Title: Spatiotemporal patterns in the woodiness of flowering plants
Running Title : Global woodiness patterns

Authors: Ao Luo ${ }^{1}$, Xiaoting Xu^{2}, Yunpeng Liu ${ }^{1}$, Yaoqi $\mathrm{Li}^{1,3}$, Xiangyan $\mathrm{Su}^{1,4}$, Yichao Li 1, Tong Lyu ${ }^{1}$, Dimitar Dimitrov ${ }^{5}$, Markku Larjavaara ${ }^{1}$, Shijia Peng ${ }^{1}$, Yongsheng Chen ${ }^{1}$, Qinggang Wang ${ }^{6}$, Niklaus E. Zimmermann ${ }^{7,8}$, Loïc Pellissier ${ }^{7,8}$, Bernhard Schmid ${ }^{9}$, Zhiheng Wang ${ }^{1, *}$

[^0]${ }^{1}$ Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
${ }^{2}$ Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China

3 Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
${ }^{4}$ Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China
${ }^{5}$ Department of Natural History, University Museum of Bergen, University of Bergen, Postboks 7800, 5020 Bergen, Norway
${ }^{6}$ Department of Ecology and Ecological Engineering, College of Resources and Environmental Sciences, and Key Laboratory of Biodiversity and Organic Farming of Beijing City, China Agricultural University, Beijing 100193, PR China
${ }^{7}$ Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
8 Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
${ }^{9}$ Department of Geography, Remote Sensing Laboratories, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Acknowledgements

We thank the reviewers for their constructive comments on the earlier version of this manuscript. This work was supported by the National Key Research Development Program of China (\#2022YFF0802300, \#2017YFA0605101, \#2018YFA0606104), the

Strategic Priority Research Program of the Chinese Academy of Sciences (\#XDB31000000), National Natural Science Foundation of China (\#32125026, \#31988102). DD received additional support by the Norwegian Metacenter for Computational Science (NOTUR project NN9601K).

Biosketch

Ao Luo is a PhD candidate at Peking University and is mainly interested in macroecology and macroevolutionary in angiosperms. His work focuses on investigating large-scale species diversity patterns and the macroevolutionary mechanisms underlying them.

Title: Spatiotemporal patterns in the woodiness of flowering plants
Running Title: Global woodiness patterns

Abstract

\section*{Aim}

Woody and herbaceous habits represent one of the most distinct contrasts among angiosperms, and the proportion of woody species in floras (i.e. "woodiness" hereafter) represents a fundamental structural element of plant diversity. Despite its core influence on ecosystem processes, spatiotemporal patterns in woodiness remain poorly understood. Here, we aim to demonstrate the global spatiotemporal patterns in angiosperm woodiness and their relationship with environmental factors.

\section*{Location}

Global

Time period

Cenozoic, 66 Ma to present.

Major taxa studied

Angiosperms

Methods

Using newly-compiled data on the growth forms and distributions of approximately 300,000 angiosperm species and an angiosperm phylogeny, we mapped the current global geographical patterns in angiosperm woodiness, reconstructed ancestral states of growth forms through the angiosperm phylogeny, and demonstrated the Cenozoic evolutionary dynamics of woodiness. We evaluated the relationships between woodiness and current and paleo climate.

Results

We found that ca. 42.7% of angiosperms are woody. Woodiness decreased spatially from the equator towards latitudes, temporally since the early Cenozoic. Temperature was the best predictor of the spatiotemporal decline in woodiness and positively correlates with woodiness. Despite the temporal decline in woodiness, macroevolutionary herbaceous-to-woody transitions increased through time and contributed to the evolution of woody floras in temperate drylands, while the opposite transitions decreased through time and contributed to herbaceous floras in tropical and subtropical drylands.

Main conclusions

Our study improves understanding of the spatiotemporal dynamics of angiosperm woodiness. Our findings suggest that temperature is likely a determinant of spatiotemporal woodiness variations, highlighting the role of temperature in maintain growth form composition of ecosystems. Our study also calls for attention to growth form transitions (e.g. secondary woodiness) in temperate drylands that were neglected before.

Keywords: angiosperms, growth forms, woody plants, herbaceous plants, environmental temperature, secondary woodiness, ancestral state reconstruction, macroevolution

1 INTRODUCTION

Spatial variation in the proportion of woody and herbaceous growth forms has generated one of the largest contrasts among terrestrial ecosystems, with forests displaying widely contrasting functional properties compared with grasslands (Kerkhoff, Moriarty, \& Weiser, 2014; Šímová et al., 2018; Zanne et al., 2014). Woody and herbaceous species do not only show distinct global distributions associated with contemporary environmental conditions, but also reveal distinct evolutionary histories and responses to paleo-environmental changes (Carlquist, 2013; Klimešová, Tackenberg, \& Herben, 2016; Rice et al., 2019; Šímová et al., 2018), which might prime them to respond very differently to climate change (Engemann et al., 2016; Hawkins, Rodríguez, \& Weller, 2011; Zanne et al., 2018). Understanding spatiotemporal variation in the proportion of woody species and the underlying ecological and evolutionary drivers could enhance our ability to predict potential changes in terrestrial ecosystems in response to future climate change (Myers-Smith et al., 2011; Ordonez \& Svenning, 2019).

Biologists have long noted changes in the proportion of woody species ("woodiness" hereafter) with latitude (Sinnott \& Bailey, 1915) and suggested that woodiness is higher in the tropics (Engemann et al., 2016; Moles et al., 2014; Moles et al., 2009). Although woodiness patterns have been mapped previously at local to regional scales (Droissart et al., 2018; Engemann et al., 2016), the geographical pattern of angiosperm woodiness at the global scale remains unmapped, likely due to a lack of data on the growth forms and distributions across hundreds of thousands of plant species. Studies have demonstrated strong associations of geographical patterns in woody and herbaceous species richness with contemporary climate, especially water availability (Francis \& Currie, 2003; O'Brien, 1998) and environmental temperature (Latham \& Ricklefs, 1993; Z. Wang, Fang, Tang, \& Lin, 2011). However, the drivers of woody and herbaceous species richness may differ (Hawkins et al., 2011). The sensitivity of the woody growth form to winter coldness was recognized already as the basis of Raunkiaer's classification of plant life forms (Raunkiaer, 1934), because woody species generally carry their stems and renewal buds higher above ground than do herbaceous species, exposing them to colder temperatures in seasonal climates. Compared with woody species, herbaceous species tend to have a higher rate of niche evolution and weaker niche conservatism due to their shorter lifespan, and hence tend
to be less sensitive to freezing (Smith \& Beaulieu, 2009; Zanne et al., 2018). These findings suggest that environmental temperature may dominate the spatial variations in woodiness. In addition to temperature, woody and herbaceous plants also have different hydraulic conductance and drought tolerance abilities (Lens et al., 2016), and thus that precipitation may also influence woodiness variations. Yet the drivers underlying global geographical patterns in the woodiness of angiosperms remain elusive (Engemann et al., 2016; Moles et al., 2014; Zanne et al., 2018).

Woodiness is an evolutionarily dynamic trait and macroevolutionary transitions both from woody to herbaceous states ("WtoH" hereafter) and vice versa ("HtoW" hereafter) may have occurred frequently in different clades during the evolutionary history of flowering plants (Cronquist, 1968; Zanne et al., 2014). Although debated, the woody growth form is generally thought to be ancestral in angiosperms, suggesting that the herbaceous state, representing an adaptation to a fast life cycle in cold and arid climates (Klimešová et al., 2016), may have evolved from woody ancestors (i.e., WtoH transition) (Neupane et al., 2017; Zanne et al., 2018). Evolutionary transitions from herbaceous to woody state (i.e., HtoW transitions), also known as "secondary woodiness", have also been demonstrated in at least eight orders (Spicer \& Groover, 2010), and are often found on tropical islands or tropical mountain peaks (Carlquist, 2013; Lens, Davin, Smets, \& del Arco, 2013; Neupane et al., 2017; Nürk, Atchison, \& Hughes, 2019). The climatic moderation hypotheses proposed to explain the patterns in secondary woodiness suggests that low temperature seasonality enhances HtoW transitions (Sherwin Carlquist, 1974). As herbaceous growth form represents an adaptation to cold climate (Zanne et al., 2014), the WtoH transitions are expected to be more frequent in temperate regions. However, the temporal and geographical patterns of WtoH and HtoW transitions at the global scale remain even more elusive than the global spatiotemporal patterns of woodiness. Assessing them in more detail will shed light on the response of this trait to paleoenvironmental changes.

Here, we study the global geographical patterns of angiosperm woodiness and explore the relationships between these patterns and climatic factors, using a large dataset on the growth forms and distributions of ca. 300,000 angiosperm species on the global scale. By integrating these data with a recently developed mega-phylogeny (Smith \& Brown, 2018), we explore the evolutionary transitions of WtoH and HtoW over space and through evolutionary time. Specifically, we address the following two
questions: 1) Do climate factors, especially temperature, well predict spatiotemporal patterns in the woodiness of angiosperms? 2) When and where did evolutionary HtoW and WtoH transitions occur and why? We expect that: 1) Environmental temperature, especially winter coldness, is the best predictor of spatiotemporal patterns in angiosperm woodiness. 2) HtoW transitions are more frequent in the tropics and warm periods, while WtoH transitions are more frequent in temperate regions and cool periods.

2 Materials and Methods

2.1 Growth forms and distributions of global angiosperms

We compiled data on growth forms of angiosperm species from published floras (e.g. Flora of North America, Flora of China, etc.), online databases and peer-reviewed journal articles (see appendix 1 for the list of data sources). Species names from different sources were standardized following the Catalogue of Life (http://www.catalogueoflife.org) which provides an updated list of accepted Latin names and synonyms of angiosperm species. We compiled the records of growth form of each species and supplemented these data with the information of the corresponding genera and families of species if clearly recorded as being exclusively woody or herbaceous from available data sources (appendix 1). In total, our database contained growth forms of 300,112 angiosperm species, belonging to 11,638 genera and 425 families. Following previous studies (Engemann et al., 2016; FitzJohn et al., 2014; Šímová et al., 2018), species were classified into two categories: woody and herbaceous. Woody species was defined following (Zanne et al., 2014) (i.e. species having a prominent aboveground stem that is persistent under changing environmental conditions), and included trees, shrubs, and lianas. Herbaceous species included herbs and herbaceous vines. Following previous studies (Fang, Tang, \& Wang, 2011; Zanne et al., 2014), most bamboo (Bambusoideae), cacti (Cactaceae), and palm (Arecaceae) species were classified as woody species and only a few were classified as herbaceous. When different data sources reported different growth forms for a species, we determined its growth form as the one reported in more than two-thirds of the data sources. If none of the growth forms was supported by more than two-thirds of the data sources, we marked its growth form as 'unclear' and excluded it from the following analyses.

The database of global distributions of angiosperm species (https://en.geodata.pku.edu.cn/index.php?c=content\&a=/ist\&catid=198) was compiled from published continental and regional floras, checklists, peer-reviewed articles, herbarium specimens, and online databases (see appendix 1 for the list of data sources). Some data sources contain coordinates of species occurrences, while most of them recorded species distributions using either administrative units at different scales (e.g. villages, towns, cities, provinces/states, and countries) or geographical units (e.g. mountains and nature reserves). We georeferenced these records using the GeoNames geographical database (containing over 25 million geographical names, http://www.geonames.org), Global Administrative Areas Database (containing boundaries of global geopolitical units at different levels, https://gadm.org/) and the World Geographical Scheme for Recording Plant Distributions (containing names and boundaries of geographical units commonly used in specimen collections, https://www.tdwg.org/standards/wgsrpd/). To reduce the potential effect of area on diversity estimates, adjacent smaller geopolitical units were merged together to create units of similar size (ca. 270,000 km^{2}). The final map divided the world land area into 480 geographical units. This scheme of geopolitical units have been used for the compilation of species distributions in several previous studies (Shrestha et al., 2018; Xu et al., 2019; Xu, Wang, Rahbek, Lessard, \& Fang, 2013). To improve the quality of species distribution data, we screened the distribution maps of most species and removed records of introduced and cultivated species following Plants of the World Online (http://www.plantsoftheworldonline.org).

2.2 Data on climate and global biomes

To evaluate the effects of contemporary climate on geographical patterns in angiosperm woodiness (i.e. the proportion of woody species in local floras), we used climatic variables representing the mean and extreme values of temperature and precipitation, including mean annual temperature (MAT), mean temperature of warmest quarter (MTWQ), minimum temperature of the coldest month (Tmin), mean annual precipitation (MAP), precipitation of the warmest quarter (PWQ), and precipitation of the coldest quarter (PCQ). We obtained these variables from the WorldClim database (v2.1, https://www.worldclim.org) with a spatial resolution of 30
$\times 30 \mathrm{arc}$ seconds (ca. $1 \times 1 \mathrm{~km}^{2}$ at the equator). We then estimated the mean values of each climate variable within each geopolitical unit. As the geographical units are relatively large and may contain large climate heterogeneity, we also estimated the minimum, maximum and ranges of each variable within each geographical unit for comparison. Moreover, we estimated the mean, minimum and maximum values of each climate variable within the distribution range of each species. To explore the relationship between temporal variations in angiosperm woodiness and paleoclimate, we used the global mean paleotemperature reconstructed by the deep-sea benthic foraminifer oxygen isotope $\left(\delta^{18} \mathrm{O}\right)$ from ocean drilling cores, which has been widely used as a proxy of paleotemperature in previous studies (Westerhold et al., 2020; Zachos, Pagani, Sloan, Thomas, \& Billups, 2001). To evaluate the potential influence of biomes on growth form transitions, we obtained data on the global biome boundaries from Olson et al. (2001), and then estimated the area proportion of each biome within each geopolitical unit.

2.3 Phylogenies of global angiosperms and ancestral growth form reconstruction

Recent advances in large-scale phylogenies of angiosperms provide opportunities to explore the evolution of angiosperm growth forms. Here, we used the dated phylogeny containing 353,185 seed plant species generated by Smith \& Brown (i.e. ALLOTB) (Smith \& Brown, 2018), which has recently been used in macroecological and biogeographic studies (Sandel et al., 2019; Weigelt, König, \& Kreft, 2019). This phylogeny was constructed by placing the molecular phylogenies (containing 79,855 species in total) constructed for major clades (i.e. orders) in a backbone provided by the Open Tree of Life (Hinchliff et al., 2015; Smith \& Brown, 2018). Species without DNA data were added into the molecular backbone phylogeny following the resolution provided by the Open Tree of Life. The relationships between many species in this phylogeny are not resolved, which may influence the reconstruction of ancestral states and hence the estimation of angiosperm woodiness. Hence, we used the Yule bifurcation process (Roquet, Thuiller, \& Lavergne, 2013; Thuiller et al., 2011) to resolve the polytomies within genera. Specifically, for each genus containing unresolved species as polytomies, we randomly resolved the polytomies using the Yule
bifurcation process, which leads to random relationships between species within genera. We generated 100 resolved phylogenies by repeating this process 100 times.

We reconstructed the ancestral states of growth forms using the maximum parsimony method in the R package "castor" (Louca \& Doebeli, 2017). In the reconstruction analysis, growth form was used as a two-state trait (i.e., woody vs. herbaceous). The growth form of each branch was identified as the state with a higher probability. If the probability of a branch being woody was equal to that being herbaceous, its growth form was assigned as the growth form of its ancestor branch. To assess the uncertainties induced by random topologies due to the polytomy resolving procedure, we repeated the ancestral state reconstruction using the 100 randomlyresolved phylogenies separately.

Previous studies indicate that woody and herbaceous growth forms tend to have different evolutionary rates (Smith \& Donoghue, 2008), which may bias the ancestral state reconstruction (Höhna et al., 2016). To confirm the reconstruction results based on the maximum parsimony method, we repeated the ancestral reconstruction analyses using the Hidden State Speciation and Extinction (HiSSE) model in RevBayes (Höhna et al., 2016). The HiSSE model is a state-dependent Markov model which could account for the impact of possible state-dependent evolution on ancestral-state reconstructions (Höhna et al., 2016). We use HiSSE instead of other alternatives, namely BiSSE, because issues with BiSSE leading to type I error have been identified (Maddison \& FitzJohn, 2014). We used HiSSE models with two and three hidden states (see Table S1 for the details on the priors), and 2000 stochastic maps were generated for each model. The first 100 generations were used to tune parameters. The convergence and effective sample size was evaluated after discarding 25% of posterior samples as burnin. Both models converged well and the effective sample sizes (ESS) for key parameters were all higher than 200.

2.4 Temporal dynamics in the woodiness of angiosperms

To evaluate the temporal dynamics in the woodiness of angiosperms, we estimated the proportion of woody branches in each 1 Ma time interval as the ratio of the number of woody branches and the total number of branches within that time interval using the ancestral reconstructions of growth forms based on the maximum parsimony method and the HiSSE models separately. The estimation based on the maximum parsimony
method was repeated for each of the 100 randomly-resolved phylogenies. We estimated the mean woodiness in each 1 Ma time interval across the 100 phylogenies to show the temporal dynamics in angiosperm woodiness and the $2.5^{\text {th }}$ and $97.5^{\text {th }}$ quantiles to show the 95% confidence intervals. Despite differences in the age estimates for the deep splits in the angiosperm crown groups, most studies agree on consistent patterns of the evolutionary chronicle of angiosperms during the Cenozoic (starting from 66 million years ago (Ma)) (Sauquet \& Magallon, 2018; Smith \& Brown, 2018; Zanne et al., 2014). Thus, we only focused on the evolutionary dynamics of woodiness during the youngest era, the Cenozoic, to avoid uncertainty in the estimation of woodiness during older eras.

2.5 Spatiotemporal patterns in growth form transitions

We estimated the transitions between woody and herbaceous growth forms (see Fig. 3d for an illustrative diagram) using the ancestral growth form reconstructions estimated by the maximum parsimony method and the HiSSE models separately. A growth form transition event was identified when the reconstructed growth form of a branch differed from that of its parent branch. We recorded two directions of growth form transitions, i.e., from woody to herbaceous growth form and vice versa. To evaluate the temporal variation in growth form transitions, we estimated the proportion of transitions for each direction within each 1 Ma time interval.

To explore the contribution of growth form transitions to local floras, we divided the Cenozoic into three time periods (i.e., $60-40 \mathrm{Ma}, 40-20 \mathrm{Ma}, 20-$ present). We then estimated the proportion of extant species experiencing growth form transitions during these time periods in local floras. Specifically, we estimated the proportions of species experiencing woody-to-herbaceous (WtoH) and herbaceous-to-woody (HtoW) transitions in local herbaceous and woody floras, respectively.

2.6 Statistical analyses

As woodiness was estimated as a percentage, the relationships between the geographical patterns of woodiness and climate variables were evaluated using binomial generalized linear models (GLMs) with a logit link following previous studies (Dobson \& Barnett, 2008; McCullagh \& Nelder, 1989). Considering that the relationship between woodiness and climate may not be linear, we fitted GLM models
both with and without a quadratic term of climate variables. Model performance was evaluated using pseudo- R^{2}, which was estimated as (McCullagh \& Nelder, 1989):

$$
\text { pseudo- } R^{2}=1-(\text { residual deviance/null deviance })
$$

To evaluate whether the climate heterogeneity within geographical units may influence the relationships between woodiness and climate, we conducted the following two analyses. First, we repeated all GLM models using the mean, minimum and maximum of climate variables within geographical units. Second, we conducted partial regressions with both the range and the mean of each climatic variable as the predictors of woodiness. Then the independent R^{2} of the mean climatic variables was extracted and considered as the explanatory power of climate after the climatic heterogeneity within geographical units was controlled for. Similarly, we also evaluated the relationships between growth form and climate at species level using the growth forms of species and the climate variables within their distribution ranges.

Furthermore, to select the best multiple models explaining the geographical patterns in woodiness in local floras, we fitted all possible combinations of the six explanatory variables considered, and then selected the model with the lowest Akaike information criterion (AIC) as the best model. Models with $\triangle \mathrm{AIC}<2$ were considered equally good (Burnham \& Anderson, 2002). Preliminary analyses indicated that mean annual temperature (MAT) and mean annual precipitation (MAP) were included in all of the best models (Table S2). Then partial regressions were used to compare the independent and joint effects of MAT and MAP on geographical patterns in angiosperm woodiness. All these analyses were conducted at the global scale, both hemispheres and across different longitudinal regions, including the Asia-Oceania region, the EuropeAfrica region, and the New World. To test whether the latitudinal gradient in angiosperm woodiness varies across these longitudinal regions and southern/northern hemispheres, we conducted ANOVA analysis on the following binomial GLM model:

Woodiness \sim Latitude + Region + Latitude:Region

Chi-squared test was used to test the significance of the regression coefficients. All statistical analyses were conducted in R version 3.6.1 (http://www.r-project.org).

3 RESULTS

3.1 Spatial patterns in woodiness

Among extant angiosperms, 42.7% were woody species (Table S3). This proportion was slightly lower than a previous estimation for vascular plants (45$48 \%$).Woody species accounted for 6.6% of monocotyledonous and 55.8% of dicotyledonous species. Woodiness at genus and family levels shows bimodal distributions (Fig. S1). At the genus level, 89.0% of genera exclusively consisted of either woody or herbaceous species, while 72.0% and 42.6% were exclusively woody or herbaceous at the family and order level, respectively.

The woodiness of angiosperm floras significantly decreased from ca. 56% on average at the equator to ca. 10% at high latitudes (Fig. 1a, Fig. S2). On the global scale, tropical rainforests had the highest woodiness (ca. 70\%), while arctic ecosystems had the lowest woodiness (below 15\%). This latitudinal gradient in angiosperm woodiness was similar across different longitudinal regions, i.e., the New World, Europe-Africa, and Asia-Oceania , and between the southern and northern hemispheres (Fig. S2, Table. S4).

GLM regressions for geographical woodiness and species-level growth forms indicated that the minimum temperature of the coldest month (Tmin) was the strongest predictor of the current spatial pattern in woodiness at the global scale, across different longitudinal regions and in both hemispheres (Table 1), and woodiness increased with Tmin (Fig. 1; Fig. S3). The results were consistent when mean, minimum and maximum values of climatic variables were used and whether or not the quadratic terms of these variables were included (Tables S5-8). The range of climate variables within geographical units had much weaker relationships with woodiness than the mean, maximum and minimum values of the corresponding variables, especially temperature (Table S6). Moreover, the independent R^{2} of mean climatic variables also indicated that Tmin was the strongest predictor of spatial woodiness variations (Table S7). These results suggested that climate heterogeneity within geographical units did not bias our findings.

Stepwise regression analyses indicated that the best model with multiple explanatory variables includes not only Tmin but also mean annual precipitation (MAP, Table S2), suggesting a combined effect of energy and humidity. Tmin had consistently higher independent explanatory power on the spatial pattern of woodiness than MAP as shown by variance partitioning an analyses (independent explained variance of Tmin: $17.2-51.7 \%$; independent effects of MAP: 2.2-7.5\%)(Fig. S4).

3.2 Temporal patterns in woodiness

The temporal patterns in global woodiness reconstructed by the maximum parsimony and HiSSE models were highly consistent with each other (Fig. 1b, Figs. S5-S7). Specifically, during the evolutionary history of angiosperms, woodiness fluctuated considerably through time (Fig. S5). During the Cenozoic when most extant species had diversified, the woodiness was highest during the Paleocene and the early Eocene ($66-55 \mathrm{Ma}$), ca. $52-53 \%$, and continuously declined thereafter to the contemporary level (i.e., 42.7\%) (Fig. 1b; Figs. S6-S7). Two dramatic declines can be identified: from early to mid-Eocene ($55-38 \mathrm{Ma}$) and from early Miocene (23 Ma) to the present. This temporal trend in angiosperm woodiness was consistent across different continents (Fig. S8). These results suggested that the proportion of woody lineages at the global scale was lower than that of herbaceous lineages during most time of the Cenozoic, and the current proportion of woody lineages was much lower than that at any previous time during the Cenozoic. Similar to the positive association between spatial woodiness variation and temperature, the temporal woodiness variation was significantly positively correlated with paleotemperature during the Cenozoic (Pseudo- $R^{2}=0.795, p<0.001$, Fig. 1d). Moreover, our results indicated that herbaceous lineages had significantly higher speciation rates than woody lineages, while the extinction rates of the two growth forms were similar (Figs. S6-7).

3.3 Growth form transitions

During the period between $60-20 \mathrm{Ma}$, HtoW transitions were less frequent than WtoH transitions (Fig. 2), coinciding with the declining woodiness during this period. In contrast, during the last 20 Ma , HtoW transitions were dominant (Fig. 2). During this period, HtoW transitions occurred mainly in large families such as Asteraceae and Fabaceae (Table S9), probably because of the accelerated speciation in these families due to gaining woody growth form and the advantage of xylem in managing the hydraulic supply to foliage (Carlquist, 2013). It's noteworthy that HtoW transitions contribute to the woodiness through time by no more than 0.3% (Fig. S9). After removing the clades experiencing any evolutionary transitions between woody and herbaceous growth forms, the temporal changes in woodiness remained the same (Fig. S9). Hence, growth form transitions did not dominated woodiness changes through time.

During the Cenozoic, HtoW transitions were more frequent in temperate drylands than in other ecosystems (Fig. 3). Moreover, the difference in HtoW transitions between temperate drylands and other ecosystems was especially pronounced during the last 20 Ma. Hence, woody species arising from secondary woodiness were an important part of the woody floras in temperate drylands, especially in deserts and xeric shrublands (Table S10). For example, in the drylands in Central Asia and the southern Mediterranean, HtoW transitions contribute more than half of the woody species in local woody floras (Fig. 3).

In contrast, WtoH transitions in the Cenozoic, especially during the last 20 Ma , were more frequent in savannas and tropical and subtropical grasslands compared to other ecosystems (Fig. 3; Table S10). Specifically, WtoH transitions during the last 20 Ma accounted for $>15 \%$ of herbaceous species in many regions in sub-Saharan Africa and Mesoamerica, where climate is warm and dry.

4 DISCUSSION

4.1 The global geographical pattern in angiosperm woodiness and its drivers

We demonstrated a clear latitudinal gradient in angiosperm woodiness, supporting a long-standing hypothesis based on data of a small fraction of angiosperms (Sinnott \& Bailey, 1915). The spatial resolution of the present study is relatively coarse and. Previous studies indicated that spatial resolution may influence species diversity patterns (Rahbek \& Graves, 2001; Z. Wang et al., 2009) and hence patterns in woodiness. However, studies based on regional data found a similar latitudinal gradients in woodiness at a finer resolution (e.g. $100 \mathrm{~km} * 100 \mathrm{~km}$) supporting our results (Engemann et al., 2016). Moreover, the woodiness estimated here did not reflect the forest coverage. Some biomes at high latitudes of the northern hemisphere (e.g. the boreal forests) have high forest coverage were dominated by only a few woody species.

Our results indicated that annual minimum temperature had the strongest association with spatial woodiness variation. Other than annual minimum temperature, precipitation had a significant but relatively weaker association with spatial woodiness variation (Table 1). These results supported our first hypothesis that winter coldness
dominates the spatial variations in woodiness. Previous studies indicate that differences in physiological constraints tend to lead to differences in temperature demands between woody and herbaceous plants (Engemann et al., 2016; Hawkins et al., 2011). For example, the aboveground parts of herbaceous plants can die back in winter with buds positioned on or below ground to avoid coldness stress while woody plants with buds and branches high above the ground cannot (Engemann et al., 2016; Zanne et al., 2018; Zanne et al., 2014). Moreover, woody and herbaceous plants have been found to differ in their evolutionary niche conservatism, which may have also contributed to the dominant role of winter coldness on the woodiness pattern (Smith \& Beaulieu, 2009; Zanne et al., 2018; Zanne et al., 2014). Woody lineages have longer generation times and slower rates of molecular and niche evolution hence stronger niche conservatism than herbaceous lineages (Smith \& Beaulieu, 2009; Smith \& Donoghue, 2008). These previous findings suggest that woody lineages may have stronger constraints on the evolution of new adaptations outside their ancestral habitats than herbaceous lineages (Smith \& Beaulieu, 2009; Zanne et al., 2014). As a consequence, with the retraction of tropical-like climates and the emergence of seasonal and cold climates at high latitudes since the Oligocene (Zachos et al., 2001), high latitudes may have experienced more local extinctions of woody species as shown by fossil records (Shiono, Kusumoto, Yasuhara, \& Kubota, 2018) and have lower woodiness compared with low latitudes (Kerkhoff et al., 2014). Therefore, we propose that differential niche conservatism and freezing tolerance between woody and herbaceous angiosperms might be a reason why winter coldness dominated the latitudinal decrease in woodiness.

4.2 Evolution of angiosperm woodiness and its association with global temperature changes

Our findings on the decrease in woodiness were in line with pollen records in East Asia (Barbolini et al., 2020) and the New World (Graham, 2011), which indicated that the proportion of pollens of woody plants has decreased since the early Eocene while that of herbaceous plants increased. We showed that indicated that herbaceous lineages had significantly higher speciation rates than woody lineages, while the extinction rates
of the two growth forms are similar (Figs. S6-7). The difference in speciation rate between the two growth forms rather than extinction difference may have played a role in the temporal trends of woodiness.

The positive association between temporal woodiness variation and paleotemperature during the Cenozoic (Fig. 1d) suggested that the evolutionary decline in woodiness might have similarly been affected by decreasing paleotemperature. The paleoclimate of the Cenozoic is characterized by an almost continuous temperature declined since the late Paleocene and the early Eocene (Zachos et al., 2001). The late Paleocene and the early Eocene represent the warmest period during the Cenozoic (i.e., a "greenhouse"), i.e. the Paleocene-Eocene Thermal Maximum (55 Ma) (Beerling \& Royer, 2011). The "greenhouse" climate in this period led to dramatic expansions of tropical and subtropical habitats. Typically, fossil records and vegetation reconstruction based on pollen profiles suggest that the rainforests in the New World (Graham, 2011) extended to the Arctic Circle during the Paleocene. This dramatic expansion of tropical and subtropical habitats may have favored the coexistence of a large number of woody angiosperm species and hence increased woodiness on the global scale. Indeed, our results suggest that the woodiness of angiosperms peaked (52.7%, Fig. 1b) during the Paleocene-Eocene Thermal Maximum.

After the Paleocene-Eocene Thermal Maximum, the global climate cooled down, which eventually led to the transition from a "greenhouse" to an "icehouse" climate at the Eocene-Oligocene transition (34 Ma) (Zachos et al., 2001). Fossil and pollen records suggest that with the decline in global temperature tropical and subtropical evergreen broadleaf forests retreated, while grasslands and tundra expanded (Graham, 2011). Open tropical habitats (i.e., savannas), temperate grasslands, and arctic and alpine ecosystems including tundra slowly developed and eventually became dominant over vast areas on different continents from mid-Miocene (since 15 Ma) onwards (Graham, 2011). The retreat of "closed ecosystems" (forests) and the expansion of "open ecosystems" (non-forested) may have allowed more herbaceous species to coexist, which may have led to the high diversification of herbaceous species (see Figs. S6-S7). For example, the diversification of major herbaceous lineages, including Poaceae (Strömberg, 2011), Gnaphalieae within Asteraceae (Nie et al., 2016), Ranunculaceae (W. Wang et al., 2016), and Valerianaceae (Bell \& Donoghue, 2005), considerably accelerated since the Miocene, and these groups became dominant in the
new open habitats in both tropical and temperature regions. At the same time, the retreat of closed ecosystems may have reduced the habitats where many woody angiosperm species could coexist and the decrease in woodiness. Together, these findings suggest that global cooling since the early Eocene may have played a major role in the decline in angiosperm woodiness.

4.3 Spatiotemporal patterns in growth form transitions

Frequent macroevolutionary transitions between woody and herbaceous growth forms have been considered to be associated with the rapid radiation of species in new environments (Nürk et al., 2019). We found HtoW transitions contributed substantially to the woody flora of temperate drylands including Central Asia and the southern Mediterranean. Similarly, recent studies at local scales also find that many woody species in temperate drylands are from secondary woodiness. For example, Neupane et al. (2017) identified much secondary woodiness in the Mediterranean drylands. Our results together with previous findings suggest that temperate drylands may represent a hotspot of secondary woodiness, which is in contrast to our hypothesis and the expectation of the climatic moderation hypotheses (Sherwin Carlquist, 1974; Lens et al., 2013; Nürk et al., 2019). Moreover, these results also suggest that secondary woodiness species distribute more widely than previously known.

The "climatic moderation hypothesis" (Sherwin Carlquist, 1974; S. Carlquist, 1974; Nürk et al., 2019) suggests that warm and unseasonal climates lead to secondary woodiness (i.e. HtoW transitions), while cool climates lead to woodiness loss (i.e. WtoH transitions). However, this hypothesis could not explain the more frequent secondary woodiness in drylands presumably exerting strong drought stress on both woody and herbaceous species than in other ecosystems. Instead, the secondary woodiness in drylands, especially in deserts and xeric shrublands, may be associated with the rapid expansion of these ecosystems on the global scale since the mid-late Cenozoic (Guo et al., 2002; Hsü, Ryan, \& Cita, 1973) and the rapid diversification of woody (especially shrub) species in these new habitats. Woody species from secondary woodiness tend to have larger phenotypic trait space (Nürk et al., 2019) and better drought-induced embolism resistance than their herbaceous relatives (Dória et al., 2018), which may be one of the reasons for the higher contribution of secondary woodiness to dryland floras. Indeed, the high proportions of secondary woody species
in central Asian deserts, the Sahara Desert, and the deserts in southwest North America coincide with the onset of desertification processes in these regions (Guo et al., 2002; Hsü et al., 1973).

We also found that WtoH transitions in the Cenozoic, especially during the last 20 Ma, revealed the highest contribution to the herbaceous floras of savannas and tropical and subtropical grasslands compared to other ecosystems. This result is consistent with a previous study on angiosperm functional trait evolution (Zanne et al., 2014). Specifically, based on a large phylogeny, Zanne et al. (2014) showed that the transition rate from freezing-unexposed woody state to freezing-unexposed herbaceous state was almost four times of the vice versa transition. One of the possible reasons for the frequent WtoH transitions and their high contribution to the herbaceous floras in savannas and tropical and subtropical grasslands is the strong fire disturbance (Keeley \& Rundel, 2005; van der Werf et al., 2010) which strongly affects savanna vegetation structures and lowers the height of trees and the proportion of woody plants (Furley, Rees, Ryan, \& Saiz, 2008). Recent paleontological studies in Africa and the New World suggest that savannas and tropical and subtropical grasslands dramatically expanded with the decline of rainforests since the late Miocene in association with the increasing importance of fire disturbance (Dupont, Rommerskirchen, Mollenhauer, \& Schefuss, 2013; Hoetzel, Dupont, Schefuß, Rommerskirchen, \& Wefer, 2013; Kissling et al., 2012; Linder \& Verboom, 2015), which has likely enhanced WtoH transitions and hence improved the contribution of WtoH transitions to the herbaceous floras in these regions.

5 CONCLUSION

Woody and herbaceous habits are among the most ecologically distinct contrasts within angiosperms, and their proportion in floras represents a fundamental structural element of species diversity within ecosystems (Kerkhoff et al., 2014; Šímová et al., 2018; Zanne et al., 2014). Based on a unique database containing the growth forms and distributions of over 300,000 angiosperm species, our study provided a comprehensive description of the spatiotemporal patterns in angiosperm woodiness at the global scale, and identified annual minimum temperature among climatic variables as the best predictor of woodiness variations. Moreover, our study also calls for attention on the contribution of growth form transitions to floras in tropical and temperate drylands.

Future studies could evaluate whether on-going climate change may influence species composition of ecosystems via changes in woodiness.

References

Barbolini, N., Woutersen, A., Dupont-Nivet, G., Silvestro, D., Tardif, D., Coster, P. M. C., . . . Hoorn, C. (2020). Cenozoic evolution of the steppe-desert biome in Central Asia. Science Advances, 6(41), eabb8227. doi:10.1126/sciadv.abb8227
Beerling, D. J., \& Royer, D. L. (2011). Convergent Cenozoic CO2 history. Nature Geoscience, 4(7), 418-420. doi:10.1038/ngeo1186
Bell, C. D., \& Donoghue, M. J. (2005). Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Organisms Diversity \& Evolution, 5(2), 147-159.
Burnham, K. P., \& Anderson, D. R. (2002). Mode/ Selection and Multi-Mode/ Inference: A Practical Information-Theoretic Approach. Secaucus: Springer.
Carlquist, S. (1974). Is/and biology. New York, USA: Columbia University Press.
Carlquist, S. (1974). Island biology. New York, Columbia University Press. Ix, 660 pp., ill.
Carlquist, S. (2013). More woodiness/less woodiness: evolutionary avenues, ontogenetic mechanisms. International Journal of Plant Sciences, 174(7), 964-991.
Cronquist, A. (1968). THE EVOLUTION AND CLASSIFICATION OF FLOWERING PLANTS: Houghton Mifflin.
Dobson, A. J., \& Barnett, A. G. (2008). AN INTRODUCTION TO GENERALIZED LINEAR MODELS: Chapman and Hall/CRC.
Dória, L. C., Podadera, D. S., Arco, M., Chauvin, T., Smets, E., Delzon, S., . . . Oliveira, R. (2018). Insular woody daisies (Argyranthemum, Asteraceae) are more resistant to drought induced hydraulic failure than their herbaceous relatives. Functional Ecology, 32(6), 14671478. doi:10.1111/1365-2435.13085

Droissart, V., Dauby, G., Hardy, O. J., Deblauwe, V., Harris, D. J., Janssens, S., . . . Couvreur, T. L. P. (2018). Beyond trees: Biogeographical regionalization of tropical Africa. Journal of Biogeography, 45(5), 1153-1167. doi:10.1111/jbi. 13190
Dupont, L. M., Rommerskirchen, F., Mollenhauer, G., \& Schefuss, E. (2013). Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C-4 plants. Earth and Planetary Science Letters, 375, 408-417. doi:10.1016/j.epsl.2013.06.005
Engemann, K., Sandel, B., Enquist, B. J., Jørgensen, P. M., Kraft, N., Marcuse-Kubitza, A., . . . Violle, C. (2016). Patterns and drivers of plant functional group dominance across the Western Hemisphere: a macroecological re-assessment based on a massive botanical dataset. Botanical Journal of the Linnean Society, 180(2), 141-160.
Fang, J., Tang, Z., \& Wang, Z. (2011). Atlas of Woody Plants in China: Distribution and Climate (1. Aufl. ed.). Berlin, Heidelberg: Springer-Verlag.
FitzJohn, R. G., Pennell, M. W., Zanne, A. E., Stevens, P. F., Tank, D. C., Cornwell, W. K., \& Shefferson, R. (2014). How much of the world is woody? Journal of Ecology, 102(5), 1266-1272. doi:10.1111/1365-2745.12260
Francis, A. P., \& Currie, D. J. (2003). A globally consistent richness-climate relationship for angiosperms. The American Naturalist, 161(4), 523-536.
Furley, P. A., Rees, R. M., Ryan, C. M., \& Saiz, G. (2008). Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Progress in Physical Geography, 32(6), 611-634. doi:10.1177/0309133308101383

Graham, A. (2011). The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany, 98(3), 336-351. doi:10.3732/ajb. 1000353
Guo, Z., Ruddiman, W. F., Hao, Q. Z., Wu, H., Qiao, Y., Zhu, R. X., . . . Liu, T. (2002). Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416(6877), 159.

Hawkins, B. A., Rodríguez, M. Á., \& Weller, S. G. (2011). Global angiosperm family richness revisited: linking ecology and evolution to climate. Journal of Biogeography, 38(7), 1253-1266. doi:10.1111/j.1365-2699.2011.02490.x
Hinchliff, C. E., Smith, S. A., Allman, J. F., Burleigh, J. G., Chaudhary, R., Coghill, L. M., . . . Cranston, K. A. (2015). Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proceedings of the National Academy of Sciences of the United States of America, 112(41), 12764-12769. doi:10.1073/pnas. 1423041112
Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F., \& Wefer, G. (2013). The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nature Geoscience, $\sigma(12)$, 1027-1030. doi:10.1038/ngeo1984
Höhna, S., Landis, M. J., Heath, T. A., Boussau, B., Lartillot, N., Moore, B. R., . . . Ronquist, F. (2016). RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Systematic biology, 65(4), 726-736.
Hsü, K. J., Ryan, W. B., \& Cita, M. B. (1973). Late Miocene desiccation of the Mediterranean. Nature, 242(5395), 240-244.
Keeley, J. E., \& Rundel, P. W. (2005). Fire and the Miocene expansion of C-4 grasslands. Ecology Letters, 8(7), 683-690. doi:10.1111/j.1461-0248.2005.00767.x
Kerkhoff, A. J., Moriarty, P. E., \& Weiser, M. D. (2014). The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 111(22), 8125-8130. doi:10.1073/pnas. 1308932111
Kissling, W. D., Eiserhardt, W. L., Baker, W. J., Borchsenius, F., Couvreur, T. L., Balslev, H., \& Svenning, J. C. (2012). Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7379-7384. doi:10.1073/pnas. 1120467109
Klimešová, J., Tackenberg, O., \& Herben, T. (2016). Herbs are different: clonal and bud bank traits can matter more than leaf-height-seed traits. New Phytologist, 2101), 13-17.
Latham, R. E., \& Ricklefs, R. E. (1993). Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos, 325-333.
Lens, F., Davin, N., Smets, E., \& del Arco, M. (2013). Insular woodiness on the Canary Islands: a remarkable case of convergent evolution. International Journal of Plant Sciences, 174(7), 992-1013.
Lens, F., Picon-Cochard, C., Delmas, C. E. L., Signarbieux, C., Buttler, A., Cochard, H., . . . Delzon, S. (2016). Herbaceous Angiosperms Are Not More Vulnerable to Drought-Induced Embolism Than Angiosperm Trees. Plant Physiology, 172(2), 661-667. doi:10.1104/pp.16.00829

Linder, H. P., \& Verboom, G. A. (2015). The Evolution of Regional Species Richness: The History of the Southern African Flora. Annual Review of Ecology Evolution and Systematics, 46(1), 393-412. doi:10.1146/annurev-ecolsys-112414-054322
Louca, S., \& Doebeli, M. (2017). Efficient comparative phylogenetics on large trees. Bioinformatics, 34(6), 1053-1055.
Maddison, W. P., \& FitzJohn, R. G. (2014). The Unsolved Challenge to Phylogenetic Correlation Tests for Categorical Characters. Systematic Biology, 64(1), 127-136. doi:10.1093/sysbio/syu070
McCullagh, P., \& Nelder, J. (1989). Generalized linear models. In: Chapman and Hill.
Moles, A. T., Perkins, S. E., Laffan, S. W., Flores-Moreno, H., Awasthy, M., Tindall, M. L., . . . Bonser, S. P. (2014). Which is a better predictor of plant traits: temperature or precipitation? Journal of Vegetation Science, 25(5), 1167-1180. doi:10.1111/jvs. 12190
Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., .. . Leishman, M. R. (2009). Global patterns in plant height. Journal of Ecology, 97(5), 923-932. doi:10.1111/j.1365-2745.2009.01526.x
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., . . . Hik, D. S. (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 045509. doi:10.1088/1748-9326/6/4/045509
Neupane, S., Lewis, P. O., Dessein, S., Shanks, H., Paudyal, S., \& Lens, F. (2017). Evolution of woody life form on tropical mountains in the tribe Spermacoceae (Rubiaceae). American Journal of Botany, 104(3), 419-438. doi:10.3732/ajb. 1600248
Nie, Z. L., Funk, V. A., Meng, Y., Deng, T., Sun, H., \& Wen, J. (2016). Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae). New Phytologist, 209(4), 1795-1806.
Nürk, N. M., Atchison, G. W., \& Hughes, C. E. (2019). Island woodiness underpins accelerated disparification in plant radiations. New Phytologist, 224(1), 518-531. doi:10.1111/nph. 15797
O'Brien, E. (1998). Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. Journal of Biogeography, 25(2), 379-398.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., . . . Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience, 51(11), 933-938. doi:10.1641/00063568(2001)051[0933:TEOTWA]2.0.CO;2
Ordonez, A., \& Svenning, J. C. (2019). The potential role of species and functional composition in generating historical constraints on ecosystem processes. Global Ecology and Biogeography.
Rahbek, C., \& Graves, G. R. (2001). Multiscale Assessment of Patterns of Avian Species Richness. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4534-4539. doi:10.1073/pnas. 071034898
Raunkiaer, C. (1934). The Life Forms of Plants and Statistical Plant Geography. Oxford: Clarendon Press, 17, 368-378.

Rice, A., Smarda, P., Novosolov, M., Drori, M., Glick, L., Sabath, N., . . . Mayrose, I. (2019). The global biogeography of polyploid plants. Nature Ecology \& Evolution, 3(2), 265-273. doi:10.1038/s41559-018-0787-9
Roquet, C., Thuiller, W., \& Lavergne, S. (2013). Building megaphylogenies for macroecology: taking up the challenge. Ecography, 36(1), 13-26.
Sandel, B., Weigelt, P., Kreft, H., Keppel, G., van der Sande, M. T., Levin, S., . . . Kelly, R. (2019). Current climate, isolation and history drive global patterns of tree phylogenetic endemism. Global Ecology and Biogeography, 29(1), 4-15. doi:10.1111/geb. 13001
Sauquet, H., \& Magallon, S. (2018). Key questions and challenges in angiosperm macroevolution. New Phytologist, 219(4), 1170-1187. doi:10.1111/nph. 15104
Shiono, T., Kusumoto, B., Yasuhara, M., \& Kubota, Y. (2018). Roles of climate niche conservatism and range dynamics in woody plant diversity patterns through the Cenozoic. G/obal Ecology and Biogeography, 277), 865-874. doi:10.1111/geb. 12755
Shrestha, N., Wang, Z., Su, X., Xu, X., Lyu, L., Liu, Y., . . . Tang, Z. (2018). Global patterns of Rhododendron diversity: The role of evolutionary time and diversification rates. Global Ecology and Biogeography, 27(8), 913-924.
Šímová, I., Violle, C., Svenning, J.-C., Kattge, J., Engemann, K., Sandel, B., . . . Enquist, B. J. (2018). Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. Journal of Biogeography, 45(4), 895-916. doi:10.1111/jbi. 13171
Sinnott, E. W., \& Bailey, I. W. (1915). The evolution of herbaceous plants and its bearing on certain problems of geology and climatology. Journal of Geology, 23(4), 289-306.
Smith, S. A., \& Beaulieu, J. M. (2009). Life history influences rates of climatic niche evolution in flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 276(1677), 4345-4352. doi:10.1098/rspb.2009.1176

Smith, S. A., \& Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105(3), 302-314. doi:10.1002/ajb2.1019
Smith, S. A., \& Donoghue, J. M. (2008). Rates of Molecular Evolution Are Linked to Life History in Flowering Plants. Science, 322(5898), 86-89. doi:doi:10.1126/science. 1163197
Spicer, R., \& Groover, A. (2010). Evolution of development of vascular cambia and secondary growth. New Phytologist, 186(3), 577-592. doi:10.1111/j.1469-8137.2010.03236.x
Strömberg, C. A. E. (2011). Evolution of Grasses and Grassland Ecosystems. Annual Review of Earth and Planetary Sciences, 391), 517-544. doi:10.1146/annurev-earth-040809-152402
Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., \& Araujo, M. B. (2011). Consequences of climate change on the tree of life in Europe. Nature, 4707335), 531534. doi:10.1038/nature09705
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., . . . van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 1O23), 11707-11735. doi:10.5194/acp-10-11707-2010
Wang, W., Lin, L., Xiang, X.-G., Ortiz, R. d. C., Liu, Y., Xiang, K.-L., . . . Chen, Z.-D. (2016). The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae. Scientific Reports, 6, 27259.

Wang, Z., Brown, J. H., Tang, Z., \& Fang, J. (2009). Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proceedings of the National Academy of Sciences - PNAS, 106(32), 13388-13392. doi:10.1073/pnas. 0905030106
Wang, Z., Fang, J., Tang, Z., \& Lin, X. (2011). Patterns, determinants and models of woody plant diversity in China. Proceedings: Biological Sciences, 278(1715), 2122-2132. doi:10.1098/rspb.2010.1897
Weigelt, P., König, C., \& Kreft, H. (2019). GIFT - A Global Inventory of Floras and Traits for macroecology and biogeography. Journal of Biogeography, 47(1), 16-43. doi:10.1111/jbi. 13623
Westerhold, T., Westerhold, T., Marwan, N., Marwan, N., Drury, A. J., Drury, A. J., . . Zachos, J. C. (2020). An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 3696509), 1383-1388;1387;. doi:10.1126/SCIENCE.ABA6853
Xu, X., Dimitrov, D., Shrestha, N., Rahbek, C., Wang, Z., \& Jordan, G. (2019). A consistent species richness-climate relationship for oaks across the Northern Hemisphere. Global Ecology and Biogeography, 28(8), 1051-1066. doi:10.1111/geb. 12913
Xu, X., Wang, Z., Rahbek, C., Lessard, J. P., \& Fang, J. (2013). Evolutionary history influences the effects of water-energy dynamics on oak diversity in Asia. Journal of Biogeography, 40(11), 2146-2155.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., \& Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292, 686.
Zanne, A. E., Pearse, W. D., Cornwell, W. K., McGlinn, D. J., Wright, I. J., \& Uyeda, J. C. (2018). Functional biogeography of angiosperms: life at the extremes. New Phytologist, 218(4), 1697-1709. doi:10.1111/nph. 15114
Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., . . . Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506(7486), 89-92. doi:10.1038/nature12872

Data Accessibility Statement:

All data and R codes used in the analyses of the paper are uploaded to Figshare website (https://doi.org/10.6084/m9.figshare.13727815).

Climate	$\text { Pseudo- } \mathbf{R}^{2}$					
	Globe	New World	AsiaOceania	Europe- Africa	North hemisphere	South hemisphere
$\text { MAT (} \mathbf{C}^{\circ} \text {) }$	$0.579 * * *$	$0.831 * * *$	$0.57 * * *$	$0.586^{* * *}$	$0.559 * * *$	$0.412 * * *$
$\operatorname{Tmin}\left(C^{\circ}\right)$	$0.714 * * *$	$0.883^{* * *}$	$0.703 * * *$	$0.792 * * *$	$0.690 * * *$	$0.547 * * *$
MTWQ (Cㅇ	0.315***	0.452***	0.34***	0.366***	0.319***	0.227***
MAP (mm)	0.519***	0.566***	0.629***	0.251***	0.496***	0.451***
PWQ (mm)	0.369***	0.324***	0.496***	0.225***	0.316***	0.288***
PCQ (mm)	$0.226^{* * *}$	$0.264^{* * *}$	$0.322 * * *$	0.620*	$0.229^{* * *}$	$0.259 * * *$

Figures and Tables

Table 1. The relationships between spatial variation in the woodiness of angiosperms and climate variables. The pseudo- R^{2} and significance were evaluated by binomial generalized linear models (GLMs) with a quadratic term. MAT, mean annual temperature; Tmin, annual minimum temperature; MTWQ, mean temperature of the warmest quarter; MAP, mean annual precipitation; PWQ, precipitation of the warmest quarter; PCQ, precipitation of the coldest quarter. ${ }^{*}, \mathrm{p}<0.05 ;{ }^{* *}, \mathrm{p}<0.01 ;{ }^{* * *}, \mathrm{p}<0.001$.
a

Fig 1 Global spatial and temporal patterns in the proportion of woody species of angiosperms a, Spatial pattern in angiosperm woodiness (ie the proportion of woody species in local floras) \mathbf{b}, Temporal changes in angiosperm woodiness (blue line) and paleotemperature (red line) in the Cenozoic, light red line is smoothed by 20 kyr , deep red line is smoothed by 1 myr (Westerhold et al., 2020; Zachos et al., 2001) The shaded light blue area represents the 95% confidence interval of angiosperm woodiness (see Methods for details) Plei, Pleistocene; Plio, Pliocene c, d, Relationships between woodiness and temperature over space (c) and through time (d) The solid lines were fitted by binomial generalized linear models with a quadratic term, and the pseudo- R^{2} and p values of these models were shown on the top left The colors of the points in (d) represent different geological periods as shown in (b), with darker colors denoting older ages

d

(a) Proportion of HtoW events between time1 and time2: $\frac{1 \text { (HtoW event) }}{1 \text { (HtoW event) }+1 \text { (WtoH event) }}=50.0 \%$
(b) Proportion of HtoW branches time 1
$\frac{1 \text { (HtoW branch) }}{1 \text { (HtoWbranch) }+2 \text { (WtoH branch) }}=33.3 \%$
(c) Proportion of transition species
generated by transition between time1 and time2:
HtoW species: $\frac{1 \text { (HtoW species) }}{2 \text { (Woody species) }}=50.0 \%$
WtoH species: $\frac{1 \text { (HtoW event) }}{3 \text { (herbaceous species) }}=33.3 \%$

Fig 2 Changes in growth form transitions over time a, Temporal changes in the proportion of herbaceous-to-woody (HtoW) transition events to the total number of transition events (HtoW and woody-to-herbaceous (WtoH) transitions) A value $>50 \%$ means that HtoW transitions are more frequent than WtoH transitions \mathbf{b}, Temporal changes in the proportion of branches generated by HtoW transitions to the total number of transition branches in both directions (HtoW and WtoH transitions) The shaded area represents the 95% confidence interval of the estimations \mathbf{c}, The proportion of species generated by growth form transitions during each timespan \mathbf{d}, An illustrative diagram showing growth form transitions.

Fig 3 The contribution of transition species to contemporary local floras The contribution of species generated by growth form transitions during each timespan to the local floras of the corresponding growth forms H and W , number of herbaceous and woody species respectively; WtoH and HtoW, number of species generated by woody-to-herbaceous and herbaceous-towoody transitions during a timespan, respectively

[^0]: *Authors for correspondence: Zhiheng Wang, zhiheng.wang@pku.edu.cn

