
Mathematical Structures in Computer Science (2022), 1–31
doi:10.1017/S0960129522000275

PAPER

Indexed and fibered structures for partial and total
correctness assertions
U.E. Wolter1∗ , A.R. Martini2 and E.H. Häusler3

1Department of Informatics, University of Bergen, Bergen, Norway, 2Av. Marechal Andrea 11/210, Porto Alegre, Brazil and
3Departamento de Ciência da Computação, PUC-Rio, Rio de Janeiro, Brazil
∗Corresponding author. Email: Uwe.Wolter@uib.no

(Received 6 August 2021; revised 31 July 2022; accepted 19 August 2022)

Abstract
Hoare Logic has a long tradition in formal verification and has been continuously developed and used to
verify a broad class of programs, including sequential, object-oriented, and concurrent programs. Here
we focus on partial and total correctness assertions within the framework of Hoare logic and show that a
comprehensive categorical analysis of its axiomatic semantics needs the languages of indexed and fibered
category theory. We consider Hoare formulas with local, finite contexts, of program and logical variables.
The structural features of Hoare assertions are presented in an indexed setting, while the logical features
of deduction are modeled in the fibered one.
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1. Introduction
Hoare Logic (Apt et al. 2009; Huth and Ryan 2004; Leino 2010; Loeckx and Sieber 1987) has a
long tradition in formal verification and has been continuously developed and used to verify a
broad class of programs, including sequential, object-oriented, and concurrent programs. This
logic is comprised by a language in which one can formulate propositions about the partial and
total correctness of while-programs and a deduction calculus with which one can prove that a
certain proposition is true.

Partial correctness assertions are propositions of the form {P} c {Q}, where P,Q are first-order
formulas and c is a while-program. The intuition behind such a specification is that if the program
c starts executing in a state where the assertion P is true, then if c terminates, it does so in a state
where the assertion Q holds. On the other hand, total correctness assertions are propositions of
the form [P] c [Q], and their intuitive meaning is that if the program c starts executing in a state
where the assertion P is true, then c terminates, and it does so in a state where the assertion Q
holds. Both partial and total correctness assertions are usually called Hoare triples.

We are interested to answer, at least partially, the fundamental question “What are the char-
acteristic structural features of Hoare logic?” In contrast to the traditional exposition of Hoare
logic, that relies on infinitary contexts of program variables, it is much more adequate to consider
finite sets of program variables as contexts of programs and to work, in such a way, with finite
“local” states and assertions about finite “local” states. This is a perfect match with the “categorical
imperative” that morphisms in a category do have a unique source and target object. That is, any
categorical analysis and presentation of logics should be based on local contexts for expressions
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and formulas. Also, as shown in Examples 1, 2, and 3, this is the precise way a programmer writes
and understands Hoare triples. Moreover, in current implementations of Hoare Logic as Bubel
and Hähnle (2016), Martini (2020), Pierce et al. (2018a,b) and in programming languages which
support specifications based on pre- and postconditions like Leino (2010), the programmer must
explicitly declare the program and logical variables that appear in the Hoare specification. In other
words: Our decision to use finite contexts of variables is a reasonable choice backed up by two es-
sential rationals. First, the methodology enforced by a categorical treatment of logics and type
theories leads naturally to the use of finite contexts. Second, we want to represent faithfully the
essential components of Hoare specifications in programming practice. Program code, logical for-
mulas, and variable declarations are always finite objects in the mind of the working programmer.
Thus, our main goal here is to transform the global infinitary version of the Hoare logic for while-
programs, presented in Section 2, into an equivalent local, finitary version. Our hope is that this
finitary version of the Hoare logic for while-programs can serve as a blueprint for the design and
study of Hoare style logics for other kinds of programs.

After developing a general and structured presentation of a finitary version of Hoare logic based
on indexed categories, we have, at least, three reasons to move from the indexed setting to the
fibered one. First, the fibered setting will allow us to put all the syntactic and semantic structures,
developed so far, on a common conceptual ground and to relate and extend them. Second, it is
technically quite uncomfortable to work with pseudo functors. To work instead with fibrations,
the equivalent of pseudo functors is more reasonable and technically, less akward. Third, the es-
sential reason in the light of logic is, however, that we need a “technological space” where logical
deduction can take place.

The aim of this work is neither to replace traditional set-theoretical descriptions of logics
by a corresponding categorical generalization nor to coin an axiomatization of just another ab-
stract categorical framework for logics in the line of (partial) hyperdoctrines (Knijnenburg and
Nordemann 1994), institutions (Goguen and Burstall 1992), and context institutions (Pawlowski
1995). Our aim is, in contrast, to demonstrate how indexed and fibered structures can be used,
in a flexible and creative way, to model and reason about logical systems and to present how the
syntactic and the semantic constituents of logical systems interplay with each other.

There are several categorical formalization’s of Hoare logics on relatively high levels of ab-
straction and generality and our paper does not add much novelty to these papers. In Computer
Science (as in many other branches of science), there is a “technological chain” which appears
often as a “chain of abstractions and generalizations.” Each step in this chain – in both direc-
tions from concrete to more abstract as well as from abstract to more concrete – is important and
requires a substantial effort. To keep a certain branch of science alive, we have to maintain and
to take care of the whole technological chain. Mathematics focuses traditionally at “most general
results.” It is, however, a social fact that the problem-solving strategy “look for the right most
general result and instantiate it adequately to solve your concrete problem” is not feasible for the
majority of us. In view of these remarks, one novelty of the paper is a new description of a first step
of abstraction from Hoare logic in programming practice to a categorical formalization of Hoare
logic.

The paper is organized as follows. To provide a unified and common ground for our categori-
cal analysis, we recapitulate, first, in Section 2 basic concepts and constructions for our imperative
language, and Hoare Logic. Section 3 analyzes the structural features of the Hoare logic with fi-
nite contexts of program and logical variables by means of indexed concepts. In Section 4, we
transform, by means of the Grothendieck construction, the indexed functors into fibrations and
we discuss Hoare triples and Hoare deduction calculus in the light of the corresponding fibered
categories. Section 5 discusses how our work is related to other work in the “technological chain”
and identifies, in more detail, novel contributions of the paper. We close the paper by a summary
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of the essential ideas treated in this discussion, that is to say, that the structural features of the
language are presented in indexed categories while the features of deduction are in the fibered
one. Moreover, we outline further work.

2. Background Material
In this section, we describe the syntax and semantics of our imperative language. We also present
the fundamental concepts of Hoare Logic, that is, its semantics and proof theory, and the core
ideas underlying indexed and fibered categories.
The Syntax of IMP
This subsection describes the abstract syntax of our imperative language, called IMP. This is a
small language equipped with array expressions, with which we can describe computations over
the integers. In order to describe its abstract syntax, we need to fix some basic sets for values
and variables. The set B= {true, false} of Boolean values, ranged over by metavariables u, v, . . .;
the set Z= {. . . ,−2, 1, 0, 1, 2, . . .} of integer numbers, ranged over by metavariables m, n, . . .; a
countably infinite set PVar of program variables, ranged over by metavariables x, y, . . ., and a
countably infinite set of array variables AVar ranged over by metavariables a, ai, i≥ 0. We assume
the sets PVar and AVar to be disjoint.

The grammar for IMP comprises three syntactic categories: AExp, for arithmetic expressions,
ranged over by e, e′, . . .; BExp, for Boolean expressions, ranged over by b, b′, . . ., and Prg, for
programs, ranged over by c, c′, . . . The following productions define the abstract syntax of IMP :

e ∈AExp ::= n | x | e0 + e1 | e0 − e1 | e0 × e1 | a[e]
b ∈ BExp ::= v | e0 = e1 | e0 ≤ e1 | ¬b | b0 ∨ b1 | b0 ∧ b1
c ∈ Prg ::= skip | x := e | c0; c1 | if b then c0 else c1 fi |while b do c od | a[e] := e′

In order to evaluate an expression or to define the execution of a command, we need the no-
tion of a state. This state has to define values for both program and array variables. A state for
program variables is a function σP : PVar→Z, while a state for array variables is a function
σA :AVar→ (Z→Z), where (Z→Z) is the set of all functions from integers to integers. We
use the integers both as indexes and as values. It is up to the programmer to guarantee that in-
dex values are always greater or equal to zero. Thus, a state σ is the disjoint union σ � σP 
 σA :
PVar
AVar−→Z
 (Z→Z), such that σ (var)= σP(var) if x ∈ PVar and σ (var)= σA(var), if
var ∈AVar. The collection of all such states is named �. Given a state σP and a program variable
x ∈ PVar, we denote by σP[x �→ n] a new state that is everywhere like σP, except on x, where
it is updated to the value n. The signature or type of the state update operator is _[_ �→ _] :
(PVar→Z)→ PVar→Z→ (PVar→Z). Note that the type of σP[x �→ n] asserts that it is also a
state for program variables. Likewise, given an array a and an array variable a ∈AVar, we denote
by a[i �→ n] a new array, that is everywhere like a but on index i, where it is updated to the value n.
The signature or type of the array update operator is _[_ �→ _] : (Z→Z)→Z→Z→ (Z→Z).
Note that the type of a[i �→ n] asserts that it is also an array, that is, a function from integers to
integers.
Semantics of IMP
In this subsection, we specify the formal semantics of IMP. The meaning of arithmetic expres-
sions is defined by primitive recursion on the syntactic structure of the formulas, while the
interpretation of programs is given by a transition operational semantics. The following equa-
tions define a total function that, given a state σ = σP 
 σA, maps arithmetic expressions to
integers, and Boolean expressions to Boolean values. We assume aop ∈ {+,−,×}, rop ∈ {=,≤},
and bop ∈ {∧,∨}.
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Table 1. Transition semantics for IMP

−→ ⊆ (Prg×�)× (Prg×�)
〈x := e, σ 〉 −→ 〈skip, σ ′〉, σ ′

A = σA, σ ′
P = σP[x �→ [[e]]σ ] (ass1)

〈a[e] := e′, σ 〉 −→ 〈skip, σ ′〉, σ ′
P = σP, σ ′

A = σA([[e]]σ �→ [[e′]]σ ) (ass2)
〈if b then c0 else c1 fi, σ 〉 −→ 〈c0, σ 〉, [[b]]σ = true (if1)
〈if b then c0 else c1 fi, σ 〉 −→ 〈c1, σ 〉, [[b]]σ = false (if2)
〈while b do c od, σ 〉 −→ 〈if b then (c;while b do c od) else skip fi, σ 〉 (while)

〈skip; c, σ 〉 −→ 〈c, σ 〉 (comp1)

〈c1, σ 〉 −→ 〈c′1, σ ′〉
(comp2)〈c1; c2, σ 〉 −→ 〈c′1; c2, σ ′〉

[[_]]_ :AExp→�→Z

[[n]]σ = n
[[x]]σ = σP(x)
[[a[e]]]σ = σA(a)([[e]]σ )
[[e0 aop e1]]σ = [[e0]]σ aop [[e1]]σ

[[_]]_ : BExp→�→B

[[v]]σ = v
[[¬b]]σ = ¬[[b]]σ
[[e0 rop e1]]σ = [[e0]]σ rop [[e1]]σ ,
[[b0 bop b1]]σ = [[b0]]σ bop [[b1]]σ

In structural operational semantics, the emphasis is on the individual steps of the execution.
The semantics relates pairs of configurations δ−→ δ′ of the form δ= 〈c, σ 〉, where c ∈ Prg, σ ∈�.
Terminal configurations have the form 〈skip, σ 〉. The transition relation 〈c, σ 〉 −→ 〈c′, σ ′〉 ex-
presses the first step of the execution of c from state σ . There are two possible outcomes.If δ′
is of the form 〈c′, σ ′〉, c′ �= skip then the execution of c from σ is not completed. Otherwise,
if δ′ = 〈skip, σ ′〉 then the execution of c from σ has terminated with final state σ ′. The single
steps of the structural operational semantics of IMP programs is defined by the rules presented in
Table 1.

A derivation sequence or execution of a program c starting in state σ is either: a finite se-
quence of configurations δ0, . . . , δk, k≥ 0 satisfying δ0 = 〈c, σ 〉, δi −→ δi+1, 0≤ i< k, k≥ 0, and
δk is a terminal configuration; or an infinite sequence δ0, δ1, δ2, . . . of configurations satisfying
δi −→ δi+1, i≥ 0. The expression δ0

∗−→ δk indicates that the execution from δ0 and δk has a finite
number of steps, where ∗−→ is the reflexive, transitive closure of the relation −→.

Definition 1 (Semantics of Programs). The transition relation −→ between configurations defines
the meaning of programs as a partial function from states to states:

[[_]]_ : Prg→ (� ◦→�) with [[c]]σ =
{
σ ′ if 〈c, σ 〉 ∗−→ 〈skip, σ ′〉
undefined otherwise

(1)

Hoare Logic
The central feature of Hoare logic are the Hoare triples or, as they are often called, partial cor-
rectness assertions. We use both expressions interchangeably. A Hoare triple describes how the
execution of a piece of code changes the state of the computation, and it is of the form {P} c {Q},
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where P,Q are assertions in a specification language and c ∈ Prg is a IMP program. P is called
the precondition and Q the postcondition of the triple. It means that for any state satisfying P,
if the execution of c terminates, then the resulting state is a state satisfying Q. Apart from partial
correctness assertions, we also have total correctness assertions, expressions of the form [P] c [Q].
It means that for any state satisfying P, the execution of c terminates, and the resulting state is a state
satisfying Q. Thus, total correctness is guaranteed by construction. We use the expressions total
correctness assertions and total Hoare triples interchangeably.

Remark 1 (Language of assertions). We use the language of first-order logic to write assertions
about computations over the integers. These assertions are built on top of program variables
(PVar), array variables (AVar), and logical variables. We assume a countably infinite set LVar
of logical variables, and such that PVar,AVar, LVar are mutually disjoint. The logical variables
are the standard variables of first-order logic. They do not appear in programs. Their use in as-
sertions are limited to write quantified formulas and also to save values of program variables in
initial states. In the concrete examples of Hoare triples bellow, program and array variables are
written in lowercase, while logical variables are capitalized. The language of assertions is named
Assn.

Example 1 (Program Swap). The Hoare triple

{x= X0∧ y= Y0} temp := x; x := y; y := temp {x= Y0∧ y= X0}
asserts the partial and total correctness of a program that swaps the values of two program
variables.

Example 2 (Program Find). The Hoare triple

{Pre}init;while B; do body; od{Pos}
asserts the partial and total correctness of a program that performs a linear search in an array
of integers, where Pre� n= Length∧ Length≥ 0∧ key=K and Pos� (0≤ index =⇒ index<
Length∧ a[index]= key)∧ (index= −1 =⇒ ∀J.0≤ J < n =⇒ ¬(a[J]= key)). Moreover, we
take init� index := −1; i := 0, B� (i< n)∧ (index= −1) and body� if (a[i]= key) index=
i else skip fi; i := i+ 1.

Example 3 (Insertion Sort). The Hoare triple

{Pre}i := 1;while B do j := i;while C do body2 od i := 1+ 1 od{Pos}
asserts the partial and total correctness of a program that sorts an array of integers. The array a is
assumed to have length denoted by the logical variable Length. For this example, we abstract the
property that the output array must be a permutation of the input array. We also assume that
Pre� n= Length∧ Length> 0, Pos� ∀J,K. 0≤ J <K < n =⇒ a[J]≤ a[K], B� (i< n), C�
(j> 0)∧ (a[j− 1]> a[j]), body2 � temp := a[j− 1]; a[j− 1] := a[j]; a[j] := temp; j := j− 1.

The examples of Hoare triples above show that the arithmetic expressions used in the language
of assertions contain logical variables as well. These extended language of arithmetic expressions is
called AExp+ and this language do not appear in programs, only in the language of assertions. The
syntax and semantic of extended arithmetic expressions needs to get a little fix, that is, the syntax
must include logical variables and the semantics needs an environment (Huth and Ryan 2004),
also called assignment (Loeckx and Sieber 1987), for free logical variables. An environment for the
(free) logical variables in an assertion is a function α : LVar→Z. The set of all such environments
is Env= (LVar→Z).
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e ∈AExp+ ::= n | x | l | e0 + e1 | e0 − e1 | e0 × e1 | a[e]
[[_]]_ :AExp+ → (PVar→Z)→ (LVar→Z)→Z

[[n]]σα = n
[[x]]σα = σP(x)
[[l]]σα = α(l), l ∈ LVar
[[a[e]]]σα = σA([[e]]σα)
[[e0 aop e1]]σα = [[e0]]σα aop [[e1]]σα, aop ∈ {+,−,×}

In what follows, we assume the reader is familiar with the satisfaction relation between struc-
tures and formulas in first-order logic. See for instance Loeckx and Sieber (1987), Huth and Ryan
(2004). However, in traditional exposition of logic like these and others, the satisfaction relation |=
is a subset of the Cartesian product Env×Assn. We have to consider states for program and array
variables as well. Thus, our satisfaction relation, needed to define the semantics of Hoare triples, is
a subset (_ , _) |= _ ⊆ (� × Env)×Assn. The notation (σ , α) |=A states that the program asser-
tion A is true at a state σ and environment α. A program assertion A is called (arithmetic) valid,
written |=A, iff ∀σ ∈�, ∀ α : LVar→Z. (σ , α) |=A.

We say that a partial correctness assertion {P} c {Q} is true at a state σ ∈� and in an environ-
ment α : LVar→Z, written (σ , α) |= {P} c {Q} iff (σ , α) |= P and for all σ ′ ∈�: [[c]]σ = σ ′ implies
(σ ′, α) |=Q. Finally, a partial correctness assertion is (arithmetic) valid, written |= {P} c {Q}, iff
∀σ ∈�, α : LVar→Z. (σ , α) |= {P} c {Q}.

Likewise, we say that a total correctness assertion [P] c [Q] is true at a state σ ∈� and in an
environment α : LVar→Z, written (σ , α) |= [P] c [Q] iff (σ , α) |= P implies ∃σ ′ ∈�.[[c]]σ = σ ′
and (σ ′, α) |=Q. Finally, a total correctness assertion is (arithmetic) valid, written |= [P] c [Q], iff
∀σ ∈�, ∀α : LVar→Z. (σ , α) |= [P] c [Q]. Note that total correctness implies partial correctness.

The following rules of the Hoare Proof Calculus define inductively the theorems of the Hoare
Logic for total correctness assertions over IMP programs. Removing the rule TWh, we have a
calculus for partial correctness assertions. Note that every occurrence of a program or an array
variable in an assertion is free. Only logical variables can be bound (bymeans of quantification). In
the rule for Ass bellow, the expressionQ[x/e] means the simultaneous replacement of every (free)
occurrence of the program variable x in the assertion Q by the arithmetic expression e. By the
same token, in the rule AAss, the expression Q[a/a[e �→ e′]] means the simultaneous replacement
of every (free) occurrence of the array variable a by the new array a[e �→ e′]. In the rule TWh,M is
a measure function (loop variant) on a set D equipped with a well-founded order (D,< ) (usually
the set of natural numbers).

Skip� {P} skip {P} Ass� {Q[x/e]} x := e {Q} AAss� {Q[a/a[e �→ e′]]}a[e] := e′{Q}

� {P} c1 {Q} � {Q} c2 {R}
Comp� {P} c1; c2 {R}

� {P ∧ B} c1 {Q} � {P ∧ ¬B} c2 {Q}
IfE� {P} if b then{c1} else {c2} fi {Q}

� {P ∧ B}c{P}
PWh� {P}while b do c od {P ∧ ¬B}

� {P ∧ B}c{P} P ∧ B→M> 0 {P ∧ B∧M =m}c{M<m}
TWh� [P]while b do c od [P ∧ ¬B]

� P →Q � {Q} c {R}
Stren� {P} c {R}

� {P}c{Q} �Q→ R
Weakn� {P} c {R}

Proposition 1. Let {P} c {Q} be a partial correctness assertion. Then, the Hoare calculus is sound,
that is, every theorem is a valid formula. More precisely, we have � {P} c {Q} only if |= {P} c {Q}
and � [P] c [Q] only if |= [P] c [Q].
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Table 2. Categories used and introduced in the paper

Category Objects Morphisms

Standard categories

Set Sets Total functions

Par Sets Partial functions

Cat Small categories Functors

Pre Preorders (seen as categories) Monotone functions (functors)

Po Partial orders (seen as categories) Monotone functions (functors)

Mon Monoids (seen as categories) Monoid morphisms (functors)

Categories for Hoare logic

Cont (p. 9) Finite contexts γ ⊆ Var (finite sets of program
and array variables)

Inclusions functions inγ ,γ ′ : γ ↪→ γ ′

Cont (p. 9) Extended contexts λ= (γ , δ) with δ a finite set
of logical variables

Pairs of inclusion functions
(inγ ,γ ′ , inδ,δ′ ) : (γ , δ)→ (γ ′, δ′)

Ent (p. 20) Pairs (λ.Q) with Q a local state assertion in
extended context λ

Pairs of a morphism in Cont and a semantic
entailment between local state assertions

Pred (p. 21) Pairs (λ.Q) withQ ∈℘(Λλ)=℘(�γ × Γδ ) a lo-
cal state predicate

Pairs of a morphism in Cont and an inclusion
between local state predicates

Prg (p. 22) |Prg| = |Cont| Pairs of a morphism (inγ ,γ ′ , inδ,δ′ ) in Cont and
a program in extended context λ′

Wp (p. 23) |Wp| = |Pred| Pairs of a morphism in Prg and an inclusion of
a local state predicate in a semantic weakest
precondition

TC (p. 25) |TC| = |Ent| Pairs of a morphism in Prg and a semantic en-
tailment between a local state assertion and a
syntactic weakest precondition

Categories and Fibrations
We assume the reader has a working knowledge of first-order logic, that is, its language, and basic
model and proof theory. Likewise, the reader is required to have familiarity with the language of
category theory, including basic limits and colimits constructions, as well as with the concepts of
functors and natural transformations. However, in order to improve readability, we list in Table 2
all categories introduced and used in the paper and give a quick introduction to fibrations, which
follows below.

The interplay between fibered and indexed constructions, we will rely on in this paper, is quite
well-known. Indexed families of sets (Xi)i∈I and display maps ϕ : X → I be considered as the
motivating set-theoretical concepts for their categorical counterparts, indexed and fibered cate-
gories, respectively. These concepts are actually equivalent. Given a family of sets (Xi)i∈I , we take
X to be the disjoint union ∏i∈I XI = {(x, i) | x ∈ I, i ∈ I}. This construction comes equipped with
a projection function π : ∏i∈I XI → I, (x, i) �→ i. Conversely, given a function ϕ : X → I, we take
XI � ϕ−1(i). The sets ϕ−1(i) are called the fibers of X. This defines a collection (Xi)i∈I together
with an isomorphism X ∼= ∏i∈I XI .

Definition 2 (Fibers). For any functor P : C→ Ind, the fiber Ci over an object i of Ind is the subcat-
egory of C given by the collection of objects a such that P(a)= i, and the arrows u : c→ c′ of C for
which P(u)= idi.
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The idea of substitution can be seen as a motivation for the concept of Cartesian arrow.
Consider a family ψ : Y → J over a set J. Substitution involves changing the index of the set J.
Thus substitution along a function u : I → J involves creating a family of sets with the domain I of
u as the new index set, and with fibers Yu(i) for i ∈ I. Thus, the family (Yj)j∈J is mapped to a family
(Xi)i∈I with Xi = Yu(i). This family can be obtained from the pullback of ψ against u:

X
f ��

u∗(ψ)=ϕ
��

Y

ψ

��
I u

�� J

Thus, we have the set X = {(i, y) ∈ I × Y | u(i)=ψ(y)}, with projections ϕ : X → I, f : X → Y .
In this way, we obtain a new family ϕ : X → I over I, with fibers Xi = ϕ−1(i)∼= {y ∈ Y |ψ(y)=
u(i)} =ψ−1(u(i))= Yu(i). One normally writes u∗(ψ) for the result ϕ of substituting ψ along u.
The higher-order function u∗ is called the substitution function (functor).

Definition 3 (Cartesian Arrow, Fibration). Let P : C→ Ind be a functor.

(1) An arrow f : x→ y in C is Cartesian over u : i→ j in Ind, if P(f )= u and every g : z → y in
C for which one has P(g)=w; u for some w : P(z)→ i, uniquely determines an h : z → x in
C above w with g = h; f . We call f : x→ y in the total category C Cartesian if it is Cartesian
over its underlying u= P(f ) in Ind.

(2) The functor P : C→ Ind is a fibration if for every object y in C and every u : i→ P(y) in
Ind, there is a Cartesian arrow f : x→ y in C above u. This Cartesian arrow is also called a
Cartesian lifting of u.
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3. Hoare Logic and Indexed Categories
In this section, we analyze the Hoare logic of while-programs by means of indexed categories
and indexed functors (natural transformations) between them. We are interested to answer, at
least partially, the fundamental question “What are the characteristic structural features of Hoare
logic?”

One basic structural feature of a Hoare logic we observed already, namely that a Hoare logic is
defined in three steps: First, we define an appropriate concept of state and develop a corresponding
suitable logic of states. Second, we define the syntax of programs as well as their semantics as
state transforming entities. Third, we build a logic of programs based on the idea that a state
transformation is reflected by a corresponding transformation of state assertions (predicates). We
will proceed our analysis along this three step procedure.

In Section 2, the context of all programs is the same infinite set of program variables; thus,
states are infinite “global” entities and assertions are defined, correspondingly, as statements about
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infinite “global entities.” The fact that a program, as a finite entity build upon a finite set of
program variables, changes only a finite fragment of an infinite global state remained implicit
in the definitions.

However, in our categorical modeling of Hoare logic we consider Hoare triples as logical for-
mulas in finite contexts of program and logical variables. As shown in Examples 1, 2, and 3, this is
the precise way a programmer writes and understandsHoare triples. This understanding is aligned
with modern approaches to the formalization of logics and type theories as in Crole (1993), Jacobs
(2001), Pitts (2000), for example. Moreover, in current implementations of Hoare Logic as Bubel
and Hähnle (2016), Martini (2020), Pierce et al. (2018a,b) and in programming languages which
support specifications based on pre- and postconditions like Leino (2010), the programmer must
explicitly declare, alongside the program, the program and logical variables that appear in the
specification of the program. In other words: Our decision to use finite contexts of variables is
a reasonable choice backed up by two essential rationals. First, the methodology enforced by a
categorical treatment of logics and type theories leads naturally to the use of finite contexts.

Second, we want to represent faithfully the essential components of Hoare specifications in
programming practice. Program code, logical formulas and variable declarations are always finite
objects in the mind of the working programmer.

So, our second objective is to transform the global infinitary version of the Hoare logic for
while-programs, presented in Section 2, into an equivalent local finitary version. Our analysis will
be based on indexed and fibered concepts and structures, as presented, for example, in Martini
et al. (2007), since these are the tools of choice to describe and reason about the structures arising
by the transformation of monolithic infinite entities into infinite collections of inter-related finite
entities.

3.1 Logic of local states
For our analysis of the structural features of Hoare logics, the distinction between program vari-
ables PVar and array variables AVar is irrelevant; thus, we work, from now on, only with the set
Var� PVar
AVar where we refer to the elements of Var also simply as “program variables.”
Contexts and Local States:Any program cwill at most change the values of the program variables
in the finite set pvr(c)⊆Var of all program variables appearing in c.1 Program cmay, however, be
part of different bigger programs c′; thus, we should consider any finite set γ ⊆Var with pvr(c)⊆
γ as a potential context of c. Therefore, we transform the infinite setVar of program variables into
the partial order category2 Cont with |Cont|�℘fin(Var), that is, the set of all finite contexts, and
with morphisms all inclusion functions inγ ,γ ′ : γ ↪→ γ ′ corresponding to inclusions γ ⊆ γ ′.

The semantics of a context γ ∈ |Cont| =℘fin(Var) is the corresponding set of local states
�γ � (γ →D), that is, of all type compatible functions σ : γ →D where D�Z
 (Z→Z).
Any inclusion function inγ ,γ ′ : γ ↪→ γ ′ induces a reduction map pγ ′,γ :�γ ′ →�γ given by
precomposition:

pγ ′,γ (σ ′)� inγ ,γ ′ ; σ ′ for all local states σ ′ ∈�γ ′ = (γ ′ →D). (2)
The assignments γ �→�γ and inγ ,γ ′ �→ pγ ′,γ define a functor st : Contop → Set .
Extended Contexts and Local State Assertions: In Hoare logic, assertions are used to describe
properties of states. Assertions are built upon expressions which, in turn, are built upon program
variables and logical variables. Only logical variables are quantified in assertions and the semantics
of expressions and assertions depends only on program variables and free logical variables.

An assertion contains, besides finitely many program variables, only finitely many logical vari-
ables. Thus, we will work, besides contexts γ ∈℘fin(Var), also with finite sets δ ∈℘fin(LVar) of
(free) logical variables and use the term “(variable) declaration” for those finite sets of logical vari-
ables (see Examples 1, 2, 3). Indeed, modern implementations of tools built on top of Hoare logic
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are based on finite contexts of program and logical variables (see Bubel and Hähnle 2016; Leino
2010; Martini 2020; Pierce et al. 2018a).

In such a way, we can extend the category Cont to a category Cont with objects |Cont|�
℘fin(Var)×℘fin(LVar) pairs of finite sets of local variables, also called “extended contexts,” and
morphisms given by pairs of inclusion functions (inγ ,γ ′ , inδ,δ′) : (γ , δ)→ (γ ′, δ′).

The semantics of a declaration δ ∈℘fin(LVar) is the set of local environments Γδ � (δ→Z),
that is, of all functions α : δ→Z. Analogously to contexts, any inclusion function inδ,δ′ : δ ↪→ δ′
between declarations induces a reduction map pδ′,δ : Γδ′ → Γδ given by precomposition:

pδ′,δ(α′)� inδ,δ′ ; α′ for all local environments α′ ∈ Γδ′ = (δ′ →Z). (3)

We can extend the functor st : Contop → Set to a functor st : Contop → Set that assigns to each
“extended context” λ= (γ , δ) the corresponding setΛλ ��γ × Γδ of “extended local states” and
to each pair inλ,λ′ � (inγ ,γ ′ , inδ,δ′) : λ→ λ′ of inclusion functions the product pλ′,λ � pγ ′,γ × pδ′,δ :
Λλ′ →Λλ of reduction maps.
Local State Assertions: We consider for any extended context λ= (γ , δ) ∈ |Cont| =℘fin(Var)×
℘fin(LVar) the corresponding set of local state assertions:

assn(λ)= assn(γ , δ)� {P ∈Assn | pvr(P)⊆ γ , flv(P)⊆ δ}, (4)

where flv(P) is the set of all free logical variables appearing in P. For any morphism inλ,λ′ =
(inγ ,γ ′ , inδ,δ′) : λ→ λ′ in Cont, we do have assn(λ)⊆ assn(λ′) since pvr(P)⊆ γ entails pvr(P)⊆
γ ′ and flv(P)⊆ δ entails flv(P)⊆ δ′, respectively. That is, we obtain an inclusion function
assn(inλ,λ′) : assn(λ) ↪→ assn(λ′). The assignments λ �→ assn(λ) and inλ,λ′ �→ assn(inλ,λ′) de-
fine obviously a functor assn : Cont→ Set.
Satisfaction Relation: The usual inductive definition of the infinite version of satisfaction of
assertions can be easily modified for local state assertions. We get, in such a way, a |Cont|-
indexed family of satisfaction relations between extended local states, on one side, and local state
assertions, on the other side:

|=λ ⊆ Λλ × assn(λ) with λ ∈ |Cont| =℘fin(Var)×℘fin(LVar).

Moreover, satisfaction is compatible w.r.t. morphisms in Cont:

Proposition 2 (Satisfaction Condition). For any morphism inλ,λ′ = (inγ ,γ ′ , inδ,δ′) : λ→ λ′ in
Cont, any extended local state (σ ′, α′) ∈Λλ′ and any local state assertion P ∈ assn(λ) we have

pλ′,λ(σ ′, α′)= (pγ ′,γ (σ ′), pδ′,δ(α′)) |=λ P iff (σ ′, α′) |=λ′ assn(inλ,λ′)(P)= P.

Proof. Due to our definitions, we have (pvr(P), flv(P))⊆ λ⊆ λ′ and that (σ ′, α′) coincides with
pλ′,λ(σ ′, α′) on (pvr(P), flv(P)); thus, the satisfaction condition states that the validity of an
assertion P only depends on the values assigned to the variables in (pvr(P), flv(P)).

Remark 2 (Logic of States is an Institution). A closer look at the development so far shows that
we have actually defined an Institution (see Diaconescu 2008; Goguen and Burstall 1992): The
category of abstract signatures is the category Cont. The sentence functor is assn : Cont→ Set
while st : Contop → Set is the model functor. Due to Proposition 2, the |Cont|-indexed family of
satisfaction relations |=λ meets the necessary satisfaction condition.

As shown in Wolter et al. (2012), this allows us to define the semantics of assertions based on
the contravariant power set construction.
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Semantics of Local State Assertions:Any subset ofΛλ =�γ × Γδ describes a certain property of
extended local states and therefore we consider the elements of ℘(Λλ) also as “state predicates.”

A local state assertion P ∈ assn(λ) can be seen as the syntactic representation of a certain state
predicate, namely of its semantics, that is, the set of all extended local states satisfying P:

semλ(P)� {(σ , α) ∈Λλ | (σ , α) |=λ P} ∈℘(Λλ) (5)
For all objects λ in Cont, this defines a function semλ : assn(λ)→℘(Λλ) . To answer the question
if this family of functions constitutes a relevant natural transformation from local state assertions
to semantics, we construct first the target of this natural transformation: Composing the func-
tor stop : Cont→ Setop with the contravariant power set functor P : Setop → Pre, where Pre is
the category of preorders and monotone functions, we obtain a functor pred : Cont→ Pre with
pred(λ)� (℘(Λλ),⊆ ) for all objects λ= (γ , δ) ∈ |Cont| and with

pred(inλ,λ′)� p−1
λ′,λ : (℘(Λλ),⊆ )−→ (℘(Λλ′ ,⊆ ) )

for all morphisms inλ,λ′ : λ→ λ′ in Cont, that is, for all state predicates P ⊆Λλ we have

p−1
λ′,λ(P)= {(σ ′, α′) ∈Λλ′ | pλ′,λ(σ ′, α′)= (pγ ′,γ (σ ′), pδ′,δ(α′)) ∈ P}. (6)

Since the formation of inverse images is monotone w.r.t. set inclusions, we obtain indeed
a functor from Cont into Pre. Note that the preorders pred(λ)= (℘(Λλ),⊆ ) are even partial
orders.

Second, we can borrow the order relation in (℘(Λλ),⊆ ), to define semantic entailment.
Semantic Entailment: For any local state assertions P,Q ∈ assn(λ) we define

P�λ Q iff semλ(P)⊆ semλ(Q). (7)
In categorical terms, we extend the set assn(λ) to a preorder ent(λ)� (assn(λ),�λ ) in such a
way that the function semλ : assn(λ)→℘(Λλ) turns into a morphism semλ : ent(λ)→ pred(λ)
in the category Pre that not only preserves but also reflects order, that is, semλ is a full functor.

Remark 3 (Cartesian Closed Category). The preorder category ent(λ)= (assn(λ),�λ ), for any
object λ in Cont, is Cartesian closed with products ∧, sums ∨ and exponentiation →, that is, we
have

P ∧Q �λ R iff P �λ (Q→ R).

Proposition 2 entails, that for any morphism inλ,λ′ : λ→ λ′ in Cont the corresponding inclu-
sion function assn(inλ,λ′) : assn(λ) ↪→ assn(λ′) is monotone w.r.t. semantic entailment, that is,
for all assertions P,Q ∈ assn(λ) we have that P�λ Q, that is, semλ(P)⊆ semλ(Q), implies P�λ′ Q,
that is, semλ′(P)⊆ semλ′(Q). This means that the inclusion function assn(inλ,λ′) : assn(λ) ↪→
assn(λ′) establishes, actually, a morphism ent(inλ,λ′)� assn(inλ,λ′) : ent(λ)→ ent(λ′) in the
category Pre. In such a way, the functor assn : Cont→ Set lifts up to a functor ent : Cont→ Pre
such that the composition of ent with the forgetful functor carr : Pre→ Set, assigning to each
preorder its carrier set, equals assn.

Cont

ent
��

pred
��

assn

		
Pre carr ��

=
Set

sem



Finally, Proposition 2 ensures also that the morphisms semλ : ent(λ)→ (℘(Λλ),⊆ ) constitute
a natural transformation sem : ent ⇒ pred : Cont→ Pre as stated in the following proposition
(compare Lemma 3.7 in Wolter et al. 2012):
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Proposition 3. The morphisms semλ : ent(λ)→ pred(λ) in Pre with λ ∈ |Cont| constitute a
natural transformation sem : ent ⇒ pred : Cont→ Pre.

3.2 Local programs and state transition semantics
Programs are defined prior to and independent of logical variables and the semantics of programs
are partial state transition maps between corresponding sets of states (see Definition 1). In this
subsection, we develop a local finitary version of the state transition semantics of programs.
Local Programs – Syntax: “Local programs” are programs in a context; that is, for each context
γ we consider the corresponding set prg(γ )� {c ∈ Prg | pvr(c)⊆ γ } of programs in context γ .
Our while-programs are sequential, that is, for any two local programs c1, c2 ∈ prg(γ ) there is
a unique local program c1; c2 ∈ prg(γ ) and the concatenation operator _ ;_ is, in addition, as-
sumed to be associative. Adding to prg(γ ) an “empty program” ε such that c; ε= ε; c= c for
all c ∈ prg(γ ), we upgrade prg(γ ) to a monoid. We consider monoids as categories with ex-
actly one object. In abuse of notation, we denote the syntactic category with the only object γ
and the set of morphisms prg(γ ), where composition is sequential concatenation of programs,
also by prg(γ ). For any inclusion function inγ ,γ ′ : γ ↪→ γ ′, we get obviously an inclusion func-
tor prgγ ,γ ′ : prg(γ ) ↪→ prg(γ ′) thus the assignments γ �→ prg(γ ) and inγ ,γ ′ �→ prgγ ,γ ′ define a
functor prg : Cont→Mon.
Transitions of Local States: The semantics of a local program c ∈ prg(γ ) is a partial function
from the corresponding set �γ of local states into itself. To define this semantics precisely and in
a well-structured way, we present, first, a brief account of those partial state transition maps.

We denote by Par the category of all sets and partial functions between sets.3 For any context
γ , we consider the monoid pf(γ ) of local state transition maps with object �γ and the whole
hom-set (�γ ◦→�γ )= Par(�γ ,�γ ) as morphisms. “pf” stands for “partial function.”

For any inclusion function inγ ,γ ′ : γ ↪→ γ ′, we can define a function pfγ ,γ ′ : (�γ ◦→�γ )→
(�γ ′ ◦→�γ ′) that lifts any local state transition map τ :�γ ◦→�γ to a local state transition map
τ ′ = pfγ ,γ ′(τ ) :�γ ′ ◦→�γ ′ . The construction goes like this: we define the domain of definition
DD(τ ′)� p−1

γ ′,γ (DD(τ )) using the corresponding reduction map pγ ′,γ :�γ ′ →�γ , defined in (2).
Now we set for all (σ ′ : γ ′ →D) ∈DD(τ ′)⊆�γ ′

(8)

Thus, we obtain, especially, τ ′; pγ ′,γ = pγ ′,γ ; τ in Par. This ensures pfγ ,γ ′(τ1; τ2)=
pfγ ,γ ′(τ1); pfγ ,γ ′(τ2) for all τ1, τ2 :�γ ◦→�γ . Moreover, the definition entails pfγ ,γ ′(id�γ )=
id�γ ′ thus the function pfγ ,γ ′ : (�γ ◦→�γ )→ (�γ ′ ◦→�γ ′) establishes a functor
pfγ ,γ ′ : pf(γ )→ pf(γ ′) between the monoids pf(γ ) and pf(γ ′).

We do have pfγ ,γ = idpf(γ ), and for any inclusions γ ⊆ γ ′ ⊆ γ ′′, we obtain pfγ ,γ ′ ; pfγ ′,γ ′′ =
pfγ ,γ ′′ since the formation of inverse images is compositional and since γ ′′ \ γ = (γ ′′ \ γ ′)∪
(γ ′ \ γ ). In such a way, the assignments γ �→ pf(γ ) and inγ ,γ ′ �→ pfγ ,γ ′ define a functor pf :
Cont→Mon.
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Local Programs – State Transition Semantics: The state transition semantics of local programs
is simply defined by restricting the global state transition semantics [[_]] : Prg→ (� ◦→�) from
Definition 1 to local programs and local states, respectively. We show that such a restriction of the

Cont

prg
��

pf
��
Mon

tr



global semantics can be constructed in a way that we obtain a family
trγ : prg(γ )→ pf(γ ), γ ∈ |Cont| of functors between monoids establishing a natural transfor-
mation tr : prg ⇒ pf. This natural transformation represents the state transition semantics of
local programs.

First, we show that for any context γ the global state transition semantics [[_]] : Prg→
(� ◦→�) of programs restricts to a functorial state transition semantics trγ : prg(γ )→
(�γ ◦→�γ ) for the corresponding local states: Analogously to (2), the inclusion function inγ :
γ ↪→Var induces a reduction map pγ :�→�γ with pγ (�)� inγ ; � for all global states
� ∈� = (Var→D). pγ :�→�γ is surjective since D is not empty. By means of pγ , we can
restrict now for any local program c ∈ prg(γ ) the partial function [[c]] :� ◦→� to a partial func-
tion trγ (c) :�γ ◦→�γ : We define DD(trγ (c))� pγ (DD([[c]])); thus, there exists for any local
state σ ∈DD(trγ (c)) a global state � ∈DD([[c]]) with pγ (�)= σ and we can set trγ (c)(σ )�
pγ ([[c]](�)). Why does this work?

�

pγ
��

(1)

DD([[c]])� ��� [[c]] ��

pγ
��

�

pγ
��

�γ DD(trγ (c))� ���
trγ (c) ��

=

�γ

Any program c changes at most the values for the program variables in pvr(c), that is, for any
global state � ∈DD([[c]]) and any program variable x /∈ pvr(c) we have [[c]](�)(x)= �(x). We de-
fined c ∈ prg(γ ) iff prv(c)⊆ γ , thus for any global states �, �′ ∈� it holds that � ∈DD([[c]]) and
pγ (�)= pγ (�′) implies �′ ∈DD([[c]]) and pγ ([[c]](�))= pγ ([[c]](�′)). This ensures that the defini-
tion of trγ (c) is independent of representatives as well as that the square (1) in the diagram above
is a pullback in Set, that is, we have [[c]]; pγ = pγ ; trγ (c) in Par.

For any local programs c1, c2 ∈ prg(γ ) the compositionality [[c1; c2]]= [[c1]]; [[c2]] of global state
transition semantics gives us compositionality trγ (c1; c2)= trγ (c1);trγ (c2) of the corresponding
local state transition semantics at hand. Moreover, we set trγ (ε)� id�γ for the empty pro-
gram ε ∈ prg(γ ). This ensures that the function trγ : prg(γ )→ (�γ ◦→�γ ) establishes indeed a
functor trγ : prg(γ )→ pf(γ ) from the monoid prg(γ ) into the monoid pf(γ )= (�γ ◦→�γ ).

Second, we validate that the family trγ : prg(γ )→ pf(γ ), γ ∈ |Cont| of functors provides a
natural transformation tr : prg ⇒ pf: For any morphism inγ ,γ ′ : γ → γ ′ in Cont we have the
inclusion functor prg(inγ ,γ ′)= prgγ ,γ ′ : prg(γ ) ↪→ prg(γ ′) and the functor pf(inγ ,γ ′)= pfγ ,γ ′ :
pf(γ )→ pf(γ ′). To validate the naturality condition we show that

(9)

for each local program c ∈ prg(γ )⊆ prg(γ ′).
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Due to (8), we have pfγ ,γ ′(trγ (c)); pγ ′,γ = pγ ′,γ ; trγ (c) in Par. Since pγ = pγ ′ ; pγ ′,γ , the defi-
nition of the functors tr_ entails pγ ′ ; trγ ′(c); pγ ′,γ = pγ ′ ; pγ ′,γ ; trγ (c)= pγ ′ ; pfγ ,γ ′(trγ (c)); pγ ′,γ
and thus trγ ′(c); pγ ′,γ = pγ ′,γ ; trγ (c)= pfγ ,γ ′(trγ (c)); pγ ′,γ in Par since pγ ′ is surjective, that
is, epic, in Par. From the last equation we can conclude DD(trγ ′(c))=DD(pfγ ,γ ′(trγ (c)))
and that trγ ′(c)(σ ′)(x)= trγ (c)(pγ ′,γ (σ ′))(x)= pfγ ,γ ′(trγ (c))(σ ′)(x) for all σ ′ ∈DD(trγ ′(c))
and all x ∈ γ . For all x ∈ γ ′ \ γ and thus also x /∈ pvr(c), we have trγ ′(c)(σ ′)(x)= σ ′(x)=
pfγ ,γ ′(trγ (c))(σ ′)(x) due to the properties of [[c]], mentioned above, the definition of trγ ′ and
the definition of pfγ ,γ ′(trγ (c)).

3.3 State transition maps as predicate transformers
Hoare triples are a logical means to describe and reason about the semantics of programs thereby
relying on a corresponding logic of states. We consider here “local partial correctness assertions”
λ : {P} c {Q} and “local total correctness assertions” λ : [P] c [Q] for extended contexts λ= (γ , δ)
such that c ∈ prg(γ ) and P,Q ∈ assn(λ).

A correctness assertion is an assertion about the state transition semantics trγ (c) :�γ ◦→�γ of
the local program c ∈ prg(γ ) and is represented by a pair of local state assertions – a precondition
P describing properties of the “input states” σ ∈�γ and a postcondition Q describing properties
of the corresponding “output states” trγ (c)(σ ) ∈�γ .

One can observe, however, that correctness assertions can be defined and investigated inde-
pendent of programs namely as assertions about arbitrary state transition maps τ :�γ ◦→�γ .
Following this observation, we develop in this subsection a local version of the predicate trans-
former semantics, as introduced in Dijkstra (1975), not only for programs but for arbitrary state
transition maps. We consider as well total as partial correctness semantics and show that any of
these semantics is equivalent to the state transition semantics.
Correctness Assertions: To underline the implicational “nature” of correctness assertions, we
adapt an arrow notation for correctness assertions about arbitrary state transition maps.

Definition 4 (General Correctness Assertions). Let be given an extended context λ= (γ , δ) and
two assertions P,Q ∈ assn(λ).

(1) We say that a state transition map τ :�γ ◦→�γ satisfies the implication P ⇒Q in the sense
of “total correctness,” written τ |=λ (TC, P ⇒Q), iff for all (σ , α) ∈Λλ =�γ × Γδ we have
that (σ , α) |=λ P implies σ ∈DD(τ ) and (τ (σ ), α) |=λ Q.

(2) Correspondingly, we say that a state transition map τ :�γ ◦→�γ satisfies the implication
P ⇒Q in the sense of “partial correctness,” written τ |=λ (PC, P ⇒Q), iff for all (σ , α) ∈Λλ
we have that (σ , α) |=λ P implies (τ (σ ), α) |=λ Q or σ /∈DD(τ ).

An essential observation is that, in both cases, the satisfaction statement for the precondition
and the postcondition, respectively, refers to the same local environment α. This means that a
correctness assertion can be seen as an implication with implicitly universally quantified free logical
variables.On the other side, this gives us a hint how to extend state transitionmaps, in a reasonable
way, to local environments: For any state transition map τ :�γ ◦→�γ and any extended context
λ= (γ , δ), we obtain an extended state transition map τ δ = τ × idΓδ :�γ × Γδ ◦−→�γ × Γδ with

DD(τ δ)�DD(τ )× Γδ and τ δ(σ , α)� (τ (σ ), α) for all (σ , α) ∈DD(τ δ). (10)

Following Djikstra’s idea of “programs as predicate transformers,” we can give now an equivalent
formulation of correctness assertions based on the semantics of assertions and the formation of
inverse images.4
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Theorem 1 (Correctness and Inverse Images). For any state transition map τ :�γ ◦→�γ , any
extended context λ= (γ , δ) and any assertions P,Q ∈ assn(λ) the following equivalences hold:

(1) τ |=λ (TC, P ⇒Q) iff semλ(P)⊆ (τ × idΓδ )−1(semλ(Q)).
(2) τ |=λ (PC, P ⇒Q) iff semλ(P)⊆ (τ × idΓδ )−1(semλ(Q))∪ (Λλ \ (DD(τ )× Γδ)).

Proof. This follows immediately from the definition of the semantics of assertions in (5),
Definition 4, the definition of τ in (10), and the definition of inverse images for partial functions
in footnote (4).

In Theorem 1, the state transition map τ serves as a predicate transformer in the sense that
the formation of inverse images transforms the state predicate semλ(Q) into the state predicate
τ−1
δ (semλ(Q)) or τ−1

δ (semλ(Q))∪Λλ \DD(τ ), respectively. In this subsection, we develop a full
categorical account of these two kinds of predicate transformer semantics of state transitionmaps.
Extended State Transition Maps: To be able to relate and combine the logic of local states with
the semantics of local programs, it is necessary to lift up the state transition semantics, developed
in Subsection 3.2 for plain contexts, to extended contexts:

Cont

prg
��

pf

Mon

tr



The functor prg : Cont→Mon is simply defined by prg(λ)� prg(γ )= {c ∈ Prg | pvr(c)⊆ γ }
for all extended contexts λ= (γ , δ) ∈ |Cont| and by assigning to each morphism inλ,λ′ =
(inγ ,γ ′ , inδ,δ′) : λ→ λ′ in Cont the inclusion functor prgλ,λ′ = prgγ ,γ ′ : prg(λ) ↪→ prg(λ′).

The definition of extended state transition maps in (10) is the key ingredient to lift up the func-
tor pf : Cont→Mon to a functor pf : Cont→Mon: Let be given an extended context λ= (γ , δ). It
is easy to verify that we have (τ ; τ ′)δ = τ δ ; τ ′

δ for arbitrary state transition maps τ , τ ′ :�γ ◦→�γ
thus we can choose pf(λ) to be the submonoid of (Λλ ◦→Λλ)= Par(Λλ,Λλ) given by all ex-
tended state transitionmaps τ δ � τ × idΓδ :�γ × Γδ ◦−→�γ × Γδ with τ ∈ pf(γ )= (�γ ◦→�γ ).
Note, that pf(γ ) and pf(λ) are isomorphic, that is, for each declaration δ we produce a “copy”
of pf(γ )! For any morphism inλ,λ′ = (inγ ,γ ′ , inδ,δ′) : λ→ λ′ in Cont, we can extend the func-
tor pfγ ,γ ′ : pf(γ )→ pf(γ ′) to a functor pfλ,λ′ : pf(λ)→ pf(λ′) assigning to any extended state
transition map τ δ = τ × idΓδ :Λλ ◦→Λλ in pf(λ) the extended state transition map pfλ,λ′(τ δ)�
pfγ ,γ ′(τ )

δ′ = pfγ ,γ ′(τ )× idΓδ′ :Λλ′ ◦→Λλ′ in pf(λ′). Our construction transforms equation (8)

�γ ′ × Γδ′

pγ ′ ,γ×pδ′ ,δ
��

◦
pfγ ,γ ′ (τ )×idΓ

δ′ �� �γ ′ × Γδ′

pγ ′ ,γ×pδ′ ,δ
��

�γ × Γδ ◦
τ×idΓδ

�� �γ × Γδ
�

pfλ,λ′

��

pfγ ,γ ′(τ );pγ ′,γ = pγ ′,γ ;τ in Par into the equation

pfλ,λ′(τ δ); pλ′,λ = pλ′,λ; τ δ (11)

in Par for the product pλ′,λ = pγ ′,γ × pδ′,δ :Λλ′ →Λλ of reduction maps.
This ensures that we have indeed defined a functor pfλ,λ′ : pf(λ)→ pf(λ′) between the

monoids pf(λ) and pf(λ′). Moreover, it can be shown, analogously to Subsection 3.2, that
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pfλ,λ = idpf(λ) and that pfλ,λ′ ; pfλ′,λ′′ = pfλ,λ′′ for any inclusions λ⊆ λ′ ⊆ λ′′; thus, the assign-
ments λ �→ pf(λ) and inλ,λ′ �→ pfλ,λ′ define indeed a functor pf : Cont→Mon.

Finally, we can extend the functor trγ : prg(γ )→ pf(γ ) between the monoids prg(γ )
and pf(γ )= (�γ ◦→�γ ) to a functor trλ : prg(λ)→ pf(λ) between the monoids prg(λ) and
pf(λ)⊆ (Λλ ◦→Λλ). We simply set trλ(c)� trγ (c)δ = trγ (c)× idΓδ for each c ∈ prg(λ)=
prg(γ ). Functoriality of trλ is ensured by the functoriality of trγ and the equation τ ; τ ′

δ =
τ δ ; τ ′

δ for arbitrary state transition maps τ , τ ′ :�γ ◦→�γ . Moreover, equation (9) guarantees
that the family trλ : prg(λ)→ pf(λ), λ ∈ |Cont| of functors provides a natural transformation
tr : prg ⇒ pf.
Two contravariant Power Set Functors: To find an adequate formalization of the two kinds of
predicate transformations, appearing in Theorem 1, we take a closer look at the inverse image
construction for partial functions. We consider Set as a subcategory of Par!

The contravariant power set functor P : Setop → Pre, assigning to each set A the partial order
(℘(A),⊆ ) and to each function f :A→ B the inverse image functor f−1 : (℘(B),⊆ )→ (℘(A),⊆ )
with f−1(B′)� {a ∈A | f (a) ∈ B′} for all subsets B′ ⊆ B, can be extended in two different ways to a
contravariant power set functor from Par into Pre.

The “standard” functor P : Parop → Pre is related to total correctness and assigns to each set
A the partial order (℘(A),⊆ ) and to each partial function f :A ◦→B the inverse image functor
f−1 : (℘(B),⊆ )→ (℘(A),⊆ ) with f−1(B′)� {a ∈A | a ∈DD(f ), f (a) ∈ B′} for all subsets B′ ⊆ B.

The “non-standard” functor PDD : Parop → Pre is, in turn, related to partial correctness and as-
signs to each set A the partial order (℘(A),⊆ ) and to each partial function f :A ◦→B the modified
inverse image functor f−1

DD : (℘(B),⊆ )→ (℘(A),⊆ ) with f−1
DD(B′)� f−1(B′)∪ (A \DD(f )) for all

subsets B′ ⊆ B.
From State Transition Maps to Predicate Transformers: Both functors P : Parop → Pre and
PDD : Parop → Pre are embeddings, that is, injective on objects and on morphisms.

For each extended context λ in Cont, the image if(λ)� Pop(pf(λ)) of the submonoid
pf(λ) of (Λλ ◦→Λλ)= Par(Λλ,Λλ) w.r.t. Pop : Par→ Preop becomes therefore a submonoid
of Pre((℘(Λλ),⊆ ), (℘(Λλ),⊆ ))op and we get an isomorphism tcλ : pf(λ)→ if(λ) in Mon
with tcλ(τ δ)� τ−1

δ : (℘(Λλ),⊆ )→ (℘(Λλ),⊆ ) for each morphism τ δ :Λλ ◦→Λλ in pf(λ).
“if” and “tc” stand for “inverse image function” and “total correctness,” respectively. For any
morphism

Cont

pf

��
if

��
Mon

tc



inλ,λ′ : λ→ λ′ in Cont, we can define a functor ifλ,λ′ � tc−1
λ ; pfλ,λ′ ; tcλ′ : if(λ)→ if(λ′). pf :

Cont→Mon is a functor; thus, this definition ensures that the assignments λ �→ if(λ) and
inλ,λ′ �→ ifλ,λ′ constitute a functor if : Cont→Mon and that, in addition, the isomorphisms
tcλ : pf(λ)→ if(λ) in Mon establish a natural isomorphism tc : pf ⇒ if.

For each extended context λ= (γ , δ), the monoid if(λ) is constituted by all inverse im-
age functors of the form τ−1

δ = (τ × idΓδ )−1 : (℘(Λλ),⊆ )→ (℘(Λλ),⊆ ), Λλ =�γ × Γδ (inter-
preted as morphisms in the opposite direction) with τ :�γ ◦→�γ a partial function, that is, with
τ ranging over all morphisms in pf(γ )= Par(�γ ,�γ ) and thus τ δ :Λλ ◦→Λλ ranging over all
morphisms in pf(λ)⊆ Par(Λλ,Λλ). The functor ifλ,λ′ : if(λ)→ if(λ′) assigns to tcλ(τ δ)=
τ−1
δ the inverse image functor ifλ,λ′(τ−1

δ )= tcλ′(pfλ,λ′(τ δ))= (pfλ,λ′(τ δ))−1 : (℘(Λλ′),⊆ )→
(℘(Λλ′),⊆ )
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(℘(Λλ′),⊆ ) ��
tcλ′ (pfλ,λ′ (τ δ))(℘(Λλ′),⊆ )

(℘(Λλ),⊆ )

p−1
λ′ ,λ

��

��
tcλ(τ δ)

(℘(Λλ),⊆ )

p−1
λ′ ,λ

��

�

ifλ,λ′

��

while the equation (11) in Par is transformed into an equation in Pre:

p−1
λ′,λ; ifλ,λ′(τ δ)= τ−1

δ ; p−1
λ′,λ (12)

Completely analogously, we can use the embedding PDDop : Par→ Preop to construct for
each extended context λ in Cont the image ifDD(λ)� PDDop(pf(λ)) of the submonoid pf(λ)
of Par(Λλ,Λλ) and obtain a submonoid of Pre((℘(Λλ),⊆ ), (℘(Λλ),⊆ ))op. We get an isomor-
phism pcλ : pf(λ)→ ifDD(λ) in Mon with pcλ(τ δ)� (τ δ)−1

DD : (℘(Λλ),⊆ )→ (℘(Λλ),⊆ ) for
each morphism τ δ :Λλ ◦→Λλ in pf(λ). “pc” stands for “partial correctness.” For any morphism
inλ,λ′ : λ→ λ′ in Cont, we can define a functor ifDDλ,λ′ � pc−1

λ ; pfλ,λ′ ; pcλ′ : if(λ)→ if(λ′).

Cont

pf

��
ifDD

��
Mon

pc



pf : Cont→Mon is a functor thus the assignments λ �→ if(λ) and inλ,λ′ �→ ifλ,λ′ constitute a
functor ifDD : Cont→Mon and, in addition, the isomorphisms pcλ : pf(λ)→ ifDD(λ) in Mon
establish a natural isomorphism pc : pf ⇒ ifDD.

We fix the above discussion in the following theorem.

Theorem 2 (Natural isomorphisms). For each extended context λ= (γ , δ), the assignments
tcλ(τ δ)� τ−1

δ : (℘(Λλ),⊆ )→ (℘(Λλ),⊆ ), pcλ(τ δ)� (τ δ)−1
DD : (℘(Λλ),⊆ )→ (℘(Λλ),⊆ ), de-

fine, respectively, the natural isomorphisms for total and partial correctness tc : pf ⇒ if : Cont→
Mon and pc : pf ⇒ ifDD : Cont→Mon.

Semantic Equivalences: Based on two different extensions P : Parop → Pre and PDD : Parop →
Pre of the contravariant power set functor P : Setop → Pre to the category Par, we presented two
distinct predicate transformer semantics for partial functions – the total correctness semantics
tc : pf ⇒ if, converting partial functions into inverse image functors, and the partial correctness
semantics pc : pf ⇒ ifDD, converting partial functions into modified inverse image functors.

Since both natural transformations tc and pc are natural isomorphisms, we have, especially,
shown in such a way that the total correctness semantics and the partial correctness semantics are
equivalent from a structural point of view.

Therefore, it will be sufficient to concentrate our further investigations of the structural fea-
tures of Hoare logics on one of these semantics. We will focus on total correctness since partial
correctness has been discussed in Wolter et al. (2020).

3.4 Weakest precondition semantics of local programs
We are well prepared now to come back to the set-theoretic characterizations of correctness

Cont

prg

��

pf

��
if

��
Mon

tr

tc
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assertions in Theorem 1. We can define a predicate transformer semantics wp� tr; tc : prg ⇒
if of programs by composing the state transition semantics tr : prg ⇒ pf of programs with
the total correctness semantics tc : pf ⇒ if of partial functions. “wp” stands for “weakest
preconditions” a term we discuss later in this subsection.

Diagram (13) visualizes the definition of the “weakest precondition semantics” wp = tr; tc of
programs and summarizes our efforts to develop indexed semantics of local programs:

λ′ (λ′ c→ λ′) �
trλ′ �� (Λλ′

trλ′ (c) ��◦ ��

pλ′ ,λ
��

Λλ′)

pλ′ ,λ
��

� tcλ′ �� ((℘(Λλ′),⊆ ) (℘(Λλ′),⊆ ))
wpλ′ (c)��

λ

inλ,λ′

��

(λ c→ λ) � trλ ��
�

prgλ,λ′

��

(Λλ
trλ(c)

��◦ �� Λλ) �
tcλ �� ((℘(Λλ),⊆ )

p−1
λ′ ,λ

��

(℘(Λγ ),⊆ ))
wpλ(c)
��

p−1
λ′ ,λ

��

�

pfλ,λ′

��

�

ifλ,λ′

�� (13)

We defined the state transition semantics trγ (c) :�γ ◦→�γ , �γ = (γ →D) of a local pro-
gram c ∈ prg(γ )= {c ∈ Prg | pvr(c)⊆ γ } as a restriction of the corresponding state transition
map [[c]] :� ◦→� for global states. For any inclusion function inγ ,γ ′ : γ → γ ′ we have prg(γ )⊆
prg(γ ′) and pfγ ,γ ′(trγ (c)) :�γ ′ ◦→�γ ′ simply extends trγ (c) by the identity on �γ ′\γ . We get
pfγ ,γ ′(trγ (c))= trγ ′(c) since trγ (c) and trγ ′(c) are both restriction of the same partial map
[[c]] :� ◦→� and since [[c]](�)(x)= �(x) for any global state � ∈DD([[c]]) and any program vari-
able x /∈ pvr(c). For the same reason, we obtained also the equation trγ ′(c); pγ ′,γ = pγ ′,γ ; trγ (c)
in the category Par for the reduction map pγ ′,γ :�γ ′ →�γ induced by precomposition with
inγ ,γ ′ : γ → γ ′.

To be able to reason about the semantics of local programs, we had to lift up the state transi-
tion semantics to extended contexts λ= (γ , δ), corresponding sets Λλ =�γ × Γδ of “extended
local states” and thus to pairs inλ,λ′ = (inγ ,γ ′ , inδ,δ′) : λ→ λ′ of inclusion functions and prod-
ucts pλ′,λ = pγ ′,γ × pδ′,δ :Λλ′ →Λλ of reduction maps. Guided by Theorem 1, this extension
was done by simply adjoining identity maps. For each local program c ∈ prg(λ)� prg(γ ) we set
trλ(c)� trγ (c)× idΓδ :Λλ ◦→Λλ and pfλ,λ′(trλ(c))� pfγ ,γ ′(trγ (c))× idΓδ′ :Λλ′ ◦→Λλ′ thus
pfλ,λ′(trλ(c))= trγ ′(c)× idΓδ′ = trλ′(c) and, moreover, trλ′(c); pλ′,λ = pλ′,λ; trλ(c) in Par.

Finally, we transformed the extended state transition semantics into the predicate trans-
former semantics wp by means of the “standard” contravariant power set functor P : Parop →
Pre. We set wpλ(c)� tcλ(trλ(c))= trλ(c)−1, and get ifλ,λ′(wpλ(c))= ifλ,λ′(tcλ(trλ(c)))=
tcλ′(pfλ,λ′(trλ(c)))= tcλ′(trλ′(c)) and the equation p−1

λ′,λ; wpλ′(c)= wpλ(c); p
−1
λ′,λ in Pre.

Cont

prg

��

pf

��
if

��
Mon

tr

pc



Besides the predicate transformer semantics wp = tr; tc : prg ⇒ if, we can also define a “weak-
est liberal precondition semantics” wlp� tr; pc : prg ⇒ if of programs by composing the state
transition semantics tr : prg ⇒ pf of programs with the partial correctness semantics pc : pf ⇒
if of partial functions instead.

As discussed at the end of Subsection 3.3, tc and pc are natural isomorphisms; thus, the weak-
est precondition semantics and the weakest liberal precondition semantics of local programs are
structural equivalent and we will focus on the weakest precondition semantics.
Weakest Preconditions: The notion of “weakest preconditions” has been introduced in Dijkstra
(1975) and reflects the equivalences in Theorem 1. The weakest precondition of a local pro-
gram c ∈ prg(λ) with respect to a state predicate Q ⊆Λλ is the state predicate wpλ(c)(Q)=
(trγ (c)× idΓδ )−1(Q)⊆Λλ. Correspondingly, the weakest liberal precondition is the state predi-
cate wlpλ(c)(Q)= (trγ (c)× idΓδ )−1(Q)∪ (DD(trγ (c))× Γδ)⊆Λλ.
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For a program c and an assertion Q, we consider the weakest precondition wpλ(c)(semλ(Q))
and the weakest liberal precondition wlpλ(c)(semλ(Q)) where λ= (pvr(c)∪ pvr(Q), flv(Q)).

An important and non-trivial result concerning Hoare logic is that the Hoare Proof Calculus,
presented at the end of Section 2, is complete (compare Cook 1978 and Apt et al. 2009). This
completeness result is based on another non-trivial result stating that our language of expressions
is expressive enough, in the sense, that we can represent weakest preconditions syntactically (see
Theorem 3.4 in Apt et al. 2009): There exist assertions wp(c,Q),wlp(c,Q) ∈ assn(λ) such that
semλ(wp(c,Q))= wpλ(c)(semλ(Q)) and semλ(wlp(c,Q))= wlpλ(c)(semλ(Q)), respectively.

sem is a natural transformation; thus, the equations p−1
λ′,λ; wpλ′(c)= wpλ(c); p

−1
λ′,λ and

p−1
λ′,λ; wlpλ′(c)= wlpλ(c); p

−1
λ′,λ ensure that syntactic weakest preconditions are context

independent: It holds that semλ′(wp(c,Q))= wpλ′(c)(semλ′(Q)) and semλ′(wlp(c,Q))=
wlpλ′(c)(semλ′(Q)), respectively, for any morphism inλ,λ′ : λ→ λ′ in Cont.

The context independence of syntactic weakest preconditions ensures also that they are mono-
ton w.r.t. semantic entailment, that is, P�λ Q implies wp(c, P)�λ′ wp(c,Q) for all inclusion
functions inλ,λ′ : λ→ λ′ and all programs c : λ′ → λ′: P�λ Q is defined in (7) by the inclusion
semλ(P)⊆ semλ(Q). Proposition 2 ensures that this inclusion entails the inclusion semλ′(P)⊆
semλ′(Q); thus, we obtain also the inclusion wpλ′(c)(semλ′(P))⊆ wpλ′(c)(semλ′(Q)) and thus
semλ′(wlp(c, P))⊆ semλ′(wlp(c,Q)) due to context independence. The last inclusion, however,
means nothing but wp(c, P)�λ′ wp(c,Q) according to (7).

To denote the correctness of local programs, we go back to the traditional Hoare triples: A local
total correctness assertion λ : [P] c [Q] is valid, written |=λ [P] c [Q], if, and only if, trγ (c) |=λ

(TC, P ⇒Q) and, analogously, a local partial correctness assertion λ : {P} c {Q} is valid, written
|=λ {P} c {Q}, if, and only if, trγ (c) |=λ (PC, P ⇒Q).

Instantiating Theorem 1 by the state transition semantics trγ (c) of programs, we can sum-
marize that correctness assertions can be equivalently expressed by means of semantic weakest
preconditions while the existence of corresponding syntactic weakest preconditions gives us,
finally, an equivalent formulation of correctness by means of semantic entailment at hand.

Corollary 1 (Correctness Assertions). For any extended context λ= (γ , δ), any program c ∈
prg(λ), and any assertions P,Q ∈ assn(λ) the following equivalences hold:

(1) |=λ [P] c [Q] iff semλ(P)⊆ wpλ(c)(semλ(Q)) iff P�λ wp(c,Q).
(2) |=λ {P} c {Q} iff semλ(P)⊆ wlpλ(c)(semλ(Q)) iff P�λ wlp(c,Q).

Syntactic weakest preconditions are assertions and thus only uniquely determined up to logical
equivalence, that is, up to isomorphisms in ent(λ)= (assn(λ),�λ ). An indexed account of the
structural features of syntactic weakest preconditions and of a deduction calculus for Hoare triples
would have to relay therefore on pseudo functors. We consider this as not quite adequate and
prefer to develop directly a fibered account in the next section.

Remark 4 (Notation). We use the same notation “wp,” with typographic variations, to denote
different concepts related to “weak preconditions.” Thereby, we apply the general notational
conventions used in the paper: wp (mathit-font) denotes a function, wp (mathtt-font) denotes
a natural transformation, Wp (mathtt-font) will denote a functor andWp (mathsf-font) a category.

4. Hoare Logic and Fibrations
The presentation of the structural features of the traditional infinitary version of Hoare logic, as
outlined in Section 2, is essentially an indexed one. In the last section, we have elucidated this
observation by developing a general and structured presentation of the semantic features of a
finitary version of Hoare logic based on indexed categories.
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Guided by the three reasons, discussed in the introductory section, we will move now from the
indexed setting to the fibered one and present a fully fledged fibered account of Hoare logic.

4.1 Fibrations for the logic of local states
The Grothendieck construction (see Barr and Wells 1990) is the main technique to trans-
form an indexed category into a fibered category (fibration). There are different variants of the
Grothendieck construction, and we do not include a general definition of the different variants
needed here. We describe, however, in detail all the fibered structures obtained by transforming
the indexed structures in Section 3.

The indexed version of the logic of local states is manifested by the natural transforma-
tion sem : ent ⇒ pred : Cont→ Pre. Transforming, first, the functor (indexed category) ent :
Cont→ Pre, we get a fibered category of state assertions and semantic entailments:

Definition 5 (Category Ent). The category Ent of “local state assertions” and “semantic entailment”
is defined as follows:

• objects: all pairs (λ.Q) of an extended context λ ∈ |Cont| and an assertion Q ∈ assn(λ).
• morphisms: from (λ′.P) to (λ.Q) are all pairs (inλ,λ′ ,�λ′ ) with inλ,λ′ : λ→ λ′ a morphism in
Cont and P�λ′ Q= ent(inλ,λ′)(Q) a morphism in ent(λ′)= (assn(λ′),�λ′ ).

• identities: the identity on (λ.Q) is (idλ,= ) where idλ = inλ,λ.
• composition: the composition of two morphisms (inλ′,λ′′ ,�λ′′ ) : (λ′′.R)→ (λ′.P) and
(inλ,λ′ ,�λ′ ) : (λ′.P)→ (λ.Q) is the morphism (inλ,λ′′ ,�λ′′ ) : (λ′′.R)→ (λ.Q) where inλ,λ′′ =
inλ,λ′ ; inλ′,λ′′ . Composition is well-defined due to the monotonicity of context extensions w.r.t.
semantic entailment and the associativity of semantic entailment, that is, since ent is a functor
and since the ent(λ)= (assn(λ),�λ ) are preorder categories.

λ′′ (assn(λ′′),�λ′′ ) R �λ′′

(inλ′ ,λ′′ ,�λ′′ ) ���
�

�
� P �λ′′ Q

λ′
inλ′ ,λ′′

��

(assn(λ′),�λ′ )
��

ent(inλ′ ,λ′′ )
��

P �λ′
�

��

(inλ,λ′ ,�λ′ ) ���
�

�
� Q

�

��

λ

inλ,λ′

��

(assn(λ),�λ )
��

ent(inλ,λ′ )
��

Q
�

��

We obtain a projection functor ΠEnt : Ent→ Contop with ΠEnt(λ.Q)� λ and ΠEnt((inλ,λ′ ,�λ′ ) :
(λ′.P)→ (λ.Q))� (inλ,λ′ : λ→ λ′) with fibersΠ−1

Ent(idλ)� ent(λ).

The diagram in Definition 5 (and the diagrams in the following Definitions 6, 7, 8 and 9) vi-
sualizes the corresponding Grothendieck construction of morphisms (dashed arrows) and should
help the reader to validate the well-definedness of the composition of those morphisms.

The general properties of Grothendieck constructions provide:

Theorem 3. The functor ΠEnt : Ent→ Contop is a split fibration where (inλ,λ′ ,�λ′ ) : (λ′.P)→
(λ.Q) is a Cartesian arrow if, and only if, P and Q= ent(inλ,λ′)(Q) are equivalent w.r.t. semantic
entailment, that is, isomorphic in ent(λ′)= (assn(λ′),�λ′ ).

Given inop
λ,λ′ : λ′ → λ in Contop and Q ∈ assn(λ) the standard choice for a corresponding

Cartesian arrow is (inλ,λ′ ,�λ′ ) : (λ′,Q)→ (λ,Q).

Remark 5. The presentation of assertions about states as a fibration makes evident that
the deductive apparatus on those assertions is essentially based on substitution (changing of
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context) and propositional reasoning in the fibers ent(λ)= (assn(λ),�λ )�Π−1
Ent(idλ) (compare

Remark 3). That we have a fibration ensures that every first-order variable is universally quanti-
fied and that the reasoning on them is sound. On the other hand, existentially quantified assertions
have their sound semantics provided by the Cartesian structure of the fibration.

Transforming, second, the functor (indexed category) pred : Cont→ Pre, we get a fibered
category of state predicates and inclusions of state predicates:

Definition 6 (Category Pred). The category Pred of “local state predicates” and inclusions is defined
as follows:

• objects: all pairs (λ.Q) of an extended context λ ∈ |Cont| and a state predicate Q ∈℘(Λλ).
• morphisms: from (λ′.P) to (λ.Q) are all pairs (inλ,λ′ ,⊆ ) with inλ,λ′ : λ→ λ′ a morphism in
Cont and P ⊆ p−1

λ′,λ(Q) a morphism in pred(λ′)= (℘(Λλ′),⊆ ).
• identities: the identity on (λ.P) is (idλ,= ).
• composition: the composition of two morphisms (inλ′,λ′′ ,⊆ ) : (λ′′.R)→ (λ′.P) and
(inλ,λ′ ,⊆ ) :(λ′.P)→ (λ.Q) is the morphism (inλ,λ′′ ,⊆ ) : (λ′′.R)→ (λ.Q) where inλ,λ′′ =
inλ,λ′ ; inλ′,λ′′ . Composition is well-defined since pred is a functor, that is, we have p−1

λ′,λ; p
−1
λ′′,λ′ =

p−1
λ′′,λ , and since the pred(λ)= (℘(Λλ),⊆ ) are partial order categories.

λ′′ (℘(Λλ′′),⊆ ) R ⊆

(inλ′ ,λ′′ ,⊆)
��	

	
	

	
	

	 p−1
λ′′,λ′(P) ⊆ p−1

λ′′,λ(Q)

λ′

inλ′ ,λ′′

��

(℘(Λλ′),⊆ )

pred(inλ′ ,λ′′ ) =p−1
λ′′ ,λ′

��

P ⊆
�

p−1
λ′′ ,λ′

��

(inλ,λ′ ,⊆)
��








 p−1
λ′,λ(Q)
�
p−1
λ′′ ,λ′

��

λ

inλ,λ′

��

(℘(Λλ),⊆ )

pred(inλ,λ′ ) =p−1
λ′ ,λ

��

Q
�
p−1
λ′ ,λ

��

We obtain a projection functor ΠPred : Pred→ Contop with ΠPred(λ.Q)� λ and
ΠPred((inλ,λ′ ,⊆ ) :(λ′.P)→ (λ.Q))� (inλ,λ′ : λ→ λ′) with fibersΠ−1

Pred(idλ)� (℘(Λλ),⊆ ).

The general properties of Grothendieck constructions provide:

Theorem 4. The functor ΠPred : Pred→ Contop is a split fibration where the Cartesian arrows
are exactly the morphisms (inλ,λ′ ,= ) : (λ′.p−1

λ′,λ(Q))→ (λ.Q) for all inop
λ,λ′ : λ′ → λ in Contop and

all state predicates Q ∈℘(Λγ ). These are the only Cartesian arrows since inclusion ⊆ is anti-
symmetric.

Pred

ΠPred

����
��
��
��
��
��
��
��
��
��

Ent

ΠEnt

��

Sem
�����������

Contop

https://doi.org/10.1017/S0960129522000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000275


22 U.E. Wolter et al.

Finally, the Grothendieck construction transforms the natural transformation (indexed func-
tor) sem : ent ⇒ pred into a functor Sem : Ent→ Pred such that Sem;ΠPred =ΠEnt. Sem assigns
to each local state assertion (λ.Q) its local semantics (λ.semλ(Q)) and to each entailment
(inλ,λ′ ,�λ′ ) : (λ′.P)→ (λ.Q), that is, P�λ′ Q the corresponding semantic inclusion (inλ,λ′ ,⊆ ) :
(λ′.semλ′(P))→ (λ.semλ(Q)), that is, semλ′(P)⊆ p−1

λ′,λ(semλ(Q)).
The way “semantic” entailment is defined in (7) exactly by inclusions of state predicates

becomes manifested by the fact that the functor Sem : Ent→ Pred is full.

Remark 6 (Commutative Diagrams). The reader should be aware that the diagrams we use to
visualize the construction of a fibration and to validate its well-definedness turn into

R
(idλ′′ ,⊆)��

(inλ′ ,λ′′ ,⊆)
��	

		
		

		
		

		
p−1
λ′′,λ′(P)

(idλ′′ ,⊆)��

(inλ′ ,λ′′ ,=)

��

p−1
λ′′,λ(Q)

(inλ′ ,λ′′ ,=)
��

P
(idλ′ ,⊆) ��

(inλ,λ′ ,⊆)
��





 p−1

λ′,λ(Q)

(inλ,λ′ ,=)
��

Q

commutative diagrams in the resulting fibration. In case of the construction of Pred in
Definition 6, for example, we obtain the commutative diagram above in Pred. The vertical ar-
rows are Cartesian arrows, and the diagram shows also that eachmorphism (inλ,λ′ ,⊆ ) : (λ′.P)→
(λ.Q) can be factorized into the composition (inλ,λ′ ,⊆ )= (idλ′ ,⊆ ); (inλ,λ′ ,= ) of a morphism in
the fiberΠ−1

Pred(idλ′)� pred(λ′) and a Cartesian arrow.

4.2 Fibrations for local programs and weakest precondition semantics
The functor prg : Cont→Mon can be transformed into a category Prg of local programs.

Definition 7 (Category Prg). The category Prg of “local programs”:

• objects: |Prg|� |Cont| is the set of all extended contexts λ= (γ , δ).
• morphisms: from λ to λ′ are all pairs (inλ,λ′ , c) : λ→ λ′ with inλ,λ′ : λ→ λ′ a morphism in
Cont and c ∈ prg(λ′)= prg(γ ′).

• identities: the identity on λ is (idλ, ε)= (inλ,λ, ε) where ε is the empty program.
• composition: the composition of two morphisms (inλ,λ′ , c2) : λ→ λ′ and (inλ′,λ′′ , c1) : λ′ → λ′′
is the morphism (inλ,λ′′ , c1; c2) : λ→ λ′′ where inλ,λ′′ = inλ,λ′ ; inλ′,λ′′ .

λ′′ prg(λ′′) λ′′ c1 �� λ′′ c2 �� λ′′

λ′
inλ′ ,λ′′

��

prg(λ′)
��

��

λ′ c2 ��
�
inλ′ ,λ′′

��

(inλ′ ,λ′′ ,c1)

���
�
�
�

λ′�
inλ′ ,λ′′

��

λ

inλ,λ′

��

prg(λ)
��

��

λ
�
inλ,λ′

��

(inλ,λ′ ,c2)

���
�
�
�
�
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Moreover, we obtain a projection functorΠPrg : Prg→ ContwithΠPrg(λ)� λ andΠPrg((inλ,λ′ , c) :
λ→ λ′)� (inλ,λ′ : λ→ λ′) with fibersΠ−1

Prg(idλ)� prg(λ)op.

The functor ΠPrg : Prg→ Cont is an opfibration thus the opposite functor Πop
Prg : Prgop →

Contop becomes a fibration. On the other side, the identity on |Prg|� |Cont| extends to an
embedding Econt : Cont→ Prg, such that Econt ;ΠPrg = idCont, mapping inλ,λ′ to (inλ,λ′ , ε).

Based on the results in Subsection 3.4, we can transform the weakest precondition natural
transformation wp = tr; tc : prg ⇒ if into to a functor Wp : Prg→ Pre. Note that this is not one
of the traditional Grothendieck constructions. Wp assigns to each object λ in Prg the preorder
category Wp(λ)� (℘(Λλ),⊆ ) and to each morphism (inλ,λ′ , c) : λ→ λ′ in Prg the functor

Wp(inλ,λ′ , c)� (p−1
λ′,λ; wpλ′(c) : (℘(Λλ),⊆ )−→ (℘(Λλ′),⊆ ) ).

Wp preserves identities Wp(idλ, ε)= p−1
λ,λ; wpλ(ε)= id(℘(Λλ),⊆); id(℘(Λλ),⊆) = id(℘(Λλ),⊆) and is also

compatible with composition Wp((inλ,λ′ , c2); (inλ′,λ′′ , c1))= Wp(inλ,λ′′ , c1; c2)= p−1
λ′′,λ; wpλ(c1; c2)=

(p−1
λ′,λ; wpλ(c2)); (p

−1
λ′′,λ′ ; wpλ(c1))= Wp(inλ,λ′′ , c2); Wp(inλ,λ′′ , c1) since wpλ is a monoid morphism

from prg(λ) into a submonoid of Pre((℘(Λλ),⊆ ), (℘(Λλ),⊆ ))op, that is, wpλ(c1; c2)=
wpλ(c2); wpλ(c1), and due to the results in Subsection 3.4 (see diagram (13)).

Note that the functor property of Wp entails that the syntactic weakest preconditions
wp(c1,wp(c2,Q)) and wp(c1; c2,Q) are logical equivalent. This equivalence is important for the
discussion in Section 4.3.

Applying now to Wp : Prg→ Pre the appropriate variant of the traditional Grothendieck
construction, we get the categoryWp of semantic weakest preconditions.

Definition 8 (Category Wp). The category Wp of “local state predicates” and semantic weakest
preconditions is defined as follows:

• objects: |Wp|� |Pred| is the set of all pairs (λ.Q) of an extended context λ ∈ |Cont| and a state
predicate Q ∈℘(Λλ).

• morphisms: from (λ′.P) to (λ.Q) are all pairs ((inλ,λ′ , c),⊆ ) with (inλ,λ′ , c) : λ→ λ′ a
morphism in Prg and P ⊆ Wp(inλ,λ′ , c)(Q)= wpλ′(c)(p−1

λ′,λ(Q)) a morphism in Wp(λ′)=
(℘(Λλ′),⊆ ).

• identities: the identity on (λ.P) is ((idλ, ε),= ).
• composition: the composition of two morphisms ((inλ′,λ′′ , c1),⊆ ) : (λ′′.R)→ (λ′.P) and
((inλ,λ′ , c2),⊆ ) : (λ′.P)→ (λ.Q) is the morphism ((inλ,λ′′ , c1; c2),⊆ ) : (λ′′.R)→ (λ.Q).
Composition is well-defined since Wp is a functor, that is, we have Wp(inλ,λ′ , c2); Wp(inλ′,λ′′ , c1)=
Wp(inλ,λ′′ , c1; c2) , and since the Wp(λ)= (℘(Λλ),⊆ ) are partial order categories.
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λ′′ (℘(Λλ′′),⊆ ) R ⊆

((inλ′ ,λ′′ ,c1),⊆)
��








 wpλ′′(c1)(p−1

λ′′,λ′(P)) ⊆ wpλ′′(c1; c2)(p−1
λ′′,λ(Q))

λ′

(inλ′ ,λ′′ ,c1)

��

(℘(Λλ′),⊆ )

Wp(inλ′ ,λ′′ ,c1)

��

P ⊆
�

Wp(inλ′ ,λ′′ ,c1)
��

((inλ,λ′ ,c2),⊆)
������������� wpλ′(c2)(p−1

λ′,λ(Q))
�

Wp(inλ′ ,λ′′ ,c1)
��

λ

(inλ,λ′ ,c2)

��

(℘(Λλ),⊆ )

Wp(inλ,λ′ ,c2)

��

Q
�

Wp(inλ,λ′ ,c2)
��

The assignments ΠWp(λ.Q)� λ and ΠWp(((inλ,λ′ , c),⊆ ) : (λ′.P)→ (λ.Q))� ((inλ,λ′ , c) : λ→
λ′) define a projection functorΠWp :Wp→ Prgop with fibersΠ−1

Wp((idλ, ε))� (℘(Λλ),⊆ ).

The general properties of Grothendieck constructions provide:

Theorem 5. The functor ΠWp :Wp→ Prgop is a split fibration where the Cartesian arrows are
exactly the morphisms ((inλ,λ′ , c),= ) : (λ′.wpλ(p

−1
λ′,λ(Q)))→ (λ.Q) for all (inλ,λ′ , c)op : λ′ → λ in

Prgop and all state predicates Q ∈℘(Λγ ). These are the only Cartesian arrows since inclusion ⊆
is anti-symmetric.

Theorem 6 (Conservative Extension). The identity on |Wp|� |Pred| extends to an embedding

Pred

ΠPred
��

Epred �� Wp

ΠWp

��
Contop

Eopcont �� Prgop

Epred : Pred→Wp mapping (inλ,λ′ ,⊆ ) : (λ′.P)→ (λ.Q) to ((inλ,λ′ , ε),⊆ ) : (λ′.P)→ (λ.Q).
The resulting square commutes, that is, we have Epred;ΠWp =ΠPred; E

op
cont . Moreover, it is a pull-

back square since Epred establishes isomorphisms between the fibersΠ−1
Pred(idλ)� (℘(Λλ),⊆ ) and

Π−1
Wp(E

op
cont(idλ))=Π−1

Wp((idλ, ε)). Note that the pullback property means that the semantic fibra-
tion ΠWp :Wp→ Prgop is a “conservative extension” of the semantic fibration ΠPred : Pred→
Contop, in the sense, that no new relations between local state predicates are introduced. The
semantics of states is unchanged.

4.3 Fibration for Hoare logic
The continuous lines in the diagram below show what we have gained so far in the fibered setting:

Pred

ΠPred

����
��
��
��
��
��
��
��
��
��
�

Epred �� Wp

ΠWp

����
��
��
��
��
��
��
��
��
��
�

Ent

ΠEnt

��

Sem
����������� Eent ����������� TC

ΠTC

���
�
�
�
�
�

TSem
���

�
�

�

Contop
Eopcont �� Prgop

https://doi.org/10.1017/S0960129522000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000275


Mathematical Structures in Computer Science 25

The right face represents the logic of local states where entailment between local state assertions
is defined semantically by inclusions between corresponding local state predicates. The logic of
local states comprises as well all general first-order logic assertions as the theory of the data types
of our language of expressions. The back face shows the extension of the category of local state
predicates by semantic weakest preconditions for local programs.

The task of a Hoare proof calculus is nothing but to generate the missing category TC of total
correctness assertions about local programs by extending, step by step, the category Ent of local
state assertions. In parallel, three new functors should be constructed connecting the new category
TC to the framework, developed so far. The natural requirements for a Hoare proof calculus can
be reflected, in terms of fibrations, by the following objectives:

(1) Soundness: The existence of a functor TSem : TC→Wp such that ΠTC = TSem;ΠWp,
means that the calculus is sound. If TSem is, in addition, full, the calculus is also complete.

(2) Conservative extension: The functor Eent : Ent→ TC should be an embedding such that
the top and the front face commute, that is, Eent ; TSem = Sem; Epred and Eent ;ΠTC =
ΠEnt; Eocontp. In addition, the front square should be a pullback square. Note that
due to pullback decomposition, this implies that also the top square becomes a
pullback.

(3) Fibration: Requiring that the resulting functor ΠTC : TC→ Prgop is a fibration, we en-
force the application of deduction rules until TC comprises all deducible correctness
assertions.

The existence of syntactic weakest preconditions allows us, due to Corollary 1, to describe
the category TC of total correctness assertions independent of a concrete deduction calculus.
Analogously to the construction of Wp, we need, however, some preparations. For any mor-
phism (inλ,λ′ , c) : λ→ λ′ in Prg, we consider the function wp(inλ,λ′ , c) : assn(λ)→ assn(λ′) with
wp(inλ,λ′ , c)(P)�wp(c, P) for all P ∈ assn(λ). wp(ε,Q) and Q are logically equivalent thus we
can assume w.l.o.g. that wp(ε,Q)=Q thus wp(inλ,λ′ , ε) becomes an inclusion function. As
discussed in Subsection 3.4, syntactic weakest preconditions are context independent, and, in
addition, they are monotone, that is, P�λ Q implies wp(c, P)�λ′ wp(c,Q) for all inclusion func-
tions inλ,λ′ : λ→ λ′ and all programs c : λ′ → λ′. This means that the function wp(inλ,λ′ , c) :
assn(λ)→ assn(λ′) defines, actually, a functor from (assn(λ),�λ ) into (assn(λ′),�λ′ ).
Moreover, we have that wp(c1,wp(c2,Q)) and wp(c1; c2,Q) are logical equivalent, that is, isomor-
phic in (assn(λ),�λ ), for arbitrary programs c1, c2 : λ→ λ and arbitrary local state assertions
Q ∈ assn(λ).

Definition 9 (Category TC). The category TC of “local state assertions” and “total correctness
assertions” is defined as follows:

• objects: |TC|� |Ent| is the set of all pairs (λ.Q) of an extended context λ ∈ |Cont| and a local
state assertion Q ∈ assn(λ).

• morphisms: a morphism ((inλ,λ′ , c),�λ′ ) : (λ′.P)→ (λ.Q) is given by a morphism (inλ,λ′ , c) :
λ→ λ′ in Prg such that the condition P�λ′ wp(c,Q) is satisfied.

• identities: the identity on (λ.P) is ((idλ, ε),�λ ) with the logical equivalence P�λ wp(ε, P).
• composition: the composition of two morphisms ((inλ′,λ′′ , c1),�λ′′ ) : (λ′′.R)→ (λ′.P) and
((inλ,λ′ , c2),�λ′ ) : (λ′.P)→ (λ.Q) is the morphism ((inλ,λ′′ , c1; c2),�λ′′ ) : (λ′′.R)→ (λ.Q).
Composition is well-defined since both functors wp(inλ,λ′ , c2);wp(inλ′,λ′′ , c1) and
wp(inλ,λ′′ , c1; c2) are natural isomorphic, and since the ent(λ)= (assn(λ),�λ ) are
preorder categories.
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λ′′ (assn(λ′′),�λ′′ ) R �λ′′

((inλ′ ,λ′′ ,c1),�λ′′ ) ���
�

�
�

�
� wp(c1, P) �λ′′ wp(c1; c2,Q)

λ′
(inλ′ ,λ′′ ,c1)

��

(assn(λ′),�λ′ )

wp(inλ′ ,λ′′ ,c1)
��

P �λ′
�
wp(inλ′ ,λ′′ ,c1)
��

((inλ,λ′ ,c2),�λ′ )
���

������ wp(c2,Q)
�
wp(inλ′ ,λ′′ ,c1)
��

λ

(inλ,λ′ ,c2)

��

(assn(λ),�λ )

wp(inλ,λ′ ,c2)
��

Q
�
wp(inλ,λ′ ,c2)
��

The assignments ΠTC(λ.Q)� λ and ΠTC(((inλ,λ′ , c),�λ′ ) : (λ′.P)→ (λ.Q))� ((inλ,λ′ , c) : λ→ λ′)
define a projection functorΠTC : TC→ Prgop with fibersΠ−1

TC ((idλ, ε))� ent(λ).

We discuss now if our three objectives for a Hoare proof calculus are indeed satisfied:
Soundness: We can define a functor TSem : TC→Wp assigning to any object (λ.Q) in TC the
object (λ.semλ(Q)) in Wp and to any morphism ((inλ,λ′ , c),�λ′ ) : (λ′.P)→ (λ.Q) in TC with
P�λ′ wp(c,Q) themorphism ((inλ,λ′ , c),⊆ ) : (λ′.semλ′(P))→ (λ.semλ(Q)) inWpwith semλ′(P)⊆
wpλ′(c)(p−1

λ′,λ(semλ(Q))). Due to Proposition 3 as well as the definition and context indepen-
dence of syntactic weakest preconditions, we have wpλ′(c)(p−1

λ′,λ(semλ(Q)))= wpλ′(c)(semλ′(Q))=
semλ′(wp(c,Q)); thus, the assignments are well-defined. The functor property can be shown
straightforwardly and the required commutativity ΠTC = TSem;ΠWp is simply ensured by defi-
nition.
Conservative extension: Analogously to Theorem 6, the identity on |TC|� |Ent| extends to an
embedding Eent : Ent→ TC mapping (inλ,λ′ ,�λ′ ) : (λ′.P)→ (λ.Q) to ((inλ,λ′ , ε),�λ′ ) : (λ′.P)→
(λ.Q). P�λ′ Q implies P�λ′ wp(ε,Q)=Q, thus the embedding is well-defined. The resulting
front square commutes, that is, we have Eent ;ΠTC =ΠEnt; E

op
cont . Moreover, it is a pullback square

since Eent establishes isomorphisms between the fibers Π−1
Ent(idλ)� entλ and Π−1

TC (E
op
cont(idλ))=

Π−1
TC ((idλ, ε)).
We know that wpλ′(ε) is the identity on (℘(Λλ′),⊆ ); thus, the commutativity Sem; Epred =

Eent ; TSem of the top square, and thus also its pullback property, can be easily shown.
Fibration: The functor ΠTC : TC→ Prgop is a fibration since the equivalence of wp(c1,wp(c2,Q))
and wp(c1; c2,Q) ensures that the morphism ((inλ,λ′ , c),�λ′ ) : (λ′.wp(c,Q))→ (λ.Q) in TC is a
Cartesian arrow for all morphisms (inλ,λ′ , c)op : λ′ → λ in Prgop and all objects (λ.Q) in TC.

λ′ ent(λ′) P �λ′

((inλ,λ′ ,ε),�λ′ ) ��	
	

	
	

	 wp(c,Q) �λ′ wp(c,Q)

λ

(inλ,λ′ ,ε)

��

ent(λ)
��

wp(inλ,λ′ ,ε)
��

wp(c,Q) �λ

�
wp(inλ,λ′ ,ε)
��

((idλ,c),�λ)
��








wp(c,Q)

�
wp(inλ,λ′ ,ε)
��

λ

(idλ,c)

��

ent(λ)

wp(idλ,c)

��

Q
�
wp(idλ,c)

��

Instantiating Remark 6, we realize, first, that any morphism (inλ,λ′ , c) : λ→ λ′ in Prg can be
factorized into the composition (inλ,λ′ , c)= (idλ, c); (inλ,λ′ , ε) of a morphism (inλ,λ′ , ε) : λ→ λ′,
originating from Cont, and a new kind of morphism (idλ, c) : λ→ λ introducing programs.
Second, we see that any morphism ((inλ,λ′ , c),�λ′ ) : (λ′.P)→ (λ.Q) in TC can, correspondingly,
be factorized ((inλ,λ′ , c),�λ′ )= ((inλ,λ′ , ε),�λ′ ); ((idλ, c),�λ ) into a morphism ((inλ,λ′ , ε),�λ′ ) :
(λ′, P)→ (λ,wp(c,Q)) originating from Ent and a Cartesian arrow ((idλ, c),�λ ) : (λ.wp(c,Q))→
(λ.Q) characterizing the program c (see the diagram above).
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That is, to describe the extension of the category Ent to the category TC we need only the new
arrows ((idλ, c),�λ ) : (λ.wp(c,Q))→ (λ.Q). Generating these special kind of Cartesian arrows is
the essential task of a Hoare proof calculus. More precisely, a Hoare proof calculus does nothing
but to extend the category Ent by new morphisms utilizing two procedures:

(1) Construction of Cartesian arrows: Generate the Cartesian arrow ((idλ, c),�λ ) :
(λ.wp(c,Q))→ (λ.Q) for any object (λ.Q) in |Ent| = |TC| and any “program” morphism
(idλ, c) : λ→ λ in Prg. These are the rules Skip, Assn, AAssn, IfE, PWh and TWh.

(2) Composition: Close everything w.r.t. composition
a. by composing new morphisms in TC with new morphisms in TC (rule Comp) and
b. by pre- and post-composing new morphisms in TC with given morphisms from Ent

(rules Stren andWeakn).

In summary: Our discussion shows that we reached indeed all three objectives for the Hoare logic
of total correctness assertions. As shown in Subsection 3.3, total correctness semantics and partial
correctness semantics are structurally equivalent; thus, a corresponding variant of a categorical
account of Hoare logic for partial correctness assertions and weakest liberal preconditions can be
developed straightforwardly in a completely analogous way.

5. Related Works
Cook (1978) seems to be the seminal article for the mathematical study of Hoare logic (HL). Cook
was the first deeply examining syntactical and semantic components related to HL and proving
its soundness. A very interesting discussion in this work concerns the role of data type specifica-
tions. That is, assertions intended to formalize the relevant aspects of data types that we should use
in connection with the rule of consequence to have correctness of programs supporting the data
types. It was the first article considering Hoare logic as a logic parametrized by a data types spec-
ification in a modular way. The completeness theorem, on the contrary, was approached in Cook
(1978) with less emphasis on modularity. Since Cook’s work, many articles discussed how the data
type specification integrates into HL more or less naturally. Indexing and Fibering are among the
most worked out approaches to describe this integration. We briefly discuss some of the most
relevant or recent articles on this below.

In the indexed/fibered approach to logical systems formalization, we consider a cartesian closed
category or a preorder category to define truth values. Sometimes, other more sophisticated cat-
egories, such as topoi or higher-order categories, have their internal logic used to provide truth
values. For example, the truth values may arise from a fibration construction when formalizing
predicates in a categorical semantics for FOL (First-Order Logic), Typed-FOL or HOL (Higher
Order Logic), respectively. At the same time, we use the internal logic to provide semantics to
a set-like language using topoi. Of course, Hoare logic belongs to the first case since there is no
mandatory need for a set-like language in an imperative program semantics. On the other hand,
indexed categories are more related to the algebraic system specifications (compare Goguen and
Burstall 1992). As we illustrate in this article, indexed categories and fibrations are two faces of the
same coin, not only mathematically speaking but also in programming language semantics. We
discuss, in the following, more papers related to the fibration approach. Indexed categories are
more frequently used for defining categorical semantics for general logic (compare Diaconescu
2008; Wolter et al. 2012).

As an article, following the indexed approach to HL, it is worth to mention Goncharov and
Schröder (2013). It defines order-enriched monads to induce a CPO structure on the monad it-
self rather than on the base category. The goal is to use this CPO structure as truth values by
observing that any order-enriched monad induces a (weak) truth-value object. The enrichment
has to do with the side effects, and finally, it presents a generic Hoare calculus for monadic side
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effecting programs. It proves the relative completeness of this Hoare calculus using the weakest
preconditions system. Monads are the tool of choice to encapsulate side effects; thus, a monadic
construction involves side effecting encapsulation naturally. It is, however, unusual that the en-
richment of the base category with truth values happens on top of the monad itself. We see it
as one difference in the treatment of truth values provided by our article. We discuss potential
enrichments on the base category in the next paragraph. As in our case, Kleisli category is the
semantic counterpart of the weakest precondition predicate transformers for computation. The
Kleisli category relates to the partiality monad. We think that we have the advantage of provid-
ing a more detailed explanation of many fibrations provided by the Grothendick construction.
In Goncharov and Schröder (2013), fibrations are not considered and the overall presentation fol-
lows indexed constructions. It is important to mention that the mechanism of obtaining the truth
values on top of the monad has the drawback of having an assertion logic that is, in general, at least
the full intuitionistic logic (see pages 4 and 5 in Goncharov and Schröder 2013). The fibrations we
provide obtain always at least full intuitionistic FOL, and we consider this as a more adequate
contribution.

Gaboardi et al. (2021) discusses and formalizes what is nowadays called Graded Hoare Logic
(GHL). GHL is a family of Hoare logic extensions aiming to provide new deductivemechanisms to
cope with some additional information to reason about side effects relative to programs. Such side
effects can take cost analyses, probabilistic computations or security features into account when
reasoning about program correctness. Even quantum effects can be included in this list of side
effects, although this case is not considered in Gaboardi et al. (2021). A graded program language
semantics is obtained by considering (new) type systems with fine-grained information added on
top of the original semantics. Monads can be graded to consider embedding side effects into a pure
language, as discussed above in connection with Goncharov and Schröder (2013). Almost all GHL
proposed semantics use some side effects encapsulation in a monad, sometimes comonads, pro-
viding graded (co)monads. Historically, graded monads appeared first in functional semantics to
deal with side effects in λ-calculus-based languages. Gaboardi et al. (2021) seem to be the first ar-
ticle that considers imperative languages in a uniform graded treatment. It takes graded categories
to generalize the graded (co)monadic framework. There is some advantage of taking grading as
a denotational approach instead of having it due to some imposition provided by (incremental)
grading. It shows that graded categories abstract monadic and co-monadic semantics for grading.
Afterwards, it considers an extension to the novel structure of graded Freyd categories. A Freyd
category is a way of obtaining a set-likemodel on top of any (locally small) category with a terminal
object. The construction of a Freyd category starts with the global sections of the terminal object
and employs (coherent) fibrations to add more and more structure and logic incrementally. Thus,
the semantic framework for GHL, on top of (graded) Freyd categories, uses a fibrational setting. It
is similar to our fibrational approach, with themain difference that we do this for the standard rea-
soning on imperative program correctness. We only comment on the possibility of augmenting
the data type side effects in our article, mainly to a (mixed) quantum-based programming lan-
guage. The fact that we conduct our fibrational approach for Hoare logic semantics on a fibration
semantics is consistent with what is discussed and reported in Gaboardi et al. (2021). Our con-
tribution goes deeper since we have a detailed explanation of the relation to indexed (algebraic)
Hoare semantics.

Martin et al. (2006) provide an elegant approach addressing the question what kind of cate-
gorical semantics one needs to read off from it an instance of a complete and sound set of Hoare
logic rules. It is an entirely theoretical work pointing at that a particular kind of traced symmetric
monoidal categories can be such mathematical structure. The traced symmetric monoidal cate-
gories for while-programs read off Hoare’s original set of rules. The article further shows how to
utilize the approach to cope with extensions of while-programs, including pointers and other fea-
tures. A functor from a traced symmetric category to a preordered category that plays the truth
values category is called a verification functor. The verification functor, a monoidal functor, is
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interpreted as a Hoare triple. The logical rules arise naturally from this abstract view. Adding new
features to while-programs, such as pointers, is made by lifting the monoidal verification functors
from a (new) preordered category that includes the semantic domains abstraction for the Heap
and the Store. The monoidal requirement ensures, in a certain way, that this lifting is cartesian.
The lifting is not described in terms of fibrations, but they are implicitly there. Compared with
other articles devoted to Hoare logic semantics, we can say that Martin et al. (2006) uses fewer
higher-categorical constructions than the other articles mentioned in this section. Our approach
provides a complete and more detailed categorical explanation of this technique in the language
of fibrations and indexed categories. We consider this as another novel contribution of our paper.

Hasuo (2015) and Aguirre and Katsumata (2020) discuss some monadic models of com-
putational effects that can be used to provide semantics to weakest (liberal) preconditions
predicate transformers taking into account a variety of side effects. Section 2 in Hasuo (2015)
describes many contravariant monadic functors that obtain enriched monads, as in Goncharov
and Schröder (2013). Some examples appear in both papers, such as the powerset and lifting cases
which can also be found in category theory textbooks (see Crole 1993 as one possible reference).
The goal of Hasuo (2015) is to provide semantics for the logic of predicates in forced games.
However, the framework can be also applied to the Hoare logic of imperative while-programs.

Aguirre and Katsumata (2020) are more abstract than our approach and geared to the treat-
ment of monadic effects. Given a fibration P : E→ C, for every C-arrow f : x→ y (morally a
program) the fibered structure gives a functor from the fiber over y (i.e. predicates over y) to
the fiber over x (i.e. predicates over x), which can be seen as the “weakest precondition” of f . From
this starting point, Aguirre and Katsumata (2020) study how a monad T modeling an effect on
C can be lifted to a monad on E such that there is a fibration between the corresponding Kleisli
categories that gives a weakest precondition transformer for effectful computations. In particular,
they study the case where E is a slice category for some object o of C representing truth values
and investigate how to construct monadic liftings from o-carried Eilenberg-Moore T-algebras.
They provide one example in which they instantiate their framework for a concrete imperative
language, but the remaining examples are kept abstract. Our approach and intended application
are different. Aguirre and Katsumata (2020) assume they have some abstract categories of pro-
grams and predicates, and a fibration between them. Our construction is more explicit and starts
from the ground up, with a concrete imperative while language and a concrete assertion language.
Then, we obtain the fibrational structure via the Grothendieck construction. This is a more ap-
propriate setting in which to discuss issues like soundness and completeness of the Hoare calculus
as properties of the functors relating the different categories. The fact that TC is a fibration also
allows us to reason about syntactic weakest preconditions, which Aguirre and Katsumata (2020)
do not cover.

In summary, this is in our view the novelty we provide with respect to Aguirre and Katsumata
(2020) (which also applies to other related work, e.g. Hasuo 2015): (1) Application to a concrete
programming language and assertion language. (2) Construction of the categorical structures
“from the ground up.” (3) Explicit separation of syntax and semantics that allows for an easier
and more direct discussion of soundness and completeness.

6. Conclusion
The traditional presentation of the structural features of Hoare logic is based on a global context of
program and logical variables. However, a categorical reformulation of these constructions must
be based on local contexts for expressions and formulas. We recast the conceptual framework of
Hoare logic from the perspective of both indexed and fibered categories.

With indexed categories, we developed a logic of local states, with finite contexts of program
and array variables. On top of this logic, we develop a logic of local state assertions, which is based
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on extended contexts of both program and logical variables. After that, we presented the transition
semantics of programs with finitary contexts by developing suitable categorical constructions for
restricting the traditional, global transition semantics. This local transition semantics of programs
is based on a more general theory of partial state transition maps. Theorem 1 is a reformulation
of the idea of “programs as predicate transformers” using general partial state transition maps.
Corollary 1 is an application of this result for partial transition maps generated by programs.

On the other hand, there are some important reasons to present Hoare logic also with fibra-
tions. The most essential one is that fibrations provide a mathematical workspace, where logical
deduction can take place. By translating the indexed categorical presentation into a fibered presen-
tation, we have been able to formalize precisely the intuition that Hoare triples are a kind of fibered
entity, that is, Hoare triples arise naturally as special arrows in a fibered category over a syntactic
category of programs. Moreover, deduction in Hoare calculi can be characterized categorically by
the heuristic deduction = generation of cartesian arrows + composition of arrows.

As a further work, using the techniques and tools developed in this paper as a blueprint, we
are currently in the early stages of developing a Hoare logic for a quantum programming lan-
guage (QPL). For QPL, the logic of states is twofold. We have the logic of quantum states and the
logic of classical states. To have both of them together, in a well-integrated way, we use Indexed
Categories and Fibrations. The logic of programs develops on top of this twofold category of
classical-quantum states.

Many imperative programming languages, like C, allow us to declare and allocate local program
variables in the middle of a program. Such programs can no longer be modeled by endomor-
phisms on the set of environments. We developed already some ideas how to extend and vary our
approach to deal also with “allocations of local variables.” It will be interesting to see if we can
utilize Hasuo (2015), Aguirre and Katsumata (2020) to work out such an extension in detail.

Summing up, we think that one of the most important contributions of our article is to show in
detail both sides of the two most used mechanisms to provide categorical and modular semantics
for Hoare style logics. More research is needed to have what we described in this paper as a para-
metric framework to derive the detailed correctness proof and its associated set of Hoare rules.
This is an additional step to the goals stated in Cook (1978).
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Notes
1 More precisely, only variables x that appear on the left hand side of an assignment x := emay be changed. We abstract here
from this small subtlety.
2 A preorder can be seen as a small category with at most one morphism between any two objects thus we consider the
category Pre of preorders and its subcategory Po of partial orders as subcategories of the category Cat of all small categories.
3 A partial function f :A ◦→B is given by a set DD(f )⊆A, called the domain of definition of f , and a span of a total inclusion
function inDD(f ),A :DD(f ) ↪→A and a total function f :DD(f )→ B. In case DD(f )=A and thus inDD(f ),A = idA, f is a usual
total function. The composition f ; g :A ◦→C of two partial functions f :A ◦→B, g : B ◦→C is defined by means of an inverse
image (pullback) construction in Set: DD(f ; g)� f−1(DD(g)) and f ; g(a)� g(f (a)) for all a ∈DD(f ; g).
4 For a partial function f :A ◦→B the inverse image of a subset B′ ⊆ B is given by f−1(B′)� {a ∈A | a ∈DD(f ), f (a) ∈ B′}.
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