointed if K ∩ [−K] = {0}.
• A cone K is called proper if it is solid, pointed and a convex closed set.
• The dual cone K∗ of a cone K is the set

K∗ = {
l ∈ Rm : 〈l, z〉 ≥ 0 ∀z ∈ K

}
.

• LetA ⊂ Rm be a given set. The intersection of all convex cones containing the
set A is called the convex conic hull of A and is denoted by conecoA.

• A set A is called a generator of a cone K if conecoA = K.

It is well known that a proper cone inRm defines a partial ordering inRm (see,
e.g. [11, p. 43]). The following lemma summarizes some known results on cones.

Lemma 2.1: (i) A convex closed cone K ⊂ Rm is pointed, if and only if there
exist w ∈ S(0, 1) ⊂ Rm and a real number δ > 0 such that

〈w, z〉 ≥ δ ‖z‖ ,

for all z ∈ K.
(ii) A cone K ⊂ Rm is proper if and only if K∗ is proper.
(iii) Let Ki ⊂ Rm, i = 1, 2, be convex closed cones and assume that K1 is pointed.

Then, we have

K1 ∩ K2 = {0},
if and only if there exists l ∈ Rm such that

〈l, z1〉 ≤ 0 ≤ 〈l, z2〉,

for all z1 ∈ K1, z2 ∈ K2, and 〈l, z〉 < 0 for all z ∈ K1 \ {0}.

Proof: For the proof of (i), (ii) and (iii), see [11, Subsection 2.6.1], [12, Subsec-
tion 2.7.2] and [13, Theorem 3.22], respectively. �

In the following, we will sometimes consider a set-valued mapping � : C ⊂
Rn ⇒ Rm and its graph

gr� = {
(x, y) ∈ C × Rm : y ∈ �(x)} .

The next definition recalls two well-known concepts [14,15].
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Definition 2.2: • Let two nonempty sets A,B ⊂ Rm be given. The directed
Hausdorff distance between A and B is given by

�H(A,B) = sup inf
a∈A b∈B

‖a − b‖.

Moreover, the Hausdorff distance between A and B is defined as

dH(A,B) = max {�H(A,B),�H(B,A)} .
• A set-valued mapping� : C ⇒ Rm is called Lipschitz continuous on C if there

exists a real number μ > 0 such that

dH(�(x),�(y)) ≤ μ
∥∥x − y

∥∥ ,
for all x, y ∈ C.

As mentioned above, in this paper, we are interested in variable ordering
cone mappings, which are a particular class of set-valued mappings and whose
definition is recalled in the following, see [1,10].

Definition 2.3: Let a convex set C ⊂ Rn, a set-valued mapping K : C ⊂ Rn ⇒
Rm and a mapping F : Rn → Rm be given.

• K is said to be a cone-valued mapping if K(x) is a cone for all x ∈ C.
• K is said to be a proper cone-valued mapping (or, synonymously, variable

ordering cone mapping) if K(x) is a proper cone for all x ∈ C.
• Assume that K is a cone-valued mapping and that K(x) is closed and convex

for all x ∈ C. The mapping F is called K-convex on C if

λF(x)+ (1 − λ)F(y)− F(λx + (1 − λ)y) ∈ K(λx + (1 − λ)y), (3)

for all λ ∈ [0, 1] and all x, y ∈ C.

Our interest in proper cone-valued mappings is motivated by the fact that
they provide a variable ordering structure, see [1,10]. That is why we also call
them variable ordering cone mappings. In the concluding lemma of this section,
we characterize K-convexity for the differentiable case.

Lemma 2.2 ([1,6]): Let the set C and the mappings K and F be given as in the
previous definition. Furthermore, assume that intC �= ∅, K is a cone-valued map-
ping such that K(x) is closed and convex for all x ∈ C, and that F is continuously
differentiable on an open neighbourhood of C. Then , we have the following:

(i) If

F(x)− F(y)− DF(y)(x − y) ∈ K(y) (4)

for all x, y ∈ C, then F is K-convex on C.
(ii) If F is K-convex on C and grK is closed, then (4) holds for all x, y ∈ C.
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3. Cone of separations on Rn

Throughout this section, we assume the following.

• K : Rn ⇒ Rm is a proper cone-valued mapping and grK is closed.
• F ∈ C1(Rn,Rm) is a K-convex mapping (on C = Rn).
• x1, x2 ∈ Rn are arbitrarily chosen points.

According to Lemma 2.2, these assumptions imply that

F(x1)− F(x2)− DF(x2)(x1 − x2) ∈ K(x2). (5)

As already mentioned, the motivation of this paper is closely related to the con-
sideration of proper cone-valued mappings. These mappings have the property
that K(x), x ∈ C, are closed cones. Obviously, the supposed closedness of grK
implies already the closedness of K(x), x ∈ C. In order to avoid confusion con-
cerning themotivation of this paper, wewill sometimes assume that grK is closed
and use the notation of a proper cone-valued mapping. The following definition
is basic for this section.

Definition 3.1: The set

KS(x1, x2) = {
l ∈ Rm : 〈l, z1〉 ≥ 0 ≥ 〈l, z2〉, z1 ∈ K(x1), z2 ∈ K(x2)

}
is called the cone of separations for x1, x2 ∈ Rn.

Obviously, it holds that KS(x1, x2) = {0} whenever intK(x1) ∩ intK(x2) �= ∅.
In Figure 1, a cone of separations is illustrated assuming m = 2 and K(x1) ∩
K(x2) = {0}.

The goal of this section is to relate some properties of themapping F to those of
the cone of separations. The next lemma presents some properties of KS(x1, x2).

Lemma 3.1:

(i) If l ∈ KS(x1, x2), then the hyperplane {z ∈ Rm : 〈l, z〉 = 0} separates the
cones K(x1) and K(x2).

Figure 1. A cone of separations for x1, x2 ∈ Rn whenm = 2.
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(ii) KS(x1, x2) is a convex, closed and pointed cone.
(iii) If K(x1) ∩ K(x2) = {0}, then KS(x1, x2) is a proper cone.
(iv) It is

KS(x1, x2) = K∗(x1) ∩ [−K∗(x2)
]
. (6)

Proof: (ii) It is easily seen that KS(x1, x2) is convex and closed. Suppose for a
moment that KS(x1, x2) is not pointed, that is, there exists l0 ∈ Rm \ {0} with

l0 ∈ KS(x1, x2) ∩ [−KS(x1, x2)].

From the previous expression, it follows that

〈l0, z1〉 = 〈l0, z2〉 = 0,

for all z1 ∈ K(x1) and all z2 ∈ K(x2). However, this is not possible since K(x1)
and K(x2) are solid and, therefore, span the whole space Rm.

(iii) By (ii), we only have to show that KS(x1, x2) is solid. By Lemma 2.1(iii)
and since K(x1) and K(x2) are pointed, there exist l1, l2 ∈ Rm such that

〈l1, z1〉 ≥ 0 > 〈l1, z2〉,
〈l2, z1〉 > 0 ≥ 〈l2, z2〉,

for all z1 ∈ K(x1) ∩ S(0, 1) and all z2 ∈ K(x2) ∩ S(0, 1). Hence,

l1 + l2 ∈ int KS(x1, x2).

The statements (i) and (iv) are obvious. �

The first theorem in this section relates KS(x1, x2) to the Jacobian of F.

Theorem 3.1: If l ∈ KS(x1, x2), then lT[DF(x1)− DF(x2)] = 0.

Proof: Let l ∈ KS(x1, x2) and suppose that lT[DF(x1)− DF(x2)] �= 0. By
definition, we have

〈l, z1〉 ≥ 0 ≥ 〈l, z2〉, (7)

for all z1 ∈ K(x1) and z2 ∈ K(x2). Hence, by the K-convexity of F, (5) and (7),
we get for all x ∈ Rn that

〈l, F(x)− F(x1)− DF(x1)(x − x1)〉 ≥ 〈l, F(x)− F(x2)− DF(x2)(x − x2)〉,

and, therefore,

〈l, F(x2)− F(x1)+ DF(x1)x1 − DF(x2)x2〉 ≥ 〈l, [DF(x1)− DF(x2)]x〉.
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Now, let a real number α > 0 be arbitrarily chosen. Substituting x = α[DF(x1)−
DF(x2)]Tl, we get

〈l, F(x2)− F(x1)+ DF(x1)x1 − DF(x2)x2〉 ≥ α

∥∥∥lT[DF(x1)− DF(x2)]
∥∥∥2 .

By lT[DF(x1)− DF(x2)] �= 0, letting α → +∞ yields a contradiction since the
left-hand side of the latter inequality is finite, while its right-hand-side becomes
unbounded. This completes the proof. �

As a consequence, we obtain the following corollary.

Corollary 3.1: (i) For all l ∈ KS(x1, x2) and all x ∈ Rn, we obtain

〈l, F(x + x1)− F(x + x2)〉 ≥ 〈l, F(x1)− F(x2)〉.
(ii) If KS(x1, x2) is a solid cone, then DF(x1) = DF(x2).

Proof: (i) By (5), the K-convexity of F implies

F(x + x1)− F(x1)− DF(x1)x ∈ K(x1),

F(x + x2)− F(x2)− DF(x2)x ∈ K(x2),

for all x ∈ Rn. Combining this with (7) it follows that

〈l, F(x + x1)− F(x1)− DF(x1)x〉 ≥ 〈l, F(x + x2)− F(x2)− DF(x2)x〉,
and therefore,

〈l, F(x + x1)− F(x + x2)〉 ≥ 〈l, F(x1)− F(x2)〉 + 〈l, [DF(x1)− DF(x2)]x〉.
(8)

By Theorem 3.1, we obtain the desired result.
(ii) SinceKS(x1, x2) is a solid cone, there exist z ∈ Rm and a real number δ > 0

such that

B(z, δ) ⊂ KS(x1, x2).

Then, there exist linearly independent vectors vi ∈ KS(x1, x2), i = 1, ..,m, and by
Theorem 3.1, we have

(vi)T
[
DF(x1)− DF(x2)

] = 0, i = 1, ..,m.

The linear independence of vi, i = 1, ..,m implies DF(x1) = DF(x2). �

We conclude this section by presenting its main result.

Theorem 3.2: Let D ⊂ Rn be an open and connected set. If there exists ȳ ∈ Rn

such that K(x) ∩ K(ȳ) = {0} for all x ∈ D, then F|D is an affine mapping.
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Proof: By Lemma 3.1(iii), KS(x, ȳ) is a solid cone for all x ∈ D, and by
Corollary 3.1(ii), we get the system

DF(x) = DF(ȳ), x ∈ D,

whose solution is

F(x) = DF(ȳ)(x − x0)+ F(x0), x ∈ D,

for some x0 ∈ D. �

Note that the fact that F has to be an affinemapping, under the assumptions of
Theorem3.2, is a surprising result given the flexibility of variable order structures.

4. Minimal variable K-convexification

In this section, we study a particular cone-valued mapping which provides a the-
oretical approach to obtain K-convex mappings. For a more practical approach,
we refer to [16], where Bishop-Phelps and simplicial cones are used. Throughout
this section assume the following:

• C ⊂ Rn is a convex set with intC �= ∅.
• F : Rn → Rm is a continuously differentiable mapping on an open neighbour-

hood of C.

Definition 4.1:

• The setKconv(F) is defined as the family of all cone-valued mappings K : C ⇒
Rm with the following properties:
(i) K(y) is closed and convex for all y ∈ C.
(ii) F(x)− F(y)− DF(y)(x − y) ∈ K(y) for all x, y ∈ C.

• The mapping KF : C ⇒ Rm is defined by

KF(y) =
⋂

K∈Kconv(F)

K(y), y ∈ C, (9)

and it is called the minimal variable K-convexification of F on C.

It is easily seen that KF(y) is a convex and closed cone for all y ∈ C, and that,
by Lemma 2.2(i), F is KF-convex on C. Note that KF(y) need not to be pointed.
According to the previous definition, the minimality of KF(y) is defined with
respect to all K ∈ Kconv(F).

Lemma 2.2(i) implies that F is K-convex on C for all K ∈ Kconv(F). Moreover,
Lemma 2.2(ii) yields thatK ∈ Kconv(F)whenever the assumptions of Lemma 2.2
are fulfilled, that is, whenever F is K-convex on C, grK is closed and K(y) is
convex for every y ∈ C.



OPTIMIZATION 4133

The next lemma presents a specific form for the minimal variable
K-convexification of F on C. For this define the mapping F̂ : C × C → Rm by

F̂(x, y) = F(x)− F(y)− DF(y)(x − y),

and let F̂(C, y) = {̂F(x, y) : x ∈ C}.
Lemma 4.1: For all y ∈ C, we have KF(y) = cl[coneco F̂(C, y)].

Proof: By (ii) in Definition 4.1, we have for allK ∈ Kconv(F) and all x, y ∈ C that

F̂(x, y) ∈ K(y),

and therefore, F̂(C, y) ⊂ KF(y) for all y ∈ C. Since KF(y) is a convex and closed
cone, we get cl[coneco F̂(C, y)] ⊂ KF(y) for all y ∈ C.

On the other hand, cl[coneco F̂(C, y)] is a closed and convex cone for all y ∈ C
and

F̂(x, y) ∈ cl[coneco F̂(C, y)],

for all x, y ∈ C. Therefore, KF(y) ⊂ cl[coneco F̂(C, y)] for all y ∈ C which com-
pletes the proof. �

Following [1], one is furthermore interested in conditions which are related to
the existence of a proper cone K ⊂ Rm such that

KF(y) ⊂ K, (10)

for all y ∈ C. The following lemma presents a necessary condition for this
property.

Lemma 4.2: Assume that there exists a proper coneK ⊂ Rm such that (10) holds
for all y ∈ C. Then, there exists w ∈ S(0, 1) ⊂ Rm such that the function fw : C →
R given as

fw(x) = 〈w, F(x)〉
is convex on C.

Proof: Since KF(y) ⊂ K for all y ∈ C, by (ii) in Definition 4.1, we have

F̂(x, y) ∈ K, (11)

for all x, y ∈ C. Applying Lemma 2.1(i), there exist w ∈ S(0, 1) and δ > 0 such
that

〈w, z〉 ≥ δ‖z‖, (12)

for all z ∈ K. By (11) and (12), we get

〈w, F̂(x, y)〉 ≥ δ‖̂F(x, y)‖ ≥ 0,

for all x, y ∈ C. Obviously, the latter means that fw is convex. �
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Our next goal is to present a sufficient condition for the existence of a proper
cone K ⊂ Rm such that (10) holds for all y ∈ C. For this, we assume in the
remainder of this section that the set C is compact and that the mapping F is
twice continuously differentiable on an open neighbourhood of C. Furthermore,
for w ∈ S(0, 1) ⊂ Rm define the function

f̂w(x, y) = 〈w, F̂(x, y)〉,

where x, y ∈ C.

Lemma4.3: Assume that there exists a vectorw ∈ S(0, 1) ⊂ Rm such thatD2fw(y)
is positive definite (denoted by D2fw(y) � 0) for all y ∈ C. Then, there exist real
numbers M > 0, δ > 0 such that∥∥∥∥ F̂(x, y)f̂w(x, y)

∥∥∥∥ < M,

for x, y ∈ C whenever 0 < ‖x − y‖ < δ.

Proof: Suppose contrarily that there exist two sequences {xp}, {yp} ⊂ C such that

lim
p

xp = lim
p

yp = x̄, lim
p

xp − yp∥∥xp − yp
∥∥ = ū,

and that

lim
p

∥∥∥∥ F̂(xp, yp)f̂w(xp, yp)

∥∥∥∥ = ∞. (13)

Note that x̄ ∈ C, since C is compact. Obviously, we have

F̂(xp, yp)
f̂w(xp, yp)

=
F̂(yp + ∥∥xp − yp

∥∥ xp−yp

‖xp−yp‖ , yp)
f̂w(yp + ∥∥xp − yp

∥∥ xp−yp

‖xp−yp‖ , yp)
.

A componentwise (Fi, i = 1, ..,m, denote the components of F) second-order
Taylor expansion separately for each of the both parts of the latter fraction yields

lim
p

F̂(xp, yp)
f̂w(xp, yp)

=
(
ūTD2F1(x̄)ū
ūTD2fw(x̄)ū

, . . . ,
ūTD2Fm(x̄)ū
ūTD2fw(x̄)ū

)T

. (14)

By D2fw(x̄) � 0, the right-hand side in (14) is finite which contradicts (13). �

The next theorem presents a sufficient condition for the existence of a proper
cone K ⊂ Rm such that (10) holds for all y ∈ C. The cone K, as defined in (16),
will be later used in Lemma 4.5 as well as in Proposition 4.2.
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Theorem 4.1: Assume that there exists a vector w ∈ S(0, 1) ⊂ Rm such that
D2fw(y) � 0 for all y ∈ C. Then, there exists a proper cone K ⊂ Rm such that

KF(y) ⊂ K,

for all y ∈ C.

Proof: By Lemma 4.3, there exist real numbersM1 > 0 and δ > 0 such that∥∥∥∥ F̂(x, y)f̂w(x, y)

∥∥∥∥ < M1,

for x, y ∈ C whenever 0 < ‖x − y‖ < δ. Furthermore, since D2fw(y) � 0 for all
y ∈ C, it follows that f̂w(x, y) > 0 for all x, y ∈ C with x �= y. Hence, the fraction
F̂(x, y)
f̂w(x, y)

is defined for all x, y ∈ C with x �= y, and the compactness of C implies

that there exists a real numberM>1 such that∥∥∥∥ F̂(x, y)f̂w(x, y)

∥∥∥∥ < M, (15)

for all x, y ∈ C with x �= y. Now, define the set

K = {
z ∈ Rm : 〈Mw, z〉 ≥ ‖z‖} . (16)

SinceM>1, it is easily seen that w ∈ intK and, therefore, K is solid. Moreover,
K is obviously a proper cone. By (15), we have∥∥̂F(x, y)∥∥ < Mf̂w(x, y) = M〈w, F̂(x, y)〉,

for all x, y ∈ C with x �= y and, therefore, F̂(C, y) ⊂ K for all y ∈ C. Finally, by
Lemma 4.1, we get

KF(y) = cl[coneco F̂(C, y)] ⊂ cl[conecoK] = K,

for all y ∈ C which completes the proof. �

Note that if m = 2 and the assumptions of Theorem 4.1 hold, then we can
obtain a formula for KF as follows. Let w0 ∈ S(0, 1) with 〈w,w0〉 = 0, where w is
given as in Theorem 4.1. Moreover, for y ∈ C, let

v1(y) = argmax
v∈F̂(C,y)∩S(0,1)

〈v,w0〉, (17)

v2(y) = argmin
v∈F̂(C,y)∩S(0,1)

〈v,w0〉. (18)
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Then, we have

KF(y) = coneco{v1(y), v2(y)}. (19)

Obviously, finding v1(y) and v2(y) is not trivial and a global optimizationmethod
must be used (see, e.g. [17, Subsection 1.1.4]).

Example 4.1: Let n = m = 2, C = [0, 1]2 and

F(x1, x2) =
(
x21 + x22
x31 − x32

)
.

Take w = (1, 0)T and fix w0 = (0,−1)T . By using (17) and (18), we compute
v1(y), v2(y) for y ∈ {(0, 0)T , (0.5, 0)T , (1, 1)T} and list the corresponding results
in the following table:

y1 y2 v11(y) v12(y) v21(y) v22(y)

0 0 0.71 −0.71 0.71 0.71
0.5 0 0.71 −0.71 0.44 0.89
1 1 0.32 −0.95 0.32 0.95

This table and (19) allow us to illustrate KF(y) for y ∈ {(0, 0)T , (0.5, 0)T ,
(1, 1)T} in Figure 2.

Next, we deal with the Lipschitz continuity of two generators of KF(y). For
this we recall the assumptions given just before Lemma 4.3, namely, that C is a
compact set andF is twice continuously differentiable.We start with the following
lemma.

Lemma 4.4:

(i) Let A,B ⊂ Rm be nonempty compact sets. Then, there exist ā ∈ A and b̄ ∈ B
such that�H(A,B) = ‖ā − b̄‖ as well as�H(A,B) ≤ ‖ā − b‖ for all b ∈ B.

Figure 2. A minimal variable K-convexification for m = 2. (a) y = (0, 0)T , (b) y = (0.5, 0)T and
(c) y = (1, 1)T .
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(ii) There exists μ > 0 such that∥∥̂F(x, y1)− F̂(x, y2)
∥∥ ≤ μ‖y1 − y2‖,

for all x, y1, y2 ∈ C.
(iii) Let a, b ∈ Rm \ {0}. Then, it holds that∥∥∥∥ a

‖a‖ − b
‖b‖

∥∥∥∥ ≤ ‖a − b‖√‖a‖ ‖b‖ ,

and the equality holds if and only if ‖a‖ = ‖b‖.

Proof: The compactness of A and B implies (i). Since F̂ is continuously differen-
tiable and C is compact, it holds that F̂ is Lipschitz continuous on C × C. Hence,
there exists μ > 0 such that∥∥̂F(x, y1)− F̂(x, y2)

∥∥ ≤ μ‖(x, y1)− (x, y2)‖ = μ‖y1 − y2‖,

for all x, y1, y2 ∈ C. For proving (iii) consider∥∥∥∥ a
‖a‖ − b

‖b‖
∥∥∥∥2 = 2 + ‖a − b‖2 − ‖a‖2 − ‖b‖2

‖a‖ ‖b‖

= ‖a − b‖2 − (‖a‖ − ‖b‖)2
‖a‖ ‖b‖ ≤ ‖a − b‖2

‖a‖ ‖b‖ . �

Now, we prove the Lipschitz continuity of the two generators.

Proposition 4.1: Let the set-valued mapping G : C ⇒ Rm be given as

G(y) = conv̂F(C, y).

Then, G is Lipschitz continuous on C.

Proof: Obviously, we only have to show that there exists μ > 0 such that

�H(G(y1),G(y2)) ≤ μ‖y1 − y2‖,

for all y1, y2 ∈ C. Since G(y) is a compact set for all y ∈ C, by Lemma 4.4 (i), it
follows that there exists z̄1 ∈ G(y1) such that

�H(G(y1),G(y2)) ≤ ‖z̄1 − z2‖, (20)

for all z2 ∈ G(y2). Moreover, there exist xi ∈ C, λi ≥ 0, i = 1, . . . , p, with

z̄1 =
p∑

i=1
λîF(xi, y1),

p∑
i=1

λi = 1. (21)
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Choosing

z2 =
p∑

i=1
λîF(xi, y2) (22)

and substituting (21) and (22) into (20), we get

�H(G(y1),G(y2)) ≤
∥∥∥∥∥

p∑
i=1

λi
[̂
F(xi, y1)− F̂(xi, y2)

]∥∥∥∥∥ . (23)

Then, the statement follows by applying the triangle inequality and Lemma 4.4
(ii). �

The generator used in the next result is in general not Lipschitz continuous
on C. However, we present a sufficient condition for its Lipschitz continuity on a
subset of C.

Lemma 4.5: Let w ∈ S(0, 1) ⊂ Rm, M>1 and the cone K be given as in (16).
Assume that vi ∈ K, λi ≥ 0, i = 1, . . . , p and

p∑
i=1

λi = 1.

Then, we have ∥∥∥∥∥
p∑

i=1
λivi

∥∥∥∥∥ ≥ mini ‖vi‖
M

.

Proof: Let� be an orthogonal matrix whose first row is w. Then,∥∥∥∥∥
p∑

i=1
λivi

∥∥∥∥∥ =
∥∥∥∥∥�

p∑
i=1

λivi
∥∥∥∥∥ ≥

p∑
i=1

λi〈w, vi〉 ≥
p∑

i=1
λi

‖vi‖
M

≥ mini ‖vi‖
M

. �

As mentioned just before Lemma 4.5, the next result yields a sufficient condi-
tion for a generator to be Lipschitz continuous (only) on a subset A ⊂ C. Here,
we have to ‘cut out’ a subset from F̂(C, y). We refer also to Remark 4.1, where we
discuss how, under certain conditions, this result could be used.

Proposition 4.2: Let A ⊂ C be a compact convex set. Assume that for some w ∈
S(0, 1) ⊂ Rm it holds that D2fw(y) � 0 for all y ∈ C, and that there exists δ > 0
such that

KF(y) = coneco
[̂
F(C, y) \ int B(0, δ)] , (24)

for all y ∈ A. Then, the set-valued mapping G : A ⇒ Rm, given as

G(y) = KF(y) ∩ S(0, 1),

is Lipschitz continuous on A.
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Proof: We will prove that G is locally Lipschitz continuous for any arbitrarily
chosen ȳ ∈ A. Then, the Lipschitz continuity ofG onA follows from the convexity
and the compactness ofA. By Theorem 4.1, there exists a proper coneK such that

KF(y) ⊂ K,

where K is given as in (16) for certain M>1. Let μ > 0 be given as in
Lemma 4.4 (ii). Choose

y1, y2 ∈ B
(
ȳ,
δ

4μ

)
∩ A.

By Lemma 4.4 (ii), we have

‖̂F(x, y2)‖ ≥ δ

2
, (25)

whenever ‖̂F(x, y1)‖ ≥ δ for x ∈ C. Next, we will show that

�H(G(y1),G(y2)) ≤
√
2μM
δ

‖y1 − y2‖. (26)

Analogously to the proof of Proposition 4.1, by (24), we get

�H(G(y1),G(y2)) ≤
∥∥∥∥∥∥
∑p

i=1 λîF(x
i, y1)∥∥∥∑p

i=1 λîF(xi, y1)
∥∥∥ −

∑p
i=1 λîF(x

i, y2)∥∥∥∑p
i=1 λîF(xi, y2)

∥∥∥
∥∥∥∥∥∥ (27)

with

‖̂F(xi, y1)‖ ≥ δ, ‖̂F(xi, y2)‖ ≥ δ

2
, i = 1, . . . , p,

p∑
i=1

λi = 1. (28)

Note that in (28), the two inequalities follow from (24) and (25), respectively. By
Lemma 4.4 (iii) and (27), we get

�H(G(y1),G(y2)) ≤

∥∥∥∑p
i=1 λi

[̂
F(xi, y1)− F̂(xi, y2)

]∥∥∥√∥∥∥∑p
i=1 λîF(xi, y1)

∥∥∥ ∥∥∥∑p
i=1 λîF(xi, y2)

∥∥∥ . (29)

Moreover, by Lemma 4.5 and (28), it follows that∥∥∥∥∥
p∑

i=1
λîF(xi, y1)

∥∥∥∥∥ ≥ δ

M
,

∥∥∥∥∥
p∑

i=1
λîF(xi, y2)

∥∥∥∥∥ ≥ δ

2M
. (30)

Finally, applying the triangle inequality, Lemma 4.4 (ii) and using (30) in (29),
we obtain (26). �
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Remark 4.1: Proposition 4.2 can be exploited in the following way. Let A ⊂ C
be a set for which the assumptions of Proposition 4.2 are fulfilled. Choose a cone-
valued mapping KA : C ⇒ Rm with

KA(y) =
{
KF(y) if y ∈ A,
K if y ∈ C \ A,

where K ⊂ Rm is a fixed cone satisfying KF(y) = K for y ∈ bdA and KF(y) ⊂ K
for y ∈ C \ A. Define the set-valued mapping

GA(y) = KA(y) ∩ S(0, 1).

Since S(0, 1) is bounded, the Hausdorff distance is ametric for the family of com-
pact subsets of S(0, 1) (see, e.g. [15, Section 4C]). A moment of reflection shows
that GA is continuous on C whenever its codomain is endowed with this met-
ric. Moreover, by Proposition 4.2, it follows that GA is Lipschitz continuous on A
and, by definition, that GA is Lipschitz continuous on C \ A. Consequently, GA
is Lipschitz continuous on C. We will come back to this approach at the end of
Section 5. Of course, such a choice of KA is not always possible. Necessary or
sufficient conditions for its existence will be considered in future research.

5. A particular case

In this section, we study a particular case and apply to it the general approach
described in the previous sections. Specifically, we consider an interval [α,β] ⊂
R and a mapping F ∈ C2([α,β],R2), F(t) = (F1(t), F2(t)). Moreover, we assume
that F′′

1 (t) > 0, t ∈ [α,β], where F′
i(t) and F′′

i (t), i = 1, 2, denote the first and
second derivative at t ∈ R, respectively. For this case, we obtain a particular
expression for KF(t). First, we define four auxiliary functions.

Lemma 5.1: Let t0 ∈ [α,β] and define

φ−(t) = F̂1(t, t0), t ∈ [α, t0],

φ+(t) = F̂1(t, t0), t ∈ [t0,β].

Then, φ− is strictly decreasing, and φ+ is strictly increasing.

Proof: For φ+ we get

φ′
+(t) = F′

1(t)− F′
1(t0) = F′′

1 (θt)(t − t0)

for some θt ∈ (t0,β). Since F′′
1 (t) > 0, t ∈ [t0,β], it holds that φ+ is strictly

increasing. Analogously, we obtain that φ− is strictly decreasing. �
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Since F̂1(t0, t0) = 0, Lemma 5.1 yields for t0 ∈ [α,β] that

F̂1(t, t0) > 0,

for all t ∈ [α,β] \ {t0}. Moreover, by Lemma 5.1, both φ− and φ+ are injec-
tive functions. Therefore, the functions ψ− : [0,φ−(α)] → [0, F̂2(α, t0)] and
ψ+ : [0,φ+(β)] → [0, F̂2(β , t0)], given by

ψ−(x) = F̂2
(
φ−1

− (x), t0
)
,

ψ+(x) = F̂2
(
φ−1

+ (x), t0
)
,

are well defined. The following two results concern the relationship between the
latter two functions and F̂(t, t0).

Lemma 5.2: The right derivatives of ψ− and ψ+ at x = 0 are

ψ ′
−(0) = ψ ′

+(0) = F′′
2 (t0)

F′′
1 (t0)

.

Proof: We show it for ψ+. Since ψ+(0) = 0, we have

ψ ′
+(0) = lim

�x→0+
ψ+(�x)
�x

= lim
t→t+0

F̂2(t, t0)
F̂1(t, t0)

. (31)

After applying L’Hôpital’s rule twice we get the desired result. The proof runs
analogously for ψ−. �

Lemma 5.3: If F
′′
2 (t)

F′′
1 (t)

is an increasing function on [α,β], thenψ−(x) is concave and
ψ+(x) is convex.

Proof: For showing the convexity of ψ+, we prove that

ψ ′′
+(x) > 0, (32)

for all x ∈ (0,φ+(β)). For x ∈ (0,φ+(β)) and t = φ−1
+ (x), after a straightforward

calculation, we get that

ψ ′′
+(x) =

F′′
2 (t)− F′′

1 (t)
[
F′
2(t)− F′

2(t0)
F′
1(t)− F′

1(t0)

]
[
F′
1(t)− F′

1(t0)
]2 .

Since F′′
1 (t) > 0, in order to obtain (32), we use that

F′′
2 (t)

F′′
1 (t)

>
F′
2(t)− F′

2(t0)
F′
1(t)− F′

1(t0)
.

By Cauchy’s mean value theorem, the latter inequality holds since t > t0, and
F′′
2 (t)

F′′
1 (t)

is an increasing function on [α,β]. The concavity of ψ− is obtained
analogously. �
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In the remainder of this section, we assume that F′′
2 (t)

F′′
1 (t)

is increasing on [α,β].
The next result is a consequence of Lemma 5.3.

Corollary 5.1: Let t0 ∈ (α,β). Then, we have
F̂2(α, t0)
F̂1(α, t0)

≤ F̂2(t, t0)
F̂1(t, t0)

≤ F̂2(β , t0)
F̂1(β , t0)

,

for all t ∈ [α,β] \ {t0}.

Proof: If t > t0, then for x = φ+(t), we have x ∈ (0,φ+(β)]. By the convexity of
ψ+, Lemma 5.2 implies

F′′
2 (t0)

F′′
1 (t0)

≤ ψ+(x)
x

≤ ψ+(φ+(β))
φ+(β)

.

Hence, we obtain

F′′
2 (t0)

F′′
1 (t0)

≤ F̂2(t, t0)
F̂1(t, t0)

≤ F̂2(β , t0)
F̂1(β , t0)

and, analogously, for t < t0 that

F̂2(α, t0)
F̂1(α, t0)

≤ F̂2(t, t0)
F̂1(t, t0)

≤ F′′
2 (t0)

F′′
1 (t0)

.

A combination of these two results delivers for t > t0 that

F̂2(α, t0)
F̂1(α, t0)

≤ F′′
2 (t0)

F′′
1 (t0)

≤ F̂2(t, t0)
F̂1(t, t0)

≤ F̂2(β , t0)
F̂1(β , t0)

,

and a corresponding result for t < t0. This completes the proof. �

In the next result, we see the advantage of considering F ∈ C2([α,β],R2). We
show that in this case, the minimal variable K-convexification of F on [α,β] can
easily and directly be calculated.

Theorem5.1: Let themappings Gα : [α,β] → R2 andGβ : [α,β] → R2 be given
as

Gα(t0) =
{
F′′(α) if t0 = α,
F̂(α, t0) if α < t0 ≤ β ,

Gβ(t0) =
{
F̂(β , t0) if α ≤ t0 < β ,
F′′(β) if t0 = β

and define the set-valued mapping G(t0) = {Gα(t0),Gβ(t0)}. Then, KF(t0) =
conecoG(t0).

Proof: We distinguish two cases.



OPTIMIZATION 4143

Case 1: Let t0 ∈ (α,β). Then, we have
G(t0) = {̂

F(α, t0), F̂(β , t0)
} ⊂ F̂([α,β], t0).

Hence, it holds that

conecoG(t0) ⊂ coneco F̂([α,β], t0). (33)

Next, we prove that

F̂([α,β], t0) ⊂ conecoG(t0). (34)

Note that 0 ∈ conecoG(t0). Now, choose z ∈ F̂([α,β], t0) \ {0}. Therefore, there
exists t ∈ [α,β] \ {t0} such that z = F̂(t, t0). From Corollary 5.1, it follows for
z = (z1, z2) that z1 = F̂1(t, t0) > 0 and that

F̂2(α, t0)
F̂1(α, t0)

≤ z2
z1

≤ F̂2(β , t0)
F̂1(β , t0)

.

Thus, there exists λ ∈ [0, 1] such that

z2
z1

= λ
F̂2(α, t0)
F̂1(α, t0)

+ (1 − λ)
F̂2(β , t0)
F̂1(β , t0)

.

A moment of reflection shows that the latter equation yields

z = λz1
F̂1(α, t0)

F̂(α, t0)+ (1 − λ)z1
F̂1(β , t0)

F̂(β , t0). (35)

Note that in (35) the coefficients of F̂(α, t0) and F̂(β , t0) are nonnegative since
λ ∈ [0, 1], z1 > 0, F̂1(α, t0) > 0 and F̂1(β , t0) > 0. Thus, (34) is shown. By
Lemma 4.1, (33) and (34), we get KF(t0) = conecoG(t0).

Case 2: Let t0 = α (analogously for t0 = β). Applying L’Hôpital’s rule twice,
we get

lim
t→α−

F̂2(t,α)
F̂1(t,α)

= F′′
2 (α)

F′′
1 (α)

,

and by G(α) = {F′′(α), F̂(β ,α)}, we get
G(α) ⊂ cl coneco F̂([α,β],α).

Moreover, letting t0 → α in Corollary 5.1, we obtain

F′′
2 (α)

F′′
1 (α)

≤ F̂2(t,α)
F̂1(t,α)

≤ F̂2(β ,α)
F̂1(β ,α)

. (36)

Using (36) we deduce an expression which is analogous to (35). The remaining
part of the proof runs as in Case 1. �
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Figure 3. Application of Theorem 5.1 for F(t) = (t2, t3)T with α = −1 and β = 1. (a) t0 = −1,
(b) t0 = 0.15 and (c) t0 = 1.

Example 5.1: Letα = −1, β = 1 and F(t) = (t2, t3)T . By using Theorem 5.1, we
haveKF(t0) = conecoG(t0) for t0 ∈ {−1, 0.15, 1}, which is illustrated in Figure 3.

Note that the set-valued mapping G(t0) in Theorem 5.1 is not Lipschitz
continuous. Indeed, since

lim
t0→α

Gα(t0) = lim
t0→α

F̂(α, t0) = 0 and Gα(α) = F′′(α) �= 0,

the function Gα(t0) is not continuous. However, we can find a cone-valued
mapping Kδ(t0) close to KF(t0) such that its generator mapping is Lipschitz
continuous. As an example, fix δ > 0, define

Gδα(t0) =
{
F̂(α,α + δ) if α ≤ t0 ≤ α + δ,
F̂(α, t0) if α + δ < t0 ≤ β ,

Gδβ(t0) =
{
F̂(β , t0) if α ≤ t0 < β − δ,
F̂(β ,β − δ) if β − δ ≤ t0 ≤ β

and set

Kδ(t0) = coneco
[
Gδα(t0),G

δ
β(t0)

]
.

Analogously to Proposition 4.2, it can be shown that Kδ(t0) ∩ S(0, 1) is Lipschitz
continuous on [α,β]. Moreover, it is easy to check that

KF(t0) = Kδ(t0),

for all t0 ∈ [α + δ,β − δ] and that

KF(t0) � Kδ(t0),

for all t0 ∈ [α,β] \ [α + δ,β − δ]. This latter construction represents an appli-
cation of the strategy described in Remark 4.1 to this particular case considered
in the current section.
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6. Final remarks

In this paper, we considered vector optimization problems with variable order-
ing structures. They are related toK-convexmappings whereK refers to a proper
cone-valued mapping. This model has several applications, e.g. in medical diag-
nosis and portfolio optimization.We defined the cone of separations and showed
that under certain assumptions the corresponding K-convex mapping needs to
be affine. Note that this is a somehow counter-intuitive property and its geomet-
ric meaning need still to be discussed in the future. Moreover, we introduced
the concept of the minimal variable K-convexification KF(x), presented suffi-
cient conditions for the images of this cone-valued mapping to be contained in
a proper cone and proved the Lipschitz continuity of some corresponding gen-
erator mappings. Note that we described a theoretical approach for generating a
variable ordering mapping for which a given mapping is K-convex. We applied
this approach to a particular case; the construction of further applications will be
a topic for further research.
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