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Abstract –Different indices have been used to reflect, or monitor the ionospheric scintillation, e.g. the
detrended carrier phase, ru, S4, the rate of change of the vertical total electron content index (vROTI),
as well as the ionosphere-free linear combination (IFLC) of two carrier phases. However, few studies
have been performed to investigate the refractive and diffractive contributions to these indices, especially
during geomagnetic storms. In this study, we analyze the high-resolution (50 Hz) phase and amplitude
measurements from four high-latitude stations in Svalbard, Norway during the geomagnetic storm on
7–8 September 2017. Our results show that at high latitudes, the high-pass filter with a standard cutoff
frequency of 0.1 Hz sometimes cannot effectively remove the refraction-driven phase variations, especially
during the geomagnetic storm, leading to a remaining refraction contribution to the detrended carrier phase
and ru when scintillation happens. In the meanwhile, as vROTI is sensitive to the TEC gradients, regard-
less of small- or large-scale ionospheric structures, both refraction and diffraction effects can cause visible
fluctuations of vROTI. For most of the scintillation events, the phase indices (including detrended carrier
phase, ru, and vROTI), IFLC, and S4 show consistent fluctuations, indicating that diffraction usually occurs
simultaneously with refraction during scintillation. One interesting feature is that although the IFLC and S4
are thought to be both related to the diffraction effect, they do not always show simultaneous correspon-
dence during scintillations. The IFLC is enhanced during the geomagnetic storm, while such a feature is not
seen in S4. We suggest that the enhanced IFLC during the geomagnetic storm is caused by the increased
high-frequency phase power, which should be related to the enhanced density of small-scale irregularities
during storm periods.

Keywords: Refraction / Diffraction / Plasma irregularity / Scintillation / Geomagnetic storm

1 Introduction

When propagating through the ionosphere, radio waves
interact with the free electrons, resulting in signal group delay
and phase advance (Kintner et al., 2007). If small-scale plasma
irregularities exist in the propagation path, radio waves received
by ground receivers usually show rapid fluctuations in both
phase and amplitude, referred to as ionospheric scintillation
(e.g., Kintner et al., 2007). With the development of the Global

Navigation Satellite System (GNSS) in past decades, iono-
spheric scintillations at L-band frequencies have been widely
studied (e.g., Basu et al., 1980; Aarons, 1982; Aarons & Basu,
1994; Kintner et al., 2007). From a global perspective, iono-
spheric scintillation is most prominent at equatorial and low lat-
itudes, as well as in polar regions.

The scintillation of GNSS signals is generally classified into
refraction and diffraction effects. The refraction of the signal
phase is determinative, which is related to the wave frequency
and electron density along the propagation path, while the
diffraction is stochastic and independent of the wave frequency
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(Carrano et al., 2013). One important factor that causes refrac-
tion or diffraction, or both of them, is the size of plasma irreg-
ularities that the radio wave strikes (e.g., Yeh & Liu, 1982).
Refraction occurs for plasma density structures at all scale sizes,
while for diffraction the plasma density structure, or irregularity,
must be equal to or smaller than the Fresnel scale (e.g.,
Bittencourt, 2004; Kintner et al., 2007). The Fresnel scale is
approximately defined as rf ¼

ffiffiffiffiffiffiffi
2kz

p
, where k is the wavelength

of the signal and z is the height of the irregularity layer above
the receiver. Here the approximation is valid only when the
distance between the transmitter and receiver is much larger
than the value of z. Ionospheric irregularities of these scale sizes
cause diffractive variation of amplitude at the Fresnel frequency
fF ¼ vd

rf
and greater, where vd is the drift velocity of the plasma

irregularity with respect to the ionospheric pierce point of the
radio wave (Rino & Fremouw, 1977). When diffraction occurs,
phase fluctuation or phase scintillation is caused by both refrac-
tion and diffraction (Cordes et al., 1986). For the signal ampli-
tude, the refraction may change the radio wave path and result
in small decreases in wave power, due to reflection and absorp-
tion, but it will not cause obvious wave amplitude fluctuations
(e.g., McCaffrey & Jayachandran, 2019). From this perspective,
amplitude fluctuation, or amplitude scintillation is mainly
caused by the diffraction effect.

A practical approach that has been widely used for modeling
the ionospheric scintillation intensity at ground level is the
phase screen approximation (e.g., Booker et al., 1950; Rino,
1979a, b). In the phase screen model, the plasma irregularity
is confined to an infinitely thin layer, which aims to model
the primary effect on radio wave propagation through Fresnel-
scale plasma irregularities as a function of the integral of the
permittivity fluctuations along the ray path. This phase screen
approximation provides a good basis for the theory behind sig-
nal amplitude and phase scintillation, which has been validated
by using ground-based GNSS observations (e.g., Aarons &
Basu, 1994; Pi et al., 1997). Recent work has also simulated
the phase and amplitude scintillations for GNSS receivers
onboard Low Earth orbiting (LEO) satellites (e.g., Xu et al.,
2018), by using a two-component power-law phase screen
model proposed by Carrano & Rino (2016). Xiong et al.
(2020) compared the spaceborne GNSS observations from
LEO satellites at different altitudes. They found that for recei-
vers flying inside the ionospheric plasma irregularities, like
the Swarm satellite at about 400–500 km altitude, only intense
phase fluctuation and almost no amplitude degradation (less
than 2 dB-Hz) were observed; while for lower-flying LEO satel-
lites, like the Gravity Field and Steady-State Ocean Circulation
Explorer (GOCE) satellite at about 250 km altitude, amplitude
degradation of about 10 dB-Hz was often observed associated
with intense phase fluctuation. This observational result con-
firms the phase screen model proposed by Rino (1979a, b) that
within the thin layer of the phase screen, only radio wave phase
changes; after the distorted radio wavefronts leave the phase
screen layer and continue propagating, the received signal at
lower altitude (e.g., ground) show noticeable amplitude
fluctuations.

Different processes causing radio wave phase and amplitude
fluctuations provide a possible way to separate the refraction
and diffraction effects during ionospheric scintillation. As
refraction mainly causes low-frequency phase variations, they

were considered to be removable by a high-pass filter. van
Dierendonck et al. (1993) suggested to use of a 6th-order
Butterworth high-pass filter with a cutoff frequency of 0.1 Hz,
and such a threshold works quite well for the GNSS data pro-
cessing at the low and middle latitudes (e.g., van Dierendonck
& Arbesser-Rastburg, 2004). However, at high latitudes, the
plasma drift velocity is typically one or two orders of magnitude
larger than the values at low and middle latitudes, thus the
Fresnel frequency (proportional to the plasma drift velocity)
often exceeds 0.1 Hz, leading to the known issue of “phase
without amplitude scintillation at high latitude” (e.g., Forte &
Radicella, 2002; Beach, 2006; Carrano & Rino, 2016; Wang
et al., 2018; Ghobadi et al., 2020). With the standard cutoff
frequency at 0.1 Hz applied to high-latitude GNSS data,
sometimes the refractive phase variations still exist, which has
often been wrongly treated as diffraction-driven scintillation
(McCaffrey & Jayachandran, 2019). Although studies have tried
high-pass filters with different cutoff frequencies (e.g., Forte,
2005; Mushini et al., 2012), no conclusive answer has been
found so far for a cutoff frequency that can effectively eliminate
the refraction-driven phase variations at high latitudes under all
circumstances. Instead, McCaffrey & Jayachandran (2019)
suggested that the ionosphere-free linear combination (IFLC)
of phases on two carriers is an effective way to exclude the
refraction-driven phase variations at high latitudes.

In addition to the detrended carrier phase and IFLC, other
indices like ru, S4, and the rate of change of the total electron
content index (ROTI) have also been widely used to monitor
ionospheric scintillation. However, to our knowledge, there is
no dedicated study that has investigated the relation between
refraction/diffraction and these indices. As shown by McCaffrey
& Jayachandran (2019), the remaining phase variations in the
index IFLC are mainly non-refractive, it may be worthwhile
to check the consistency between IFLC and signal amplitude
scintillation, as both parameters are only attributed to the
diffraction effect, as discussed above. Therefore, in this study,
we provide a detailed survey to diagnose the refractive and
diffractive contributions to these scintillation indices, by
using the high-resolution GNSS measurements at high latitudes
in the European Arctic during the geomagnetic storm on
7–8 September 2017. It also allows us to check if the contribu-
tions to these scintillation indices from the refraction and
diffraction differ before and during the geomagnetic storm.

The structure of this study is arranged as below: in Section 2
the dataset and the definitions of scintillation indices are briefly
introduced; observational results from the four GNSS receivers
are presented in Section 3; discussion and comparison with pre-
vious studies are provided in Section 4; and the main findings
are summarized in Section 5.

2 Dataset and approaches

2.1 Dataset

The data used in this study originates from four GNSS
receivers referred to as Kjell Henriksen Observatory (KHO),
Hopen (HOP), Ny-Ålesund (NYA), and Bjørnøya (BJN),
located in Svalbard, Norway (Oksavik et al., 2015; Oksavik,
2020). They are the NovAtel GPStation-6 receivers operated
by the University of Bergen, which can track signals from the
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GPS, GLONASS, and GALILEO at different frequencies. All
four receivers provide the phase and amplitude measurements
with a time resolution of 50 Hz.

Figure 1a shows their location, covering the geographic lat-
itudes of 72�–78� and geographic longitude of 0�–30� E. Their
corresponding magnetic latitude and longitude are shown in
Table 1. Here, we use the quasi-dipole model to calculate the
magnetic coordinates (e.g., Emmert et al., 2010).

2.2 Ionospheric scintillation indices and definitions

The carrier phase measured at the ground contains usually
diffraction and refraction effects, we, therefore, start with the
basic equation for illustrating the different contributions to the
carrier phase. Refraction is thought to occur when the GPS sig-
nal passes through the ionosphere, regardless of the ionospheric
structure scale sizes. By ignoring the higher-order terms and
path curvature, the phase delay caused by refraction is defined
as (Kashcheyev et al., 2012):

I ¼ 40:308
f 2

Z
Neds; ð1Þ

where f is the signal carrier frequency, Ne is the ionospheric
electron density, ds is the ray path, and

R
Ne is the integrated

electron density along the ray path that is referred to as the
total electron content (TEC).

By assuming the propagation paths are the same at two dif-
ferent carrier frequencies, e.g., represented by i and j, the ratio
between the two carrier phase delays satisfies:

I i
I j
¼ f 2

j

f 2
i
: ð2Þ

Considering the possible impact of receiver inaccuracies in
the L2 carrier in monitoring the ionosphere (e.g., McCaffrey
et al., 2018; Yasyukevich et al., 2021), GPS L1C/A and L5Q
carriers were used in our study. For GPS L1 (1.575 GHz) and
L5 (1.176 GHz) carriers, the theoretical ratio between the two
carrier phase delay is 1.79.

Contributions to cause the carrier phase variations, at a
constant frequency, can be generally divided into three parts:

L ¼ r þ kN � I ; ð3Þ
where r is the geometric distance between the GNSS satellite
and the receiver, k is the signal wavelength, N is the integer
ambiguity, and I is the ionospheric delay part. The contribu-
tions from multipath, noise, and clock errors have been
neglected. The geometric distance caused by carrier phase
variation are low-frequency signals and the integer ambiguity
is constant, therefore, in practice, they can be removed by a
high-pass filter. Here we used the standard 6th-order
Butterworth high-pass filter with a cutoff frequency of
0.1 Hz (van Dierendonck et al., 1993).

The IFLC of phases at two carrier frequencies fi and fj is
then defined (Carrano et al., 2013):

IFLCij ¼
f 2
i Li � f 2

j Lj

f 2
i � f 2

j
¼ r þ f 2

i

f 2
i � f 2

j
kiN i �

f 2
j

f 2
i � f 2

j
kjNj;

ð4Þ
where the ionospheric delay part (I) has been removed. As
shown in equation (1), the refraction-caused phase variation
follows the inverse-frequency-squared relationship while the
diffractive variation doesn’t, the phase variations remaining
in the IFLC are considered to be non-refractive and related

Table 1. Geographical and geomagnetic coordinates of GPS stations.

Geographic latitude Geographic longitude Magnetic latitude Magnetic longitude

KHO 78.147� N 16.038� E 75.001� N 127.471� E
HOP 76.509� N 25.014� E 72.518� N 129.660� E
BJN 74.504� N 19.001� E 73.632� N 122.041� E
NYA 78.920� N 11.950� E 76.118� N 127.091� E

Figure 1. (a) The location of four GNSS stations in Svalbard, Norway used in this study. (b) Variations of VSW, three components of IMF,
SYM-H, and Kp indices during 5–10 September 2017.
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to the diffraction and other high- frequency disturbances
(Carrano et al., 2013).

The amplitude scintillation is usually quantified by the S4
index, which is derived from the detrended signal intensity.
The signal intensity is actually the received signal power, mea-
sured in such a way that its value does not fluctuate with the
noise power. Therefore, it cannot be represented by either the
signal-to-noise ratio (SNR) or carrier-to-noise density (C/N0)
(van Dierendonck et al., 1993). Here, the S4 index is defined
as the ratio of the standard deviation of the signal intensity to
the mean signal intensity:

S4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SI2
� �� SIh i2

SIh i2

s
; ð5Þ

where h i denotes the mathematical expectation within a
certain period, e.g., 60 s. In practice, this time can be longer
or shorter, but it must be longer than the Fresnel length
divided by the irregularity drift velocity (Kintner et al.,
2007). SI is the signal intensity (square of the amplitude) that
is detrended via dividing the raw signal intensity SIraw by the
filtered signal intensity (SIfiltered) using a 6th-order Butter-
worth low-pass filter (van Dierendonck et al., 1993):

SI ¼ SIraw
SIfilter

: ð6Þ

Similar to S4, the phase scintillation index, ru is defined as the
standard deviation of the carrier phase that has been detrended
by the 6th-order Butterworth high-pass filter with the cutoff fre-
quency of 0.1 Hz:

ru ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2h i � uh i2

q
; ð7Þ

where h i denotes the expected value in 60 s, and u is the
detrended carrier phase.

In addition, the vROTI is also often used to represent the
fluctuation of TEC, which is defined as:

vROTI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�VTEC2� �� �VTECh i2

�th i2

s
: ð8Þ

Here we use a slightly different approach where we calculate the
vROTI using the vertical TEC (VTEC) (e.g., Juan et al., 2017),
where VTEC is given based on equation (1):

VTEC ¼ 1
M �ð Þ

f 2
i f

2
j

40:308 f 2
i � f 2

j

� � Li � Lj

� �
; ð9Þ

and M(�) is the obliquity factor, which depends on the satellite
elevation � (e.g., Schaer, 1999). It is noted that the calculated
VTEC here includes an integer ambiguity, but as we only focus
on its relative change, the integer ambiguity does not affect the
values of vROTI.

From the definition above, we see that the detrended phase
and ru can be derived for each carrier frequency, while the
IFLC and vROTI are calculated based on a combination of
phases from two carriers. Different from the IFLC from which
the refraction part of phase variation has been removed, large
TEC gradients, regardless caused by small-scale or large-scale
ionospheric structures will cause fluctuations of vROTI.

Therefore, the vROTI reflects both the refraction and diffrac-
tion-driven phase variations.

We want to note that for this study we considered only mea-
surements from the GPS, as the physics relies on the same for
the other GNSS constellations, e.g., GLONASS, Galileo, or
Beidou. In addition, we considered only the data with high ele-
vation angles (>40�), to reduce the influence of multipath effects
on our results.

3 Results

3.1 The solar wind and geomagnetic conditions during
the geomagnetic storm on 7–8 September 2017

During 6–10 September 2017, the Sun released dozens of
M-class and four X-class flares, as well as several powerful
interstellar coronal mass ejections, causing prominent distur-
bances in the near-earth space environment and interfering with
radio signal propagation (e.g., Blagoveshchensky & Sergeeva,
2019). From top to bottom, Figure 1b shows the variation of
the solar wind velocity (VSW), the three components of the
interplanetary geomagnetic field (IMF) in geocentric-solar-mag-
netospheric coordinates, the geomagnetic index SYM-H, and the
3-hour Kp index. The solar wind velocity increased abruptly
around 23:00 universal time (UT) on September 7 and reached
a maximum around 07:00 UT on September 8, reaching
800 km/s. Other indices also showed significant changes at
the same time, with Bz showing an abrupt drop, reaching a min-
imum of �31 nT around 23:30 UT on September 7. SYM-H
also dropped rapidly, reaching a minimum of �146 nT at
01:00 UT on September 8, and the global 3-hour Kp index
reached above 7 during this period. The indices remained signif-
icantly perturbed during the daytime on September 8, and on
September 9 the solar wind and geomagnetic indices started
to recover.

3.2 Ionospheric scintillation characteristics during
the geomagnetic storm

We first analyzed the GPS measurements received at the
KHO station and focused on the pseudo-random noise (PRN)
codes with dual-frequency signals. Figure 2 shows an overview
of the variations of the above-mentioned five indices from
September 6–10. Generally enhanced scintillation is observed
around noon on September 6, midnight on September 7, and
the whole day on September 8. Scintillation around noon of
September 6 should be related to the X9.3 solar flare (e.g.,
Berdermann et al., 2018), while the latter two periods corre-
spond to the initial and main phases of the geomagnetic storm,
which also suggests that there are much more small-scale
plasma irregularities at high latitude during the geomagnetic
storm. One feature seen in Figure 2 is that the five indices didn’t
always show simultaneous disturbances. When the high-pass
filter with a standard cutoff frequency at 0.1 Hz was applied
to the carrier phase, the remaining refraction effects are
expected to still exist in the detrended phase and ru. As vROTI
is sensitive to the TEC gradients of both small-scale and
large-scale (Bhattacharyya et al., 2000), it is considered to
be affected by both the refraction and diffraction effects.
The IFLC is considered to eliminate effectively the refraction
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effect, and the amplitude scintillation S4 is mainly influenced
by diffraction. Therefore, comparing the simultaneous
variations of these different indices provides a possible way
to distinguish the refractive and diffractive influences of
scintillation.

Figure 3 focuses on the scintillation event observed between
18:00–21:00 UT on September 8, as the signals of PRN = 09
showed the most prominent phase fluctuations (see the interval
indicated by a red arrow in Fig. 2). For comparison, variations
of these indices during the same UT hours on the other four
days are also shown. In Figures 3a and 3b, the variations of
the detrended phase, ru, and S4 are presented separately for
L1 and L5, while the vROTI and IFLC are repeated as they
combine measurements from both carriers. Compared to the
other four days, the detrended phase and ru, as well as the
vROTI show clear fluctuations between 18:27 and 18:51 UT
on September 8. As expected most of these phase fluctua-
tions are not seen in IFLC, suggesting that the refraction effect
dominates the GPS phase and vROTI fluctuations. The remain-
ing fluctuations in IFLC, as well as the fluctuations of
amplitude scintillation index, S4, should be related to the diffrac-
tion effects, suggesting the presence of plasma irregularities
with sizes less than Fresnel-scale along the wave propagation
path.

To have a further look at the refraction and diffraction con-
tributions on the carrier phases, we zoomed in on the detrended
phase, vROTI and IFLC for the signals of PRN = 09. Figure 4
shows the results during 18:27–18:51 UT on the geomagnetic
quiet (September 6) and disturbed (September 8) days. Com-
pared to September 6, the scintillation effect on the phases
reaches about 0.1 m during the considered 20 min on September
8, and the IFLC shows also clear fluctuations with a maximum
value reaching 0.05 m at 18:41 UT, showing the effect of non-
refractive effects.

In the next step, we calculated the power spectrum of the
detrended phase and IFLC of the GPS signal on September
6–9. We considered only data from elevation angles greater than
40�. As a first try, the indices during the whole day are used
here to obtain the spectra shown in Figure 5. The power spectra
of detrended phases on both L1 and L5 show very similar
frequency dependence as that of IFLC on September 6, 7,
and 9, suggesting that the applied high-pass filter with a cutoff
frequency of 0.1 Hz has effectively removed the refractive vari-
ations of the carrier phase. The IFLC has slightly larger values
at higher frequencies, which might be due to the fact that the
linear combination of IFLC amplifies the high-frequency noise,
as the phase is multiplied by a factor larger than the wavelength
in the linear combination. Quite differently, the power spectrum
of IFLC on September 8 is significantly lower than the power
spectra of L1 and L5 at the lower frequencies (<3 Hz). Obvi-
ously, this is due to the removal of the refraction effect of IFLC
at lower frequencies. It also indicates that the plasma drift
velocity is significantly enhanced during the geomagnetic storm,
resulting in the Fresnel frequency exceeding 0.1 Hz.

To better quantify the frequency related to non-refraction
influences, we limited our analysis to the data when prominent
scintillations were observed between 18:27 and 18:51 UT on
September 8, as shown in Figure 3. The power spectra of the
detrended phase, IFLC, and signal amplitude are shown in
Figure 6. Here we only show the results for L5, as the power
spectra for L1 are very similar. Compared to the detrended
phase for different days, the power spectrum in the entire
frequency range is greater when the prominent scintillation is
observed on September 8. For IFLC on September 8 the
power spectrum is slightly higher at frequencies above 1 Hz
compared to the other days, which indicates that the non-
refractive effect mainly exists for frequencies larger than
1 Hz. This is confirmed by the power spectrum of the signal

Figure 2. Detrended phase, ru, vROTI, IFLC, and S4 at the KHO station during 6–9 September 2017. Here, the detrended phase, ru and S4 are
derived from the L5 carrier, while the vROTI and IFLC are calculated by combining the phase measurements on L1 and L5. The black arrow
indicates the period of the most intense perturbation of near-earth space, the red arrow indicates the event shown in Figure 3.
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amplitude shown in the bottom panel, as diffraction mainly
affects the signal amplitude, which shows higher values for
frequencies less than 5 Hz. By fitting the different frequency
ranges of the power spectrum of the signal amplitude, two
typical features are identified: a nearly flat value for frequencies
below 1 Hz, and a power-law spectrum for frequencies between
1 and 5 Hz. As explained by Yeh & Liu (1982), the later part
following the power-law spectrum is related to the diffraction
caused by the plasma irregularities smaller than the Fresnel scale
size. As no significant amplitude fluctuations are seen following
the power-law spectrum on September 6, 7, and 9, it indicates
an absence of plasma irregularities less than the Fresnel scale
size.

Figure 7 highlights the ratio between the detrended phases on
L5 and L1 from 18:28 to 18:51 UT. According to the different
power spectral features shown in Figure 6, the data have been
divided into frequency bins of 0.1–1 Hz, 1–5 Hz, and
5–25 Hz, representing pure refraction, diffraction-modulated
refraction, and high-frequency noise, respectively. To visualize
the relationship between the dual-frequency phase, linear regres-
sion is used to fit the series of detrended phases in the three dif-
ferent frequency ranges. On September 6 (top of Fig. 7) there
was no significant scintillation observed. The fitted slopes in
the three frequency intervals are 1.00, 0.77, and 0.53, and the
correlations are 0.97, 0.74, and 0.46, respectively. The phases
of L1 and L5 show good uniformity in the low-frequency

Figure 3. Detrended phase, ru, vROTI, IFLC, and S4 of PRN = 09 at the KHO station during 18:00–21:00 UT on 5–9 September 2017. Results
for the carrier L1 and L5 are presented separately in Figures 3a and 3b. Different colors represent different dates. Black arrows point to several
distinct scintillation events.

Y. Zheng et al.: J. Space Weather Space Clim. 2022, 12, 40

Page 6 of 15



interval, indicating that the refraction effect during the geomag-
netic quiet period is well removed by the Butterworth filtering at
0.1 Hz. In the middle and high-frequency ranges, the fitting
slopes decrease due to additional random noise. On September
8 (bottom of Fig. 7), when intense scintillation was observed
in the same UT interval, a strong linear relation is seen between
the detrended phases of L1 and L5, with a fitted slope of 1.72 and
a confidence interval [1.717, 1.723], which is very close to the
theoretical value of

f 2j
f 2i
¼ 1:79 as indicated in the equation (2).

The correlation coefficient also reached as high as 0.99. This
result confirms that refraction variations of the detrended carrier

phases of L1 and L5 remain in the scintillation event. For the
second frequency range, the slope of the linear regression and
the correlation coefficient reduces to 1.36 and 0.85, respectively.
This result suggests that although refraction dominates the phase
variation, additional diffraction appears, leading to a reduced
linear relation between the phase variations of L1 and L5. For
the third frequency range, the slope of the linear regression
decreased to 0.53 and the correlation coefficient was only
0.37, indicating that high-frequency noise dominates.

Moreover, the high-frequency noise seems also to be
enhanced on the geomagnetic disturbed day.

Figure 4. Zoomed in for the detrended phase on L1 and L5, vROTI, and IFLC of PRN = 09 at the KHO station on (a) 6 September 2017, and
(b) 8 September 2017.

Figure 5. Power spectra of detrended phase of L1 (blue) and L5 (red), as well as IFLC (yellow) from 6–9 September 2017.
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Figure 6. The power spectra of detrended L5 phase, IFLC, and L5 amplitude on different days (marked with different colors) in September
2017. The data considered here are from 18:28–18:51 UT each day, as the most severe scintillation occurred in this UT interval on 8 September
2017.

Figure 7. Linear fits for different frequency intervals of phase between L1 and L5 (0.1–1 Hz, 1–5 Hz, 5–25 Hz, respectively), the blue curve
shows the results of the fit. The top row is for 6 September 2017, and the bottom row is for 8 September 2017.
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All the results presented above originate from the KHO
station. However, the other three stations show very similar
results during the geomagnetic storm, so we do not repeat those
figures here.

3.3 Ionospheric scintillation characteristics before
and during the geomagnetic storm

In the previous section, we mainly focused on the occur-
rence of scintillation during a geomagnetic storm. As we aim
to find out different characteristics between scintillation events
before and during the geomagnetic storms, in this part we will
have a further look at the scintillations observed before the
storm (on September 5), marked as event 1 and event 2 in
Figure 3. A common feature between the two events is strong
fluctuations in the detrended phase, ru and vROTI, but with
almost no perturbation of IFLC, which is different from the
storm-time ionospheric scintillation events discussed in
Section 3.2.

We first have a look at the scintillation event 1 occurring
from 19:21 to 19:27 UT on September 5. As the variations of
power spectra are very similar for L1 and L5, here we only
show the results from L5. We see that the power spectrum of
the detrended phase at frequencies up to 5 Hz is slightly larger
than the values on September 6, which is considered a reference
level for the situation without scintillation. The power spectrum
of IFLC maintains more or less the same value in the whole
frequency range for both days, indicating that the relatively
higher power spectrum at times of high scintillation is removed
from the IFLC. A further spectrum analysis is shown in Figure 8
to highlight that the phase fluctuations appear mainly in the

low-frequency interval, and the IFLC power spectrum is not
significantly different compared to the other days, but the ampli-
tude spectral power shows significant fluctuations. That is, the
variations of IFLC do not correspond well with that of S4.

For the scintillation event 2 observed from 19:42 to
19:54 UT on September 5, the detrended L5 phase shows
similar features in the power spectrum; frequencies up to
5 Hz are slightly enhanced on September 5 compared to
September 6, which has been eliminated in the IFLC. Different
from the first event, the power spectrum of the signal amplitude
does not show a power-law feature for frequencies 1–5 Hz,
which is in fact consistent with the absent S4 fluctuations of
event 2 as shown in Figure 3b. It also suggests that the event
2 is dominated by the refraction effect, without a significant
contribution from diffraction and other high-frequency noise.

To better understand the power spectrum of scintillations
before and during the geomagnetic storm, we further show
the relative power spectra for the four scintillation events dis-
cussed above. The relative spectra are derived by subtracting
their averaged spectra on the other four days when no scintilla-
tion is observed. In addition, a 2 Hz wide moving boxcar is
applied to smooth out the fast variations in the relative power
spectra. The result is shown in Figure 9. A prominent feature
in the top panel is that the IFLC has a generally higher power
spectrum at all frequencies for the scintillation events on
September 7 and 8 (during the geomagnetic storm), while the
other two scintillation events observed on September 5 (before
the geomagnetic storm) have a lower spectrum. Looking at the
two events on September 5, the relative power spectrum of
IFLC is also slightly higher for event 1 (with amplitude scintil-
lation) than for event 2 (without amplitude scintillation). For the

Figure 8. The power spectra of detrended L5 phase, IFLC, and L5 amplitude on 5 September 2017 (blue) and 6 September 2017 (red). The left
column shows the results for event 1 observed between 19:21 to 19:27 UT, and the right column shows the results for event 2 observed between
19:42 to 19:54 UT. The data during the same UT intervals on 6 September 2017 are added here as a reference to the situation without
scintillation.
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spectra of signal amplitude (bottom panel), event 1 on Septem-
ber 5 shows a very similar spectrum variation to the two events
during the geomagnetic storm. In addition, a clear power-law
spectrum is seen at frequencies roughly from 1.5 to 5 Hz, sug-
gesting that the diffraction effect dominates in this frequency
range for all three scintillation events. For event 2 on September
5, the power spectrum of the signal amplitude stays at a very
low value in the whole frequency range, indicating the absence
of the diffraction effect.

4 Discussions

4.1 Scintillation classification by different indices

Though different indices were proposed to reflect or monitor
ionospheric scintillation, they do not always show simultaneous
fluctuations when scintillation occurs. The detrended carrier
phase and ru are directly related to the phase variations. As
mentioned in the Introduction, applying a high-pass filter to
the carrier phase is a common approach to remove the refrac-
tion-driven variations. However, the plasma drift velocity at
high latitudes can vary by one or two orders of magnitude, so
setting the cutoff frequency of the high-pass filter (correspond-
ing to the Fresnel frequency) at a fixed threshold (e.g., 0.1 Hz) is
not a promising way for the carrier phase processing a high
latitude (e.g., Wang et al., 2018; McCaffrey & Jayachandran,
2019). Consequently, both refraction and diffraction effects
can co-exist in the indices, detrended phase and ru.

The index vROTI has combined the phase measurements
from two carriers and is defined as the rate of change of

TEC, so it is sensitive to the gradient of TEC. As seen from
in-situ electron density measurements from low Earth orbiting
(LEO) satellites, the post-sunset equatorial plasma bubble
(e.g., Su et al., 2006; Stolle et al., 2008; Xiong et al., 2010)
and high-latitude plasma patches (e.g., Jin et al., 2014; Xiong
et al., 2019) are usually associated with strong plasma density
gradient at the meso-scale size. Therefore, the vROTI is useful
for tracing these meso-scale irregular structures. However, as
pointed out by Bhattacharyya et al. (2000), ROTI can also be
elevated in the presence of TEC gradients associated with
large-scale ionospheric structures, e.g., at the crest edge of the
equatorial ionization anomaly (EIA). This feature is especially
prominent for the ROTI derived from the receiver onboard
high-inclination LEO satellites, which usually have a speed of
7.5 km/s to fly through the equatorial and poleward edges of
the EIA crest within a few minutes. From this perspective, the
fluctuations in vROTI are caused by not only the diffraction
(gradient associated with small-scale structures) but also the
refraction (gradient associated with large-scale structures)
effects (e.g., Spogli et al., 2013; Demyanov et al., 2019). This
also explains why the ROTI at high latitudes often shows con-
sistent fluctuations with the detrended carrier phase and ru,
though they are not always consistent (Jin et al., 2017). In addi-
tion, the sampling interval (Carrano & Groves, 2007;
Demyanov et al., 2019; Li et al., 2022) and viewing geometry
between the receiver and GNSS satellite ray path (Yang &
Liu, 2016) both have a significant influence on the ROTI deriva-
tion. Therefore, additional care must be taken for interpreting
the variations of ROTI (Carrano et al., 2019).

Similar to vROTI, IFLC is also calculated by combining
phase measurements of two carriers. However, the refraction

Figure 9. Relative power spectra of IFLC and signal amplitude for four scintillation events during and before the geomagnetic storm.
PRN = 30–7th represents the scintillation event that occurred at midnight on 7 September 2017, as marked by the black arrow in Figure 2,
corresponding to the period of the most intense perturbation of near-earth space in Figure 1b. PRN = 09–8th represents the scintillation event
that occurred on 8 September 2017, as marked by the red arrow in Figure 2. PRN = 09–5th-1 and PRN = 09–5th-2 represent the scintillation
events on 5 September 2017 from 19:21 to 19:27 UT and 19:42 to 19:54 UT, respectively.
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contribution has been removed as seen in equation (4). There-
fore, the remaining fluctuations in IFLC are mainly related to
diffraction and high-frequency noise. As the amplitude scintilla-
tion index, S4 is also only attributed to the diffraction effect, it is
expected that the S4 will show consistent variations with IFLC if
the high-frequency noise has been ignored. This is true for the
scintillation from 18:27 to 18:51 UT on September 8 and scin-
tillation event 2 on September 5 (see Fig. 3). The IFLC and S4
show consistent variations, with prominent fluctuation and no
fluctuation in the two events, which also suggests that the
diffraction effect exists and is absent in the two events, respec-
tively. Quite different is the scintillation event 1 on September
5, as only S4 show a clear enhanced value (persisting for about
6 min), and no clear fluctuation is seen in the IFLC. A possible
reason for the difference between IFLC and S4 will be discussed
in Section 4.2.

As discussed above, we have further roughly divided the
scintillation events into four categories: (1) phase indices, IFLC,
and S4 all show simultaneous fluctuations; (2) both phase
indices and S4 show simultaneous fluctuations, but not IFLC;
(3) both phase indices and IFLC show simultaneous fluctua-
tions, but not S4; (4) only phase indices show fluctuation, but
not IFLC and S4. The fluctuation is defined if the index variation
is greater than three times its standard deviation over the entire
observed time period.

The occurrence ratio of the four types of scintillation
events from the four Svalbard stations in Norway is shown in
Figure 10. The results before (September 5 and 6) and
during (September 7 and 8) the geomagnetic storm are pre-
sented in blue and red colors, respectively. We see the first
and second types of events belong to the majority, and the

first type is the most common, while the third and fourth
types are relatively rare. In addition, the first type is more fre-
quent during the geomagnetic storm than before the storm,
and it is true for all four stations, while the other three types
do not show any consistent storm dependence among the four
stations.

4.2 Relation between IFLC and S4

As seen from equation (4), the IFLC is good to reflect the
diffraction effect, therefore it is expected to correspond well
with the variations of S4. However, as indicated by the second
and third types of events in Figure 10, the IFLC does not always
correspond well to S4. To better investigate the relationship
between the two indices, we performed a statistical analysis
of scintillation events before and during the geomagnetic
storms, and the result is shown in Figure 11. No clear linear
regression is seen between the S4 and IFLC. The absolute values
of IFLC before the geomagnetic storm are generally lower than
that during the geomagnetic storms, but such a feature is not
seen in S4. Such a storm dependence on IFLC explains the
increased occurrence of the first type of events during the geo-
magnetic storm.

As mentioned earlier, diffraction-modulated refraction
effects can be divided into pure refraction effects and diffraction
effects. The former frequency is mainly affected by the rate of
electron density change associated with irregularity (e.g., Kintner
et al., 2007), while the latter depends on the irregularity drift
velocity relative to the ionospheric piercing point (McCaffrey
et al., 2018). Therefore, the signal received by the receiver is a
superposition of both the refraction and diffraction-modulated

Figure 10. Occurrence ratios of the four types of scintillation events observed from the four Svalbard stations in Norway. For each station, the
events from left to right represent: (1) phase indices, IFLC, and S4 all show fluctuations; (2) both phase indices and S4 show fluctuations, but not
IFLC; (3) both phase indices and IFLC show fluctuations, but not S4; (4) only phase indices show fluctuation, but not IFLC and S4. Events
before (5–6 September 2017) and during (7–8 September 2017) the geomagnetic storm are represented by blue and red colors, respectively.
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signals. Let’s take a simple sine wave signal with a fixed
frequency as an example, the superimposed signal satisfies the:

Sr ¼ Ar cos xt � k � r þ urð Þ

Sd ¼ Ad cos xt � k � r þ udð Þ

S ¼ Sr þ Sd ¼ A cos xt � k � r þ uð Þ

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
d þ A2

r þ 2ArAd cos ur � udð Þ
q

u ¼ arctan
Ar sin urð Þ þ Ad sin udð Þ
Ar cos urð Þ þ Ad cos udð Þ

� �

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

; ð10Þ

where Sr is the refraction signal, Sd is the diffraction signal,
Ar is the amplitude of the refraction signal, Ad is the amplitude
of the diffraction signal, ur is the phase change of the signal
due to refraction, ud is the phase change of the signal due to
diffraction, x is the angular velocity, t is the signal propaga-
tion time, k is the wave vector, r is the signal propagation
distance.

When Ar equals to Ad , the last two relations simplify to:

A ¼ 2Ar cos
ur � ud

2

	 


u ¼ ur þ ud

2

8>><
>>: : ð11Þ

From equation (11), we see that the amplitude of the superim-
posed signal is jointly affected by diffraction and refraction
effects, and their relative contributions to the final amplitude

variation are uncertain for different scintillation events. How-
ever, the refraction and diffraction contributions to the phase
of the superimposed signal are linearly additive. Although the
IFLC has removed the refraction part, the diffraction-driven
phase variation in IFLC is still additive. This is only a simplified
consideration, a more rigorous theory can be found in the
related studies of the model (e.g., Gherm et al., 2005). In real
ionospheric scintillation, the diffraction and refraction contribu-
tions are not equal, which will lead to a non-linearly additive
part of the phase. And their joint effect should be obtained by
the integration rather than a simple summation. In addition,
the diffraction effect on the two carrier signals (L1 and L5) does
not correlate well, and since IFLC is a combination of two
carrier signals, the diffraction effect embodied by IFLC is even
less likely to correlate well with the diffraction effect on the
amplitude. It is also important to note that the low magnitude
diffractive variations are eliminated in IFLC as well (McCaffrey
& Jayachandran, 2019), which may lead to the easier observa-
tion of S4 fluctuations compared to IFLC, as shown in event 1 in
Figure 8. But there is no doubt that the increase in high-
frequency power is clearly seen in the phase power spectrum
during the geomagnetic storm (as shown in Fig. 9), which leads
to an increase of IFLC during the geomagnetic storm. In con-
trast, in the amplitude power spectrum, we can only see the
effect of diffraction, and no increase in high-frequency power
is found in the amplitude power spectrum before and during
the geomagnetic storm. We suggest that the enhanced IFLC
during the geomagnetic storm is caused by the increased
high-frequency phase power, which should be related to the
enhanced density of small-scale irregularities during storm
periods. Moreover, in the IFLC frequency relative spectrum

Figure 11. The IFLC and S4 variations for scintillation events observed from 5–8 September 2017. Scintillation events before (5–6 September
2017) and during (7–8 September 2017) the geomagnetic storm are presented in blue and red colors. Scintillation events from the four different
stations are marked with different symbols.

Y. Zheng et al.: J. Space Weather Space Clim. 2022, 12, 40

Page 12 of 15



of Figure 9, we can see that the increase of IFLC during the geo-
magnetic storm is in the full frequency interval. We cannot
exclude that the increase of IFLC during the geomagnetic storm
is also influenced by diffraction and refraction (higher-order
influence of the refraction effect and the change of the refraction
path) enhancement. The enhancement of diffraction may be
due to the increase in the number of Fresnel-scale plasma
irregularities in the ray path.

5 Summary

In this study, we used the high-resolution (50 Hz) phase and
amplitude measurements from four high-latitude GNSS stations
in Svalbard (Norway), for investigating the refractive and
diffractive contributions to the ionospheric scintillation during
the geomagnetic storm on 7–8 September 2017. The main find-
ings are:

1. At high latitudes, the high-pass filter with a standard cut-
off frequency at 0.1 Hz sometimes cannot effectively
remove the refraction-driven phase variation, especially
during a geomagnetic storm, leading to remaining refrac-
tion contribution to the detrended carrier phase and ru
when scintillation occurs, while IFLC can better represent
phase variations driven by non-refraction effects. In the
meanwhile, as vROTI is sensitive to the TEC gradients,
regardless of small- or large-scale ionospheric structures,
therefore both refraction and diffraction effects can cause
fluctuation of vROTI.

2. For most of the scintillation events during the geomag-
netic storm, the phase indices (including detrended carrier
phase, ru, and vROTI), IFLC and S4 show consistent fluc-
tuations, indicating the diffraction effect usually occur
simultaneously with the refraction effect during active
scintillation.

3. Both the IFLC and S4 were thought to be related to the
diffraction effect. Although they respond simultaneously,
they are not always correlated, which is the result of
multiple factors. The IFLC seems to be enhanced during
the geomagnetic storm, but such a feature is not seen in
S4. We suggest that the enhanced IFLC during the geo-
magnetic storm is caused by the increased high-frequency
phase power, which should be related to the enhanced
density of small-scale irregularities during storm periods.
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