
Consistency of Heterogeneously Typed
Behavioural Models: A Coalgebraic Approach

Harald König1,2 and Uwe Wolter3

1 University of Applied Sciences, FHDW, Hannover, Germany
harald.koenig@fhdw.de

2 Høgskulen på Vestlandet, Bergen, Norway
3 University of Bergen, Norway

uwe.wolter@uib.no

Abstract. Systematic and formally underpinned consistency checking
of heterogeneously typed interdependent behavioural models requires a
common metamodel, into which the involved models can be translated.
And, if additional system properties are imposed on the behavioural
models by modal logic formulae, the question arises, whether these for-
mulae are faithfully translated, as well.
In this paper, we propose a formal methodology based on natural trans-
formations between coalgebraic specifications, which enables state-space
preserving translations into a category of homogeneously typed systems,
and we determine mild assumptions for the transformations to guarantee
preservation and reflection of truth of translated formulae.

Keywords: Heterogeneous Behavioural Models, Coalgebra, Reactive Sys-
tem, Modal Logic, Category Theory

1 Introduction and Motivation

In model-based software projects, heterogenous(ly structured) but interdepen-
dent behavioural models can occur. These models may, however, prescribe the
same (or overlapping parts of the same) real-world behaviour: A class diagram
may prescribe domain services, a BPMN 4 diagram may model a process, in
which these services are invoked (in a certain sequence). Although the behaviour
of these systems is based on states and state changes, the concrete stimuli and
effects of state changes are different. Beside the above example, there are la-
belled transition systems with or without output (per state or per transition),
deterministic or non-deterministic, possibly timed or probabilistic.

Model checking is an automated technique that, given a finite-state model
of a system and a formal property, systematically checks whether this property
holds for (a given state or computation path in) that model. Usually, the prop-
erty is given in terms of a formula in modal logic. Automatic verification of
this formula is carried out on a homogeneously structured transition structure,
4 https://www.omg.org/spec/BPMN/2.0/PDF

http://orcid.org/0000-0001-6304-6311
http://orcid.org/0000-0002-7553-9858

2 Harald König and Uwe Wolter

which is derived from the behavioural structure of a system, usually a Kripke
Frame. To consequently model check a complete ensemble of interacting, but
heterogeneously structured artefacts, formulas of modal logic can only formally
be imposed on them, if the different involved types of transition structures are
translated into a homogeneous transition structure. We call a formula, which
spreads over different systems an inter-model constraint. In the sequel, we will
consider such an ensemble of heterogeneously typed transition structures. For-
mulas can be imposed on single local components or they are global inter-model
constraints.

In this paper, we propose a formalism for the translation of components’
shapes into a common transition structure, enabling uniform formal reasoning
about their interaction. The translation will not alter the state space, but only
the transition structure. When translating local components’ behaviour into a
common formalism, formulas imposed on the local component, e.g. liveness or
termination properties, must also be translated. Moreover, these local constraints
interact with the global inter-model constraints: They might contradict each
other or the former is a logical consequnce of the latter, etc. Thus, the following
research questions arise:

1. How can we formally define the translation into a common type of transition
structure?

2. Can we expect preservation (and reflection) of formula validity during a
translation? If not, which requirements must the translation fulfill for formula
validity invariance?

We will use coalgebras for the all-embracing metamodel of reactive systems.
We think that this is the consequent continuation of the theory of institutions
[19], where algebraic specifications (understood as endofunctors F), specification
morphisms (natural transformations between functors), and logical formulas en-
able a comprehensive view on heterogeneous data structures. It is an old insight
[18] that dualisation of the structure maps of algebras enables an elegant descrip-
tion of behavioural systems instead of data structures and that logical formulas
in the algebraic settings are replaced by formulas of a modal logic. Finally, coal-
gebras enable a comprehensive view on heterogeneous behavioural structures.

In this paper, we present the following novelties:

– We show how to synchronize reactive systems of different behavioural specifi-
cations in general. For this, we use coalgebras and corresponding specification
morphisms.

– We provide a criterion characterizing preservation and reflection of validity
of modal logic formulas during translation along specification morphisms.

The investigated temporal operators are based on predicates imposed on state
spaces, i.e. we emphasize more the branching-time perspective of CTL (Com-
putation Tree Logic) than the linear-time perspective of LTL (Linear Temporal
Logic). For a comparison of these two logics, see [1].

Section 2 presents a practical problem, which has already been elaborated in
a similar form in [11] and which is picked up in the paper each time a theoretical

Consistency of Behavioural Models 3

result must be illustrated. Section 3 reports on the necessary background and
Section 4 presents the main results (Proposition 1 and 2) and applies them to
the running example. Sections 5 and 6 conclude the paper.

2 Running Example

The process of fixing bugs, which have been reported as tickets by users of
a software application, may be captured in a BPMN diagram, which models
the ticket handling workflow. Automatic activities in this workflow rely on the
existence of services provided by a backend system, seeing Activity ”Analyse
Ticket Database” in Fig. 1.

Fig. 1. BPMN Model with different decision points

Abstraction in BPMN Models: For the sake of simplicity we assume that
each service task requests exactly one method of the backend system and that
the output of the method call does not directly influence the process instance’s
state, e.g. the (business rule) task ”Classify Ticket” is always the successor of
”Analyse Ticket Database” independent of the output of the invoked method in
the latter task.

The further activities in Fig. 1 are as follows:

– The automatic activity ”Analyse Ticket Database” invokes a method in the
backend system, which exploits a knowledge database, in order to provide
(semi-)automatically a solution for the current ticket. Depending on this
data and the ticket classification, evaluation of Condition A decides, which
of the following two branches is chosen.

4 Harald König and Uwe Wolter

– In the upper branch, a user activity enhances possibly missing information
in the ticket. In the lower branch, more information is received by an inter-
mediate catching event.

– Evaluation of Condition B and Condition C depend on this additional data
and trigger one of the four activities {AB,AB,AC,AC}, which may or may
not be automatic tasks and which may update the backend system with new
information.

Consequently, the state of the data in the backend system influences state
changes of the process instance and vice versa, thus:

The behaviours of the backend system and the workflow management system
mutually depend on each other.

The software application may be run by customers of a software company, who
sells this software, or it may as well be a ready-to-use solution built by a company
on its own. In either case, service-level agreements (SLA) are offered in order
to ensure the quality of bug fixing for the users. A typical agreement prescribes
solutions to be provided as a software patch, which automatically updates the
current software version and removes the reported bug (high-quality solution).
In contrast, a low-quality solution is a temporary workaround being carried out
by the user, for example, a change in the configuration of the application.

Often these promises are subject to certain preconditions: A software patch
will be provided, only if the user’s software runs in a certain mature version
(and not in a recently offered ”Alpha”-version). This information may or may
not be present prior to process start: If the information is not already stored in
the backend system, it has to be retrieved by further inquiries, e.g. ”Enhance
Ticket Data”, in Fig. 1.

Let us assume that a high-quality solution like the patch provisioning is
present, if one of the actions AB or AC has terminated, two crowns at state
1 and 4 in Fig. 1 (a single crown indicates low-quality solutions). It is then a
goal for the software provider to guarantee his promise by using a formal model
checking procedure. For this, a predicate V is defined which holds in a certain
state, if the given software Version of the ticket reporter is some mature version.
Furthermore, one can define a predicate H, which can be imposed on states of
BPMN processes indicating the possibility to provide a High-Quality Solution.
Since the process is not yet finished in states 1 to 4, predicate H could be
invalidated due to other activities or events, hence we formulate the SLA by

”Inter-Model Constraint” φ: If the system is in a state with property V , then
for each computation path, we eventually reach a state, from which henceforth

property H holds.

Of course, this formula interacts with already given formulas on the local systems
for example termination or liveness requirements of the BPMN-workflow. If ψ is
such a formula, one has to ensure for instance, that φ and ψ are not contradictory.
Moreover, if ψ is a logical consequence of φ, it is not required to be checked, but
can be considered to be fulfilled, if φ holds.

Consistency of Behavioural Models 5

The goal is now to use established model checkers to prove validity of the
involved temporal formulas. In order to check validity of inter-model-constraints,
one has to define a comprehensive state space of Backend System and BPMN
process models especially taking into account their interactions (see above). We
face two problems:

1. How can we formally define this comprehensive state space?
2. Shall validity of a local constraint ψ be checked on the local state space or

on the comprehensive state space? Can we expect to obtain the same result?

A challenge is to cope with private and common features of these two transition
structures: A feature is private, if it is known only to one of the structures and
not known to the other, e.g. the backend system knows nothing about incoming
events and roles (not shown in Fig. 1) of the BPMN process, the BPMN process
does not consider outputs of the backend system’s methods. An exception is
the output of a condition’s evaluation, which we can, however, interpret as an
event, which lets an event-based gateway decide the alternative. Finally, common
behaviour of both systems are states and method-call-triggered state changes
(requests in the BPMN tasks and invocations of methods in the backend system).

In the next sections, we show how to translate different types of transition
structures into an appropriate common transition structure. We illustrate our
general approach by encoding (1) stateful backend systems and (2) BPMN pro-
cess models as coalgebras.

3 Background

3.1 Notation

X
f
// Y

FX
Ff
//

ηX

��

FY
ηY

��

GX
Gf
// GY

Fig. 2. Naturality Square

We use the following notations: SET is the category
of sets and total mappings. For two sets X and Y we
write Y X for the set of all total maps from X to Y .
Special sets are 1 = {∗} (any singleton set) and 2 =
{true, false}. Instead of the set of all partial maps
A

f−⇀ B between two sets A, B we consider the set of

all total maps A
f
// 1 +B , i.e. f(x) is undefined if

and only f(x) = ∗. Both sets are isomorphic in SET .
For functors between different categories we will

use calligraphic letters like F , G, or H. ID is the
identity functor on SET . Application of a functor
F : C → D will always be written without parenthe-
ses, e.g. FX (for objects) and Ff (for morphisms).
The power set functor is ℘ : SET → SET . ℘fin : SET → SET will denote the

functor assigning to a set the set of its finite subsets. For X
f
// Y and a

subset A ⊆ X, defined by a condition ϕ, we write

f(A) := {f(x) ∈ Y | ϕ(x)} if A = {x ∈ X | ϕ(x)},

6 Harald König and Uwe Wolter

which is the application of ℘f to A. To distinguish f from this counterpart, we
often write f(_) for ℘f and likewise for ℘finf .

Diagrams always depict commutative diagrams, e.g. the square in Fig. 2 is
automatically assumed to be commutative, specifying the condition for a natural
transformation η : F ⇒ G, i.e. a family (ηX)X∈|C| : FX → GX of D morphisms
indexed by C’s object collection (which we denote by |C|) if F ,G : C → D.

3.2 Coalgebras

The investigation of heterogenous(ly typed) reactive systems requires a meta-
model, which captures as many behavioural specifications as possible. A be-
havioural ”specification” describes the way a system interacts with the environ-
ment. For deterministic labeled transition systems (DLTS) over an alphabet A,
this specification is the set (1+X)A, because for each system state a partial map
assigns to an event a ∈ A (from the environment) at most one follow-up state. In
contrast to that, non-deterministic finitely-branching systems (NLTS) are based
on an assignment x 7→ c(x) ∈ ℘fin(A×X) for all states x, i.e. (a, y) ∈ c(x)
means that in state x the event a may cause a state change from x to y. 5

We obtain a common template for encoding different types of transition struc-
tures: They can formally be described by an assignment F : |SET | → |SET |, e.g.
X 7→ (1 +X)A for DLTS or X 7→ ℘fin(A×X) for NLTS. Analogously, one can
find similar assignments for all other types of transition structures. Moreover, in
all cases, cf. [18], these assignments extend to functors F : SET → SET .

Example 1 (LTS) The functor

G :
{ SET −→ SET

X
f
// Y 7→ (1 +X)A

(id1+f)◦_
// (1 + Y)A

encodes DLTS and NLTS are specified by the functor

℘fin(A× _) :

 SET −→ SET

X
f
// Y 7→ ℘fin(A×X)

(idA×f)(_)
// ℘fin(A× Y)

Example 2 (Modules of Object-Orientated Programs, [9,17]) A package
or a module of classes in an object-oriented environment with n visible methods
(mj(x : Ij) : Oj)j=1..n in its facade can be encoded as a coalgebra for the functor
F1, which maps a set X to the Cartesian product of the family ((Oj ×X)Ij)j=1..n

of sets of maps

F1X =
n∏

j=1
(Oj ×X)Ij .

5 Other examples of reactive systems are finite or infinite streams, automata with out-
put (i.e. UML state charts), activity diagrams or BPMN diagrams (with or without
guard conditions) and probablistic or timed automata [18].

Consistency of Behavioural Models 7

An F1-system c : X → F1X represents a tuple (m1, ...,mn) of maps, in which
mj(x) is the application of method mj for input i ∈ Ij. Depending on state x, it
produces an output o ∈ Oj and a new state x′ ∈ X.

Generalizing Example 1 and 2, we define

Definition 1 (F-Coalgebra). Let F : SET → SET be a functor. An F-
coalgebra (X, c) or F-system is a map X

c // FX .
In the context of coalgebras, F is called a (specification of a) transition struc-

ture and c is the (transition) structure map.

Furthermore, F-coalgebras constitute themselves a category: A homomor-
phism between F-coalgebras (X, c) and (Y, d) is a map h : X → Y , for which

d ◦ h = Fh ◦ c.

Note that homomorphisms not only preserve, but also reflect the transition struc-
ture: The graph {(x, h(x)) | x ∈ X)} of h yields a bisimilarity on X × Y [18].

It is then easy to see that we can give the following definition, see also [18].

Definition 2 (Category of F-Coalgebras). The category F-Coalg has ob-
jects F-coalgebras, see Def. 1, and morphisms the F-coalgebra homomorphisms.
Identities are identical maps idX and composition is composition of set maps.

The existence of initial objects in categories of algebras yields many im-
portant insights such as the principle of induction, initial semantics and term
generation [22]. Dually, it is important that categories of F-coalgebras possess a
final object.6 Corresponding resulting aspects are the principles of final seman-
tics: The unique arrow from a coalgebra into the final object usually assigns to
each state its behavioural semantics w.r.t. bisimilarity [10], for coalgebras with
no proper quotient one obtains the principle of coinduction, which is a template
for recursive implementations of algorithms e.g. on streams [18] etc.

Not every functor F yields reasonable coalgebras, especially for practical
purposes in computer science, because there may not be a final object in F-Coalg.
A prominent example is the power set functor X 7→ ℘(X). Using Lambek’s
Theorem (”If F-Coalg possesses a final object (Z, ζ), then ζ is a bijection.”, see
[10], Lemma 2.3.3.) and Cantor’s diagonal argument (X ̸∼= ℘(X) for all sets X),
it is clear that there is no final object in ℘-Coalg. It is, however, possible to show
that this deficit vanishes, if one restricts to the functor ℘fin(_), see 3.1.

Because of these natural restrictions, we will consider the following restricted
collection of SET -endofunctors, whose respective category of coalgebras can be
shown to possess a final object [18], and which are sufficient to deal with all
important types of transition structures in computer science:

Definition 3 (Kripke Polynomial Functors - KPF , [10]). The collection
KPFof SET -endofunctors is defined inductively as follows:
6 An initial / a final object in a category C is an object 0/1, for which there is exactly

one morphism 0 → X / exactly one morphism X → 1 for all X ∈ |C|.

8 Harald König and Uwe Wolter

(1) ID is in KPF

(2) The functor ConstA defined by ConstA(X f
// Y) = A

idA // A is in
KPF for each set A.

(3) If F1,F2 ∈ KPF , so is the functor F1 × F2 defined by

(F1 × F2)(X f
// Y) = F1X × F2X

F1f×F2f
// F1Y × F2Y .

(4) If I is an index set and in an I-indexed collection (Fi)i∈I , all Fi are in
KPF , then so is the functor

∐
i∈I Fi defined by 7

(
∐

i∈I Fi)(X
f
// Y) =

∐
i FiX

∐
i

Fif
//
∐

i FiY .

(5) If A is a set and F ∈ KPF , then so is the functor FA defined by

FA(X f
// Y) = (FX)A Ff◦_

// (FY)A .

(6) If F ∈ KPF , then so is the functor ℘fin(F) defined by

(℘fin(F))(X f
// Y) = ℘fin(FX)

(Ff)(_)
// ℘fin(FY) .

It can be shown that automata with output (Moore and Mealy Machines) as
well as automata with final states can be encoded using KPF ’s, the latter by
Const2 × F for an arbitrary F in KPF .

From now on, we always assume the involved functors to be contained in
KPF . Moreover, we use the following shorthand notation for an F-coalgebra:
For any x ∈ X and y ∈ c(x), we write x // y to indicate the possibility for
x to transition to y due to structure map c. If an alphabet A is involved, this
can be extended to

x
a // y ,

for a ∈ A, for instance for F = ℘fin(A× _) and an F-coalgebra (X, c) with
(a, y) ∈ c(x).

3.3 Signature Morphisms

The example in Section 2 deals with two different behavioural systems: BPMN
diagrams and class diagrams (for which behaviour is described by specifying, how
a method application changes the object structure at runtime). In the literature
the two different metamodels are also called signatures. In universal algebra,
signature morphisms are the tool of choice to relate algebras of different signa-
tures. It is an old observation, that (unsorted) signatures can also be encoded
7 For a family (Ai)i∈I of sets the coproduct (sum)

∐
i∈I

Ai denotes the disjoint union
of all the sets Ai, i ∈ I.

Consistency of Behavioural Models 9

with SET -endofunctors T , where algebras are maps α : T X → X, and if cate-
gories of algebras are defined in such a way, then it is easy to see that signature
morphisms can be encoded as natural transformations between the respective
specifying functors [3]. Moreover, these transformations yield - by precompo-
sition - a ”forgetful” functor in the opposite direction between the respective
categories of algebras.

For coalgebras, we use the dual approach: Given a natural transformation
η : F ⇒ G, an F-system (X, c) can be translated by postcomposition

X

ηX ◦c

55
c // FX

ηX // GX

into a G-system (X, ηX ◦ c). For F-Coalg-homomorphism h : (X, c) → (Y, d), we
obtain Gh ◦ (ηX ◦ c) = (ηY ◦ d) ◦ h by naturality, thus:

Lemma 1 (Co-Forgetful Functor) Let η : F ⇒ G be a natural transforma-
tion between two set-endofunctors. The assignment c 7→ ηX ◦ c extends to a
functor

Uη :
{

F-Coalg −→ G-Coalg
(X, c) h // (Y, d) 7→ (X, ηX ◦ c) h // (Y, ηY ◦ d)

Example 3 (Translation of Backend Behaviour to DLTS) In our running
example of Section 2, we can now translate transition structures of the backend
system to DLTS. For this we use functor F1 from Example 2 to encode the avail-
able services m1, ...,mn (methods) of the backend as an F1-system. Note that all
methods decompose into two projections: mj = (mj,1,mj,2) : Ij → Oj ×X. Since
we want the DLTS to be prepared for additional events, we choose for the functor
G of Example 1

A := I +
n∐

j=1
Ij

as its input alphabet, where I is an arbitrary set of additional input stimuli. The
translation is given by the following family of mappings indexed over X ∈ |SET |:

ηX :

∏n

j=1(Oj ×X)Ij → (1 +X)A

(m1, ...,mn) 7→ λi.

{
mj,2(i) , if i ∈ Ij for some j

∗ , if i ∈ I

where we denoted the result of ηX by a λ-expression. We omit the easy proof of
naturality of η : F1 ⇒ G but emphasize that the translation along η forgets out-
puts and enables the behaviour embedding of the backend system in a transition
structure with extended input options.

3.4 Predicate Lifting

The heart in the description of temporal operators in the next Section 3.5 is the
transformation of truth of a property from one state to its sucessor state(s) by a

10 Harald König and Uwe Wolter

structure map c in an F-coalgebra (X, c). Truth, however, is based on predicates.
If a predicate P like ”Eventually a state is reached, which guarantees a high-
quality solution.” is true on a state x, we write P (x), and we can equivalently
describe P as a subset of the state set, namely those states where P holds. That
is, the notations

P (x), x ∈ P and x |= P

for P ⊆ X (or equivalently P ↪−→ X) will synonymously be used. If x satisfies a
predicate, we want to reason whether c(x) satisfies this predicate, too. However,
c(x) ∈ FX is not a single state, but - according to F - a more complex entity
depending on the type of transition structure F .

Hence it is necessary to transform (lift) predicates that are imposed on el-
ements of a fixed set X to predicates on FX. We recall inductively defined
predicate lifting from Chapter 6 of [10] for KPF ’s: The operator

Pred(F) : ℘(X) → ℘(FX)

is defined on KPF ’s as follows: For P ⊆ X

(1) Pred(ID)(P) = P
(2) Pred(ConstA)(P) = A
(3) Pred(F1 × F2)(P) = Pred(F1)(P) × Pred(F2)(P)
(4) Pred(

∐
i∈I Fi)(P) =

∐
i∈I Pred(Fi)(P)

(5) Pred(FA)(P) = {f : A → FX | ∀a ∈ A : f(a) ∈ Pred(F)(P)}
(6) Pred(℘fin(F))(P) = {U ⊆ FX | U ⊆ Pred(F)(P)}

We illustrate this definition for DLTS: Let FX = (1+X)A, then we calculate the
lift of predicate P ⊆ X along the syntactical structure of F : Pred(1 + _)(P) =
Pred(Const1)(P) + Pred(ID)(P) = 1 + P and with that

Pred(F)(P) = {f : A → 1 +X | ∀a ∈ A : f(a) ∈ 1 + P}

i.e. the lifted predicate is true for f ∈ (1 + X)A, if all f(a) ∈ P or f(a) = ∗,
i.e. for each a ∈ A all successor states, if any, must fulfill the predicate. This
can also be expressed by saying that Pred(F)(P) contains exactly those f , for
which f(A) ⊆ 1 + P = Pred(1 + _)(P), thus, in this example, Pred(F)(P) =
(1 + P)A = FP . Indeed, this observation is always true, cf. [10], Lemma 6.1.6.:

Lemma 2 (Predicate Lifting) Let F be a KPF , X ∈ |SET |, then for each
predicate P m

↪−→ X

Pred(F)(P) Fm
↪−−→ FX

is the inclusion arrow of the lift, i.e., especially, Pred(F)(P) = FP . ⊓⊔

By structural induction along the definition of Pred(F) one can also prove:

Lemma 3 (Predicate Lifting is monotone) In the above setting

P1 ⊆ P2 ⇒ Pred(F)(P1) ⊆ Pred(F)(P2)

Consistency of Behavioural Models 11

3.5 Temporal Operators

The basic temporal operator is the ”next time”-Operator ⃝. All other operators
can be derived from it (of course by using the basic logical operators ¬ (negation)
and ∧ (conjunction)). A temporal operator depends on a given F-system (X, c)
and is usually determined by an operation on subsets P (predicates) of X: If
P ⊆ X, we denote with ⃝P the subset of FX, which contains those states,
which reach states in P after a single application of structure map c.

Note that ⃝ usually depicts a path operator, i.e. ⃝P holds for a computation
path, if P holds on the second state. Our approach is more general in that it
defines this operator for arbitrary transition structures. We will work with the
following formal definition:

Definition 4 (Next Time Operator). Let F be a KPF and (X, c) be an
F-system. We call

⃝F,c :
{
℘(X) → ℘(X)

P 7→ c−1(Pred(F)(P))

the Next Time-Operator. For x ∈ X we write x |=F,c ⃝P , if x ∈ ⃝F,cP ,
equivalently, if c(x) ∈ Pred(F)(P), or short

x |= ⃝P

if F and c are clear from the context.

E.g., for DLTS: x |= ⃝P ⇐⇒ ∀a ∈ A, x′ ∈ X : (x a // x′ ⇒ x′ |= P).
In the sequel, fixed points of operators on power sets are important. Clearly,

a fixed point of an operator op : ℘(X) → ℘(X) is a subset Q of X, for which
op(Q) = Q. They are of major importance, if one considers monotone operators
(i.e. P ⊆ Q ⇒ op(P) ⊆ op(Q)) on the boolean algebra (℘(X),⊆), because a
consequence of the Theorem of Knaster and Tarski [20] yields

Lemma 4 (Fixed Points) A monotone operator op : ℘(X) → ℘(X) possesses
a least and a greatest fixed point written µS.op(S), νS.op(S), resp. Furthermore,
if X is a finite set, there is n0 ∈ N, such that

µS.op(S) =
n0⋃

k=0
opk(∅) and νS.op(S) =

n0⋂
k=0

opk(X).

Remark 1 (Finiteness) We do not formulate the Knaster-Tarski Theorem in
its full generality for arbitrary (infinite) sets, because we do not want to deal
with the intricacies of approximants in the modal µ-calculus [4].

⃝F,c is a monotone operator by Lemma 3, and so is the operator ¬ ⃝F,c ¬S
where ¬S denotes set complementation. Hence - from Lemma 4 - we can intro-
duce the following existential path operators: For a fixed F-system (X, c) and
subsets P and Q of X

12 Harald König and Uwe Wolter

– ∃□P := νS.(P ∩ ¬ ⃝ ¬S) (henceforth)
– ∃P U Q := µS.(Q ∪ (P ∩ ¬ ⃝ ¬S)) (until)

In words: x |= ∃□P , if there is a computation path starting at state x, on which
P holds forever, x |= ∃P U Q, if on a path from x, P holds for a while (maybe
never) until Q holds once.

It is well-known [1] that all important temporal operators (e.g. of CTL) can
be derived from these two operators, e.g. the constant true (intersection of an
empty collection of sets) and further operators like ∃♢P = ∃true U P and with
that

∀□P := ¬∃♢¬P

denoting that henceforth on all paths property P holds. Similarly

∀♢P := ¬∃□¬P

means, that for all computation paths, P holds eventually. We write ΩF,c for
any such temporal operator Ω, if the dependency from F and c is important.

The goal of the next section is to give an answer to both research questions
on page 2: We define an appropriate common type of transition structure in
order to formally define the inter-model constraint

φ := (V ⇒ ∀♢(∀□P))

on page 4 in Section 2 and show that checking local formulas is independent of
the underlying transition structure.

4 Formula Translation

4.1 Truth Preservation
P
� � m // X

Pred(F)(P) �
� Fm //

ηP
��

FX
ηX

��

Pred(G)(P) �
�

Gm
// GX

Fig. 3. Naturality Square
for Predicate Inclusion

In this section, we investigate how truth can be trans-
lated from F-Coalg to G-Coalg with the co-forgetful
functor Uη : F-Coalg → G-Coalg from Lemma 1 based
on a natural transformation η : F ⇒ G for two KPF ’s
F and G. The results are important fundaments for
the question, how formulas of temporal logic in dif-
ferent reactive systems interact with each other in a
heterogeneous modeling environment. In this context,
the following definition is important:

Definition 5 (Cartesian along Inclusions).
A natural transformation η : F ⇒ G between functors F ,G : SET → SET is
said to be Cartesian along inclusions, if we have in the naturality square in Fig. 3
that

η−1
X (Pred(G)(P)) ⊆ Pred(F)(P).8

8 Equivalently: The square in Fig. 3 is a pullback square.

Consistency of Behavioural Models 13

Our first result is

Proposition 1 (Compatibility of Next Time Operator). Let η : F ⇒ G
for two KPF ’s F and G and Uη : F-Coalg → G-Coalg the emerging co-forgetful
functor from Lemma 1. Let (X, c) be an F-system and P a predicate, then the
next time operator is compatible with transformations:

∀x ∈ X : x |=F,c ⃝P ⇒ x |=G,Uηc ⃝P (1)

If furthermore η is Cartesian along inclusions, implication (1) is an equivalence.

Proof. Note that (by the definition of Pred(_)) for any structure map d:

x |=_,d ⃝P ⇐⇒ d(x) ∈ Pred(_)(P).

Fix a set X. The assumption of (1) is c(x) ∈ Pred(F)(P). From Lemma 2,
we know that the square in Fig. 3 commutes. Thus by the Def. of Uη

(Uηc)(x) = ηX(c(x)) = Gm(ηP (x)) = ηP (x) ∈ Pred(G)(P),

i.e. x |=G,Uηc ⃝P . Cartesian along inclusions yields c(x) ∈ Pred(F)(P), if
ηX(c(x)) = (Uηc)(x) ∈ Pred(G)(P). ⊓⊔

The following example shows that we cannot expect translation to always reflect
truth, i.e. the precondition in the second part of Prop. 1 is necessary. For F =
(_)A and G = 1 + _. We consider the natural transformation

ηX :
{
XA → 1 +X
f 7→ ∗

which intuitively removes all transitions from an F-system. Now consider the
property P = false, i.e. P = ∅. Obviously for an F-system (X, c), x |=G,Uηc ⃝ ∅
for all x ∈ X, because for d := Uηc we obtain

⃝G,dP = d−1(Pred(G)(∅)) = d−1(1 + ∅) = d−1(1) = X

since d(x) = ∗ for all x ∈ X. This is also intuitively clear, because a property
holds in all successor states, if there are no such states. However, x ̸|=F,c ⃝ ∅
for all x ∈ X, because all x possess transitions in an F-system. And η is not
Cartesian along inclusions: η−1

X (1 + P) = XA ̸⊆ ∅ = ∅A.
The following result delineates conditions for preservation and reflection of

truth w.r.t. all temporal operators. We formulate it for finite state sets X, see
Remark 1, which is sufficient for practical applications in software engineering.

Proposition 2 (Truth Preservation and Reflection). Let η : F ⇒ G for
two KPF ’s F and G, which is Cartesian along inclusions, and Uη : F-Coalg
→ G-Coalg the emerging co-forgetful functor from Lemma 1. Let (X, c) be an
F-system with finite state set X and Ω any of the above mentioned temporal
operators, then:

∀x ∈ X : x |=F,c Ω P ⇐⇒ x |=G,Uηc Ω P (2)

14 Harald König and Uwe Wolter

Proof. For the two elementary operators ∃□ and ∃_ U _, this follows from
Lemma 4 and Prop. 1 by simple induction, because X is a finite set. The result
then easily propagates to all derived operators, like ∀□ and ∀♢, and furthermore
to all nested formulas. ⊓⊔

This result causes truth preservation and reflection along specification mor-
phisms η : F ⇒ G of all temporal formulas, thus enabling validity checks being
independent of whether they are carried out in the category of F-systems or in
the category of G-systems, respectively.

4.2 The Case Study revisited

Examples 1, 2, and 3 showed how to encode the backend system and the common
platform and provided the translation of the former to the latter. Our goal is
now to provide a corresponding translation of a BPMN process model to the
common platform. We assume the state space of a BPMN diagram to be a set
of possible token distributions in the diagram, cf. [21], equivalently it can be
seen as the set of enabled tasks and events, cf. [8]. Hence, we can encode BPMN
models as coalgebras for the functor

F2 = (1 + _)n × (1 + _)E × ((1 + _) ×R)T .

Here E is the set of catch events in the process model, e.g. ”Additional Infor-
mation Received” in Fig. 1, T is the set of non-automatic tasks, e.g. ”Enhance
Ticket Data” or (the business rule task) ”Classify Ticket” and R is set of roles in
the process model assigned to user tasks, e.g. ”IT-Staff” for the above user task.
For the sake of simplicity, we assume that each automatic task calls exactly one
method in the backend system.

Then the transition structure is given by assigning to a state x ∈ X a triple
c(x) = (h1, h2, h3) of maps. The function application h1(j) specifies, whether in
state x an automatic task is ready to request method mj with successor state
x′ (if h1(j) = x′ ̸= ∗) or whether this is not the case (h1(j) = ∗), i.e., the
successor state is independent of input and output of the called method, cf.
remark on abstraction in BPMN models in Sect. 2. Similarly, h2(e) specifies,
whether in state x, the process is ready to receive event e ∈ E or not, and
h3(t) = (h3,1(t), h3,2(t)) indicates whether a user task t ∈ T with role assignment
h3,2(t) ∈ R produces successor state h3,1(t) (or is disabled, if h3,1(t) = ∗). The
next goal is to find a natural transformation η′ in

F1
η +3 G F2

η′
ks

In order to translate input-independent part h1 to LTS where the alphabet
distinguishes between all elements i ∈ Ij , the map h1(j) : Ij → X is a constant
map. Furthermore, we have to bear in mind that process instances evolve due
to events and user activities. Hence we allow these ingredients in the common

Consistency of Behavioural Models 15

platform and choose for the functor G : SET → SET in Example 1 and 3:

A := I +
n∐

j=1
Ij with I := E + T.

Then the transformation

η′
Y :

(1 + Y)n × (1 + Y)E × ((1 + Y) ×R)T → (1 + Y)A

(h1, h2, h3) 7→ λz.

 h1(j) , if z = i ∈ Ij

h2(e) , if z = e ∈ E
h3,1(t) , if z = t ∈ T

additionally forgets role assignments and thus faithfully translates the BPMN
model into a DLTS.

4.3 Handshaking

Let (X, c) be a backend system (F1-system) and (Y, d) be a BPMN model (F2-
system), then the two translated systems Uηc and Uη′d can be synchronized over
a set of common communication channels, in our case the touch points are the
methods {m1, . . . ,mn} together with their inputs, i.e. it is the set

H :=
n∐

j=1
Ij .

The resulting system s := Uηc ||H Uη′d, is the parallel composition whose compo-
nents communicate synchronously (handshake) over channels H and all actions
outside H are independent and therefore can be executed autonomously in an
interleaved manner [1].

Furthermore formula φ can now be formulated based on the specification G
of the common transition structures. Model checking means then to ask whether
in a certain state (x, y) ∈ X × Y of the composed G-system formula φ holds:

(x, y)
?

|=G,s φ

Assume now, an additional formula ψ has been imposed on (X, c) or (Y, d),
then the question is, how φ and ψ interact: Are they contradictory? Does one
of them logically imply the other? Is a syntactical combination, e.g. ψ ⇒ φ,
valid? etc . . . Because φ only lives on our LTS-platform (G-systems) and ψ lives
either in F1- or in F2-systems, it is desirable, to know whether x |= ψ is true
independent of whether we check in G or in F1/2.

It follows now immediately from the definition of η (Example 1) and η′ (see
above in the present section), that both natural transformations are Cartesian
along inclusion: Whenever P ⊆ X, then for any mapm (or h) in the domain of ηX

(or η′
X), such that its ηX -image maps into P , whenever the values shall be in X,

we immediately see, that this is also the case for m, i.e. η−1
X ((1 +P)A) ⊆ F1/2P .

Hence Proposition 2 guarantees this independence and all model checks can
be carried out on the common platform.

16 Harald König and Uwe Wolter

5 Related Work

Practical Approaches: The general idea of transforming different behavioural
formalisms to a single semantic domain to reason about crosscutting concerns
is nothing new [7]. [14] developed consistency checking for sequence diagrams
and statecharts based on CSP, while Petri nets were used for the same scenario
in [24]. Nevertheless, all approaches utilize fixed types of transition systems and
no common framework, which can capture all possible types of transition struc-
tures. [6] tackles the problem of dealing with relationships between heterogeneous
behavioural models. They coordinate the different models using a dedicated co-
ordination language, which we formalize using morphisms between behavioural
specifications.

Theoretical Approaches: Reasoning about heterogenously typed transi-
tion structures leads to the general theory of (co-)institutions, in which the same
functor Uη as above is used to build the covariant model functor. In addition
to our approach, a concrete (contravariant) functor for formula translation (of
modal logics) is used: [5] defines (many-sorted) specification morphisms F → G
as natural transformations from G to F and shows that formulae are preserved
and reflected, if the negation operator is omitted (positive logic), see also [2]. [16]
proves three different types of logics for coalgebras to be institutions. Another
approach are parametrized endofunctors as comprehensive behavioural specifi-
cations, where the overall structure can be studied in terms of cofibrations [13].
[23] investigates co-institutions purely dual to classical institutions [19]. Finally,
a good overview over the connection between coalgebars and modal logic is [12].

6 Future work

More general Translations: We plan to use more general natural transfor-
mations to relate specifications F and G. An established possibility [18] is to
investigate translation properties, when using

η : HF ⇒ GH

for some reasonably chosen functor H : SET → SET . This yields the translation
of an F-system (X, c) to the G-system (HX, ηX ◦ Hc) and thus enables transfor-
mation of the state space, too. The question is, whether we can expect similar
results as above for this kind of translations.

Refined Formulas: Formulas of modal logic can be refined w.r.t. to input
symbols, e.g. you want to express that property P holds after a transition with
structure map c only if there was a certain input/event. A formalisation of this is
described in [10], Chapter 6.5., which enables defining formulas as in Hennessy-
Milner-Logic [15].

Evaluation and Implementation: Finally, we want to investigate, how
application(framework)s for checking behavioural consistency in heterogeneous
modeling scenarios can be implemented based on the insights of the present
paper. It is a goal to formally underpin already existing work [11].

Consistency of Behavioural Models 17

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
2. Balan, A., Kurz, A., Velebil, J.: An institutional approach to positive coalgebraic

logic. Journal of Logic and Computation 27(6), 1799–1824 (2017)
3. Barr, M., Wells, C.: Category Theory for Computing Sciences. Prentice Hall (1990)
4. Bradfield, J.C., Stirling, C.: Modal Logics and mu-Calculi: An Introduction.

In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Alge-
bra, pp. 293–330. North-Holland / Elsevier (2001). https://doi.org/10.1016/b978-
044482830-9/50022-9

5. Cırstea, C.: An institution of modal logics for coalgebras. The Journal of Logic
and Algebraic Programming 67(1-2), 87–113 (2006)

6. Deantoni, J.: Modeling the behavioral semantics of heterogeneous languages and
their coordination. In: 2016 Architecture-Centric Virtual Integration (ACVI). pp.
12–18. IEEE (2016)

7. Engels, G., Küster, J.M., Heckel, R., Groenewegen, L.: A methodology for specify-
ing and analyzing consistency of object-oriented behavioral models. In: Tjoa, A.M.,
Gruhn, V. (eds.) Proceedings of the 8th European Software Engineering Conference
held jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering 2001, Vienna, Austria, September 10-14, 2001. pp. 186–195.
ACM (2001). https://doi.org/10.1145/503209.503235

8. Fiadeiro, J.L.: Categories for Software Engineering. Springer (2005)
9. Jacobs, B.: Objects and Classes, Co-Algebraically. In: Freitag, B., Jones, C.B.,

Lengauer, C., Schek, H. (eds.) Object Orientation with Parallelism and Persistence
(the book grow out of a Dagstuhl Seminar in April 1995). pp. 83–103. Kluwer
Academic Publishers (1995)

10. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Ob-
servation, Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press (2016). https://doi.org/10.1017/CBO9781316823187

11. Kräuter, T.: Towards behavioral consistency in heterogeneous modeling scenar-
ios. In: ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems Companion, MODELS 2021 Companion, Fukuoka, Japan, Oc-
tober 10-15, 2021. pp. 666–671. IEEE (2021). https://doi.org/10.1109/MODELS-
C53483.2021.00107

12. Kurz, A.: Coalgebras and modal logic. Course Notes for ESSLLI 2001 (2001)
13. Kurz, A., Pattinson, D.: Coalgebras and modal logic for parameterised endofunc-

tors. Centrum voor Wiskunde en Informatica (2000)
14. Küster, J.M.: Towards Inconsistency Handling of Object-Oriented Behav-

ioral Models. Electron. Notes Theor. Comput. Sci. 109, 57–69 (2004).
https://doi.org/10.1016/j.entcs.2004.02.056

15. Milner, R.: Communication and concurrency, vol. 84. Prentice hall Englewood Cliffs
(1989)

16. Pattinson, D.: Translating logics for coalgebras. In: International Workshop on
Algebraic Development Techniques. pp. 393–408. Springer (2002)

17. Reichel, H.: An Approach to Object Semantics based on Termi-
nal Co-Algebras. Math. Struct. Comput. Sci. 5(2), 129–152 (1995).
https://doi.org/10.1017/S0960129500000694

18. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249(1), 3–80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6

https://doi.org/10.1016/b978-044482830-9/50022-9
https://doi.org/10.1016/b978-044482830-9/50022-9
https://doi.org/10.1145/503209.503235
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1109/MODELS-C53483.2021.00107
https://doi.org/10.1109/MODELS-C53483.2021.00107
https://doi.org/10.1016/j.entcs.2004.02.056
https://doi.org/10.1017/S0960129500000694
https://doi.org/10.1016/S0304-3975(00)00056-6

18 Harald König and Uwe Wolter

19. Sannella, D., Tarlecki, A.: Foundations of algebraic specification and formal soft-
ware development. Springer Science & Business Media (2012)

20. Tarski, A.: A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific
Journal of Mathematics 5, 285–309 (1955)

21. Van Gorp, P., Dijkman, R.: A visual token-based formalization of BPMN 2.0
based on in-place transformations. Information and Software Technology 55(2),
365–394 (2013). https://doi.org/https://doi.org/10.1016/j.infsof.2012.08.014, spe-
cial Section: Component-Based Software Engineering (CBSE), 2011

22. Wechler, W.: Universal Algebra for Computer Scientists. Springer-Verlag Berlin,
Heidelberg (1992)

23. Wolter, U.: (Co)Institutions for Coalgebras. Reports in Informatics 415 (2016)
24. Yao, S., Shatz, S.M.: Consistency checking of UML dynamic models based on Petri

net techniques. In: 2006 15th International Conference on Computing. pp. 289–297.
IEEE (2006)

https://doi.org/https://doi.org/10.1016/j.infsof.2012.08.014

	Consistency of Heterogeneously Typed Behavioural Models: A Coalgebraic Approach

