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The Lompe code: A Python
toolbox for ionospheric data
analysis
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S. J. Walker, M. Madelaire and A. Ohma

Department of Physics and Technology, Birkeland Centre for Space Science, University of Bergen,
Bergen, Norway

A recent paper by Laundal et al. (2022c) presented a new technique to

combine all available measurements of polar ionospheric electrodynamics;

magnetic fieldmeasurements fromground and space, ionospheric convection

data from radars and satellites, and conductance measurements; to a

full 2D map within analysis regions of arbitrary resolution and extent.

The technique, called Local Mapping of Polar Ionospheric Electrodynamics

(Lompe), is implemented in Python (Laundal et al., 2022a). The Lompe

technique combines spherical elementary current system analysis, finite

element analysis on a cubed-sphere projection, the use of empirical models

like the International Geomagnetic Reference Field, and visualization tools. In

this paper, we go through these different components of the Lompe code and

show how they are useful on their own, for example in the analysis of ground

magnetometer data or data from the upcoming Electrojet Zeeman Imaging

Explorermission.We also demonstrate how to use the Lompe code to produce

a coherent picture of ionospheric electrodynamics.

KEYWORDS

ionospheric electrodynamics, Python, ionospheric data analysis, data assimilation,
spherical elementary current systems, cubed-sphere coordinates

1 Introduction

The Local mapping of polar ionospheric electrodynamics (Lompe) technique
(Laundal et al., 2022c) combines all relevant data points in a region of interest to
produce a 2D map of ionospheric electrodynamics. Given a map of the ionospheric
conductance, Lompe can be fed magnetic field measurements from ground and/or
space, and any type of electric field or F-region ionospheric convection measurement
and output a continuous map of ionospheric electrodynamics: The electric field,
plasma flow, ionospheric horizontal and field-aligned current (FAC), and associated
magnetic field perturbations on ground and in space. It is conceptually similar to the
Assimilative Mapping of Ionospheric Electrodynamics (AMIE) technique (Richmond
and Kamide, 1988; AMGeO Collaboration, 2019), but it uses a different set of basis
functions:WhileAMIEuses spherical cap harmonics that span the entire region poleward
of some latitude (usually set to 50°), Lompe represents ionospheric electrodynamics with
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spherical elementary current systems (SECS; Amm, 1997),
which in principle allows more flexibility in choosing the
spatial resolution and extent of the analysis region. The
Lompe technique is open-source (Laundal et al., 2022a). It is
implemented entirely in Python and optimized by using NumPy
array operations instead of Python loops where possible. This
makes the code portable, user-friendly, and easy to interface
with extensive scientific Python modules like NumPy, SciPy,
Matplotlib, and Pandas, without a big loss in performance
compared to compiled languages.

The Lompe Python package includes several submodules
which are required to carry out the Lompe inversion, but are
also useful on their own in many aspects of ionospheric data
analysis. In this paper, we go through the main components
of the Lompe code and present examples of how they can be
used. Except for Figure 6, all figures in this paper are outputs
from Jupyter notebooks published as part of the Lompe code
repository (Laundal et al., 2022a).

A core part of the Lompe code is contained in amodule called
secsy (Laundal and Reistad, 2022), included as a submodule,
which handles both the analysis grid and the use of spherical
elementary current systems (SECS).The Lompe grid is defined in
a cubed-sphere projection (Ronchi et al., 1996), which projects
points on the sphere to the face of a circumscribed cube aligned
with the center of the grid. The secsy module includes a
projection class to convert between global and “cube” coordinates
and vector components, and a grid class. The grid class includes
functions to calculate finite difference matrices. In Lompe, these
matrices are used to evaluate gradients of scalar fields and the
divergence of vector fields defined on the grid. In Section 2, we
present an example where the differentiation matrices are used
to calculate electric field components and electric charge density
from a Weimer (2005a), Weimer (2005b) electric potential. The
matrices can also be used to solve partial differential equations
on a section of a spherical shell. In Section 2.2, we demonstrate
this capability by solving the 2D continuity equation to explain a
typical distribution of F-region plasma density.

In the Lompe technique, spherical elementary currents
(Amm, 1997) are used as basis functions to represent the
electric field and to relate ionospheric currents and magnetic
fields. SECS are local basis functions whose weighted sum
can describe any well-behaved vector field on a spherical
shell (Vanhamäki and Amm, 2011). The secsy module includes
code to calculate matrices that relate the weights of the basis
functions (also referred to as amplitudes) to corresponding
electromagnetic fields. Using SECS in combination with the
cubed-sphere grid and associated differentiation matrices offers
at least two significant advantages: (i) It gives a convenient
way to introduce prior information about spatial structures
when regularizing inverse problems to find a set of SECS
amplitudes (Laundal et al., 2021), and (ii) it allows us to relate
different quantities like electric fields and currents, through the
ionospheric Ohm’s law. In Section 3.4, we present an example

where we use this property, which is fundamental in the Lompe
technique, to calculate ground magnetic field perturbations
associated with a Weimer (2005a), Weimer (2005b) electric
potential assuming uniform conductivity.

In the Lompe technique, magnetic and electric fields are
related via the ionospheric Ohm’s law. Use of this equation
requires that the electric field is given in the reference frame
of the neutrals. In all the examples in this paper and in
Laundal et al. (2022c), the neutral wind is assumed to be zero
in an Earth-fixed frame. The ionospheric Ohm’s law equation
also involves the ionospheric conductance and the main
magnetic field of the Earth. In Section 4, we discuss Python
implementations of empirical models that can be used to specify
these quantities. In particular, a newmethod has been developed
to calculate sunlight-produced conductance that avoids infinite
gradients at the sunlight terminator, yet scales with frequently
employed empirical relationships valid at smaller solar zenith
angles (Moen and Brekke, 1993).

The Lompe code also contains tools for visualizing
ionospheric electrodynamics on both cubed-sphere projections
and in polar coordinates. In Section 5, we discuss the polar
coordinate visualization tool, which is essentially a wrapper for
many Matplotlib functions, where Cartesian coordinates are
replaced with latitude and local time.

Throughout the paper we do refer to specific variables
(classes, functions, etc.,) to make them easy to find, but the
focus is on the concepts rather than syntax. For details we
refer to the doc strings and the extensive example notebook
available in the code repository (Laundal et al., 2022a). While
the code was designed with real data in mind, we use the same
Weimer (2005a), Weimer (2005b) electric potential as the only
input in most examples in this paper. We believe this gives
a logical progression from the cubed-sphere projection and
grid, and associated differentiation matrices (Section 2); to the
combination with SECS analysis (Section 3); and finally, to the
full Lompe technique, demonstrated in Section 6. Table 1 gives
an overview of the sections describing the various parts of the
Lompe code.

2 Cubed-sphere projection and grid

The basis of the numerical implementations in Lompe is a
grid in the cubed-sphere projection (Ronchi et al., 1996). The
ionosphere is modeled as a two-dimensional spherical shell at
radiusRI (in this paperwe useRE + 110 km,whereRE is themean
Earth radius), and the cubed-sphere projectionmaps every point
of the sphere onto a circumscribed cube by extending the line that
connects the center of the Earth and the position on the sphere
until it intersects the cube. A significant advantage of an analysis
grid in the cubed-sphere projection is that regular grids become
free of any singularity, avoiding the numerical difficulties of the
poles that are present when using spherical polar coordinates
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TABLE 1 Overview of the sections describing the Lompe code.

Section number Section title

2 Cubed-sphere projection and grid

2.1 Numerical differentiation on a cubed-sphere grid

2.2 Example: Solving the 2D continuity equation

3 Spherical Elementary Current System analysis with

Python

3.1 SECS analysis of ground magnetometer data

3.2 SECS analysis of satellite magnetometer data

3.3 Other features of the secsy SECS functions

3.4 Example: SECS analysis on cubed-sphere grid

4 Empirical models

4.1 Main magnetic field

4.2 Conductance models

5 Polplot: visualization in polar coordinates

6 Lompe

(often referred to as the “pole problem”). In addition, regular
grids are almost equal area in the cubed-sphere projection.

Cubed-sphere projections and grids are handled in the
cubedsphere script, a part of the secsy module. The
purpose of the module is to facilitate regional data analyses
such as Lompe, and, as we will demonstrate, it can also
be used for solving certain partial differential equations on
a sphere. The module implements a cubed-sphere projection
(CSprojection class) on one face of a cube that has an
orientation with respect to the sphere that the user specifies. A
regular grid (CSgrid class), centered at the touch point between
the surface and the sphere, can be set up to cover a region of
interest. The grid resolution can be specified in each direction.
With the current implementation, the grid is not intended for
global analyses since only one cube face is used.The projection is
illustrated in Figure 1A. The figure shows a cross-section of the
cube face intersecting a sphere with radius RI . The grid is equally
spaced in angular coordinates (ξ and η, following the notation
in Ronchi et al., 1996). Regular grid cells in ξ, η coordinates are
projected to increasingly larger cells on the cube face (Figure 1A)
and increasingly smaller cells on the sphere as the distance from
the intersection point between the cube face and the sphere
increases.However, as seen inFigure 1B, the variation in grid cell
area on the sphere is small compared to a regular grid in spherical
coordinates.The grid projected on the sphere is non-orthogonal.
The non-orthogonality is taken into account in all conversions
and calculations performed with cubedsphere.

The flexibility in choosing the cube’s orientation makes
it easy to set up rectangular grids that cover a specific
region. For example, in the Observing System Simulation
Experiment (OSSE) presented by Laundal et al. (2021),

cubed-sphere grids were aligned with simulated satellite tracks
for the upcoming Electrojet Zeeman Imaging Explorer (EZIE)
mission (Yee et al., 2021). The three EZIE satellites will use the
Zeeman effect to give multi-point magnetic field measurements
at∼85 km altitude.These measurements will be interpolated to a
2D image of the electrojet by using spherical elementary currents
on a cubed-sphere grid. In Section 3, we discuss how to use the
secsymodule for such analyses.

2.1 Numerical differentiation on a
cubed-sphere grid

The CSgrid class facilitates numerical differentiation
of functions that are defined on the grid. The
CSgrid.get_Le_Ln() function returns twoN×Nmatrices,
𝔻e⋅∇ and 𝔻n⋅∇, where N is the number of grid cells. The
matrices yield the eastward and northward components
of the gradient of a scalar field that is defined on the
N cells of the CSgrid object, respectively. That is, the
matrix elements are defined by the combination of the
finite central difference scheme for differentiation in ξ, η
coordinates, the conversion between cubed-sphere coordinates
and spherical coordinates, and the orientation and position of
the cube face with respect to the underlying global coordinate
system (for the example in Figure 1, we use centered dipole
coordinates). The conversions between cubed-sphere and
spherical coordinates are given by Ronchi et al. (1996) and
take the non-orthogonality of the projected coordinates into
account. Forward/backward difference schemes are used near
the edges, and the size of the stencil used to calculate the
elements of the differentiation matrices can be chosen by the
user. These differentiation matrices can, for example, be applied
to a steady-state electric potential Φ to yield the ionospheric
electric field, E = −∇Φ. To illustrate this capability, we use
an electric potential from the empirical Weimer (2005a),
Weimer (2005b) model, with solar wind velocity 350 km/s,
IMF By = 0 nT, Bz = −4 nT, solar wind density 2 particles per
cm3, and dipole tilt angle 25° (referred to as the “Weimer
potential” for the rest of the paper). With the Weimer potential
interpolated to a cubed-sphere grid, the electric field can be
calculated as

Ee = −𝔻e⋅∇Φ,

En = −𝔻n⋅∇Φ, (1)

where Φ, Ee, and En are column vectors containing elements
corresponding to the N cells in the CSgrid; the Weimer
potential, the eastward component of the electric field, and the
northward component of the electric field, respectively. We use
the underline to indicate column vectors that represent a set
of scalar field values throughout the paper. Figure 1C shows
the Weimer potential in the grid projection, while the derived
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FIGURE 1
Example use of cubedsphere. (A) Cross-section of a cube face (bold black line) tangent to a sphere with radius RI. In this plane, ξ appears as a
polar angle and η as azimuth angle; in the perpendicular plane the roles are reversed. Blue markers show the extent of the example grid in panel
(B). (B) An example cubed-sphere grid centered at the north geomagnetic pole. The black dots in the lower left corner represent grid cell center
points (the lat, lon, xi, and eta variables in the CSgrid class), and the red dots represent grid cell corners (specified in class variables lat_mesh,
lon_mesh, etc.,). The color shading shows the relative area of the grid cells. Coastlines are plotted in the cubed-sphere projection. (C) Electric
potential contours from the Weimer (2005a,b) model interpolated on the cubed-sphere grid. (D) Colors show the eastward electric field described
by the Weimer potential (gray contour). (E) Same as panel D, but for the northward electric field. (F) Charge density calculated from the divergence
of the electric field shown in panels (D,E). The quantities in panels (D–F) are calculated with the finite element differentiation matrices of CSgrid.
Note that the differentiation is performed with a higher resolution grid than what is shown in panels (A,B), which is down-scaled for illustration
purposes. Panels (C–F) use cubed-sphere projections, oriented such that noon magnetic local time is on top and midnight at bottom [indicated in
panel (C)].

eastward and northward components of the electric field are
shown in panels D and E.

The divergence of a vector field defined on the N cells in the
CSgrid can be found using the N× 2N matrix 𝔻∇⋅ returned
fromCSgrid.divergence().This divergencematrix is also
implemented using a finite difference scheme. It operates on a 2N
element columnvector comprised of the eastward andnorthward
components of a vector field defined on the grid and stacked on
top of each other. For example, Gauss’ law says that the electric
charge is ρc = ϵ0∇ ⋅E, which means that we can use the set of
vector components found above, Ee and En, to calculate the
electric charge density associated with the Weimer potential in
every grid cell

ρ
c
= ϵ0𝔻∇⋅(

Ee

En

), (2)

Assuming that the radial derivative of the electric field is zero.
ϵ0 is the vacuum permittivity. The charge density is shown in
Figure 1F.

There are also methods in the CSgrid class that can be
useful for working with observational data on cubed-sphere
grids. Given the observation locations, ingrid() can be used
to check if observations are located within the grid. The indices
of the grid cells in which the observations are located can be
found using bin_number(). There is also a possibility to use
count() to obtain the total number of observationswithin each
grid cell.

2.2 Example: Solving the 2D continuity
equation

The differentiation matrices in CSgrid can be used to solve
certain partial differential equations. In this section, we show
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FIGURE 2
Left: Normalized plasma production P (colors), electric potential (black contours), and resulting velocity field v (above 60° latitude, blue arrows).
Right: Normalized steady-state solution for the plasma density n (colors) assuming a 3-h plasma decay time, and electric potential (black contours).

an example where they are used to solve the 2D steady-state
continuity equation on a domain covered by a CSgrid object.
We want to find the resulting distribution of plasma density,
n, given a plasma production function, P, a 2D velocity field
specified by ve and vn, and a plasma decay factor β. For an
incompressible plasma, we have that

v ⋅ ∇n = P− βn. (3)

With P, ve, vn and n defined on each cell of a CSgrid, Eq. 3
can be written as a matrix equation,

[diag(ve)𝔻e⋅∇ + diag(vn)𝔻n⋅∇ + β𝕀]n = P. (4)

The differentiation matrices 𝔻e⋅∇ and 𝔻n⋅∇ can be returned
asscipy.sparsematrices, which is useful in applications like
this, since most of the elements are zero. 𝕀 is the N×N identity
matrix. Solving the continuity equation is now only a matter of
inverting the matrix in square brackets in Eq. 4.

An example production function P and velocity field v are
shown in the left panel of Figure 2. In this example P represents
solar EUV ionization in proportion to cos(χ) (Ieda et al., 2014),
where χ is the solar zenith angle, and the subsolar point is located
at 10° latitude and noon local time (up in the figure). In Figure 2
the production function is normalized as P/P0, where P0 is the
plasma production rate at the subsolar point. The velocity field
is based on the Weimer potential. It is shown as vectors and as
contours of constant electric potential, Φ, where −∇Φ = −v×B.
We assume a dipole magnetic field with mean magnetic field

B0 = 30 μT. In this example, we have transformed the electric
potential and velocity field to an inertial frame by adding co-
rotation (Laundal et al., 2022b). The decay factor, β, is set to
1/(3 h), i.e., the plasma decay factor is such that it takes 3 h for
the plasma to decay by factor 1/e.

The solution plasma density, n, is shown to the right in
Figure 2. Like the production function, the density is also
normalized, by dividing by P0/β, which is the solution to
Eq. 3 at the subsolar point, where ∇n = 0. The inversion of the
matrix in square brackets in Eq. 4 gives meaningful results only
within closed convection contours, within which the boundary
value problem is well defined. We therefore mask densities
equatorward of 60° latitude, where co-rotation dominates.We see
that poleward of 60°, the density pattern has features that are well
known from studies of the long-lived F-region plasma: A tongue
of ionization in the central region, due to anti-sunward transport
of plasma produced at lower latitudes, and a mid-latitude trough
in the dusk return flow region (Kelley, 2009).

3 Spherical elementary current
system analysis with Python

Thesecsymodule contains functions which facilitate SECS
analyses. SECS are basis functions that were originally used for
regional analyses of ionospheric current systems (Amm, 1997).
They can be used as alternatives to spherical harmonics when
the focus is on localized regions rather than global patterns.
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There are two types of SECS, describing divergence-free and curl-
free vector fields on a spherical shell. Both divergence-free and
curl-free basis functions describe a global 2D vector field that
decreases in amplitude as 1/tan(θ/2), where θ is the polar angular
distance from the basis function’s “pole”. This functional form
implies that the amplitudes fall off rapidly; each basis function
has a short range even though they are, in principle, global.
According to Vanhamäki and Amm (2011) and the Helmholtz
theorem, by placing the SECS basis functions sufficiently close
and choosing their amplitudes appropriately, their sum can
represent any well-behaved 2D vector field on a spherical shell.

3.1 SECS analysis of ground
magnetometer data

So far, SECS have primarily been used for analyses of ground
magnetometer data. Given a set of simultaneous measurements
from ground magnetometer stations, divergence-free SECS can
be used to estimate an equivalent overhead current sheet density,
and a corresponding magnetic field everywhere within the
analysis region. The divergence-free equivalent current J° at
radius RI , is represented with SECS as

J° (r) = ∑
i

S°i
4πRI

cot(
θi
2
) êi, (5)

where θi is the colatitude of the location r in a coordinate
system where the location of the ith SECS basis function defines
the north pole, and êi is an eastward unit vector in that coordinate
system. S°i represents the amplitude of the ith SECS basis
function. As in Laundal et al. (2022c), the superscript ° signifies
“divergence-free”.

The secsy module contains functions that calculate
matrices that relate a set of divergence-free SECS
amplitudes, S°i , to the corresponding divergence-free
current at any given set of coordinates on the spherical
shell (get_SECS_J_G_matrices()). In addition,
get_SECS_B_G_matrices() returns matrices that relate
SECS amplitudes to corresponding magnetic field perturbations
at any given set of coordinates at any altitude. This function uses
the analytical expressions derived by Amm and Viljanen (1999).
Together, these two functions can be used to calculate a map of
the equivalent current through the following steps:

1. Get design matrix ℍg° that relates a set of measured
magnetic field components ΔBg to a set of divergence-free
SECS amplitudes S° (containing the amplitudes S°i) from
get_SECS_B_G_matrices().

2. Solve the inverse problem ΔBg = ℍg°S° for S°
3. Get design matrix 𝕁° that relates a set of

divergence-free current densities, J°, to S° from
get_SECS_J_G_matrices().

4. Calculate the current densities as J° = 𝕁°S°.

If the task is to interpolate magnetometer measurements,
𝕁° in the last two steps can be replaced with a different ℍg°
matrix, that relates the amplitudes S° to the magnetic field at the
interpolation points.

The above procedure focuses on ground magnetometers, but
the get_SECS_B_matrices() function accepts evaluation
points at any radius. It can thus also be used in analyses of
magnetometer data from higher altitudes; below the ionospheric
current layer at RI , for example with data from the upcoming
EZIE mission (Laundal et al., 2021), or above the current layer,
for example with data from low-flying satellites like Swarm or
CHAMP (Laundal et al., 2016).

Note that get_SECS_B_matrices() and
get_SECS_J_matrices() return multiple matrices, one
for each vector component, instead of the single matrix in this
example. The component matrices can be stacked vertically to
form a single composite matrix that calculates all the desired
vector components. Note also that the functions accept NumPy
arrays as input and that all calculations are vectorized and
therefore fast.

3.2 SECS analysis of satellite
magnetometer data

The above example assumes that only the divergence-free
part of the horizontal ionospheric current contributes to the
observed magnetic field. This is true for ground observations;
according to the Fukushima theorem, themagnetic fields of field-
aligned currents and associated horizontal curl-free currents
cancel below the ionosphere in polar regions where the main
magnetic field is approximately radial (Fukushima, 1994). In
space, above the horizontal current, we must include the curl-
free current system in the analysis. The curl-free current can be
represented with SECS as

J⋆ (r) = ∑
i

−S⋆i
4πRI

cot(
θi
2
) n̂i, (6)

where the superscript ⋆ signifies “curl-free”, and
n̂i is a northward unit vector in a coordinate
system that has the ith SECS basis function in the
north pole. The get_SECS_J_G_matrices() and
get_SECS_B_G_matrices() functions can be used with
curl-free currents in the same way as for divergence-free
currents, except that the current_type keyword should
be set to “curl_free” instead of “divergence_free”.
The curl-free amplitudes, S⋆i , can be thought of as electric line
currents that flow down to or up from the spherical shell at
radius RI , extending to infinity. Therefore, its unit is Ampere.
The corresponding horizontal curl-free current [Ampere per
meter] distributes this current across the globe, with a uniform
radial divergence with the opposite sign as S⋆i , ensuring current
continuity (Amm, 1997).
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3.3 Other features of the secsy SECS
functions

The SECS functions in secsy also support a number of
features that are often useful in SECS analysis.

The SECS basis functions are infinite at θi = 0, which can
cause numerical problems. To avoid this, a modification is
often applied poleward of some limit θ0. This modification,
described in detail by Vanhamäki and Juusola (2020), can be
applied with the SECS functions by specifying θ0 with the
singularity_limit keyword. Note that the singularity
modification is applied to both types of currents but not to the
magnetic field of the divergence-free current. The reason is that
the magnetic field of the modified J° likely does not have an
analytic expression, and that the modification would be minimal
since the groundmagnetic field is usually evaluated at radii where
the effect of the singularity is greatly reduced (Vanhamäki and
Juusola, 2020).

Magnetic disturbances observed with ground
magnetometers are not only associated with currents in space,
but also with induced currents in the conducting Earth. The
magnetic field of ground-induced currents can be taken into
account in SECS analyses in at least two ways: (i) They can
be modeled directly, in the same way as ionospheric currents, by
placing divergence-free SECS poles at some radius below ground,
or (ii) they can bemodeled as so-called image currents.The image
current method assumes that there is a super-conducting layer in
the Earth’s interior that exactly cancels the radialmagnetic field of
the ionospheric currents at some radius RC. Juusola et al. (2016)
showed how the magnitudes of the image currents relate to the
corresponding ionospheric currents. The effect of the image
current is to change the radial dependence of the magnetic field,
and this can be included in secsy SECS analyses by specifying
RC through the induction_nullification_radius in
calls to get_SECS_B_G_matrices(). An advantage of the
image current method is that it does not add any degrees of
freedom to the SECS model since the image current amplitudes
are given by the ionospheric current amplitudes. A disadvantage
is that it does not account for the effects of finite andnon-uniform
ground conductivities.

The curl-free SECS basis functions can–since they have zero
curl–be written as gradients of scalar fields (potentials). That is,
Eq. 6 can be written as

J⋆ =∑
i

−S⋆i
4πRI

cot(
θi
2
) n̂i = ∇V

= ∇[∑
i

−S⋆i
2π

ln(sin(
θi
2
))]. (7)

The scalar potential representation can be useful in
studies of ionospheric convection electric fields, assuming that
Faraday’s law can be set equal to zero. Reistad et al. (2019) used
SuperDARN (Chisham et al., 2007) line-of-sight measurements
of ionospheric convection to constrain curl-free SECS

representations of convection electric fields and visualized the
result by plotting equipotential contours. The same approach
is used in the Lompe technique (Laundal et al., 2022c). The
corresponding curl-free SECS amplitudes can be interpreted
in terms of electric charges: Each basis function represents
a line that extends from the base of the ionosphere to
infinity, and the amplitude is equal to the electric line charge
density. The potential representation on the right hand
side of Eq. 7 can be calculated with the matrix returned
by get_SECS_J_G_matrices() with the current_type
keyword set to “potential”.

3.4 Example: SECS analysis on
cubed-sphere grid

In this section, we show an example where secsy design
matrix functions and cubed-sphere grids are used to estimate
magnetic perturbations on ground given the Weimer potential,
and an assumption of constant ionospheric conductances.
Without gradients in the Pedersen or Hall conductances, the
divergence of the height-integrated ionospheric Ohm’s law
reduces to

j‖ = ΣP∇ ⋅E, (8)

where ΣP is the Pedersen conductance, j‖ is the field-aligned
current density, and E is the ionospheric electric field.

Consider a set of curl-free SECS poles in the center of the cells
of the cubed-sphere grid in Figure 1B. The curl-free amplitude
in the ith grid cell, S⋆i , represents an electric line current flowing
into or out of the spherical shell at radius RI , i.e., the total field-
aligned current integrated over the cell. In Section 2, we obtained
the divergence of the Weimer ionospheric electric field defined
on the grid cells (Figure 1F shows this quantity multiplied by
ϵ0). The corresponding FAC densities can be found through
Eq. 8 if ΣP is known. Then S⋆i can be found directly through
multiplication with the grid-cell area, Ai,

S⋆i = j‖,iAi. (9)

Recall that only the divergence-free part of the horizontal
ionospheric current, J°, contributes to the observed magnetic
field on ground, and the divergence-free SECS amplitudes, S°i ,
that scale J°must be found. With no conductance gradients and
a constant Hall-to-Pedersen conductance ratio α = ΣH/ΣP = 1,
the curl-free and divergence-free SECS amplitudes are related as
(Amm et al., 2002; Juusola et al., 2009)

S°i = −S
⋆
i . (10)

By assuming that both the Hall and Pedersen conductances
are 10 mho across the grid, we get a vector S° containing the
divergence-free SECS amplitudes for all cells on the grid. The
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corresponding magnetic perturbations for a set of locations on
ground, ΔBg, can be calculated as

ΔBg = ℍ
°
gS°, (11)

whereℍ°g is the matrix that relates the SECS amplitudes (Si°,
contained in S°) to ground magnetic field vector components.
The function get_SECS_B_G_matrices() calculates ℍ°g
given the coordinates and radii of the evaluation locations,
and the coordinates of the SECS poles, in this case the
centers of the cells in our cubed-sphere grid. In this example,
the evaluation locations are at radius RE and are set to
the corners of the grid cells. The magnetic disturbance on
ground is shown in Figure 3. The horizontal magnetic field
is shown as black arrows, while the upward magnetic field is
shown with colors. The gray contours represent the Weimer
potential.

The Lompe technique uses the same approach as above
except that the conductances are not assumed to be uniform.
In Lompe, the full expressions for the divergence and curl of
the ionospheric Ohm’s law are taken into account by using
the CSgrid differentiation matrices that were introduced in
Section 2.

4 Empirical models

In the Lompe technique, magnetic and electric fields
are related through the ionospheric Ohm’s law, and the
electric field and F-region ion velocity are related through the
generalized Ohm’s law. The ionospheric Ohm’s law involves
ionospheric conductances, and both equations involve the
main magnetic field of the Earth. The Lompe code includes
modules to estimate these quantities, discussed briefly in this
section.

4.1 Main magnetic field

The International Geomagnetic Reference Field (IGRF) is
a standard model of the Earth’s magnetic field, maintained by
the International Association of Geomagnetism and Aeronomy
(IAGA). The IGRF model represents the magnetic field as a
set of spherical harmonics, with a new set of coefficients every
5 years to account for temporal changes. Linear interpolation
of the model coefficients is used between versions. The
most recent version was presented by Alken et al. (2021).
The Lompe technique requires magnetic field values on
every grid point. When the grid is defined in geographic
coordinates (default), IGRF magnetic field values are calculated
with the ppigrf module (Laundal, 2022), which is a pure-
Python implementation of the IGRF that gives IGRF model

FIGURE 3
Example of how the secsymodule can be used to relate an
ionospheric electric potential to magnetic field disturbances on
ground in the polar region, assuming uniform ionospheric
conductance. Results are shown in the cubed-sphere projection.
The black arrows represent the horizontal components of the
magnetic field disturbance, and color contours represent the
upward magnetic field disturbance. The gray contours represent
the Weimer ionospheric electric potential used throughout this
paper.

predictions given position and date. The position can be
specified in either geodetic or geocentric coordinates. While
other Python modules that calculate IGRF values exist, many
of them are wrappers of Fortran code, which can be tricky
to compile. Despite being a pure-Python implementation,
the IGRF calculations are quite fast since ppigrf is fully
vectorized.

For some applications IGRF is not the appropriatemodel. For
example, in this paper our examples are based on the statistical
Weimer (2005a), Weimer (2005b) model of electric potential,
which is given in magnetic latitude and local time. Since
longitude information is missing, it is more appropriate to use a
dipole magnetic field, since it is symmetric about the dipole axis.
To accommodate such cases, the Lompe code includes an option
to use dipole coordinates. This is accomplished using another
submodule to Lompe, dipole, which contains functions to
calculate dipole magnetic field values, and to convert between
geocentric and dipole coordinates. The dipole module also
contains functions to convert between magnetic local time
and magnetic longitude using Equation (93) of Laundal and
Richmond (2017). The dipole module uses the ppigrf

module to extract the first three spherical harmonic coefficients,
which defines the centered dipole, for any given epoch covered
by the IGRF.
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FIGURE 4
Example Hall and Pedersen conductances where solar conductances are like on 2 July, and auroral conductances are Hardy et al. (1987) model
patterns for Kp 4. The axes have magnetic latitude and local time (centered dipole) coordinates, and show a region poleward of 50°magnetic
latitude. Magnetic noon is up.

4.2 Conductance models

The interpretation of ground magnetometer data in terms of
high latitude ionospheric convection requires knowledge about
ionospheric conductances, the height-integrated conductivities
(e.g., Kamide et al., 1981).The ionospheric conductance depends
primarily on the ionization by solar EUV radiation and the
contribution to ionization from precipitating particles (auroral
conductance). The Lompe code also contains functions for
calculating the solar EUV conductances and the auroral
conductances from the Hardy et al. (1987) empirical model.

A novel method for calculating the solar EUV conductance,
ΣEUV, is implemented in the EUV_conductance() function.
Themethod uses a modified version of the empirical model from
Moen and Brekke (1993) where cos(χ) is replacedwith a function
q′(χ) that specifies the relativemaximumproduction due to solar
EUV assuming a radially stratified atmosphere, with χ the solar
zenith angle. The full technique is explained in Section 2.4 in
Laundal et al. (2022c).This adjustment gives EUV conductances
without infinite gradients at the sunlight terminator. The Hall
and Pedersen conductances are calculated given a solar radio
flux index, F10.7, and a set of solar zenith angles corresponding
to the locations of interest. Functions in the sunlightmodule
can be used to calculate χ. ΣEUV is by default scaled to coincide
with the empiricalmodel byMoen andBrekke (1993) at low solar
zenith angles (other empirical models can be chosen using the
calibration keyword).

For auroral conductances, Σauroral, the hardy() function
is an implementation of the Hardy et al. (1987) model, which is
based on satellite observations of precipitating particles. Given
a Kp index and coordinates in magnetic latitude and local time,
the method returns empirical Hall and Pedersen conductances.

It is difficult to know the auroral conductances precisely, mainly
because of the high variability in the auroral precipitation. The
Hardy et al. (1987) model function is only meant to be a rough
estimate in applications of the Lompe technique. If possible,
better auroral conductance estimates should be obtained from
observations such as auroral images.

The hardy_EUV() function combines the
implementations for solar and auroral conductance
contributions and returns the total conductances given a set
of coordinates. In the latest version of the Lompe code (v1.1),
the total conductances are calculated using the vector sum of the
solar EUV and auroral contributions, Σtotal = √Σ2

EUV +Σ
2
auroral

(Robinson et al., 2020). Example output from the conductance
function is shown in Figure 4, where the Hall conductance
(left) and Pedersen conductance (right) are plotted for a region
poleward of 50° magnetic latitude. The solar zenith angles are
calculated for 2 July, and the auroral conductances are patterns
for Kp 4.

5 Polplot: Visualization in polar
coordinates

The polplotmodule, which is included as a submodule to
Lompe, is useful for visualizing data in a polar coordinate system,
specifically a latitude and local time grid. Given a Matplotlib
axis object, an object of the Polarplot class returns a polar
axis centered at the pole, where noon is at the top and dusk to
the left. Most Polarplot plotting functions are equivalent to
the corresponding Matplotlib function, and keyword arguments
accepted by pyplot functions (such as color, linewidth,
zorder, etc.,) can also be given to the Polarplot functions.
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FIGURE 5
Example of different representations of data on Polarplot polar axes (left), and Cartesian axes (right). The left panels have coordinates in
magnetic latitude and local time, and show a region poleward of 50°magnetic latitude. The black frames show the extent of the grid in the right
panels. The bold edge corresponds to the lower edge of the grid projections. The right panels show data in the cubed-sphere projection. The
cubed-sphere grid is 7,000 × 5,000 km defined on a cube face centered at 88°W and 72°N and rotated 45°. The gray mesh in the top panels is the
grid, where each cell is 200 × 200 km. In the top panels, coastlines are shown in blue, and regions where the solar zenith angle is ≥90° (sunlight
terminator) are shaded gray. The black contours in the bottom panels represent the ionospheric electric potential. The blue arrows represent the
E×B convection velocities. An orange X represents the Geographic North Pole in all panels.

For example, polplot was used when making Figure 4,
where Polarplot.contourf() made the filled contours
representing the ionospheric conductances in amagnetic latitude
and local time system.

Figure 5 shows examples of data visualization in polar
coordinates and in a cubed-sphere projection. Coordinates are
given in magnetic latitude and local time for the polar axes
(left). In the plot to the right, the grid ξ, η coordinates are
treated as Cartesian coordinates on the Matplotlib axes. An
orange X marks the Geographic North Pole. Black rectangles on
the polar axes show the extent of a cubed-sphere grid covering
much of North America and Greenland. The bold grid edge
corresponds to the lower edge of the grid. The pairs of panels
in the two rows show the same grids. The gray meshes in the
top row panels represent the grid cells. Coastlines, converted to
magnetic apex coordinates, are added to the polar axis using the
coastlines() function. The cubed-sphere projection class

has a function calledget_projected_coastlines() that
returns coastlines projected to cubed-sphere ξ, η coordinates.
The gray line in both panels marks the sunlight terminator
as it is on 10 March at midnight UT. Regions where the
solar zenith angle is more than 90° are shaded gray using the
plot_terminator() function, which also adds the location
of the terminator to the polar axis. The bottom row panels
show the Weimer potential as black contours. Blue arrows show
the E×B convection velocity resulting from the electric field
described by the Weimer potential in a co-rotating frame.

6 Lompe

In this section we demonstrate the full Lompe technique,
which combines the modules from the previous sections. The
Lompe technique (Laundal et al., 2022c) is implemented in
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FIGURE 6
Flow chart showing the basics steps in the Lompe workflow.

the model module. The technique relates vector components
of ionospheric convection electric fields, E, F-region plasma
convection velocities, v, ground magnetic field disturbances, Bg,
and space magnetic field disturbances, Bs, to a model vector m
through a set of linear equations

((((

(

E

v

Bg

Bs

))))

)

= y =
((((

(

𝔼

𝕍

𝔹g

𝔹s

))))

)

m = 𝔾m. (12)

In Lompe, the model vector, m, contains the amplitudes of
the curl-free SECS basis functions representing the convection
electric field. The different block matrices relate different
quantities to the model vector m: 𝔼 relates electric field vector
components to m through Eq. 6, 𝕍 relates F-region plasma
velocity components to m by assuming that the electric field

and plasma are frozen-in, 𝔹g and 𝔹s relate magnetic field
vector components below (subscript g) and above (subscript s)
the ionosphere to m by using the ionospheric Ohm’s law. Use
of the ionospheric Ohm’s law requires that conductances are
known. The conductance determines both a scale factor–how
strong the electric fields have to be in order to explain the
observed magnetic field–and the distribution of the electric
field. If magnetic field measurements are used in the inversion,
it is therefore highly recommended to use Lompe in cases
when the conductances are precisely known. The Lompe
conductance module (Section 4.2) includes functions that yield
precise estimates of solar EUV-induced conductance, but auroral
conductance should preferably come from measurements.
The total design matrix 𝔾 thus depends on ionospheric
conductances, the choice of grid, and the coordinates of the
model predictions, y. For a thorough description of how 𝔾 is
calculated, see Section 3.2 in Laundal et al. (2022c).

Figure 6 gives an overview of the various steps to carry out
a Lompe inversion. The first step is setting up a cubed-sphere
grid that covers the region we want to model. The location,
orientation, size, and resolution of the grid should be adapted
to the input data coverage. In addition, functions for calculating
the Hall and Pedersen conductances are required. The Lompe
Emodel is then initialized given the grid and conductance
functions. Emodel assumes all input in geographic coordinates
by default, but the dipole keyword can be used to make all
calculations in centered dipole coordinates, and with a centered
dipole magnetic field instead of the IGRF (see Section 4.1).

The next step is to add the input data (y in the equation
above). The input data to a Lompe Emodel must be an
object of the Data class, which contains the data values
(vector components) and coordinates. To help set up a
Data object, the Lompe package includes a stand-alone
module called dataloader. It contains functions that
work with convection data from DMSP satellites (Rich, 1994)
(from the CEDAR Madrigal database), the SuperMAG
network of magnetometers (Gjerloev, 2012), the network of
SuperDARN radars (Chisham et al., 2007), and AMPERE’s
Iridium magnetometer data (Waters et al., 2020).

When initializing Data objects, the measurements go
through sanity checks that ensure the input data is of the correct
shape and with valid values, and NaNs are removed from the
data set. All data should be given in SI-units. Coordinates and
components should be given in geographic coordinates, unless
the Emodel object is initialized with the dipole keyword.
If not all vector components are known, the components

parameter can be used to indicate which of the eastward,
northward, and upward components are included in the data
set. For convection and electric field data, a line of sight can be
specified.

The Data initialization requires specification of the type
of measurement. The datatype categories are: magnetometer
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FIGURE 7
Lompe output given synthetic electric field data as input. The model conductances are for 2 July 2015 at 11:50 UT and Kp 4. The top row shows,
from left to right: Convection flow field and electric potential contours; horizontal magnetic field disturbances 110 km above the ionosphere as
black arrows and radial current density as color contours; horizontal ground magnetic field perturbations as black arrows and radial magnetic field
perturbations as color contours; and a map that shows the grid’s position and orientation with respect to apex magnetic latitude and local time.
The bold grid edge corresponds to the lower edge of the projections shown in the other plots. The bottom row shows, from left to right: Pedersen
conductance; Hall conductance; horizontal height-integrated ionospheric currents based on Lompe output; and color scale/vector scales.

observations from ground (“ground_mag”), magnetometer
observations from space associated only with field-aligned
currents (“space_mag_fac”), “full” magnetometer
observations from space (“space_mag_full”),
“convection” data, and ionospheric convection electric field
(“Efield”). In addition, there is an option to use field-aligned
current density (“fac”) as input data, which can be useful for
studies of, e.g., magnetosphere-ionosphere (M-I) coupling.

There are two categories of spacemagnetometer observations
due to different heights and magnetometer precision of satellites
that measure magnetic disturbances from space. For example,
Iridium magnetic data is dominated by FACs since it is taken
at around 800 km altitude and by magnetometers that do not
have the precision of science-mission instruments. Low-flying,
precise magnetometers (e.g., Swarm and CHAMP) will measure
perturbations associated with both field-aligned currents and the
horizontal divergence-free currents below the satellite, i.e., the
“full” disturbance (Laundal et al., 2016).

The Data objects must contain the typical scale of the
measurements. For example, convection data could have typical
scales of 100 m/s, while ground magnetic field disturbances
are typically on the scale of 100 ⋅ 10–9 T. The scales contribute
to the data covariance matrix (for details, see Section 3.3 in
Laundal et al., 2022c), and therefore partly determine the relative
weight of the data set in the inversion; by increasing the scale

of one dataset while keeping the scale of other datasets fixed,
its relative weight in the inversion decreases. Default values are
used if the scale is not specified. In addition, the data covariance
matrix depends on the error parameter, which specifies the
measurement error. While scale is a single value for a whole
dataset, error can be specified on a point by point basis. If the
error is not given, it is set to zero.

The finished Data objects can be passed to the Lompe
Emodel object using the add_data()method. Once all input
data is added to theEmodel, therun_inversion()method
can be called.This function automatically creates the appropriate
design matrix and solves Eq. 12 for m using regularized least-
squares. Two regularization parameters can be specified in
calls to run_inversion(). The regularization encourages
relatively smooth solutions, with stronger gradients in theQuasi-
Dipole (Richmond, 1995) north-south direction compared to
east-west. Therefore this step depends on the apexpy Python
module (Emmert et al., 2010; van der Meeren et al., 2021). The
regularization represents prior assumptions about the model,
and the regularization parameters determine how much weight
these assumptions should have relative to the model’s ability
to fit the data. Choosing the optimal set of regularization
parameters is therefore an important task, which requires
some experimentation. Automated methods for choosing
regularization parameters, for example based on L-curve analysis
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FIGURE 8
Lompe inversion results using synthetic field-aligned current data from the AMPS model as input. Model ionospheric conductances are for sunlight
as on 1 August and empirical auroral patterns for Kp 4. The format of this figure is the same as Figure 7.

(Hansen, 1992), could be included in future updates of the
code. The details of the inversion is described in Section 3.3
in Laundal et al. (2022c). The perimeter_width parameter
can be used to specify the perimeter around the grid from
which observations are included in the inversion. The default
is 10, which means observations within a 10 cell wide perimeter
around the grid will be included. Measurements from outside
the perimeter are ignored. If the Lompe inversion is to be
performed for multiple time steps but with the same grid setup,
the clear_model() function will reset the Emodel so that
the inversion can be performed using new input data.

After the inversion,m is known, and ionospheric parameters
can be estimated at any location within the analysis region.
Emodel methods can return model predictions for the
following parameters: convection electric field (E()), electric
potential (E_pot()), convection velocity (v()), ground
magnetic field disturbances (B_ground()), space magnetic
field disturbances (B_space() for “full” disturbance,
or B_space_FAC() for disturbance due to FACs only),
ionospheric horizontal height-integrated currents (j()), and
FACs (FAC()). The predicted ionospheric quantities can also
be visualized using the lompeplot() function.

Figure 7 shows an example of a Lompe output, visualized
with lompeplot. The analysis grid covers the same area as in
Figure 5, and the cell dimension is 100 × 100 km. We use the

same conductance maps as in Figure 4, shown in the bottom
left panels of Figure 7. The input data is the ionospheric electric
field derived from the Weimer potential (Figures 1D, E). We set
the regularization parameters in the inversion to λ1 = 0.02 and
λ2 = 0.01.These values are low since theWeimer electric field can
be evaluated everywhere on the grid, with near zero error. With
realistic data distributions and uncertainties, the inverse problem
is ill-conditioned, and stronger regularization is required.The top
left panel shows the predicted convection pattern and electric
potential. The magnetic field in space, evaluated 110 km above
RI , is shown as black arrows in the next panel, and the color
contours show the vertical current density (FACs). The third
panel from the left shows the magnetic field disturbances on
ground in the same format as in Figure 3.The panel below shows
the horizontal height-integrated ionospheric currents.

The Lompe technique also offers an alternative way
to solve the current continuity equation used in global
magnetohydrodynamic (MHD) simulations to couple the
magnetosphere and the ionosphere (e.g., Wiltberger et al., 2004;
Merkin and Lyon, 2010).The ionospheric boundary condition in
MHDmodels is specified by using the ionospheric Ohm’s law to
solve for the electric field given a map of field-aligned currents.
This can be done in a Lompe inversion by using field aligned
currents as data input. Currently fac data points must be given at
all grid locations, in contrast to all the other data types which can
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be specified at arbitrary locations. Figure 8 shows an example of
the Lompe technique applied with (synthetic) FAC data obtained
from the Average Magnetic field and Polar current System
(AMPS) model (Laundal et al., 2018). The AMPS output is for
solar wind velocity 350 km/s, IMF By = 0 nT, Bz = −4 nT, and
dipole tilt angle 25°. Model ionospheric conductances are for 1
August andKp 4.The analysis region covers a large portion of the
high-latitude northern hemisphere, and the grid cell dimension
is 80 × 80 km. In this inversion, the regularization parameters
are λ1 = 0.02 and λ2 = 0.01.This is an example of how Lompe can
be used to calculate the electric field, ionospheric convection,
horizontal ionospheric currents, and ground magnetic field
perturbations implied by given patterns of field-aligned current
and ionospheric conductance.

7 Concluding remarks

The Lompe Python package is available through Zenodo
(Laundal et al., 2022a), but we recommend getting the latest
version from the stable branch at https://github.com/klaundal/
lompe. It depends on the usual scientific Python modules
(NumPy, SciPy, Pandas, Matplotlib) and on two geospace-
specific modules (apexpy and ppigrf) that can be installed
with pip. The optional dataloader helper module also has
some other dependencies, depending on which dataset it is used
for. The Lompe package itself does currently not include an
install script, but lompe can be imported as a module if the
repository is placed in the user’s Python module search path.
The lompe namespace includes the secsy, dipole, and
polplot modules, and the Data and Emodel classes. We
recommend running some of the repository’s example notebooks
to test that it is set up correctly. In many cases, the example
notebooks should be sufficient to use the Lompe technique: One
needs only to adapt the grid setup parameters to the region of
interest, change the conductance functions and Data objects,
and experiment with the regularization.

As demonstrated in this paper, the Lompe Python
package is modular, and the different modules can be useful
independently of the Lompe technique. Some modules
replicate the functionality of already existing Python packages
(Burrell et al., 2018), but with some features that we believe
are distinctive. ppigrf, for example, is different from most
published IGRF Python packages since it is pure Python.
polplot is another example; given the prevalence of polar
plots in the literature, similar codesmust have been implemented
numerous times by several researchers, but we are not aware
of any other open-source Python module for plotting data on
polar local time/latitude grids. Until recently, there were no
public code for SECS analysis; hopefully, the secsy module
will help to make this technique more accessible. The Lompe

Python package is open-source, and we welcome community
participation in continuing its development.
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