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A B S T R A C T   

Background: Knowledge graphs (KGs) play a key role to enable explainable artificial intelligence (AI) applications 
in healthcare. Constructing clinical knowledge graphs (CKGs) against heterogeneous electronic health records 
(EHRs) has been desired by the research and healthcare AI communities. From the standardization perspective, 
community-based standards such as the Fast Healthcare Interoperability Resources (FHIR) and the Observational 
Medical Outcomes Partnership (OMOP) Common Data Model (CDM) are increasingly used to represent and 
standardize EHR data for clinical data analytics, however, the potential of such a standard on building CKG has 
not been well investigated. 
Objective: To develop and evaluate methods and tools that expose the OMOP CDM-based clinical data repositories 
into virtual clinical KGs that are compliant with FHIR Resource Description Framework (RDF) specification. 
Methods: We developed a system called FHIR-Ontop-OMOP to generate virtual clinical KGs from the OMOP 
relational databases. We leveraged an OMOP CDM-based Medical Information Mart for Intensive Care (MIMIC- 
III) data repository to evaluate the FHIR-Ontop-OMOP system in terms of the faithfulness of data transformation 
and the conformance of the generated CKGs to the FHIR RDF specification. 
Results: A beta version of the system has been released. A total of more than 100 data element mappings from 11 
OMOP CDM clinical data, health system and vocabulary tables were implemented in the system, covering 11 
FHIR resources. The generated virtual CKG from MIMIC-III contains 46,520 instances of FHIR Patient, 716,595 
instances of Condition, 1,063,525 instances of Procedure, 24,934,751 instances of MedicationStatement, 
365,181,104 instances of Observations, and 4,779,672 instances of CodeableConcept. Patient counts identified 
by five pairs of SQL (over the MIMIC database) and SPARQL (over the virtual CKG) queries were identical, 
ensuring the faithfulness of the data transformation. Generated CKG in RDF triples for 100 patients were fully 
conformant with the FHIR RDF specification. 
Conclusion: The FHIR-Ontop-OMOP system can expose OMOP database as a FHIR-compliant RDF graph. It 
provides a meaningful use case demonstrating the potentials that can be enabled by the interoperability between 
FHIR and OMOP CDM. Generated clinical KGs in FHIR RDF provide a semantic foundation to enable explainable 
AI applications in healthcare.   
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1. Introduction 

Artificial intelligence (AI) offers significant potential for improving 
healthcare. As healthcare is a safety–critical industry, there is a growing 
demand for AI applications that are not only well-performing, but 
trustworthy, transparent, interpretable, and explainable [1]. Three 
technologies Semantic Web, knowledge graphs, and data standards play 
an important role for enabling explainable AI in healthcare. Tim 
Berners-Lee envisioned the Semantic Web as a killer application to unify 
content being published online, through 1) tagging content with unique 
identifiers or Uniform Resource Identifiers (URIs); 2) representing the 
content utilizing well-formed definitions from taxonomies and ontol
ogies; 3) borrowing from the knowledge representation world to utilize 
structuring mechanisms for data [2]. The Resource Description Frame
work (RDF) and ontologies are two enablers for the Semantic web, in 
which RDF serves as the lingua franca for exchanging machine- 
processable information, and ontologies provide the formal definition 
that allows both machines and human beings to understand the intent of 
the information. The strengths of the Semantic Web to explainable AI 
include: 1) enabling data sharing and achieving a semantic under
standing of digital content; 2) tacking the provenance aspect (e.g., using 
Provenance Ontology in the semantic representation) and trace aspect 
(e.g., supporting reasoning mechanism to generate trace) of explain
ability; and 3) making textual content more accessible in knowledge 
graphs via semantic representations [3–6]. 

A knowledge graph (KG) is a collection of facts where entities 
(nodes) are connected with typed relationships. The scope of the 
knowledge captured by a KG may involve generic domains (e.g., Wiki
data, DBPedia) or a specific domain (e.g., Bio2RDF and UMLS). The 
inherent inter-connectivity of KGs enables the use of network analysis 
and machine learning techniques to unveil hidden patterns and infer 
new knowledge [7]. Furthermore, studies have shown that KGs are 
computationally efficient and scale to very large sizes [8]. 

KGs play a key role to enable explainable AI applications as KGs have 
great potential in the design of novel neural network architectures that 
natively encode explanations, e.g., by adding logic representation layers 
in artificial neural networks, or encoding the semantics of inputs, out
puts and their properties. In the context of healthcare, KGs have been 
already used in integrating clinical data with proteomics data for clinical 
decision making support and learning a KG from electronic health re
cords (EHRs) for building medicine and self-diagnostic symptom 
checkers, and other different scenarios, such as treatment recommen
dations, medicine recommendations, drug-to-drug similarity measure
ments, and COVID-19 research [9–12]. Many of these applications are 
performed through a link prediction process by learning embeddings (i. 
e., low-dimensional representations) of medical entities and relations 
from EHRs 

Data standards are another enabling technology for explainable AI in 
healthcare as new AI systems require large datasets to improve their 
accuracy and predictive capabilities, and the heterogeneity of clinical 
research data hinders data integration and data sharing in a consistent 
and comparable manner. In recent years, community-based standards 
such as the HL7 Fast Healthcare Interoperability Resources (FHIR) [13] 
and the Observational Health Data Sciences and Informatics (OHDSI) 
Observational Medical Outcomes Partnership (OMOP) Common Data 
Model (CDM) [14] are increasingly used to represent and standardize 
EHR and clinical research data for clinical data analytics. FHIR is rapidly 
emerging as a next generation standards framework for facilitating 
health care and EHR-based data exchange. In particular, Mayo Clinic has 
been collaborating with the FHIR and W3C HCLS community to develop 
the FHIR RDF representation specification and associated trans
formation and validation tools [15–17]. FHIR RDF has become one of 
the three standardized data formats in the FHIR specification and pro
vides a standard machine-processable semantic foundation for clinical 
data to be linked with other data using ontologies. 

The combination of FHIR, KGs and the Semantic Web enables a new 

paradigm to build explainable AI applications in healthcare. A few of 
such FHIR-based applications are emerging, including 1) a KG genera
tion tool known as NLP2FHIR developed for standardizing and inte
grating unstructured and structured EHR data in FHIR [18]; 2) a FHIR- 
based EHR phenotyping framework using machine learning and deep 
learning techniques developed for effective data integration and accu
rate phenotyping [19]; and 3) FHIR RDF data is used to build AI algo
rithms to predict primary cancers, showing accurate prediction of cancer 
types can be achieved with existing EHR data and genetic report data 
[20]. 

However, existing clinical data are mostly stored in relational data 
sources. To facilitate standards-based semantic data integration, sharing 
and discovery in broader scientific research communities, there is a 
strong need to provide the FHIR-based data access and query services 
over such databases. In this study, we close this gap by developing the 
FHIR-Ontop-OMOP system, which can expose any OMOP database as a 
virtual Clinical KG compliant with FHIR RDF. We evaluate the faith
fulness of the system by comparing patient counts identified by five pairs 
of SQL (over the MIMIC database) and SPARQL (over the virtual CKG) 
queries. We also materialize a CKG in RDF triples for 100 patients, and 
have validated its full conformance with the FHIR RDF specification. 

2. Materials and methods 

2.1. Materials 

2.1.1. FHIR Model Ontology and FHIR Shape Expressions 
One of the FHIR RDF specification efforts is to produce the FHIR 

StructureDefinition resource in the OWL ontology language, known as the 
“FHIR Model Ontology” [21]. The StructureDefinition resource is the 
metamodel for FHIR resource definitions, meaning that a FHIR resource 
such as Patient is formally defined using an instance of StructureDefinition 
that declares elements like “Patient.name” and “Patient.birthDate” and 
associated metadata and constraints (e.g., datatype and cardinality) 
[22]. The FHIR Model Ontology formally enumerates the classes, 
predicates, domains, ranges and specific datatypes that are used in 
describing the FHIR instance data in RDF. Fig. 1 shows the Patient Class 
definition in FHIR Model Ontology and its corresponding instance data 
in FHIR RDF. 

Moreover, the FHIR definitions in the Shape Expressions Language 
(ShEx) can be used to test FHIR RDF graphs for conformance [15]. For 
example, Fig. 2 shows a graphical representation of FHIR Patient 
resource (Fig. 2a) and its corresponding ShEx schema (Fig. 2b). One can 
validate that indeed the RDF instance in Fig. 1 is compliant with this 
ShEx expression. 

2.1.2. The Ontop toolkit for virtual knowledge graphs 
The Virtual Knowledge Graph (VKG) technology [23], also known as 

Ontology Based Data Access (OBDA) technology [24], is regarded as a 
key ingredient for the new generation of information systems, especially 
for Semantic Web applications that involve large amounts of data. The 
VKG approach avoids materializing triples and the query answering 
service is implemented through the query rewriting technique with 
extensive optimizations. In this approach, for a (source) database 
schema and a (target) ontology, a set of mappings declares how to 
populate the classes and the properties in the ontology. The Ontology, 
Mappings, and database schema together are called a VKG specification. 

Ontop is the state-of-the-art open-source VKG system, which is 
compliant with all relevant W3C recommendations (including SPARQL 
1.1 queries, R2RML mappings, and OWL2QL and RDFS ontologies), and 
supports for all major relational databases [25–27]. The Ontop toolkits 
include the Protégé Ontop Plugins to develop VKG specification [28]. 
Once the VKG specification is developed, we can set up a SPARQL 
endpoint using the command line interface of Ontop, so that end users 
can use standard SPARQL tools to interact with the endpoint without 
knowing whether the endpoint is virtual or not. There is also a 
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dockerized Ontop endpoint to facilitate the deployment of the system. 

2.1.3. OMOP CDM and datasets 
OMOP CDM is an open community data standard, designed to 

standardize the structure and content of observational data and to 
enable efficient analyses that can produce reliable evidence [14]. The 
latest CDM v5.4 is defined as a collection of standardized relational table 
schemas in six categories: clinical data (e.g., Person, Con
dition_occurrence, Drug_exposure), health system (e.g., Care_site), vo
cabularies (e.g., Concept, Vocabulary), health economics, derived 
elements, and metadata. 

We used an OMOP CDM-based MIMIC-III dataset for the evaluation 
of the system. MIMIC-III (Medical Information Mart for Intensive Care) 
is a freely accessible critical care database [29]. Data includes vital 
signs, medications, laboratory measurements, observations and notes 
charted by care providers, fluid balance, procedure codes, diagnostic 
codes, imaging reports, hospital length of stay, survival data, and more. 
We used an open-source MIMIC-OMOP ETL tool to convert the MIMIC III 
dataset in the OMOP CDM [30]. 

3. Methods 

3.1. System architecture 

We developed a system called FHIR-Ontop-OMOP to generate virtual 
clinical KGs against the OMOP CDM relational databases. Fig. 3 shows 
the system architecture of the FHIR-Ontop-OMOP system. The system 
consists of the following modules (from the bottom to up): 1) an input 
module that takes input from the FHIR model ontology, the OMOP data 
repository, and OMOP-FHIR mappings represented by a mapping tem
plate; 2) a CKG generation module that relies on the Ontop system to 
generate a virtual CKG; and 3) a semantic query module that establishes 
SPARQL endpoints with reasoning capability. 

3.2. Input module 

At the bottom in Fig. 3, it is the OMOP relational database to be 
mapped to RDF. FHIR-Ontop-OMOP system can be implemented 
seamlessly against any OMOP database, making the system portable. The 
FHIR Model Ontology serves as a catalog of standard URIs for all FHIR 
model artifacts. This ontology defines a high-level global schema of 
clinical data sources and provides a standard vocabulary for user 
queries. 

The most complex component is the OMOP-FHIR mapping, which 
specifies the correspondence between the data models of the relational 
data sources in OMOP CDM and the RDF graph in FHIR RDF. In this 
study, we are focused on the mappings between the OMOP CDM and the 
FHIR RDF graph. Ontop supports the R2RML standard mapping lan
guage and the Ontop mapping language which is fully interoperable 
with R2RML [31]. 

At the early stage of the system implementation, we used the Protege 
plugin Ontop Mappings to manually create an initial set of mappings to 
test the feasibility of the FHIR-Ontop-OMOP system. The typical process 
includes the following steps: 1) establishing a database connection with 
an OMOP database by setting up the connection parameters using the 
Connection Parameters panel; 2) selecting the properties to be used in 
defining mappings using the Ontop Properties panel; 3) creating map
pings using the Mapping Manager panel (Fig. 4), in which SQL queries 
can be executed against the OMOP database to help understand the 
patient data. 

At a later stage of the system implementation, we realized that the 
mapping creation process is more efficient if we can (semi)-automate the 
mapping generation, especially for the FHIR standard that extensively 
uses intermediate nodes. For example, it is tedious to write nodes like: 
Patient/{person_id}/birthDate in the example in Fig. 4. 

We developed a two-step approach for the automation. We created a 
user-friendly mapping template in the RDF Turtle format, which we call 
it a Turtle Template Mapping Language (TML), to encode the data model 
mappings between the OMOP CDM and FHIR RDF. We also imple
mented a Java-based converter that translates the mappings defined in 

Fig. 1. A screenshot illustrating the Patient Class definition in FHIR Model Ontology and its corresponding instance data in FHIR RDF.  
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TML into the Ontop mappings that are required for the Ontop system. 
We show how the TML mapping works through an example mapping 

entry in Fig. 5 between the OMOP Person table and the FHIR Patient 
Resource. The first two components rr:logicalTable and rr:subjectMap 
behave identical to R2RML: rr:logicalTable specifies a data source (a 
SQL query involving the person table) to be mapped to RDF, and rr: 
subjectMap specifies an IRI template for the subject (a string with the 
placeholder {person_id}, where person_id is a column in the SQL query). 
The last part rr:predicateObjectMap (diverged from R2RML) shows a list 
of predicates and objects. It defines the field level mappings and its 
structure that follows directly to the FHIR ShEx schema. 

In order to develop OMOP-FHIR mapping, we reviewed available 
mappings created by a number of research groups including 1) the 
OHDSI FHIR Workgroup; 2) the Common Data Model Harmonization 
Project; 3) the Georgia Tech‘s OMOP-on-FHIR project; and 4) the FHIR 
DAF Research Implementation Guide team [32–35]. We harvested the 
set of mappings that have a consensus across these groups and used them 
to populate the TML mapping. In addition, to represent Concept infor
mation from OMOP CDM, we used the FHIR CodeableConcept data type 
for this purpose. The FHIR specification defines a set of data types that 
are used for the resource elements. CodeableConcept is a complex data 

type used to represent a value that is usually supplied by providing a 
reference to one or more terminologies or ontologies but may also be 
defined by the provision of text. Mapping CodeableConcept to the 
Concept information from OMOP CDM provides a natural way to link 
health data with standard concept annotations. For example, Condition. 
code is restricted by the data type CodeableConcept. We can assign a 
coded value sct:39065001 from SNOMED CT or the provision of text 
“Burnt Ear” using CodeableConcept to describe a condition instance. 

3.3. CKG generation module 

This module uses the Ontop system to generate a virtual CKG over 
the input module. Fig. 6 (a) shows an example illustrating the converted 
CKG in FHIR RDF from an answer to the SQL query in Fig. 5. Note that 
this CKG does not contain information about address and practitioner as 
the corresponding columns in the databases contain only NULL values. 
Fig. 6 (b) shows a more complex example about the CKG of an Encounter 
instance. 

The CKG conformance to the FHIR RDF specification is realized 
through the Ontop mappings as defined in the Turtle mapping template 
(Fig. 5). This conformance is also validated using the FHIR RDF 

Fig. 2. FHIR ShEx Schema of Patient.  
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validation tool known as ShEx validator developed in our previous 
studies [15]. 

The virtual CKGs do not require additional storage space. A virtual 
CKG just wraps an existing relational database as a virtual CKG. This 
virtual CKG is only accessible at query answering time. This is advan
tageous because a classical materialization-based approach is very costly 
in terms of both materialization time and disk space. 

3.4. Semantic query module 

This module relies on the query answering interface of Ontop. The 
Ontop system translates SPARQL queries over the CKG to SQL queries 
over the OMOP database, using the FHIR ontology and FHIR-OMOP 
mapping. Fig. 7 shows a SPARQL query example (Query 1 in the Eval
uation section) against the MIMIC III OMOP database, and its corre
sponding SQL translation. 

Fig. 3. System architecture of the FHIR-Ontop-OMOP system.  

Fig. 4. A Protege screenshot illustrating the creation of mappings between three fields of the OMOP person table and the FHIR Patient birthDate.  
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3.5. Evaluation design 

We evaluated the system in terms of the faithfulness of data trans
formation, and the conformance of the generated CKGs to the FHIR RDF 
specification. We implemented the system against the MIMIC-III OMOP 
CDM data and used the generated CKG in FHIR RDF for the evaluation. 

3.6. Faithfulness of data transformation 

We first tested the faithfulness of data transformation from the 
OMOP CDM to the CKGs in FHIR RDF. We manually wrote five 
demonstration SQL queries designed to make use of a variety of tables, 
columns, and data types across the OMOP model, shown in Table 1. We 
then followed the FHIR specification to write equivalent SPARQL 
queries using the same logic as the SQL queries, for the purpose of 
comparing the output. Faithful transformation entails that the patients 
identified by the SQL and SPARQL queries be identical. 

3.7. Conformance of the CKGs to the FHIR RDF ShEx specification 

We tested the conformance of the generated CKGs to the FHIR RDF 
ShEx specification. We used the shex-validate command line utility from 
the shexjs library, which is a validation tool developed in the previous 
studies [36]. We generated a subset of the CKG for 100 patients out of 
the system implemented for the MIMIC-III dataset and materialized 
them in RDF triples using Ontop. To do so, we reused the same mapping 
for query answering but adding the appropriate filters over person IDs 
on the SQL queries to choose the patients. This data set includes the 
instances of 100 Patients, 1,457 Conditions, 1,855 Procedures, 74,598 
MedicationStatements, 808,198 Observations, and 2,069 relevant 
CodeableConcepts. This sub-dataset has been materialized by Ontop. 
The generated turtle format of these files took up 4.1 GB of disk space 
and were then loaded into the shexjs library for validation. We tested the 
conformance of the sub-CKG to the FHIR RDF specifications of a number 
of clinical FHIR resources including Patient, Condition, Procedure, 
MedicationStatement, Observation, and CodeableConcept. 

4. Results 

4.1. System implementation status 

A beta version of the FHIR-Ontop-OMOP system has been released at 
the project GitHub site at https://github. 
com/fhircat/FHIROntopOMOP, which includes a docker-based instal
lation. We implemented the system against the MIMIC-III OMOP CDM 
data and exposed it as a queryable CKG compliant with the HL7 FHIR 
standard using the Ontop. The virtual CKG in FHIR RDF contains triples 
describing 46,520 instances of FHIR Patient, 716,595 instances of 
Condition, 1,063,525 instances of Procedure, 24,934,751 instances of 
MedicationStatement, 365,181,104 instances of Observations, and 

4,779,672 instances of CodeableConcept, among others. 

4.2. Mappings implemented 

Table 2 shows high-level mappings between OMOP tables and FHIR 
resources implemented in the system. The detailed element mappings 
are available in the supplemental tables Table S1 and Table S2. These 
mappings consist of a total of more than 100 data elements from 5 
clinical data tables (Person, Condition_occurrence, Drug_exposure, 
Procedure_occurrence, and Measurement), 3 health system tables (Vis
it_occurrence, Location and Provider) and 3 vocabulary tables (Concept, 
Concept_relationship and Concept_ancestor). The mappings covered 
data elements from 11 FHIR resources (Patient, Encounter, Location, 
Condition, MedicationStatement, Observation, Procedure, Practitioner, 
CodeableConcept, Coding, ConceptMap). We note that each OMOP data 
element is normally mapped to one FHIR data element (e.g., person_id to 
Resource.id), but sometimes also generates intermediate blank nodes (e. 
g. visit_start_datetime to Encounter.period / Period.start). We also 
observe that the OMOP tables often contain some redundancy, e.g., (1) 
in addition to birth_datetime, the Person table also stores year, month 
and day of birth in separate columns, and (2) time related information is 
given in two columns (e.g., visit_start_date and visit_start_datetime) with 
different precisions. We do not need to map these redundant columns 
and we mark the implementation status as “not applicable”. 

4.3. Evaluation results 

4.3.1. Faithfulness of data transformation 
Table 3 shows the results of running our demonstration queries 

against MIMIC III data using SQL directly against OMOP and SPARQL 
via the FHIR-Ontop-OMOP system. The counts for all queries are iden
tical, ensuring faithful transformation of the tested domains. 

4.3.2. Conformance of the CKGs to the FHIR RDF specification 
The evaluation result showed that the generated RDF triples for 100 

patients were fully compliant with the FHIR RDF ShEx specification. 
This result was not surprising because the turtle-template mapping fol
lows directly to the structure of the ShEx specification, which guarantees 
the conformance. 

5. Discussion 

Achieving interoperability between FHIR and OMOP has been 
desired by the standardization and research communities. Notably, HL7 
and OHDSI recently announced a collaboration to address the sharing 
and tracking of data in the healthcare and research industries by 
creating a single standard data model [37]. The development of the 
Semantic Web-based FHIR-Ontop-OMOP system in this study provides a 
meaningful use case for such a collaboration, demonstrating great po
tential in healthcare AI applications enabled by the interoperability of 

Fig. 5. An example TML mapping entry defined between the OMOP Person table and the FHIR Patient Resource using the Turtle mapping template.  
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FHIR and OMOP CDM. 
Mapping creation is a non-trivial time-consuming task. In this study, 

we intended to create a new mapping language that can represent the 
data model mappings in a manner that is both human friendly and 
machine processable. We reused existing features from the standard 
W3C R2RML language and the Ontop mapping language [31]. We 
argued that these two languages do not completely meet our needs. 
Being designed as a machine exchange format, R2RML is very verbose, 
and difficult to read and write by humans. The Ontop mapping language 
is already much more compact and readable (as shown in Fig. 4), but it is 
not able to directly express the nested structure commonly used in FHIR. 
This becomes even more complex when dealing with multiple levels of 

nesting. Seeing the limitations of existing languages, we created a new 
template language: turtle-template mapping language (TML). Syntacti
cally, a TML mapping is written as a Turtle document, and consists of 
multiple TML entries. Intuitively, if we view each mapping as a tree, the 
root level constructs (rr:logicalTable, rr:subjectMap, and predi
cateObjectMap) and the leaf level constructs (rr:column, rr:termType, 
rr:datatype, rr:template) work exactly the same with R2RML. However, 
we have changed the middle of this tree to the turtle template (which is 
closer to the style of Ontop mapping). In this implementation, its 
structure is identical to the template used in the FHIR specification. 

Both faithfulness and conformance evaluations were an iterative 
procedure. For the faithfulness evaluation, we first noticed that 

Fig. 6. Examples of clinical knowledge graphs generated.  
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formulating SQL and SPARQL queries use slightly different methodol
ogies. The SQL version tends to use the hard-coded “magic” value 
directly, e.g., p.gender_concept_id = 8507 for selecting male patients in 
Q1, while the SPARQL version uses the FHIR gender identity in (?gender 
= ’male’). This makes the SPARQL version more readable. Some 
SPARQL queries were initially difficult to formulate or did not show 
identical counts to the SQL queries. By looking into the underlying 
reasons, we were able to identify and fix a number of implementation 
issues of FHIR-Ontop-OMOP and the Ontop engine. Notably, Q1 requires 
datetime functions to compute the duration between two datetime 
values. However, this is not part of the standard SPARQL functions, and 
was not supported by Ontop. To address this, we have implemented such 
functions in Ontop following the corresponding functions of GraphDB 
[38]. Also for Q1, when identifying inpatient admissions, according to 
FHIR, the code for inpatient status should be “IMP”, but the actual value 
in the MIMIC-OMOP database is “IP”. Therefore we have to use the 

filter?type=“IP” as a workaround. For Q5 (Patients with an HbA1c >=

10 %), there is a subtle difference between using date and datetime 
values. The SQL version could use the measurement_date column 
directly. Instead, in FHIR-Ontop-OMOP, the mapping uses the column 
measurement_datetime for all the observations. This query needs to deal 
with the case that one person within one day has two different mea
surements of the same value. Therefore, we need to extract the date 
information from the column measurement_datetime. For the confor
mance evaluation, we identified some minor issues in the current R4 
version specification of the FHIR RDF ShEx standard. Specifically, a 
number of datatype shapes (e.g., <https://hl7.org/fhirpath/System.Stri 
ng>) are underspecified and there are also inconsistent behaviors in 
these datatypes regarding whether a “fhir:value” intermediate edge is 
needed. We manually fixed them by adding a few “catch all’’ ShEx 
shapes: <https://hl7.org/fhirpath/System.String>. These issues have 
been reported to the maintainers of the FHIR RDF ShEX specification 

Fig. 7. A SPARQL query example against the virtual CKG converted from the MIMIC III OMOP database, and part of the log information containing the SQL 
translation. 
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and are going to be fixed in the next major release R5. 
This study is limited by several factors. First, we harvested and 

implemented a preliminary consensus set of mappings between FHIR 
and OMOP CDM created by different groups, which covers main clinical 
FHIR resources (e.g., Condition, Procedure, MedicationStatement, 
Observation). We understand that the collaboration between HL7 and 
OHDSI in the future may produce a set of mappings that are more robust 
and can be used to enhance the current system. Second, we used the 
FHIR resource CodeableConcept to represent standard concepts 
captured in the OMOP CDM Concept table (see Table S2), in which 
vocabulary_id is mapped to fhir:Coding.system and concept_code is 
mapped to fhir:Coding.code. This strategy worked well on most sce
narios where standard vocabularies such as SNOMED CT, ICD10CM, 
RxNorm, or CPT were used. However, we should note that in the current 
system we have not implemented a translation from the OMOP vocab
ulary_id into preferred Coding System used in FHIR (https://www.hl7. 
org/fhir/terminologies-systems.html). For example, in the OMOP 

vocabulary_id for SNOMED CT is “SNOMED”, which is directly used in 
FHIR Coding.system. However, a preferred Coding System URI is http 
s://snomed.info/sct. This can be fixed by defining a mapping table to 
associate the preferred Coding System URIs of externally published 
Coding Systems in FHIR with the vocabulary_id from OMOP. In addition, 
for the domains like Encounter, the definitions of encounter type be
tween HL7 FHIR and OMOP CDM are different. For example, the code 
“IMP” is defined in a HL7 v3 valueset for inpatient encounter, whereas 
two concept_ids (ie, 9201, and 262) are used in the MIMIC-III OMOP 
CDM to define inpatient visit. This means that the mappings in the 
valueset level need to be handled in the system. In the future study, we 
plan to systematically analyze mappings needed in the valueset level 
and implement such mappings in the system. To understand the degree 
of interoperability between OMOP CDM and FHIR, we identified code 
systems (https://www.hl7.org/fhir/terminologies-systems.html) and 
valuesets (https://www.hl7.org/fhir/terminologies-valuesets.html) 
from the following links in the current FHIR specification. A total of 45 
externally published code systems, 293 internal code systems, and 721 
valuesets were identified. Out of 45 externally published code systems, 
13 (29 %) can be mapped to the OMOP vocabulary ids, consisting of 
SNOMED, RxNorm, LOINC, UCUM, CPT4, NDFRT, NDC, CVX, ICD[x], 
ATC, NUCC, HGNC and ClinVar. This means about 70 % of preferred 
code systems in FHIR did not have their corresponding vocabularies in 
OMOP CDM. For those unmapped OMOP vocabulary ids, we can use the 
existing OMOP convention for now to represent them in Coding.system. 
None of 293 internal code systems and 721 valuesets has been mapped 
to the OMOP vocabularies. Further community-based harmonization 
may still be needed for these internal code systems and valuesets. Third, 
we only used one single MIMIC-III OMOP CDM instance for the evalu
ation. As the next step, we plan to identify multiple clinical data re
positories in OMOP CDM for more rigorous evaluation, including 
demonstrating distributed analytics and AI applications enabled by the 
system. 

6. Conclusion 

The FHIR-Ontop-OMOP system provides a meaningful use case 
demonstrating the potential that can be enabled by the interoperability 
between FHIR and OMOP CDM. Generated clinical knowledge graphs in 
FHIR RDF provide a semantic foundation to enable explainable AI ap
plications in healthcare. 

In the future, we plan to leverage FHIR-Ontop-OMOP to build FHIR 
data services and applications. For example, simple RESTful APIs over 
RDF graphs can be established to support a large community of web 
developers by using the Linked Data APIs [39]. The Linked Data APIs 
enable representing resources in simple RDF, JSON, XML, and CSV 
formats with various selection criteria. We also plan to demonstrate 
advanced features of the system (e.g., inference capability, federated 
semantic queries, distributed analytics, and AI applications) empowered 
by FHIR, clinical knowledge graphs, and the Semantic Web technolo
gies. Finally, we want to study the Semantic Web and explainable AI 
applications as we described in the Introduction section. For example, 
federated clinical knowledge graph embeddings can be potentially 
realized using CKGs generated from the FHIR-Ontop-OMOP system 
across multiple OMOP CDM instances. 
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Table 1 
Demonstration Queries.  

OMOP Table(s) FHIR 
Resource(s) 

Query* 

person, 
visit_occurrence, 
concept 

Patient, 
Encounter 

Q1: Identify male patients with 
inpatient admissions lasting greater 
than 5 days. 

condition_occurrence, 
concept 

Condition Q2: Identify patients diagnosed with 
Alzheimer’s Disease. 

procedure_occurrence, 
concept 

Procedure Q3: Identify patients who delivered a 
baby. 

drug_exposure, 
concept 

Medication 
Statement 

Q4: Identify patients prescribed 
trazadone. 

measurement, 
concept 

Observation Q5: Identify patients with an HbA1c 
result >= 10 %.  

* SQL and SPARQL code versions of these queries can be reviewed at https:// 
github.com/fhircat/FHIROntopOMOP/blob/main/evaluation/jbi-2022-querie 
s.md. 

Table 2 
High-level mappings between OMOP tables and FHIR resources. Note that 
detailed element mappings are available in the supplemental tables Table S1 and 
Table S2.  

OMOP Table FHIR Resource 

PERSON Patient 
VISIT_OCCURENCE Encounter 
CARE_SITE Location 
CONDITION_OCCURENCE Condition 
DRUG_EXPOSURE MedicationStatement 
LOCATION Location 
MEASUREMENT Observation 
PROCEDURE_OCCURENCE Procedure 
PROVIDER Practitioner/PractitionerRole 
CONCEPT CodeableConcept/Coding 
CONCEPT_RELATIONSHIP ConceptMap 
CONCEPT_ANCESTER ConceptMap  

Table 3 
Demonstration query results.  

Query SQL patient 
count 

SPARQL 
patient count 

Q1: Identify male patients with inpatient 
admissions lasting greater than 5 days. 

4730 4730 

Q2: Identify patients diagnosed with 
Alzheimer’s Disease. 

569 569 

Q3: Identify patients who delivered a baby. 34 34 
Q4: Identify patients prescribed trazadone. 6737 6737 
Q5: Identify patients with an HbA1c result ≥

10 %. 
944 944  
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