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Multilevel Modelling (MLM) approaches make it possible for designers and modellers to 
work with an unlimited number of abstraction levels to specify their domain-specific 
modelling languages (DSMLs). To fully exploit MLM techniques, we need powerful model 
composition operators. Indeed, the composition of DSMLs is becoming increasingly relevant 
to the modelling community either because some DSMLs may share commonalities that we 
want to make reusable, or because we want to facilitate interoperability between DSMLs. In 
this paper, we propose a composition mechanism for structure and behaviour of multilevel 
modelling hierarchies. Our approach facilitates the inclusion of additional features while 
keeping a clear separation of concerns that enhances modularity. We provide a formal 
semantics of the constructions based on category theory and graph transformations, and 
show their use in practice on a case study.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Multilevel Modelling is a prominent research area where models and their specifications can be organised into several 
levels of abstraction [1,2]. Although there exist several approaches for MLM (see [3–6] for some of them), they all share 
the idea of not limiting the number of levels that designers can use to specify their modelling languages. This restriction is 
present in traditional Model-Driven Software Engineering (MDSE) approaches which are based on the Object Management 
Group (OMG) 4-layer architecture such as the Unified Modelling Language (UML) [7] and the Eclipse Modelling Framework 
(EMF) [8,9]. Like traditional MDSE approaches, MLM uses abstractions and modelling techniques to tackle the continually 
increasing complexity of software by considering models as first-class entities throughout the software engineering life cycle. 
Despite the success of MDSE approaches in terms of quality and effectiveness gains [10], modellers can only make use of 
two levels of abstraction to specify their systems: one for (meta)models and one for their instances. Model designers might 
find this limitation too restrictive. Moreover, these limitations may lead to complications like model convolution, accidental 
complexity and mixing concepts belonging to different domains (see, e.g., [11–13] for discussions on this).

* Corresponding author.
E-mail addresses: arte@hvl.no (A. Rodríguez), fernando.macias@imdea.org (F. Macías), duran@lcc.uma.es (F. Durán), Adrian.Rutle@hvl.no (A. Rutle), 

uwe.wolter@uib.no (U. Wolter).
https://doi.org/10.1016/j.jlamp.2022.100831
2352-2208/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jlamp.2022.100831
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2022.100831&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:arte@hvl.no
mailto:fernando.macias@imdea.org
mailto:duran@lcc.uma.es
mailto:Adrian.Rutle@hvl.no
mailto:uwe.wolter@uib.no
https://doi.org/10.1016/j.jlamp.2022.100831
http://creativecommons.org/licenses/by/4.0/


A. Rodríguez, F. Macías, F. Durán et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100831
One of the most successful applications of MDSE is in the construction of (industrial) DSMLs [9]. DSMLs are modelling 
languages tailored to specific areas which are meant to be easily understood and used by domain experts. Thus, such 
challenges become more prevalent in the case of defining DSMLs, since variations on general purpose languages (i.e., to 
specify different refinements oriented to the different domains) would require further specialisations on the metamod-
els.

The MLM community has demonstrated that MLM is a successful approach in areas such as process modelling and 
software architecture domains [11,14,15]. Furthermore, MLM techniques are excellent for the creation of DSMLs, especially 
when focusing on behavioural languages, since behaviour is usually defined at the metamodel level while it is executed, at 
least, two levels below at the instance level [16,17].

Although DSMLs are conceived to describe and abstract different concrete domains, we may find many similarities 
between existing DSMLs. In fact, the research community in software language engineering has proposed the notion of 
Language Product Lines Engineering (LPLE) with the goal of constructing software product lines where the products are lan-
guages [18]. The key aspect of their approach is the definition of language features that encapsulate a set of language 
constructs representing certain DSML functionalities. Usually, one can detect that some DSMLs share certain commonalities 
coming from similar modelling patterns that can be abstracted and reused across several other languages. Interoperability 
and reusability can therefore be achieved by advocating modularisation and composition techniques.

We have observed that several DSMLs can benefit from each other by composing them, resulting into a more complete 
system specification. To cope with this, we present an alternative approach to handle composition based on multiple typing
which we compare with the standard way of facing composition through a merge operator. Traditionally, frameworks had 
to craft, in a tedious, ad-hoc and (usually) non-reusable way, their own composition operators. Further research in this 
direction had raised more standard and widely accepted composition mechanisms, such as the merge operator or through 
direct linking among modules [18,19]. Taking advantage of MLM and inspired by the concept of language feature, we present 
in this paper mechanisms based on our MLM approach and multiple typing to foster composition by defining the abstract 
syntax and the behavioural description in a modular way, i.e., by adding/removing dimensions to a selected model or a 
model transformation rule. We compare our construction with the merge operator and put into practice our constructs to 
achieve composition by applying them to a case study where we consider a multilevel DSML for processes management and 
a DSML that abstracts human-being notions.

The rest of the paper is organised as follows. Section 2 describes our approach for Multilevel Modelling regarding struc-
ture (Section 2.1) and operational semantics (Section 2.2). Section 3 presents our composition mechanism. After motivating 
this mechanism in Section 3.1, we compare it to the usual merge operator and present its categorical semantics in Sec-
tion 3.2. We apply in Section 4 the formal constructions presented in Section 3.2 to a case study where we demonstrate 
how the composition of two different languages can be successfully managed. In Section 5, we discuss related work. We 
finally conclude the paper and outline directions for future work in Section 6.

2. Background: multilevel modelling

MLM is a recognised research area with clear advantages in several scenarios [20]. It provides the flexibility needed to 
avoid the use of anti-patterns, e.g., the type-object pattern described in [11,21] when fitting several layers of abstraction 
into one single level. This anti-pattern appears when both the concept and the metaconcept have to be defined in the 
same level, leading to convolution. However, there exist several challenges within the MLM community that hamper its 
wide-range adoption, such as a lack of recognised standards and fundamental concepts of the paradigm, that have led to a 
proliferation of different multilevel tools [22,23] without a clear consensus and focus.

The MultEcore approach for MLM combines two-level and multilevel modelling approaches and takes the best from each 
world with the goal of bringing standards into MLM solutions [16,24]. Its main goal is to facilitate the specification of 
multilevel hierarchies which are both generic and precise [25,24]. These ideas are reflected in the MultEcore tool. The tool 
enables multilevel modelling in the Eclipse Modelling Framework (EMF), allowing us to reuse the existing EMF tools and 
plugins [26,27]. MultEcore provides facilities to the modeller to define both the structure and the behaviour of multilevel 
hierarchies.

MultEcore is designed as a set of Eclipse plugins, giving access to its mature tool ecosystem (integration with EMF) and 
incorporating the flexibility of MLM. In the MultEcore approach [16], the abstract syntax is provided by MLM models and the 
behaviour by the so-called Multilevel Coupled Model Transformations (MCMTs) [16,25]. Using the MultEcore tool, modellers 
can (i) define MLM models using the model graphical editor, (ii) define MCMTs using its rule editor, and (iii) execute specific 
models. The execution of MultEcore models rely on a transformation of these models into Maude [28] specifications [29,30]. 
To provide a formal description of our framework and the aforementioned features, we rely on graph transformations and 
category theory.

Although the examples presented in the case study in Section 4 include attributes, for simplification purposes, the 
formalisation in this section does not show multilevel hierarchies with attributes. However, since our formalisation is based 
on graph transformations, it would be possible to extend the results to include both inheritance and attributes (see [31,32].
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2.1. Multilevel modelling in MultEcore - structure

The MultEcore multilevel modelling approach is based on a flexible typing mechanism based on graphs. We present in 
this section a summary of the formalisation in [33] on which we base the semantics of our composition construction in 
Section 3.2. In this formalisation, models are represented as graphs, since they are a natural way of abstracting concepts 
and the relations among them. Each model in our approach is identified by a name and represented as directed multigraph. 
Graphs are defined as follows.

Definition 1 (Graph). A Graph G = (G N , G A, scG , tgG) consists of a set of nodes G N , a set of arrows G A , and maps scG : G A →
G N and tgG : G A → G N that assign to each arrow its source and target node, respectively. These two maps must be total for 
the graph to be considered valid. We use the notations x 

f−→ y or f : x → y to indicate that scG( f ) = x and tgG( f ) = y.

Intuitively, graphs consist of nodes and arrows. A node represents a class, and an arrow represents a relation between two 
classes. Hence, an arrow always connects two nodes in the same graph, and any two nodes can be connected by an arbitrary 
number of arrows. Relations between graphs, like typing and matching, are defined by means of graph homomorphisms.

Definition 2 (Graph Homomorphism). A homomorphism ϕ : G → H between graphs is given by two maps ϕN : G N → H N and 
ϕ A : G A → H A such that scG ; ϕN = ϕ A; scH and tgG ; ϕN = ϕ A; tg H . Note that we use the symbol _;_ to denote composition 
in diagrammatic order.

We use the terms graph and model indistinctly. Models are distributed in multilevel modelling hierarchies. By a multilevel 
modelling hierarchy we understand a tree-shaped hierarchy of models with a single root one typically depicted at the top 
of the hierarchy tree. Thus, hierarchies enclose a set of models which are connected via typing relations.

Fig. 1 displays a simple multilevel hierarchy containing three levels of abstraction (four if we include the reserved Ecore
model placed at the top in level 0, Fig. 1(a)). To avoid filling up the hierarchies’ graphical representations with arrows, we 
use other graphical representations to express types of nodes and relations that are described in what follows. First, note 
that each graph, except the one at the top has exactly one parent graph in the hierarchy. Then, at Level 1, we branch into 
two paths. The models generic-model-1 and generic-model-2 (Figs. 1(b) and 1(c), respectively) contain three nodes and one 
relation each. As shown in the figure, the type of a node is indicated in an ellipse at its top left side, e.g., EClass is the type 
of A, B, and C in model generic-model-1, as well as of D, E, and F in model generic-model-2. The type of an arrow is written 
near the arrow in italic font type, e.g., EReference under G in model generic-model-1, and under H in model generic-model-2.

A hierarchy has n + 1 abstraction levels, where n is the maximal path length in the hierarchy tree. Levels are indexed 
with increasing natural numbers starting from the uppermost one, with index 0. Each graph in the hierarchy is placed at 
some level i, where i is the length of the path from that graph to the topmost one. To be flexible concerning abstraction 
levels and to support a smooth evolution of modelling descriptions, we allow certain positions in a hierarchy to be empty, 
i.e., filled by an empty graph. We use the notation Gi to indicate that a graph is placed at level i. For implementation 
reasons, we use Ecore [8] as root graph at level 0 in all example hierarchies, since Ecore is based on the concept of graph 
which makes it powerful enough to represent the structure of software models.

We use levels as an organisational tool, where the main rationale for locating elements in a particular level is grouping 
them by how abstract they are, and how reusable and useful they can be in that particular level. Thus, we encourage 
the level cohesion principle [34], that is, we recommend to organise elements that are semantically close (by means of 
potency and level organisation). On the contrary, we do not promote the level segregation principle, which establishes that 
level organisational semantics should be unique, i.e., aligned to one particular organisational scheme, such as classification or 
generalisation. We use, however, a more broad abstraction semantics. Furthermore, the MultEcore tool checks correct potency 
and typing safeness.1

In Fig. 1, red horizontal lines are used to indicate the separation between two consecutive levels, and upwards dashed 
arrows represent sequences of graphs that constitute typing chains Gi , Gi−1, . . . , G1, G0.

MLM extends traditional modelling techniques with a potentially unlimited number of abstraction levels. Most MLM 
approaches that grant unlimited number of levels can characterise instances at lower metalevels and not only the immediate 
level blow, as in standard two-level modelling. This requires the modelling hierarchy to allow for partial typing morphisms 
between adjacent levels (see also [25]. For these flexibility reasons, we allow typing to jump over abstraction levels, i.e., 
an element in graph Gi may have no type in Gi−1 but only in one (or more) of the graphs in Gi−2, . . . , G1, G0. Moreover, 
two different elements in the same graph may be typed by elements located in different graphs along the typing chain. To 
formalise this kind of flexible typing, we use partial graph homomorphisms.

Definition 3 (Partial Graph Homomorphism). A partial graph homomorphism ϕ : G ◦−→ H is given by a subgraph D(ϕ) � G , 
called the domain of definition of ϕ , and a graph homomorphism ϕ : D(ϕ) −→ H .

1 Typing relations cannot be circular, reversed or inconsistent neither vertically, i.e., within the same hierarchy, nor horizontally, i.e., if we consider more 
than one hierarchy.
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Fig. 1. Multilevel hierarchy for a conceptual example. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)

To express transitivity of typing and later also compatibility of typing, we need as well the composition of partial graph 
homomorphisms as a partial order between partial graph homomorphisms.

Definition 4 (Composition of partial graph homomorphisms). The composition ϕ; ψ : G ◦−→ K of two partial graph homomor-
phisms ϕ : G ◦−→ H and ψ : H ◦−→ K is defined as follows:

• D(ϕ; ψ) := ϕ−1(D(ψ )), i.e., for all nodes e ∈ G N we have e ∈ D(ϕ; ψ)N iff e ∈ D(ϕ)N and ϕN (e) in D(ψ)N , and for all 
arrows f ∈ G A we have f ∈ D(ϕ; ψ)A iff f ∈ D(ϕ)A and ϕ A( f ) ∈ D(ψ)A .

• (ϕ; ψ)N (e) := ψN(ϕN (e)) for all e ∈ D(ϕ; ψ)N and (ϕ; ψ)A( f ) := ψ A(ϕ A ( f )) for all f ∈ D(ϕ; ψ)A .

More abstractly, the composition of two partial graph homomorphisms is defined by the following commutative diagram of 
total graph homomorphisms. (Keep in mind that inverse images are just special pullbacks.)

D(ϕ;ψ)

D(ϕ) D(ψ)

G H K

� ϕ|ψ

� ϕ � ψ

ϕ;ψ

P B

Note that D(ϕ; ψ) = D(ϕ) if ϕ is total, i.e., H = D(ϕ).

Definition 5 (Order between partial graph homomorphisms). For any two parallel partial graph homomorphisms ϕ, φ : G ◦−→ H
we have ϕ � φ if, and only if, D(ϕ) � D(φ) and, moreover, �; φ = ϕ for the corresponding total graph homomorphisms 
ϕ : D(ϕ) → H and φ : D(φ) → H .
4
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Typing chains appear in multilevel hierarchies as sequences of graphs from a certain graph in the hierarchy all the way 
up to the top of the hierarchy. They are formally defined in Definition 6.

Definition 6 (Typing Chain G). A typing chain G = (G , n, τ G) is given by a natural number n, a sequence G = [Gn, Gn−1, . . . ,
G1, G0] of graphs of length n + 1 and a family τ G = (τ G

j,i : G j ◦−→Gi | n ≥ j > i ≥ 0) of partial graph homomorphisms, called
typing morphisms, satisfying the following properties:

• Total: All the morphisms τ G
j,0 : G j → G0 with n ≥ j ≥ 1 are total.

• Transitive: For all n ≥ k > j > i ≥ 0 we have τk, j; τ j,i � τk,i .

• Connex: For all n ≥ k > j > i ≥ 0 we have D(τ G
k, j) ∩ D(τ G

k,i) � D(τ G
k, j; τ G

j,i) and, moreover, τ G
k, j; τ G

j,i and τk,i coincide on 
D(τ G

k, j) ∩ D(τ G
k,i).

Totality, transitivity and connexity ensure that for any element e in any graph Gi (with i > 0) in a typing chain there 
exists a unique index me , with i > me ≥ 0, such that e is in the domain of the typing morphism τ G

i,me
but not in the domain 

of any typing morphism τ G
i, j with i > j > me .

Definition 7 (Individual Direct Type). For any e in a graph Gi in a typing chain G = (G , n, τ G), with n ≥ i ≥ 1, we call 
ty(e) := τ G

i,me
(e) its individual direct type. We say also that e is a direct instance of ty(e).

By df (e) = i − me we denote the difference between i and the level where ty(e) is located. Usually, this difference is 1, 
which means that the type of e is placed at the level right above it. For convenience, we use the following abbreviations:

ty2(e) = ty(ty(e)) ty3(e) = ty(ty(ty(e))) . . .

df 2(e) = df (e) + df (ty(e)) df 3(e) = df 2(e) + df (ty2(e)) . . .

From a general point of view, we obtain for any e in Gi a sequence of typing assignments of length 1 ≤ se ≤ i with 
(i − df se (e)) = 0. The number se of steps depends individually on the item e. We call any of the elements ty(e), ty2(e), 
ty3(e), . . . a transitive type of e. The requirement that the domains of definition of typing morphisms are subgraphs ensures 
that for any arrow x 

f−→ y in any graph Gi the non-dangling condition is satisfied: The source and the target of the direct 
type ty( f ) ∈ Gm f of f are transitive types of x and y, respectively. Finally, note that any sequence [Gn, Gn−1, . . . , G1, G0]
of graphs such that any e in any graph Gi , with n ≥ i ≥ 1, has a unique individual direct type ty(e) in one of the graphs 
Gi−1, . . . , G1, G0, gives rise to a typing chain, according to Definition 6, as long as the non-dangling condition for arrows is 
satisfied (compare [33]).

Level 2 in Fig. 1 contains instances of models described in Level 1 (called specific-model-1 and specific-model-2). The nodes 
and references in the models depicted in Figs. 1(d) and 1(e) are typed by elements defined, in this case, at Level 1, e.g., for
A1 node and G1 relation the types are A and G, respectively. At the bottom of the hierarchy (Fig. 1(f)), we have (at Level 3) 
the Instance level where model configuration-1 is displayed. Note that, even though there exists one typing chain per model 
(except for Ecore), we only focus on the typing chain computed from the bottommost level (Instance level). Notice also that 
in the hierarchy shown in Fig. 1, the typing chain is represented by upwards dashed arrows from the instance level given 
by the left-hand branch of the hierarchy.

The last concept used in Fig. 1 is potency, displayed as three numbers in a red box at the top right of every node, and 
concatenated to the name after “@” for every reference. Potencies are used on elements as a means of restricting the levels 
at which these elements may be used to type other elements. Thanks to potencies on elements we can define the degree 
of flexibility/restrictiveness we want to allow on the elements of our multilevel hierarchy. These three values are used to 
constrain the instantiation of elements so that the flexibility of our approach can be controlled in order to use concepts in 
a sensible manner. The first two values, start and end, specify the range of levels below, relative to the current one, where 
the element can be directly instantiated. In the example hierarchy in Fig. 1, these two values are always 1, meaning that 
the element can only be instantiated in the level right below. For instance, a potency value of 2 − 4 − X would mean that 
an element can be directly instantiated two, three and four levels below the one where the element is defined. The third 
value, depth, is used to control the maximum number of times that the element can be transitively instantiated, regardless 
of the levels where this happens. That is, the amount of times an instance of that element can be re-instantiated.

In the example in Fig. 1, all elements at level 1 have a depth of 2, meaning that they can be directly instantiated, and 
these instances can be instantiated themselves again (i.e., two times at most). This value is therefore dependent on the 
value of the type, and the depth of an element must always be strictly less than the depth of its type. For this reason, all 
elements in level 2 have a depth value of 1, and their instances of 0, meaning that they cannot be further instantiated. For 
elements in level 3, the instance level, the first two values also become 0, since there are no further levels below where 
these elements could be instantiated. In other words, the potency 0 − 0 − 0 is used to enforce that elements at the bottom 
level (3) are used purely as instances, which cannot be refined further into levels below it. In general, the default potency 
5
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Fig. 2. Conventional two-level MT rule.

for elements is 1 − 1 − ∗ (∗ meaning unbounded), and the potency for all elements in the top level (Ecore) is 0 − ∗ − ∗ in 
order to allow, exceptionally, self-typing and to keep all instantiation initially unconstrained.

2.2. Multilevel modelling in MultEcore - operational semantics

Transformation rules can be used to represent actions that may happen in the system. Conventional in-place model 
transformations (MTs) are rule-based modifications of a source model (specified in the left-hand side of the rule) resulting 
in a new state of such a model (determined by its right-hand side). The left-hand side takes as input (a part of) a model and 
it can be understood as the pattern we want to find in our original model. The right-hand side describes the transformation 
we want to perform on our model and thereby the next state of the system.

Since we use graphs to formalise models, we employ graph transformation rules to express the operational semantics of 
multilevel models. A graph transformation rule is defined by a left L and a right R pattern. These patterns are graphs which 
are mapped to each other via graph morphisms λ, ρ from or to a third graph I , such that L, R, I constitute either a span 
(L ←− I −→ R) or a co-span (L −→ I ←− R), respectively [35,31]. These graph morphisms are typically homomorphisms, 
and more specifically inclusions. Then in the span version, the graph I is the intersection of L and R , while it is the union in 
the co-span version. In this paper, we use the co-span version of graph transformation rules since the graph I can be used 
to collect the whole context between L and R , as well as due to advantages related to the properties of the constructions 
used in the application of these rules [31]. In short, co-span rules are more suitable from an implementation point-of-view 
since they allow for first adding new elements then deleting (some of the) old elements [31], and (ii) having both old and 
new elements in I allows us to introduce constraints on new elements depending on old constraints involving elements to 
be deleted [36].

Fig. 2 depicts the application of a graph transformation rule. To apply a rule (L ↪→ I ←↩ R) to a source graph S , a match 
μ of the left pattern in S has to be found, i.e., a graph homomorphism μ : L −→ S . Then, using a pushout construction 
(PO), followed by a final pullback complement construction (FPBC), a target graph T will be produced [31].

Remark 1. Given morphisms m : C → A and g : A → D in a category, a pullback complement is a pair of arrows f : C → B
and n : B → D such that the resulting square commutes and is a pullback. A morphism of pullback complements is a map 
D → D ′ making the obvious diagrams commute. A final pullback complement (FPBC) is a terminal object in the category of 
pullback complements of m and g . Final pullback complements are unique up to unique isomorphism when they exist (see 
[37]).

We use MTs to provide definitions of behaviour by means of so-called Multilevel Coupled Model Transformations 
(MCMTs) [16]. MCMTs have been proposed as a means to take traditional two-level transformations rules (Fig. 2) into 
the multilevel model world, with the right balance between precision and flexibility (see [16] for details). That is, MCMTs 
allow us to exploit multilevel modelling capabilities within the context of MTs. In this paper, we focus on the use of MCMTs 
to describe the operational semantics of DSMLs. MCMTs can also be used with other purposes, for instance, MCMTs have 
been used to check the structural correctness of models in [38,27].

Fig. 3 shows a simple example of an MCMT rule (called Add and Connect) that models the creation of a new node and a 
relation between the existing node and the new one.

The FROM and TO blocks describe the left pattern and the right pattern of the rule, respectively. The META block depicts 
a typing chain allowing us to locate types in any level of the chain that can be used as individual types for the items in the
FROM and TO block, respectively. Notice that this is quite powerful, as META facilitates the definition of an entire multilevel 
pattern. At the top level of Fig. 3, we mirror parts of generic-model-1, defining elements like A, B and G as constants. We 
differentiate constants as their names are underlined and their types are not specified via the ellipse above (for nodes) or 
the italic text (for references). The use of constants constrains the matching process, significantly reducing the amount of 
matches. The rule can be applied to models (instances) typed by the left-hand typing chain of Fig. 1 (i.e., specific-model-1, 
generic-model-1, Ecore).
6
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Fig. 3. Rule Add and Connect: The execution of this rule gives a new state on the model where a new node is created and connected to the first one.

Fig. 4. Formal construction for MCMT.

Note, that the horizontal lines do not enforce consecutiveness between the levels specified in the rule with respect to the 
hierarchy. This leads to a more natural way of defining that a type is defined at some level above, without explicitly stating 
in which level. In fact, this also promotes flexibility in case of future modifications of the number of branches (horizontal 
dimension) and the depth (vertical dimension) of hierarchies. Consider for the horizontal dimension, for instance, in the 
example in Fig. 1, adding a new model called specific-model-1’, branching at level 2, as instance of generic-model-1. For the 
vertical dimension, consider for example introducing a new level between levels 2 and 3 to create a more refined model 
(called, e.g., more-specific-model-1). The key aspect is that none of these extensions would require the modification of other 
models in the hierarchy, nor the rule depicted in Fig. 3, while the MCMT would still be valid. This flexibility is achieved as 
we allow the types on the variables to be transitive types. For instance, VarA (placed at second level of the META), typed 
by the variable A, would match any node which indirectly has A as type, or ultimately will match to A if no indirect one is 
found. A correct match of the rule comes when an element, coupled together with its type, fits an instance of VarA (e.g., a
located in the FROM part).

Given the current state of the hierarchy in Fig. 1, any instances of elements matching the pattern VarA would be candi-
dates to perform the transformation. This in turn makes it possible to apply the rule to either instances of A1 or to instances 
of A2 (these elements are defined in model specific-model-1 at Fig. 1).

The general structure of an MCMT and its application is displayed in Fig. 4. The figure can be visualised as two flat trees, 
each of them defined by typing chains and connected to each other by matching morphisms.

The tree on the left contains the pattern that the user defines in the rule. It consists of the left and right parts of the 
rule (FROM and TO, respectively), represented as L and R in the diagram, and the interface I that is the union of both L
and R , being λ and ρ inclusion graph homomorphisms.

These three graphs are typed by elements in the same typing chain MM = (MM , n, τ MM), defined in the META block, 
which is depicted as a sequence of metamodels MMi , for 0 ≤ i ≤ n, that ends with the root of the chain MM0 (Ecore in our 
case). The multilevel typing of the graphs L, I, R is given by families of typing morphisms.
7
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Definition 8 (Multilevel Typed Graph). A multilevel typed graph (H, σ H ) is a graph H with a multilevel typing σ H : H ⇒ G
of H over a typing chain G = (G, n, τG) given by a family σ H = (σ H

i : H ◦−→Gi | n ≥ i ≥ 0) of partial graph homomorphisms 
where σ H

0 : H → G0 is total.

We can now define multilevel model transformation rules (MCMTs) as follows.

Definition 9 (Multilevel coupled model transformation rule (MCMT)). An MCMT is given by multilevel typed graphs (L, σ L : L ⇒
MM), (R, σ R : R ⇒MM), (I, σ I : I ⇒MM) with I = L ∪ R such that σ L and σ R coincide on the intersection L ∩ R and 
σ I is constructed as the union of σ L and σ R .

For the rule to be applied, we have to find a match (a graph homomorphism μ) of the pattern graph L into an instance 
graph S at the bottom of the current application hierarchy. The choice of S determines a sequence [S, T Gm, T Gm−1, . . . , 
T G1, T G0] of graphs from S up to the top of the hierarchy. The sequence [T Gm, T Gm−1, . . . , T G1, T G0] of graphs constitutes 
a typing chain T G = (T G , m, τ T G) and the family of typing morphisms from S into T Gi , m ≥ i ≥ 0 turns S into a multilevel 
typed graph (S, σ S : S ⇒ T G ). The match μ : L → S has, however, to satisfy some application conditions: There has to be a 
match of the typing chain MM into the typing chain T G that is compatible with the multilevel typings σ L , σ S and the 
match μ. Matches of typing chains are described by a very flexible concept of morphisms between typing chains.

Definition 10. A typing chain morphism (φ, f ) : G → H between two typing chains G = (G , n, τ G) and H = (H , m, τ H )

with n ≤ m is given by

• a function f : [n] → [m], where [n] = {0, 1, 2, . . . , n}, such that f (0) = 0 and j > i implies f ( j) > f (i) for all i, j ∈ [n], 
and

• a family of total graph homomorphisms φ = (φi : Gi → H f (i) | i ∈ [n]) with

τ G
j,i;φi � φ j;τ H

f ( j), f (i) for all n ≥ j > i ≥ 0. (1)

A typing chain morphism (φ, f ) : G →H is called closed if, and only if, τ G
j,i; φi = φ j; τ H

f ( j), f (i) for all n ≥ j > i ≥ 0.

There are three flexibility features we want to underline: (1) Jumps of typing can be arbitrarily stretched in the sense, 
that the difference f ( j) − f (i) can be bigger than the difference j − i. (2) We require, in general, only that typing is 
preserved, i.e., if an element e in G j has a transitive type in Gi then the image φ j(e) in H f ( j) is required to have a 
transitive type in H f (i) . For closed typing chain morphisms, we require, however, that typing is also reflected, i.e., if the 
image φ j(e) in H f ( j) has a transitive type in H f (i) it is required that e has a transitive type in Gi . (3) The granularity of 
typing does not need to be preserved, i.e., if an element e in G j has a direct (!) type in Gi then the image φ j(e) in H f ( j)
needs only to have a transitive type in H f (i) .

The graph homomorphisms βn, . . . , β1, β0 and the assignments 0 �→ 0, 1 �→ i, . . . , n �→ m in Fig. 4 depict the required 
typing chain morphism (match) (β, f ) :MM → T G . To describe type compatibility of matches and the result of an MCMT 
application we need to have the composition of typing chain morphisms at hand.

Definition 11 (Composition of typing chain morphisms). The composition (φ, f ); (ψ, g) : G →K of two typing chain morphisms 
(φ, f ) : G → H , (ψ, g) : H → K between typing chains G = (G , n, τ G), H = (H , m, τ H ), K = (K , l, τ K ) with n ≤ m ≤ l is 
defined by

(φ, f ); (ψ, g) := (φ;ψ↓ f , f ; g)

where ψ↓ f := (ψ f (i) : H f (i) → K g( f (i)) | i ∈ [n]) and thus

φ;ψ↓ f := (φi;ψ f (i) : Gi → K g( f (i)) | i ∈ [n]).

Chaindenotes the category of typing chains and typing chain morphisms.
We encode now multilevel typing by means of inclusion chains and typing chain morphisms thus we will be able to 

formulate compatibility conditions for matches as commutativity conditions in Chain.

Proposition 1 (Inclusion chain). For any graph H we can extend any sequence H = [Hn, Hn−1, . . . , H1, H0] of subgraphs of H , with 
H0 = H, to a typing chain H = (H , n, τ H ) where for all n ≥ j > i ≥ 0 the corresponding partial inclusion graph homomorphism 
τ H : H ◦−→ H is given by D(τ H ) := H ∩ H and the span of total inclusion graph homomorphisms
j,i j i j,i j i

8



A. Rodríguez, F. Macías, F. Durán et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100831
L I

MM

S D

TG

(μ, f )

(λ, id[n])

(ς, id[m])

(σ D , id[m])

(σ I , id[n])

(σ S , id[m])(σ L , id[n])

(δ, f )

(β, f )

Fig. 5. Pushout step.

H j D(τ H
j,i) = H j ∩ Hi Hi

� τ H
j,i

By means of Proposition 1, we can represent now the four given multilevel typings σ L : L ⇒ MM , σ I : I ⇒ MM , σ R :
R ⇒ MM , and σ S : S ⇒ TG , equivalently, by four corresponding inclusion chains (see Figs. 5 and 6)

• L = (L , n, τ L) with Li := D(σ L
i ) for all i ∈ [n] and thus L0 = L ,

• I = (I , n, τ I ) with Ii := D(σ I
i ) for all i ∈ [n] and thus I0 = I ,

• R = (R , n, τ R) with Ri := D(σ R
i ) for all i ∈ [n] and thus R0 = R and

• S = (S , m, τ S) with S j := D(σ S
j ) for all j ∈ [m] and thus S0 = S ,

together with four typing chain morphisms

• (σ L, id[n]) :L → MM with σ L = (σ L
i : Li → MMi | i ∈ [n]),

• (σ I , id[n]) : I → MM with σ I = (σ I
i : Ii → MMi | i ∈ [n]),

• (σ R , id[n]) :R → MM with σ R = (σ R
i : Ri → MMi | i ∈ [n]), and

• (σ S , id[m]) : S → TG with σ S = (σ S
j : S j → TG j | j ∈ [m]).

By construction, we have Ii = Li ∪ Ri for all i ∈ [n] thus the family of inclusion graph homomorphisms λi : Li ↪→ Ii , i ∈ [n]
establishes a closed typing chain morphism (λ, id[n]) : L → I while the family of inclusion graph homomorphisms ρi :
Ri ↪→ Ii , i ∈ [n] establishes a closed typing chain morphism (ρ, id[n]) : R → I . Finally, the construction of I ensures type 
compatibility of the rule:

(λ, id[n]); (σ I , id[n]) = (σ L, id[n]) and (ρ, id[n]); (σ I , id[n]) = (σ R , id[n]) (2)

Type compatibility of the matches μ : L → S and (β, f ) : MM → T G means that μ : L → S restricts for each i ∈ [n] to 
a map μi : Li → S f (i) such that this family of graph homomorphisms establishes a typing chain morphism (μ, f ) : L → S
satisfying the equation

(σ L, id[n]); (β, f ) = (μ, f ); (σ S , id[m]). (3)

The type compatibility requirements for rules and matches ensure that the pushout for graphs, at the bottom of Fig. 4, 
gives rise to a pushout for the corresponding inclusion chains at the bottom of Fig. 5: For each n ≥ i > 0 we set D f (i) :=
S f (i) ∪ δ(Ii) thus the co-span S

ς
↪→ D δ← I restricts to a co-span S f (i)

ς f (i)
↪→ D f (i)

δi← Ii . This co-span can be proven to be a 

pushout of the span S f (i)
μi← Li

λi→ Ii . To get a complete inclusion chain D of length m, we simply set D j := S j and ς j := idS j

for all j ∈ [m] \ f ([n]). The complete proof that this simple construction provides indeed a pushout in Chaincan be found in 
[39].

Since the bottom square in Fig. 5 is a pushout, the type compatibily conditions (2) and (3) ensure that there is a unique 
typing chain morphism (σ D , id[m]) from D to T G such that

(δ, f ); (σ D , id[m]) = (σ I , id[n]); (β, f ) , (ς, id[m]); (σ D , id[m]) = (σ S , id[m]) (4)

This shows, that we have indeed constructed a type compatible multilevel typing of the graph D .
9
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I R

MM

D T

TG

(ν, f )

(ρ, id[n])

(θ, id[m])

(σ D , id[m])

(σ I , id[n])

(σ T , id[m])

(σ R , id[n])

(δ, f )

(β, f )

Fig. 6. Final pullback complement step.

For the second step of rule application, namely the FPBC construction shown in Fig. 6, we first construct FPBC in category
Graph2 and obtain T . It will remain to reconstruct the typing of T in order to create an inclusion chain T = (T , m, τ T ). To 
achieve this, we construct the reduct of D = (D , m, τ D) along θ : T ↪→ D and id[m] by level-wise intersection (pullback) for 
all n ≥ i ≥ 1 (as described in detail in [33]). In such a way, we obtain an inclusion chain T = (T , m, τ T ) together with a 
closed typing chain morphism (θ, id[m]) : T → D . The multilevel typing of T is simply borrowed from D , that is, we define 
(see Fig. 6)

(σ T , id[m]) := (θ, id[m]); (σ D , id[m]) (5)

and this trivially gives us the intended type compatibility of (θ, id[m]).

3. Composition

In current MDSE practice, DSMLs are built by language designers using a metamodel defined by a general-purpose 
meta-modelling language [40], like MOF. As mentioned in Section 1, this in turn leads to a metamodel that describes the 
instances that users of the language can build in the immediate metalevel below. Thus, languages are specified within two 
levels: definition and usage. However, the increasing complexity of software systems advocates the need for more DSMLs 
as refinement of general-purpose languages [41]. Hence, the need for alternative techniques that alleviate the two-level 
restrictions (provided, for instance, by MLM) becomes progressively significant.

By using MLM capabilities, one could customise families of similar DSMLs, where certain commonalities are shared. In 
this context, the challenge for language designers is to take advantage of the existing commonalities among similar DSMLs 
by reusing, as much as possible, formerly defined language constructs [2]. Furthermore, having a way to modularise a 
language to create features — to later reuse and combine them — can be used in different manners to produce tailor-made 
DSMLs targeting the needs of well-defined audiences. This feature-oriented approach to DSML engineering requires the 
definition of DSMLs in a modularised fashion where language features are implemented as interdependent and composable 
language modules.

3.1. Standard composition approach

A consequence of having DSMLs that tackle scoped problem spaces (enhancing separation of concerns), is that often we 
find ourselves thinking that one of them is not enough to reason about certain global properties or to execute the complete 
system. In other words, it might be necessary to compose some of the constructed models to achieve such goals. In general, 
model composition unfolds along two dimensions, structure and behaviour.

Commonly, frameworks that offer composition operators had to define their own composition rules and provide custom-
made implementations of such operators (e.g., through model transformations). To alleviate ad-hoc implementations and 
to provide standard operations, several researchers have proposed in [19] a paradigmatic merging operation for structure 
composition and event scheduling for behavioural composition. Intuitively, merging refers to the operation in which “the 
common elements are included only once, while the rest are preserved”. Fig. 7(a) shows how the merge operation in [19]
works for two level approaches. Formally, a merge combination operator takes two metamodels, Metamodel 1 and Metamodel 
2 as inputs, as well as a set of correspondence tuples C = {〈ex, e y〉, . . .} with ex ∈ Metamodel 1 and e y ∈ Metamodel 2. The 
merge combination operator produces a new output Merged Metamodel that contains, for each tuple 〈ex, e y〉 ∈ C , a single 
metamodel element. All metamodel elements in Metamodel 1 and Metamodel 2 that are not given a correspondence in C

2 Adapting the existence result in [37] to our kind of cospan rules, a FPBC exists if μ is conflict-free, i.e., if μ(L \ R) and μ(L ∩ R) are disjoint, i.e., 
especially if μ is injective. The corresponding construction of FPBC’s in Graph for conflict-free μ is also described in [37].
10
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Fig. 7. Two-level merge combination vs MLM merge combination.

are simply copied into the Merged Metamodel. In fact, this common and standard representation of merging is a colimit 
construction and goes back to Burstall and Goguen’s work in the late 70’s [42].

Note that the elements displayed as circles in either of the metamodels, are just abstract representations, and could be 
a node or a reference; they are displayed in this way to show how the combination is done after identifying corresponding 
elements. To represent each of the merged elements we use gradient colour surrounded by line, which represent combined 
elements originally coming from two individual ones. Also, the merge operator could take more than two metamodels 
as inputs, as long as the set of correspondences C is properly specified [43], but we discuss here the case of two for 
simplification purposes.

R S1 and R S2 are the sets of transformation rules attached to Metamodel 1 and Metamodel 2, respectively. In the same 
way, as we obtain a Merged Metamodel by the merge operation, a set of rules (RSm) to be attached to such a merged 
metamodel is produced by the disjoint union of each of the rule sets (RSm = RS1 � RS2).

Instance models can be then specified by defining elements that are typed (recall that dashed arrows represent typing 
graph morphisms) by elements located in the Merged Metamodel. These instances can be executed producing the Transition 
System (state space) which is obtained by applying the rules that come from the resulting rule set RSm.

If we apply the merging approach to the MLM case, we get the situation depicted in Fig. 7(b). Following the same 
approach as for the two-level case, we merge two multilevel hierarchies, Hierarchy 1 and Hierarchy 2, for which the merg-
ing process would be done level-wise. If there exists some level mismatch between the hierarchies, one can still establish 
correspondences among elements, however, the resulting Merged Hierarchy must be structurally correct and fulfil the cor-
responding multilevel constraints. The degree of safeness of the different proposals implementing this approach depends 
on the amount of sanity checks in each of them [34]. As stated at the beginning of Section 2.1, in our implementation we 
provide mechanisms to assure that potency on elements is preserved, and typings are correctly applied.

Shortcomings of the standard merge operator A crucial shortcoming present in the merge composition approach is the loss of 
the “individuality” nature of the merged elements (see also [44] for further shortcomings related to constraint checking). 
This means that the original elements that have been merged into a new one cannot be used separately after the merge. This 
capability might be useful in several situations. For example, when the elements about to be composed are not identical, 
but powering up each other. In these situations, we may need to use in our models the merged elements when we want to 
take advantage of all the features each of them provides. However, certain parts of the model might require their isolated 
aspects (i.e., the original, separated elements) to be available. These merged elements are no longer available as individual 
elements of the metamodel and hence cannot be instantiated at the Instance level.
11



3.2. Composition of hierarchies in MultEcore

Our proposal is to provide elements with multiple natures. Natures can be dynamically added and removed, so elements 
can have their own specific features, while still being able to define a combined and enriched nature. Our formalisation of 
typing chains allows us to incorporate or remove additional natures, as types, to elements. For instance, given a situation 
where we are working with two typing chains, each of our nodes and references residing at the instance level would be 
double-typed, each one provided by each of the typing chains. But also, at any time, a typing chain can be removed without 
affecting the other. Elements can therefore have, simultaneously, as many types as we need. This can be seen as an aspect-
like mechanism that we can use as we require, being able to use aspects independently or together. The same principles 
apply to the definitions of behaviour by the amalgamation of MCMTs (Section 3.2.2). The fact that typing chains may be 
added and removed as needed makes the composition of DSMLs very flexible.

In the sequel, we first present our approach to the composition of multilevel hierarchies using double-typing (Sec-
tion 3.2.1) and the amalgamation of their corresponding MCMTs using pushouts (Section 3.2.2). Then, we analyse and 
present several cases in which two MCMTs are amalgamated (Section 3.2.3) and applied to composed multilevel hierar-
chies (Section 3.2.4). Although using pushouts would work in general, the analysis shows that in the cases where it is 
desirable to keep the effect of deletion during amalgamation, a prioritisation mechanism with user-intervention would be 
necessary.

3.2.1. Composition of multilevel modelling hierarchies
Our MLM approach does not restrict the number of typing chains that can be specified in a hierarchy. Frequently, we 

denote a multilevel hierarchy as the main or default one and call it application hierarchy, since it represents the main language 
being designed. An application hierarchy can optionally include an arbitrary number of supplementary hierarchies which 
add new aspects to the application one. Note that we distinguish the typing chains and individual typing relations of the 
application hierarchy with blue colours, and use green for the supplementary ones. Adding or removing supplementary 
hierarchies is made possible by the incorporation or exclusion of additional typing chains. For instance, we might have 
different hierarchies (physically separated, e.g., different projects in the MultEcore tool) that we want to compose. Such a 
result can be achieved by assigning the role of application hierarchy to one of them and adding the rest as supplementary 
ones. These two different “roles” assigned to hierarchies are used for the most part in this paper, since it facilitates the 
reusability and the modularisation of the system being modelled. However, it is important to point out that, as long as the 
typing chains are properly defined and consistent, the formalisation of application and supplementary typing chains has no 
real difference. Therefore, we can consider both working with several hierarchies, for which there might be several Ecore
models at the top, or with several branches within the same hierarchy where there is only one Ecore model. The latter 
alternative can be achieved using the same techniques as the former, as long as some of our constraints are weakened, e.g., 
the tree shape (discussed in Section 2.1) that we impose on hierarchies or the single individual type (Definition 7) of each 
element in a hierarchy.

Fig. 8 displays the hierarchy in Fig. 1, but in it two different branches are combined within the same hierarchy, i.e., we 
specify two typing chains. The left-hand branch, in which models are connected by blue dashed arrows, represents the main 
typing chain and guides how we can consistently and precisely type elements. As described above, we can then add extra 
typing chains, in this case, to our instance level, for example the one represented by the green dashed arrows (characterised 
by the right-hand branch). Once a new typing chain is incorporated, all the elements (both nodes and references) need to 
be extended with a new type. Then, these types can be used/modified by the modeller as it is done with the main type.

The model configuration-1 in Fig. 8(f) shows an example of how elements may be double-typed. One can see that node
a1 has two types associated, A1 from the left-hand typing chain, its main type, and D1 from the right-hand typing chain, 
which adds additional information to the node. We have a similar situation with reference g1 and its two types G1 and H1.

Fig. 9 compares the merge case exposed in Fig. 7(b) with our approach for composition based on multiple typing chains. 
As already explained, a considerable drawback of the merge operation is that, once the merge is performed, the individuality 
of the elements that belonged to the different models prior the composition step is lost. Notice in Fig. 9(b) that we do not 
carry any “physical” merge when a composed hierarchy or model is produced, but we can instantiate elements with more 
than one type. The hierarchies are left untouched, but the rules belonging to each hierarchy might be amalgamated to 
take into account a desired composed behaviour. Of course, we can preserve the “individual” nature by using just one of 
the types as shown in either a2, a3 or a4 elements in Fig. 9(b). We discuss in Section 3.2.2 how we achieve behaviour 
composition (RSm = RS1

∐
RS2 at the bottom of Fig. 9(b)). Our transition system has, as initial state, the double typed 

instance model. It consists of all reachable instance models when MCMT rules from both multilevel hierarchies are applied.
The inclusion of an extra typing chain forces all the elements at the instance level to have an additional new type from 

the newly incorporated typing chain. Elements which do not get a specific type from the newly added typing chain will get 
a default typing; i.e., the type of the nodes is set to EClass (and arrows to EReference, respectively). Recall that this default 
typing to Ecore elements is independent on whether the new typing chain is contained in the same hierarchy (i.e., we use 
the same Ecore as a top most model G0) or we use a completely new hierarchy. This is illustrated in Fig. 10 which depicts 
a fragment of the hierarchy of Fig. 9(b) but using typing arrows (formally ty(e)) instead of ellipses. We can see that the 
model configuration-1 has two typing chains: a blue and a green one, in the same hierarchy. Note that, in a particular typing 
A. Rodríguez, F. Macías, F. Durán et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100831
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Fig. 8. Multilevel hierarchy with two typing chains.

Fig. 9. MLM merge combination vs our approach with multiple typing chains.
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Fig. 10. Typing chains to keep individuality of elements.

chain we omit the default typing to Ecore elements if other intermediate types exist (e.g., a2 has A1 in the blue branch, 
while it has only the default EClass in the green one). We describe the individual typing for each of the elements below; 
we denote T Cx(e), with x = 1, 2, the corresponding individual typings of the element e in typing chain x:

T C1(a1) ≡ a1 �−→ ty1(a1) = A1 �−→ ty2
1(a1) = A �−→ ty3

1(a1) = EClass

T C2(a1) ≡ a1 �−→ ty2(a1) = D1 �−→ ty2
2(a1) = D �−→ ty3

2(a1) = EClass

T C1(a2) ≡ a2 �−→ ty1(a2) = A1 �−→ ty2
1(a2) = A �−→ ty3

1(a2) = EClass

T C2(a2) ≡ a2 �−→ ty2(a2) = EClass

3.2.2. Amalgamation of MCMTs
In the previous section, we explained how we support composition of MLM models by multiple typing. In this section, 

we will explain composition of behaviour by the amalgamation of MCMT rules. The amalgamation of transformation rules 
has been widely discussed in the literature in the context of traditional (two-level) approaches [45–49]. In this paper, we 
study amalgamation in the MLM context and allow potentially conflicting rules to be amalgamated under certain constraints.

We are working with two MLM hierarchies or, as in the running example, with the composition of the two branches of 
Fig. 8, each of them with its own set of MCMTs. The elements will appear double-typed at the instance level (for example, 
the situation described in Fig. 8(f)). Thus, a key aspect is to also be able to amalgamate rules which only pertain to each 
branch of the hierarchy.

To illustrate the constructions, we will explain the process by amalgamating two MCMTs, one for each branch: Rule A
(TRA ) for the left branch, which is the rule depicted in Fig. 3 and shown again in Fig. 11(a), together with Rule B (TRB ), 
which is a very similar rule for the right branch (Fig. 11(b)).

An essential step to achieve amalgamation (or, in general, composition) is the identification process where the elements 
that correspond to each other have to be identified. Most works in the literature use a so-called kernel rule to express 
correspondences between two or more rules [45–48]. Also in our approach, we assume that the user provides the corre-
spondences between elements in the rules which are to be amalgamated. That is, given Rule A L A ↪→ I A ←↩ R A and Rule 
B LB ↪→ I B ←↩ R B , the correspondences provided by the user (L0, I0 and R0) will be defined as a subrule TR0 such that 
TR0 ↪→ TRA and TR0 ↪→ TRB .
14



A. Rodríguez, F. Macías, F. Durán et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100831
Fig. 11. MCMT rules to be amalgamated: (a) Rule A affecting the left-hand branch and (b) Rule B affecting the right-hand branch.

Fig. 12. Amalgamated rule construction with pushouts.

Definition 12 (Subrule). A rule TR0 := L0 ↪→ I0 ←↩ R0 is a subrule of a rule TR := L ↪→ I ←↩ R , written TR0 ↪→ TR, where there 
exist three inclusion graph morphisms L0 ↪→ L, I0 ↪→ I , and R0 ↪→ R , such that the following diagrams are commutative.

Defining the kernel (or commonality) TR0 between two rules TRA and TRB as subrule will give rise to three spans with 
inclusion graph morphisms: L A ←↩ L0 ↪→ LB , I A ←↩ I0 ↪→ I B and R A ←↩ R0 ↪→ R B . Recall that L � I and R � I , hence, we 
can deduce R0 and L0 from I0, meaning that in practise the user only needs to specify I0.

Amalgamating TRA and TRB w.r.t. TR0 means to combine the components of the rules so that we obtain a single rule TRM
such that (LM = L A +L0 LB) ↪→ (IM = I A +I0 I B) ←↩ (R M = R A +R0 R B). Again, we use pushout constructions, as a common 
practise, to obtain the components of TRM . Below, we detail the construction of LM as the pushout L A +L0 LB (see Fig. 12). 
The same constructions will apply for the I and R components of the rules.

However, since L A and LB (and, respectively, I A , I B , R A and R B ) have different multilevel types, we would need to 
unify the types by defining default types for each of the elements in the other hierarchies, i.e., all L A elements would have 
the default type (EClass/EReference) from the typing chain MMB = (MMB , nb, τMMB ), while all LB elements will have the 
default types from the typing chain MMA = (MMA , na, τMMA ) (and again, the same for I A , I B , R A and R B ). Furthermore, L0
would have the default types in both chains.

We illustrate this in Fig. 13. On the left-hand side, we break down the L A +L0 LB pushout resulting in LM together with 
their respective typing chains. As described above, a is typed over MMA (VarA, A, EClass) and over MMB (EClass), d is 
typed over MMB (VarD, D, EClass) and by EClass over MMA , a ≡ d in L0 is only double-typed by EClass in each of the 
typing chains, and the resulting ad in LM is typed over MMA (via σ L A

M ) and MMB (via σ LB
M ) as shown in the right-hand 

side of Fig. 13.
Expressed in terms of inclusion chains, the aforementioned typing relations mean that L A

0,0 = LB
0,0 = L0,0 = L0, where 

L A
0,0 is the part of L0 which is typed by MMA,0 (see Proposition 1). The rest of the levels L A

0,i , with 0 < i ≤ na will be empty 
since L0 has only default types in the two rules’ hierarchies. These types are reflected by the two light thin arrows from L0
15
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Fig. 13. LM with typing chains as result of pushout of L A , LB modulo L0.

Fig. 14. Levels 0,1 of the inclusion chain LM .

to the two EClasses in MMA and MMB in Fig. 13, respectively. Similarly, we have L A
A,0 = LB

A,0 = L A,0 and L A
B,0 = LB

B,0 = LB,0. 
The levels (except for 0) of the inclusion chains LA (resp. LB ) along σ L A

A : L A ⇒ MMA (resp. σ LB
B : LB ⇒ MMB ) will be 

constructed according to Proposition 1. Moreover, the default levels (except for 0) of the inclusion chains LA (resp. LB ) 
along σ LB

A : L A ⇒ MMB (resp. σ L A
B : LB ⇒ MMA ) will be empty. Having these typing chains, we apply level-wise pushouts 

as described in Section 2.2 (see also [33] and [39]).
The results of these level-wise pushouts would be two inclusion chains:

• LA
M = (L A

M , na, τ L A
M ) with σ L A

M : L A
M ⇒ MMA : The levels L A

M,i for all 0 ≤ i ≤ na of the inclusion chain will be produced 
by the pushouts of the spans L A

A,i ←↩ L A
0,i ↪→ L A

B,i , i.e., we have L A
M,i = L A

A,i ∪ L A
B,i .

• LB
M = (LB

M , nb, τ LB
M ) with σ LB

M : LB
M ⇒ MMB : The levels LB

M,i for all 0 < i ≤ nb of the inclusion chain will be produced 
by the pushouts of the spans LB

A,i ←↩ LB
0,i ↪→ LB

B,i , i.e., we have LB
M,i = LB

A,i ∪ LB
B,i .

Fig. 14 illustrates how the levels L A
M,0 and L A

M,1 are constructed (the relations between the levels are omitted to simplify 
the diagrams). The other levels, as well as the pushouts with respect to MMB , are constructed analogously. L A

M,0 and L A
M,1

are obtained by the pushouts of the spans L A
A,0 ←↩ L A

0,0 ↪→ L A
B,0 and L A

A,1 ←↩ L A
0,1 ↪→ L A

B,1, respectively. The graphs L A
0,1 and 

L A
B,1 will be empty since the inclusion chain is constructed with respect to MMA . This is because the elements of L0 and 

LB have only the default types in MMA , hence only level 0 of these inclusion chains is non-empty such that L0 = L0,0 and 
LB = LB,0. The construction of the two first levels for the rules TRA and TRB from the running example is shown in Fig. 15. 
Notice that d is neither identified in L A

0,1 nor in L A
B,1, as it only has the default EClass type w.r.t. MMA , located in level 0. 

Then, in L A
M,1 we only have a, which is typed by A in MMA,1.

To summarise, the result of the amalgamation process is an amalgamated rule where each element has two types. For 
the running example, the result of amalgamating TRA and TRB in Fig. 11 is the rule TRM which is depicted in Fig. 16 as a 
co-span and in Fig. 17 in the MultEcore syntax.
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Fig. 15. Levels 0,1 of the inclusion chain LM for the rules TRA and TRB .

Fig. 16. Amalgamation construction application of the situation depicted in Fig. 17.

Fig. 17. Amalgamated rule TRM as result of combining TRA and TRB .

3.2.3. Amalgamation cases
If we inspect the constructions described in Section 3.2.2, we can observe several amalgamation cases depending on how 

TRA and TRB are related by TR0. Table 1 shows a summary of the cases that we contemplate, which are listed below (note 
that one can see in the Amalgamation columns which elements are identified, as the names are concatenated):

Case 1 : TRA adds, TRB adds and I0 = L0, i.e., added elements are not identified (only a is identified with d which was 
already existing in L0).

Case 2 : TRA adds, TRB adds and L0 � I0, i.e., the elements newly added by each of the rules are identified between them 
(for example in this case, b is identified with e and g with h, which are all newly added). This case represents the 
example shown along Section 3.2.2
17
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Table 1
Amalgamation cases showing how two rules may be amalgamated depending on the way they are related.

Case 3 : TRA adds, TRB adds, L0 � I0 and either (I0 \ L0) ∩ L A �= ∅ or (I0 \ L0) ∩ LB �= ∅, i.e., newly added elements by TRA
are identified with elements which are in LB , or vice versa. This is a special case since, b is identified with e in I0, 
but e does not exist in L0. Therefore, as hinted in the constructions shown in Section 3.2.2, we need to constrain 
the match of LM in the source graph S by forcing the missing type for be to be directly — i.e., not transitively —
EClass. In abuse of notation, we indicate with underlined text in the type rather than in the element (as we do 
for constants) that the constrained typing relation must match exactly one typing relation in the target hierarchy, 
instead of a potential series of transitive typing relations.

From this point, the cases which include deletion of elements might cause a general dangling arrow problem, which has 
to be solved. One solution is to get rid of the dangling arrows using a special graph minus operator as explained below. 
Alternatively, we could notify the user about the dangling arrows and ask for user intervention as it is done, for instance, in 
version control systems (see [50]).

Case 4 : TRA deletes and TRB deletes, where L0 = I0 (i.e., there are no new identifications except for the ones in L0), 
LM = IM (no additions), and I A \ R A = I B \ R B (identified/same elements are deleted). Note, if the only deleted 
elements are those that have been identified, we have I0 � IM \ R M .
18
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Fig. 18. MCMT rules to be amalgamated: (a) Rule A affecting the left branch and (b) Rule B affecting the right branch.

Case 5 : TRA deletes, TRB deletes, I0 = L0, LM = IM , I A \ R A �= I B \ R B (different elements are deleted) and R M � I0 (all the 
identified elements are preserved).

We will now analyse other cases involving deletion which could be covered if R M is created by pushout of R A ←↩ R0 ↪→
R B . However, if we use such a mechanism to construct R M , we would lose the effect of deletion, and certain conflicts might 
just disappear. For example, if TRA deletes an element while TRB keeps it, the element would be kept. Obviously, a potential 
dangling arrow problem would also disappear since a deleted node a which is identified in L0 or I0 would be kept if it is 
preserved by the rule which uses a as source or target of an arrow. Therefore we introduce two priority formulae below 
to prioritise the effect of one of the rules depending on the user’s choice (the calculation of R M , i.e., the square on the far 
right of Fig. 12, would be done via the formulae below).

Priority in TRA : R M = R A ∪ (R B
∗— (I0 ∩ R B))

Priority in TRB : R M = R B ∪ (R A
∗— (I0 ∩ R A))

We define ∗— as a graph minus operation that removes any dangling arrow that could be left by the usual graph minus 
operation.

To illustrate an application of priorities, let us consider the example shown in Fig. 18 where we have two rules: TRA :=
Add and connect and TRB := Delete node. The latter was originally conceived to be applied to the right-hand branch of the 
hierarchy (specific-model-2, generic-model-2, Ecore) in Fig. 8. In the case of the Delete node rule, and following the same logic 
as explained for the Add and connect rule, any match in our instance of the variable d placed in the FROM block, whose type 
is VarD located at the second level of the META block, and which is typed by the constant D located at the first level of the
META block, takes the instance to a new state where the matched element is removed. These rules are conflicting in the 
sense that the user has identified a with d and, while TRA adds a new arrow g to a, TRB deletes the element d. However, 
as mentioned, applying our standard pushout construction would produce a TRM in which the affect of the deletion in R M

disappears.
Depending on which rule the user wants to prioritise, the corresponding formula needs to be applied. First, the user has 

to provide I0 with the identification. In this case, I0 only identifies a with d (a ≡ d). Such an identification indicates us that
a, d, or ad appearances in the formula must be treated as same element. If the prioritisation falls on TR A , we have:

R M = (a
g−→ b) ∪ (∅ ∗— (ad ∩∅))

R M = (a
g−→ b)

If the prioritisation is given to TRB the result is:

R M = ∅∪ ((a
g−→ b) ∗— (ad ∩ (a

g−→ b))

R M = ∅∪ ((a
g−→ b) ∗— a)

R M = b

Observe that the ∗— operation removes the dangling arrow g pointing to b. We graphically show both possible results in 
Fig. 19, where the TO block depicts the two alternatives depending on the priority.

Case 6 : One of the rules adds while the other deletes, for instance, TRA adds something to an element while TRB deletes 
that element. This is the case depicted above and shown in Figs. 18 and 19 where R M is given by prioritisation on 
one of the rules.
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Fig. 19. Amalgamated rule TRM as result of combining TRA and TRB where RM has been calculated with the priority formulae.

Case 7 : This case covers potential combinations of some of the cases afore discussed. There might be several additions 
and/or deletions at the same time and, therefore, conflicts that would require prioritisation.

3.2.4. Amalgamated rule application
The last step, once the amalgamated multilevel double-typed rule is constructed, consists of its application into the 

composed multilevel hierarchy. Note that the construction follows the same reasoning as for single multilevel typed rules 
(detailed in Section 2.2). The complete construction for the amalgamated rule application is depicted in Fig. 20.

As we discussed in Section 3.2.3, the calculation of R M might not be done by the pushout but with the priority formulae, 
so that we mark the right hand pushout with ∗. We have the two typing chains MMA = (MMA, na, τMMA ) and MMB =
(MMB , nb, τMMB ) over which the double-typed MCMT rule is defined. The multilevel double-typed rule is given by the four 
components (L0, L A , LB and LM for L and respectively for I and R) and their multilevel typings over the two typing chains 
MMA and MMB such that σ L A

A : L A ⇒ MMA and σ LB
B : LB ⇒ MMB , σ I A

A : I A ⇒ MMA and σ I B
B : I B ⇒ MMB and σ R A

A : R A ⇒
MMA and σ R B

B : R B ⇒ MMB . Then, we have σ L A
M : LM ⇒ MMA , σ LB

M : LM ⇒ MMB , σ I A
M : IM ⇒ MMA , σ I B

M : IM ⇒ MMB , 
σ R A

M : R M ⇒ MMA and σ R B
M : R M ⇒ MMB .

In the multilevel typed setting all the instance graphs S , D and T are multilevel double-typed over another two typing 
chains TGA = (TGA, ma, τ TGA ) and TGB = (TGB , mb, τ TGB ), the instance typing chains. A match of the left-hand side (LM , 
σ L A

M , σ LB
M ) of the multilevel double-typed rule into a multilevel double-typed instance graph (S , σ S A

, σ S B
) is given by a 

graph homomorphism μM : LM → S together with the corresponding typing chain morphisms (βA , f A ) and (βB , f B ) where 
βA = βAi : MMAi →TGA f A (i) | i ∈ [na] and βB = βBi : MMBi →TGB f B (i) | i ∈ [nb], respectively.

Furthermore, μM : LM → S has to be compatible with the multilevel typings σ L A
M : LM ⇒ MMA and σ LB

M : LM ⇒ MMB , 
σ S A : S ⇒ TGA and σ S B : S ⇒ TGB and, finally, with the typing chain morphisms (βA , f A) : MMA → TGA and (βB , f B) : 
MMB → TGB .

We construct the pushout and then the final pullback complement of the underlying graph homomorphisms in the 
category Graphas shown at the bottom of Fig. 20. The type compatibility conditions for the multilevel double-typed rule 
as well as for the multilevel typed match should ensure that we obtain, in a canonical way, multilevel typings σ D A : D ⇒
TGA and σ D B : D ⇒ TGB , σ T A : T ⇒ TGA and σ T B : T ⇒ TGB of the constructed graphs such that the constructed graph 
homomorphisms ςM : S ↪→ D , δM : IM → D , θM : T ↪→ D and νM : R M → T are type compatible. Note that Fig. 20 formally 
describes the application of an amalgamated MCMT rule to a composed multilevel hierarchy where the elements at the 
instance level are double-typed. Furthermore, it summarises the constructions detailed in the previous sections.

To summarise, applying the amalgamated multilevel double-typed rules to a composed multilevel hierarchy would pro-
duce a transition system consisting of all reachable instance graphs which are multilevel-typed by the hierarchy. The 
transition systems of the individual multilevel hierarchies may in some cases be retrieved by projection using the typ-
ing information; i.e., they are subsumed by the composed transition system. However, this projection is not always possible 
without losing information; for a particular, individual transition system to be retrieved, either (i) there should be no con-
flicting cases while amalgamating the rules, or (ii) all the rules from that hierarchy are prioritised in case of conflict.

4. Case study

The capability to perform composition of structure and operational semantics takes the construction of DSMLs to a 
next step. Modelling a system often involves the consideration of several perspectives that describe its different aspects. In 
the case study that we present in this section, the main aspect of the system consists of a DSML defined as a multilevel 
hierarchy for the management and distribution of process resources in a company. This is the application hierarchy of the 
case study, called process management. The process management hierarchy version we present in this paper is a fragment of 
the hierarchy presented in the MULTI 2019 workshop, as our solution [27] to the MULTI Process challenge [51,52]. Therefore, 
20
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Fig. 20. Amalgamated rule application construction.

all the modelling decisions affecting the complete hierarchy (illustrated in Appendix A) were made to fulfil the requirements 
of the challenge. The second DSML is described in an independent multilevel hierarchy that captures certain notions related 
to human beings in general (e.g., stamina). This second hierarchy acts as the supplementary one in our case study, and it is 
called the human-being hierarchy. By applying our approach we observe that composition can be achieved in a natural and 
modular way. The composition of structure can be done by double typing elements, while the MCMTs can be composed by 
applying the constructions introduced in Section 3.2.

4.1. The process management hierarchy

This hierarchy represents the domain of process management, where the modeller is interested in a complete description 
of a language that includes the specification of particular occurrences (i.e., “processes” = “processes instances”, “tasks” = 
“task occurrences”) and universal kinds of occurrences (“process definitions”, “task types”) and relations to actor types and 
artefact types. Our original solution [27] presented models not only related to the general management of processes, but 
also branches for specific processes in the domains of software engineering and insurance. For the sake of simplicity, we 
focus only on the software engineering branch as it suffices to illustrate our composition approach.

4.1.1. Structure of the process management hierarchy
The process model depicted in Fig. 21 is located in the first level (we omit Ecore, which lives above process model) of the 

hierarchy and contains the concepts concerning universal processes. This includes process types, task types, artefact types, and 
actors. The composition relation named contains between Process and Task models that a process has one or more tasks.
Task has some attributes to model the duration, starting and ending day, and whether it is critical or not. Actors may have 
multiple roles, which is captured by the reference hasRole between Actor and AbstractRole. We use for roles the traditional 
object-oriented Composite pattern [53] and define AbstractRole as an abstract node (italic font in the name). A special type 
of role to designate a SeniorRole is also defined. Roles can have assigned kind of tasks whose instances can execute. Also, 
each actor can either create or perform tasks. Finally, the two references, produces and uses, from Task to Artifact, capture 
that tasks can both use and produce artefacts. Ordering constraints between task types are established through Gateways, 
which may be Sequence, OrSplit, OrJoin, AndSplit and AndJoin.

The model software-engineering (in level 2) in Fig. 22 captures specialisations that affect the software engineering domain. 
For instance, that each software engineering artefact (SEArtifact node has as type Artifact from the process model in Fig. 21) 
must have assigned one responsible software engineering actor.
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Fig. 21. Process management model.

Fig. 22. Software engineering process model.

Fig. 23. Acme software engineering process model excerpt.

Fig. 24. Acme initial configuration at the instance level.

The Acme-software-engineering model describes a concrete modelling language for the Acme company, and characterises 
how the working flow is going to be, which roles are allowed to execute certain types of tasks, which artefacts are produced, 
and so on. Fig. 23 shows the excerpt of this model that is needed for the current case study — the entire model is depicted 
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Fig. 25. Rule Create Task: It creates a specific task associated to a concrete actor whose role allows the execution of such kind of tasks.

Fig. 26. Rule Produce Artefact: It creates an artefact related to the task that produces it and the actor responsible for it.

in Fig. A.41(c). In this excerpt, we find AnalystRole class of type Role. Note that @2 is added to it type as it is located two 
levels above (at process model in Fig. 21).

The lowest level of the process management hierarchy contains the instance model (called Acme-configuration) and it is 
shown in Fig. 24. It depicts a very simple initial model with Alex as a software engineering actor (SEActor) which has 
associated an Analyst role (of type AnalystRole).

4.1.2. MCMTs for the process management hierarchy
The dynamics of processes is modelled by MCMTs, which describe the different actions that may occur in the system. We 

show here three of these rules for the process management hierarchy that illustrate their use, and will serve us to manifest 
their combination with rules in the second hierarchy.

The first rule, called Create Task, is shown in Fig. 25. Given an actor act1 with a role r1 of some type R1 via a1role, the 
rule assigns a new task of the right type to it. The role specified in the level 2 of the META block will constrain the task 
that such role can execute. In addition, the model at the higher level will similarly constrain the type of task that the actor 
can perform and its role execute.

The second rule, named Produce Artefact, is depicted in Fig. 26. If an actor act1 and a task task1 he is performing (in-
dicated by the a1p reference) are found, the rule creates an artefact ar1 related both to the actor act1 via r (typed by
responsibleActor) and to the task task1 via t1pr.

The third rule that applies to the process management multilevel hierarchy, named Delete task and illustrated in Fig. 27, 
is meant to delete a task that an actor is performing. Recall that rule levels are not expected to match consecutive levels 
in the hierarchy on which they are defined. In this case, the META model would match to elements located at level 1 of 
the hierarchy (Fig. 21), while the FROM and TO parts would match at the instance level placed at level 4 (Fig. 24). This 
flexibility is specified in Condition (1).
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Fig. 27. Rule Delete Task: It deletes a task an actor is performing.

Fig. 28. Human-being multilevel hierarchy.

4.2. The human-being hierarchy

In the human-being hierarchy we tackle different aspects inherently related to the human factor of the system.

4.2.1. Structure of the human-being hierarchy
This multilevel hierarchy is depicted in Fig. 28. The model represented in Fig. 28(a) captures very general human being 

notions, such as that a human (Human node) can do (does relation) multiple activities (Activity node). Furthermore, a human 
has a stamina level which is represented as an Integer (int), and an activity can have an impact on a human’s stamina. These 
two characteristics are expressed via attributes in the respective nodes.

To give an example of refinement, we define in Fig. 28(b) a model that captures concepts for the domain of working 
human beings. Note that we could add other models in here at the same level to capture other areas, such as students, 
retired people, etc. Worker, undertakes and Assignment have, as types, Human, does and Activity, respectively. Additionally 
in this level, two more attributes are added that only concern the worker domain. The profit attribute (defined in Worker) 
can be understood as the income that a worker obtains. And value, specified in the Assignment node, is the benefit that 
completing the assignment provides.

4.2.2. MCMTs for the human-being hierarchy
As we did for the process management hierarchy (Section 4.1.2), behaviour here is also described using MCMTs. We 

provide two MCMT rules for this hierarchy.
The first rule is called Undertake activity and it is shown in Fig. 29. It connects a worker work1 and an assignment as1. 

Attributes are also modified in this rule. In the FROM block, s, p, i and v would capture values in the model for the stamina
and profit for work1 and the impact and value for as1, respectively, during the matching process. In the TO block, apart from 
connecting them via u (typed by undertakes) reference, the attributes on the worker are modified: stamina in work1 gets 
decreased by the amount that was matched to the impact from the assignment as1 but the profit on the worker work1 gets 
increased by the amount specified in the value attribute in the assignment as1. Intuitively, a worker that is undertaking an 
activity gets income at the cost of getting more tired.

A second rule, named Finish Activity, is illustrated in Fig. 30. Unlike the previous rule which is defined in the domain of 
worker human beings, this one applies to human beings in general. The application of this rule finds a match in the model 
where a human human1 connected to an activity act1 via d and removes such a reference.
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Fig. 29. Rule Undertake activity: It connects a worker with the assignment being performed and updates its attributes.

Fig. 30. Rule Finish Activity: It removes the link between a human being and the activity he was performing.

Fig. 31. Instance model of Acme software engineering company including human-being hierarchy.

4.3. Multilevel hierarchies combination

A modeller working on a concrete design of the processes of the Acme company (specific actors, tasks, artefacts, etc.) 
might find useful to complement that given scenario with additional aspects, such as those described in the human-being
multilevel hierarchy (Fig. 28). Through our approach one can put together different perspectives, while there still exists a 
separation (via typing chains) that can be analysed either together or separately.

For instance, observe the model Acme-configuration-composed depicted in Fig. 31 where we incorporate the human-being
multilevel hierarchy (Fig. 28) as a supplementary typing chain to reason about some elements defined on it. We can, for 
example, give to Alex the new type Worker and keep the SEActor type. Analogously, we can instantiate the attribute stamina, 
which comes from the worker-human-being model (Fig. 28(b)), with the value 3.

To give a full perspective of how the two hierarchies are put together and how elements at instance level can make use 
of them, we provide selected parts of each of the models and illustrate them in Fig. 32, where one can observe the typing 
chains for each hierarchy. Note that the model shown in Fig. 31 is located at level 4 / level 3 - Instance in Fig. 32. Each of 
the types belonging to each of the hierarchies can be precisely spotted in its corresponding typing chain up to the topmost 
model. Firstly, Alex is typed by SEActor. Note that the @2 means that SEActor is located at level: Alex’s level (level 4) minus 
2, i.e., at level 2 — in the software-engineering model. Then SEActor’s type is Actor located at level 1 which finally leads us 
to EClass defined at level 0. Secondly, Alex’s second type is Worker, which is located at level 2 (worker-human-being model).
Worker’s type is Human placed one level above (general-human-being model) and, ultimately, Human’s type is EClass. For 
each of the elements present in any of the models, one must always be able to follow the typing chains up to the topmost 
model located at level 0. The dashed semi-transparent lines in Fig. 32 represent the typing chains of each element.
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Fig. 32. Selected parts of process and human-being hierarchies creating a composed multilevel hierarchy.

4.4. MCMTs amalgamation

We show in this section, to demonstrate the application of the constructions detailed in Section 3.2, three amalgamation 
cases, each of them combining one rule from each hierarchy.

The first amalgamated rule shown in Fig. 33 is given by the combination of the Create Task (Fig. 25) rule from the process 
management hierarchy and the Undertake Activity (Fig. 29) rule from the human-being hierarchy. We identify in the META
block the required elements from both multilevel hierarchies (note they are separated by a vertical dotted line) that are 
involved in the two typing chains present in the FROM and TO blocks, product of the amalgamation process. The left-hand 
side of the META block is the same one shown and explained in Fig. 25. Analogously, the right-hand side of the META
block is replicated from the META block of Fig. 29. The complete amalgamated rule is automatically obtained by applying 
the construction shown in Fig. 12, once I0 has been provided by the user. We clarify in Section 4.5 how the amalgamation 
process is performed in MultEcore.

In the FROM block, we find that act1work1 (typed by Actor and Worker) is connected to r1 (typed only by R1, since it was 
not identified with another element from the human-being hierarchy) via a1role which type is hasRole. Note that we have 
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Fig. 33. First rule amalgamation: It combines Create Task rule from the process hierarchy with Undertake Activity rule from the human-being hierarchy.

Fig. 34. Second rule amalgamation: It combines Produce Artefact rule from the process hierarchy with Undertake Activity rule from the human-being hierarchy.

appended the variable names to facilitate the understanding of which elements have been composed (i.e., double-typed). As 
clarified in Case 3 of Section 3.2.3, task1as1’s type from the process hierarchy is constrained to be EClass.

In the TO block, the rule in Fig. 33 intuitively assigns to an actor/worker (act1work1) a task/assignment (task1as1) through
a1pu, for the first hierarchy, and undertakes, for the second one. The rule also connects r1 to task1as1 via r1e. Notice how
r1e link is not involved with the human-being hierarchy, which makes sense since roles from the process hierarchy are not 
identified with anything into the human-being hierarchy. Finally, it also applies the attribute manipulation such as decreasing 
the stamina and increasing the profit of act1work1. This rule is identified by case number 3 in Table 1.

The second amalgamated rule displayed at Fig. 34 is constructed by combining the Produce Artefact rule (Fig. 26) from 
the process management hierarchy and again the Undertake Activity rule from the human-being hierarchy.

In this case, we illustrate this rule as it presents a peculiarity. As one can observe in Fig. 34, there exists a mismatch 
between the number of levels in the two hierarchies. While the first hierarchy on the rule (located in the left-hand side of 
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Fig. 35. Third rule amalgamation: It combines Delete Task rule from the process hierarchy with Finish Activity rule from the human-being hierarchy. The result 
depends on which rule gets prioritised.

Fig. 36. First step of the amalgamation wizard: Selection of multilevel hierarchies to be combined.

the dotted line in the META block) specifies three META levels, the second hierarchy or at the right-hand side only contains 
two levels. However, this is not a problem since either of the typing chains do not see themselves affected by the other, and 
it is perfectly fine to find such kind of situations. The application of this rule creates an artefact ar1 (which is not related 
to the human-being hierarchy) related to act1work1 through r and to task1as1 via t1pr. Again, act1work1 also gets updated
stamina and profit. This rule construction is covered in case number 3 in Table 1 (notice the EReference second type of a1p
in the FROM block).

The last amalgamation example we have obtained, is given by the combination of Delete Task rule (Fig. 27) from the 
process management hierarchy and Finish Activity rule (Fig. 30) from the human-being hierarchy. We illustrate in this case an 
example where prioritisation must be given to one of the rules in order the get R M (TO block). The two results depicted in 
the TO part are calculated by applying the formulae given in Section 3.2.3. This example corresponds to case number 6 in 
Table 1, as one rule is keeping the node task1act1 while the other is removing it.

4.5. Amalgamation in MultEcore

MultEcore provides a wizard to help in the semi-automated amalgamation of rules. Let us use the amalgamated rules 
shown in Figs. 33–35 to illustrate the use of the tool, and to demonstrate that the produced amalgamated MCMT rules are 
sound with the expected results.

In a first step, the modeller decides which multilevel hierarchies are going to be combined. These, together with their 
corresponding set of MCMT rules, will be shown in the wizard. Fig. 36 shows the state of the wizard after the selection of 
both multilevel hierarchy projects. Note that at least two of the available hierarchies must be selected in order to be able to 
advance to the second step.

In a second step, the MCMT rules to be amalgamated are selected. For instance, if we are combining two hierarchies, the 
modeller has to specify the pairs of MCMTs that are to be amalgamated. Fig. 37 shows the state of the wizard at this stage. 
Let us focus on in each of the four parts we need to look at (marked with numbers 1–4 in the figure):

1 — Hierarchies. This part of the dialog shows all the multilevel hierarchies that have been selected. In this example we 
have no.hvl.multecore.examples.process2020main and no.hvl.multecore.examples.human.

2 — MCMT rules. This box shows the available MCMT rules that belong to the selected hierarchy in box 1. By selecting one 
of them and pressing the Add Rule button (right side of the figure), the selected MCMT rule gets added to the third 
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Fig. 37. Second step of the amalgamation wizard: Selection of MCMT rules to be combined.

Fig. 38. Third step of the amalgamation wizard: Identification of elements in each rule combination.

box (3). Since these are the rules to be combined, only one rule can be added per hierarchy. Once a rule has been 
added to the box marked as “Rule candidates” (3), it is removed from box 2 until it has been resolved, i.e., combined 
with another rule.

3 — Rule candidates. This box shows the MCMT rules that are candidates to be combined. In the figure, rules DeleteTask
and FinishActivity are shown. Pressing the Combine button would result in adding this combination to the list of 
combinations (4).

4 — Combinations selected. This last box shows the selected combinations. The figure shows two combinations: Create-
Task + UndertakeActivity and ProduceArtefact + UndertakeActivity. Combinations can be discarded by selecting one and 
clicking on the Remove button (on the right of the snapshot).

After the combination of the DeleteTask and FinishActivity, and by clicking on the Next button, we pass to the third stage 
of the wizard, shown in Fig. 38. In this step of the wizard, we identify the correspondences between nodes and edges 
for the MCMTs to be combined. Specifically, let us show how to select the elements to combine rules ProduceArtefact and
UndertakeActivity as in Fig. 34. As for the previous stage, let us focus on in each of the parts in the figure (marked with 
numbers 1–5):

1 — Combinations. This box shows the combinations selected in the previous step. In this case, the three available 
combinations are: ProduceArtefact + UndertakeActivity (selected), CreateTask + UndertakeActivity, and DeleteTask + Fin-
ishActivity. When clicking on the Select button, the MCMT rules in the highlighted combination in box 1 are shown in 
the box 2.

2 — MCMT rules. Boxes 2–4 show the elements selected for this combination of rules. The snapshot shows the situations 
in which the act1 node of rule ProduceArtefact has already been selected (box 4), and the work1 node of the Under-
takeActivity is to be selected. In box 2, the MCMT rules of the selected combination are shown. After selecting one of 
these rules and clicking on the Select button, all the elements in that rule are shown in box 3.
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Fig. 39. Fourth step of the amalgamation wizard: Conflicts resolution and summary of the MCMT rules that are going to be amalgamated.

3 — Rule elements. Since the UndertakeActivity rule was selected in the previous step, all its elements are shown in this 
box. To choose one of these elements of this rule, so that it can be linked to an element of the rule it is being 
combined with, we just have to select the element and click on the Add element button. In the example, since the
UndertakeActivity rule was selected, the elements shown were work1, as1, and u. To associate the act1 node of rule
ProduceArtefact—already selected—and the work1 node of the UndertakeActivity rule, we just need to click on the Add 
element button. Since an element can only be associated to one corresponding element, once added, it is removed 
from box 3.

4 — Identified elements. The identified candidate elements are shown in this box. In the state shown in the snapshot, 
only act1 is on the list. Once the work1 node were added as explained in the previous step, the identification list 
would be completed Then, by clicking on the Save button, such an identification would be added to the pool (shown 
in box 5).

5 — Combination element identifications. This last box shows the identified elements for each amalgamation.

As discussed in Section 3.2.2, a conflict may appear, for instance, when an identified node is removed in one of the 
selected MCMTs, but kept in the other. Once all the correspondences are established, the modeler gets a summary and 
is notified if any conflicts are detected. To resolve conflicts, we may grant priority to one of the rules. Fig. 39 shows the 
last step of the amalgamation wizard. As for previous stages, the different parts of the wizard’s window are marked with 
numbers:

1 — Combinations that have conflicts. The conflicting amalgamated MCMT rules are listed in this box. In this case, there 
is only one conflicting situation, namely DeleteTask + FinishActivity. By selecting it and clicking on the Select button, 
the two rules are shown in box 2.

2 — Select the rule that is getting prioritised. The user can select in this box the rule that should get prioritised. In this 
example, we have chosen DeleteTask.

3 — Combinations to be produced. This last part summarises the amalgamation cases that are going to be produced. Note 
that the prioritisation is explicitly specified for the combination DeleteTask + FinishActivity: priority on: DeleteTask.

Once the Finish button is clicked, the tool computes the amalgamated MCMT rules based on the identifications provided 
and the prioritisations given.

4.6. Textual DSML for MCMTs

MCMT rules in MultEcore are specified using a textual editor where the MCMTs DSML [24,25] has been built using 
Xtext [54]. This DSML provides the specification of modules containing a collection of MCMT rules defined independently 
of the hierarchy. The combined rules produced by the amalgamation engine have the same format as the MCMT rules that 
the user could manually write. Thus, the amalgamation results can be directly translated into an MCMT file. An example of 
the results that are obtained is shown in Fig. 40.

For the sake of simplicity, we only show the textual representation of the third amalgamated rule DeleteTaskFinishActivity
(with priority on Delete Task) which was graphically displayed in Fig. 35. The other two amalgamated rules are shown in 
Appendix B (Figs. B.42, B.43). In Fig. 40, we distinguish three main blocks, the meta, the from and the to (lines 2, 22 and 
29, respectively). In the from and to blocks we can define patterns according to the elements previously declared in the
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rule DeleteTaskFin ishAct iv i ty {
meta{

//Nodes level 1 - Process
Actor : $process [ 1 ] ! Actor
Task: $process [ 1 ] ! Task

//Nodes level 1 - Human
Human: $human[ 1 ] !Human
Activity : $human[ 1 ] ! A c t i v i t y

//Edges level 1 - Process
performs: $process [ 1 ] ! Actor . performs

//Edges level 1 - Human
does: $human[ 1 ] !Human. does

//Source.edge = Target
[ Actor . performs = Task ]

[Human. does = A c t i v i t y ]
}
from {

act1human1 : Actor , Human
task1act1 : Task , Activity
a1perd : performs , does

[ act1human1 . a1perd = task1act1 ]
}
to {

act1human1 : Actor , Human
}

}

Fig. 40. Computed DeleteTaskFinishActivity MCMT rule. It corresponds to the graphical MCMT rule depicted in Fig. 35 with priority on Delete Task.

meta part. The meta block must contain a valid, non-empty pattern, but the from and to blocks may be empty. Within the 
textsfmeta we can define constant and variable elements, but we can only define variables in the from and to parts. They 
contain the same information that the corresponding blocks shown in the graphical rule.

Constant nodes are defined, for instance, as in line number 4 Actor: $process[1]!Actor where Actor is the name of the 
constant node, $ is used to denote that is a constant, process is an alias of the rule it belongs to (either process or human) 
and [1] represents that it is located at level 1 of the meta block. Constant edges, such as the one defined in line number 12, 
are given by its name (performs) and ends with the form source.edge (Actor.performs). In this rule there are not variables 
defined in the meta block, but they are very similar with the exception that the $ is not written, and the nodes end with its 
type name. Also, attributes can be declared below each node specifying its type. We refer the reader to Figs. B.42 and B.43
for some examples of variables and attributes. At the end of the meta block, we define the assignment expressions that 
are used to specify the structural relationships between the declared nodes by means of the declared edges. An example 
is given in line 18 [Actor.performs = Task], where Actor and Task are the source and target of the edge, performs. In the 
example, the from block of the rule defines a pattern consisting of three variables and one assignment expression, while 
its to block comprises just one variable declaration. The from and to blocks follow the same structure. Nodes and edges in 
these levels are defined as shown in lines 24 and 25, respectively, where, for example, task1act1 has two types, Task from 
the main process hierarchy and Activity from the supplementary human one. Similarly as for the meta block, edges have to 
be specified within assignment expressions that link them with its respective sources and targets (line 27).

5. Related work

We first discuss approaches within the context of traditional MDSE and the Language Product Lines Engineering field 
that propose techniques to achieve composition.

Melange [55] is a tool for the construction of DSLs that supports modular language design and language modules compo-
sition. The dynamic semantics is defined operationally as aspects in the Kermeta meta-language [56]. Operational semantics 
of a DSL involves the use of an action language to define methods that are statically introduced in the concepts of the DSL 
abstract syntax. In our approach, we define the semantics separately, by means of MCMTs, avoiding the need to change the 
abstract syntax (for us, the multilevel hierarchy) of the DSML. Authors present in [57] an approach for building product 
lines of metamodels. The key point of these approaches is that a transformation product line is defined that becomes ap-
plicable for all metamodels in the set providing reusability and flexibility. Even though such approaches typically require 
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specifying a binding between the transformation interface and the metamodel, the range of applicability is much wider than 
approaches where the transformation can be reused on a closed fixed metamodel set [58]. The approach in [58] is based 
on featured model transformations (FMTs) that can be seen as a kind of metamodel that integrates the variability of a whole 
family of metamodels which still provide a high degree of reusability. In our approach we go one step further as we do not 
only consider the reusability of the transformation rules within the same family, but also the incorporation of orthogonal 
languages.

GeKo [59] is a generic, extensible model weaver that can compose any models that conform to a common metamodel. 
To operate, it takes as parameters a base model, a pointcut model (the parametric pattern) and an advice model. The 
tool replaces all instances of the pointcut model that are found in the model with the advice model. While this approach 
focuses on the composition at the model (instance) level, we discuss in this work the composition of language descriptions 
via multilevel modelling hierarchies. Furthermore, GeKo operates only on the structure, while our approach also provides 
support for the amalgamation of dynamic semantics specified by means of MCMTs. MATA [60] is very similar to GeKo but 
it is founded on graph transformations to do composition of structure of models conforming to a common metamodel.

The work presented in [61] served us as inspiration to develop our approach. In their work, the authors formally define 
how composition of structure and amalgamation of semantic specifications can be achieved between a functional DSL and 
several parametric non-functional ones. While they establish a weaving process to construct the combined, final products 
(both structure- and semantic-wise), we try to be as minimally invasive as possible by incorporating the (supplementary) 
typing chains which can be later removed in a flexible way. Thus, as mentioned along this article, our structure combina-
tion process tends to be virtual rather than physical in the sense that we do not produce a new combined language, but 
incorporate/remove the new features we are interested in.

In the context of amalgamation of graph transformations, the authors implement rule amalgamation based on nested 
graph predicates in GROOVE [62]. In there, a single structure holds the different rules, where pattern rules can indicate 
the variations of the overall pattern structure. AToM3 supports the amalgamation of rules to describe the explicit definition 
of interaction schemes in different rule editors [48]. The authors of the GReAT tool [63], define the concept of Group, so 
they can operate and apply delete, move or copy operations to each of the elements within the group, in the context of a 
transformation rule. In our approach we explore an alternative method to achieve amalgamation based on multiple typing.

6. Conclusions and future work

In this paper we have described a method to achieve composition of structure and semantics of model descriptions. 
While some standard approaches might achieve composition, e.g., by implementing a merge operator, we take advantage 
of the notion of application and supplementary hierarchies from multilevel modelling to provide elements with more than 
one aspect by multiple-typing them. That is, instead of merging two model elements into one and then instantiate that one 
element, we instantiate both elements by creating nodes which are typed by both elements. In this way, the hierarchies—
which in turn may represent domain specific modelling languages—could exist and evolve independently and simultaneously 
in addition to their participation in compositions. Our formalisation based on category theory and graph transformations 
allows us to achieve such aspect-oriented flavor by incorporating additional typing chains.

We have formally demonstrated how amalgamated multilevel coupled model transformation rules can be generated by 
computing their components (namely, LM , IM and R M ) via pushouts L A +L0 LB , I A +I0 I B and R A +R0 R B . Moreover, we 
differentiate between rules that are conflict free and those whose amalgamation would lead to conflicts. For the latter, we 
define an alternative formulation to compute R M , based on which rules get prioritised. Finally, we have illustrated and 
applied the constructions to a case study where two independent multilevel hierarchies are combined and their rules are 
amalgamated. The amalgamation process is interactive; users provide the information on associations and priorities that 
make it possible to calculate the resulting constructions.

The MultEcore framework is currently supporting the amalgamation process described in Sections 4.5 and 4.6. We plan 
to incorporate the execution of composed hierarchies with their amalgamated MCMT rules into our MultEcore-Maude infras-
tructure that allows to handle simulation/execution [29,30]. Also, we plan to extend our case studies with other examples 
that allow us to evaluate all cases depicted in Table 1. We are investigating how to make this process (semi-)automatic 
by analysing how elements at the instance level are related and multiple typed to suggest and automatically compute 
amalgamated rules.
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Appendix A. Complete process management multilevel hierarchy

Fig. A.41. Process management multilevel hierarchy.
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Appendix B. Amalgamated MCMT rules computed in MultEcore

rule CreateTaskUndertakeActivity {
meta{

//Nodes level 1 - Process
Role : $process [ 1 ] ! Role
Actor : $process [ 1 ] ! Actor
Task : $process [ 1 ] ! Task
//Nodes level 1 - Human
Human: $human[ 1 ] !Human

Human. stamina : Integer
A c t i v i t y : $human[ 1 ] ! A c t i v i t y

A c t i v i t y . impact : Integer
//Edges level 1 - Process
hasRole : $process [ 1 ] ! Actor . hasRole
performs : $process [ 1 ] ! Actor . performs
executes : $process [ 1 ] ! Role . executes
//Edges level 1 - Human
does : $human[ 1 ] !Human. does
/ / Nodes l e v e l 2 − Process
R1 : process [ 2 ] ! Role
T1 : process [ 2 ] ! Task
//Nodes level 2 - Human
Worker : human[ 2 ] !Human

Worker . p r o f i t : Integer
Assignment : human[ 2 ] ! A c t i v i t y

Assignment . value : Integer
//Edges level 2 - Process
e : process [ 2 ] ! Role . executes
//Edges level 2 - Human
undertakes : human[ 2 ] !Human. does
//Source.edge = Target

[ Actor . hasRole = Role ]
[ Actor . performs = Task ]
[ Role . executes = Task ]
[Human. does = A c t i v i t y ]
[R1 . e = T1 ]
[ Worker . undertakes = Assignment ]

}
from {

act1work1 : Actor , Worker
act1work1 . stamina = #s#
act1work1 . p r o f i t = #p#

r1 : R1
task1as1 : EClass , Assignment

task1as1 . impact = #i#
task1as1 . value = #v#

a1role : hasRole

[ act1work1 . a1role = r1 ]
}
to {

act1work1 : Actor , Worker
act1work1 . stamina = #s − i#
act1work1 . p r o f i t = #p + v#

r1 : R1
task1as1 : T1 , Assignment

task1as1 . impact = #i#
task1as1 . value = #v#

a1role : hasRole
a1pu : performs , undertakes
r1e : e

[ act1work1 . a1role = r1 ]
[ act1work1 . a1pu = task1as1 ]
[ r1 . r1e = task1as1 ]

}
}

Fig. B.42. Full CreateTaskUndertakeActivity MCMT rule computed in MultEcore. It corresponds to the MCMT rule depicted in Fig. 33.
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rule ProduceArtefactkUndertakeActivity {
meta{

//Nodes level 1 - Process
Actor : $process [ 1 ] ! Actor
Task : $process [ 1 ] ! Task
A r t i f a c t : $process [ 1 ] ! A r t i f a c t
//Nodes level 1 - Human
Human: $human[ 1 ] !Human

Human. stamina : Integer
A c t i v i t y : $human[ 1 ] ! A c t i v i t y

A c t i v i t y . impact : Integer
//Edges level 1 - Process
performs : $process [ 1 ] ! Actor . performs
produces : $process [ 1 ] ! Task . produces
//Edges level 1 - Human
does : $human[ 1 ] !Human. does
//Nodes level 2 - Process
SEActor : process [ 2 ] ! Actor
S E A r t i f a c t : process [ 2 ] ! A r t i f a c t
//Nodes level 2 - Human
Worker : human[ 2 ] !Human

Worker . p r o f i t : Integer
Assignment : human[ 2 ] ! A c t i v i t y

Assignment . value : Integer
//Edges level 2 - Process
responsibleActor : process [ 2 ] ! EReference
//Edges level 2 - Human
undertakes : human[ 2 ] !Human. does
//Nodes level 3 - Process
T1 : process [ 3 ] ! Task
A1 : process [ 3 ] ! S E A r t i f a c t

//Edges level 3 - Process
p1 : process [ 3 ] ! Task . produces

//Source.edge = Target
[ Actor . performs = Task ]
[ Task . produces = A r t i f a c t ]
[Human. does = A c t i v i t y ]
[ S E A r t i f a c t . responsibleActor = SEActor ]
[ Worker . undertakes = Assignment ]

[ T1 . p1 = A1]
}
from {

act1work1 : SEActor , Worker
act1work1 . stamina = #s#
act1work1 . p r o f i t = #p#

task1as1 : T1 , Assignment
task1as1 . impact = #i#
task1as1 . value = #v#

a1pu : performs , EReference

[ act1work1 . a1pu = task1as1 ]
}
to {

act1work1 : SEActor , Worker
act1work1 . stamina = #s − i#
act1work1 . p r o f i t = #p + v#

task1as1 : T1 , Assignment
task1as1 . impact = #i#
task1as1 . value = #v#

ar1 : A1
a1pu : performs , undertakes
t1pr : p1
r : responsibleActor

[ act1work1 . a1pu = task1as1 ]
[ task1as1 . t1pr = ar1 ]
[ ar1 . r = act1work1 ]

}
}

Fig. B.43. Full ProduceArtefactUndertakeActivity MCMT rule computed in MultEcore. It corresponds to the MCMT rule depicted in Fig. 34.

[6] S. Van Mierlo, B. Barroca, H. Vangheluwe, E. Syriani, T. Kühne, Multi-level modelling in the Modelverse, in: MULTI@ MoDELS, in: CEUR Workshop 
Proceedings, vol. 1286, 2014, pp. 83–92.

[7] UML, http://www.uml .org/.
[8] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse Modeling Framework, Pearson Education, 2008.
[9] P. Mohagheghi, W. Gilani, A. Stefanescu, M.A. Fernández, B. Nordmoen, M. Fritzsche, Where does model-driven engineering help? Experiences from 

three industrial cases, Softw. Syst. Model. 12 (3) (2013) 619–639.
[10] J. Whittle, J. Hutchinson, M. Rouncefield, The state of practice in model-driven engineering, IEEE Softw. 31 (3) (2014) 79–85.
[11] J.D. Lara, E. Guerra, J.S. Cuadrado, When and how to use multilevel modelling, ACM Trans. Softw. Eng. Methodol. 24 (2) (2014) 12.
[12] C. Atkinson, T. Kühne, Reducing accidental complexity in domain models, Softw. Syst. Model. 7 (3) (2008) 345–359.
[13] C. Atkinson, T. Kühne, In defence of deep modelling, Inf. Softw. Technol. 64 (2015) 36–51, https://doi .org /10 .1016 /j .infsof .2015 .03 .010.
35

http://refhub.elsevier.com/S2352-2208(22)00084-0/bibAF501C8646F2A4B686A1DAD3DD946DEDs1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibAF501C8646F2A4B686A1DAD3DD946DEDs1
http://www.uml.org/
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib1154E7B4AE3BC5801A731D76C9A976EDs1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib22CF14CB3847F2AFF9FA0EBBDF363A70s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib22CF14CB3847F2AFF9FA0EBBDF363A70s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib07EEC1F0F5A5F259BA9001ECF2646870s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib96954724662DF8D33C56F2E0D153FC39s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib71D8CF866A3369568BFC188C154F4E16s1
https://doi.org/10.1016/j.infsof.2015.03.010


A. Rodríguez, F. Macías, F. Durán et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100831
[14] C. Atkinson, R. Gerbig, T. Kühne, Comparing multi-level modeling approaches, in: Proceedings of the Workshop on Multi-Level Modelling Co-located 
with ACM/IEEE 17th International Conference on Model Driven Engineering Languages & Systems (MoDELS 2014), Valencia, Spain, September 28, 2014, 
2014, pp. 53–61.

[15] C. Atkinson, T. Kühne, On evaluating multi-level modeling, in: Proceedings of MULTI @ MODELS, 2017, pp. 274–277.
[16] F. Macías, U. Wolter, A. Rutle, F. Durán, R. Rodriguez-Echeverria, Multilevel coupled model transformations for precise and reusable definition of model 

behaviour, J. Log. Algebraic Methods Program. 106 (2019) 167–195, https://doi .org /10 .1016 /j .jlamp .2018 .12 .005.
[17] J. de Lara, E. Guerra, Generic meta-modelling with concepts, templates and mixin layers, in: Model Driven Engineering Languages and Systems - 13th 

International Conference, MODELS, 2010, pp. 16–30.
[18] D. Méndez-Acuña, J.A. Galindo, T. Degueule, B. Combemale, B. Baudry, Leveraging software product lines engineering in the development of external 

DSLs: a systematic literature review, Comput. Lang. Syst. Struct. 46 (2016) 206–235, https://doi .org /10 .1016 /j .cl .2016 .09 .004.
[19] J. Kienzle, G. Mussbacher, B. Combemale, J. Deantoni, A unifying framework for homogeneous model composition, Softw. Syst. Model. 18 (5) (2019) 

3005–3023.
[20] Arne Lange, Colin Atkinson, Multi-level modeling with MELANEE, in: Proceedings of MULTI @ MODELS, 2018, pp. 653–662.
[21] J. de Lara, E. Guerra, Refactoring multi-level models, ACM Trans. Softw. Eng. Methodol. 27 (4) (2018) 17:1–17:56, https://doi .org /10 .1145 /3280985.
[22] C. Atkinson, T. Kühne, J. de Lara, Editorial to the theme issue on multi-level modeling, Softw. Syst. Model. 17 (1) (2018) 163–165, https://doi .org /10 .

1007 /s10270 -016 -0565 -6.
[23] S.P. Jacome-Guerrero, J. de Lara, TOTEM: Reconciling multi-level modelling with standard two-level modelling, Comput. Stand. Interfaces 69 (2020) 

103390, https://doi .org /10 .1016 /j .csi .2019 .103390.
[24] F. Macías, A. Rutle, V. Stolz, R. Rodriguez-Echeverria, U. Wolter, An approach to flexible multilevel modelling, Enterprise Modelling and Information 

Systems Architectures 13 (2018) 10:1–10:35, https://doi .org /10 .18417 /emisa .13 .10.
[25] F. Macías, Multilevel modelling and domain-specific languages, PhD thesis, Western Norway University of Applied Sciences and University of Oslo, 

2019.
[26] F. Macías, A. Rutle, V. Stolz, Multilevel modelling with MultEcore: a contribution to the MULTI 2017 challenge, in: Proceedings of MULTI @ MODELS, 

2017, pp. 269–273.
[27] A. Rodríguez, F. Macías, Multilevel modelling with MultEcore: a contribution to the MULTI process challenge, in: Proceedings of MULTI @ MODELS, 

2019, pp. 152–163.
[28] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C. Talcott, All About Maude a High-Performance Logical Framework: How to Specify, 

Program and Verify Systems in Rewriting Logic, Springer-Verlag, 2007.
[29] A. Rodríguez, F. Durán, A. Rutle, L.M. Kristensen, Executing multilevel domain-specific models in maude, J. Object Technol. 18 (2) (2019) 4, https://

doi .org /10 .5381 /jot .2019 .18 .2 .a4.
[30] A. Rodríguez, F. Durán, L.M. Kristensen, Simulation and analysis of multecore multilevel models based on rewriting logic, Softw. Syst. Model. 21 (2) 

(2022) 561–586, https://doi .org /10 .1007 /s10270 -021 -00947 -1.
[31] H. Ehrig, F. Hermann, U. Prange, Cospan DPO approach: an alternative for DPO graph transformations, Bull. Eur. Assoc. Theor. Comput. Sci. 98 (2009) 

139–149.
[32] R. Heckel, J.M. Küster, G. Taentzer, Confluence of typed attributed graph transformation systems, in: A. Corradini, H. Ehrig, H. Kreowski, G. Rozen-

berg (Eds.), Graph Transformation, First International Conference, ICGT 2002, Barcelona, Spain, October 7-12, 2002, Proceedings, in: Lecture Notes in 
Computer Science, vol. 2505, Springer, 2002, pp. 161–176.

[33] U. Wolter, F. Macías, A. Rutle, Multilevel typed graph transformations, in: F. Gadducci, T. Kehrer (Eds.), Graph Transformation - 13th International 
Conference, ICGT 2020, Bergen, Norway, June 25-26, 2020, Proceedings, in: Lecture Notes in Computer Science, vol. 12150, Springer, 2020, pp. 163–182, 
Held as Part of STAF 2020.

[34] T. Kühne, A story of levels, in: Proceedings of MULTI @ MODELS, 2018, pp. 673–682.
[35] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic Graph Transformation, Monographs in Theoretical Computer Science. An EATCS 

Series, Springer, 2006.
[36] A. Rutle, A. Rossini, Y. Lamo, U. Wolter, A formal approach to the specification and transformation of constraints in MDE, J. Log. Algebraic Methods 

Program. 81 (4) (2012) 422–457, https://doi .org /10 .1016 /j .jlap .2012 .03 .006.
[37] A. Corradini, T. Heindel, F. Hermann, B. König, Sesqui-pushout rewriting, in: A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, G. Rozenberg (Eds.), Graph 

Transformations, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 30–45.
[38] A. Rodríguez, A. Rutle, L.M. Kristensen, F. Durán, A foundation for the composition of multilevel domain-specific languages, in: MULTI@ MoDELS, 2019, 

pp. 88–97.
[39] U. Wolter, F. Macías, A. Rutle, The Category of Typing Chains as a Foundation of Multilevel Typed Model Transformations, Tech. Rep. 2019-417, Novem-

ber 2019, https://doi .org /10 .13140 /RG .2 .2 .34107.69925.
[40] J. de Lara, E. Guerra, Domain-specific textual meta-modelling languages for model driven engineering, in: Modelling Foundations and Applications -

8th European Conference, ECMFA 2012, Kgs. Lyngby, Denmark, July 2-5, 2012, Proceedings, 2012, pp. 259–274.
[41] A. Wortmann, O. Barais, B. Combemale, M. Wimmer, Modeling languages in industry 4.0: an extended systematic mapping study, Softw. Syst. Model. 

19 (1) (2020) 67–94, https://doi .org /10 .1007 /s10270 -019 -00757 -6.
[42] R.M. Burstall, J.A. Goguen, Putting theories together to make specifications, in: Proceedings of the 5th International Joint Conference on Artificial 

Intelligence, Cambridge, MA, USA, August 22-25, 1977, 1977, pp. 1045–1058.
[43] P. Stünkel, H. König, Y. Lamo, A. Rutle, Multimodel correspondence through inter-model constraints, in: S. Marr, J.B. Sartor (Eds.), Conference Companion 

of the 2nd International Conference on Art, Science, and Engineering of Programming, Nice, France, April 09-12, 2018, ACM, 2018, pp. 9–17.
[44] P. Stünkel, H. König, Y. Lamo, A. Rutle, Towards multiple model synchronization with comprehensive systems, in: Fundamental Approaches to Software 

Engineering - 23rd International Conference, FASE 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 
2020, Proceedings, in: Lecture Notes in Computer Science, vol. 12076, Springer, 2020, https://doi .org /10 .1007 /978 -3 -030 -45234 -6 _17.

[45] P. Boehm, H. Fonio, A. Habel, Amalgamation of graph transformations: a synchronization mechanism, J. Comput. Syst. Sci. 34 (2/3) (1987) 377–408, 
https://doi .org /10 .1016 /0022 -0000(87 )90030 -4.

[46] G. Taentzer, Parallel and Distributed Graph Transformation - Formal Description and Application to Communication-Based Systems, Berichte aus der 
Informatik, Shaker, 1996.

[47] E. Biermann, H. Ehrig, C. Ermel, U. Golas, G. Taentzer, Parallel independence of amalgamated graph transformations applied to model transformation, 
in: Graph Transformations and Model-Driven Engineering - Essays Dedicated to Manfred Nagl on the Occasion of his 65th Birthday, 2010, pp. 121–140.

[48] J. de Lara Jaramillo, C. Ermel, G. Taentzer, K. Ehrig, Parallel graph transformation for model simulation applied to timed transition Petri nets, Electron. 
Notes Theor. Comput. Sci. 109 (2004) 17–29, https://doi .org /10 .1016 /j .entcs .2004 .02 .053.

[49] Y. Lamo, F. Mantz, A. Rutle, J. de Lara, A declarative and bidirectional model transformation approach based on graph co-spans, in: 15th International 
Symposium on Principles and Practice of Declarative Programming, PPDP ’13, Madrid, Spain, September 16–18, 2013, 2013, pp. 1–12.

[50] A. Rossini, A. Rutle, Y. Lamo, U. Wolter, A formalisation of the copy-modify-merge approach to version control in MDE, J. Log. Algebraic Program. 79 (7) 
(2010) 636–658, https://doi .org /10 .1016 /j .jlap .2009 .10 .003.
36

http://refhub.elsevier.com/S2352-2208(22)00084-0/bibF6DFE58671093BEB357D7DC6C6663417s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibF6DFE58671093BEB357D7DC6C6663417s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibF6DFE58671093BEB357D7DC6C6663417s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibBE365E8EC545B84DB77EAB0B0E1A613Es1
https://doi.org/10.1016/j.jlamp.2018.12.005
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib9F92D458113E7953153AB117532D2833s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib9F92D458113E7953153AB117532D2833s1
https://doi.org/10.1016/j.cl.2016.09.004
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib3165A7CA4627A0AB59F4BD3E30003A1Es1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib3165A7CA4627A0AB59F4BD3E30003A1Es1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib6985FDD1E9A66DE58981E9C26A76D80As1
https://doi.org/10.1145/3280985
https://doi.org/10.1007/s10270-016-0565-6
https://doi.org/10.1007/s10270-016-0565-6
https://doi.org/10.1016/j.csi.2019.103390
https://doi.org/10.18417/emisa.13.10
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibD12D7C1C702F60B2BCC12E946248DE41s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibD12D7C1C702F60B2BCC12E946248DE41s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib4F81FE2A8AE0FC3173902C82BCC73002s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib4F81FE2A8AE0FC3173902C82BCC73002s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibDDE6AF54F4085BA0A2C9355B61375BDAs1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibDDE6AF54F4085BA0A2C9355B61375BDAs1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib4070B0D4CF6FE7EC3B37027B3718A154s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib4070B0D4CF6FE7EC3B37027B3718A154s1
https://doi.org/10.5381/jot.2019.18.2.a4
https://doi.org/10.5381/jot.2019.18.2.a4
https://doi.org/10.1007/s10270-021-00947-1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib67F5327F544B58CD7F196BDFCAE7BED3s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib67F5327F544B58CD7F196BDFCAE7BED3s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib472F3AE708E32180D0086F7194DFF1CCs1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib472F3AE708E32180D0086F7194DFF1CCs1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib472F3AE708E32180D0086F7194DFF1CCs1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibC580D580546C9204FB03DB9C22F3C7C4s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibC580D580546C9204FB03DB9C22F3C7C4s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibC580D580546C9204FB03DB9C22F3C7C4s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib2CF4520C28B081D993C4BFBFE9B61A37s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib187A898D3D33BE887A2ED9125B397233s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib187A898D3D33BE887A2ED9125B397233s1
https://doi.org/10.1016/j.jlap.2012.03.006
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib5150EEE78211F483AE0393D2AA96D517s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib5150EEE78211F483AE0393D2AA96D517s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibC9D46A300B3A6C6687ABC01469376133s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibC9D46A300B3A6C6687ABC01469376133s1
https://doi.org/10.13140/RG.2.2.34107.69925
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib02EC61C0AF3D6F80AB12D7E50D0D0BE1s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib02EC61C0AF3D6F80AB12D7E50D0D0BE1s1
https://doi.org/10.1007/s10270-019-00757-6
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibFF28642CD41C88A6AAC7CB26D93FBD35s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibFF28642CD41C88A6AAC7CB26D93FBD35s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib8A50DC1BCB1CDDA04955991405E72E6Cs1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib8A50DC1BCB1CDDA04955991405E72E6Cs1
https://doi.org/10.1007/978-3-030-45234-6_17
https://doi.org/10.1016/0022-0000(87)90030-4
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibC1E029274D438EA854BDFEC7FE182124s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibC1E029274D438EA854BDFEC7FE182124s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib41616F5E9DB5AE54A86DBFB7D71FDA2As1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib41616F5E9DB5AE54A86DBFB7D71FDA2As1
https://doi.org/10.1016/j.entcs.2004.02.053
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib2B30786C8666E167712BDC64CFB57ED4s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib2B30786C8666E167712BDC64CFB57ED4s1
https://doi.org/10.1016/j.jlap.2009.10.003


A. Rodríguez, F. Macías, F. Durán et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100831
[51] J. Almeida, A. Rutle, M. Wimmer, Preface to the 6th international workshop on multi-level modelling (MULTI 2019), in: 22nd ACM/IEEE International 
Conference on Model Driven Engineering Languages and Systems Companion, MODELS Companion 2019, Munich, Germany, September 15-20, 2019, 
IEEE, 2019, pp. 64–65.

[52] J.P.A. Almeida, A. Rutle, M. Wimmer, T. Kühne, The MULTI process challenge, MULTI @MODELS, Available at https://bit .ly /2JeDEYi.
[53] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented Software, Pearson Education India, 1995.
[54] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, Packt Publishing Ltd, 2016.
[55] T. Degueule, B. Combemale, A. Blouin, O. Barais, J.-M. Jézéquel, Melange: a meta-language for modular and reusable development of dsls, in: Proceed-

ings of the 2015 SLE Conference, ACM, 2015, pp. 25–36.
[56] J. Jézéquel, B. Combemale, O. Barais, M. Monperrus, F. Fouquet, Mashup of metalanguages and its implementation in the Kermeta language workbench, 

Softw. Syst. Model. 14 (2) (2015) 905–920, https://doi .org /10 .1007 /s10270 -013 -0354 -4.
[57] J.-M. Bruel, B. Combemale, E. Guerra, J.-M. Jézéquel, J. Kienzle, J. de Lara, G. Mussbacher, E. Syriani, H. Vangheluwe, Comparing and classifying model 

transformation reuse approaches across metamodels, Softw. Syst. Model. 19 (2020) 441–465, https://doi .org /10 .1007 /s10270 -019 -00762 -9.
[58] G. Perrouin, M. Amrani, M. Acher, B. Combemale, A. Legay, P. Schobbens, Featured model types: towards systematic reuse in modelling language 

engineering, in: Proceedings of the 8th International Workshop on Modeling in Software Engineering, MiSE@ICSE 2016, Austin, Texas, USA, May 16-17, 
2016, 2016, pp. 1–7.

[59] M.E. Kramer, J. Klein, J.R.H. Steel, B. Morin, J. Kienzle, O. Barais, J. Jézéquel, Achieving practical genericity in model weaving through extensibility, in: 
Theory and Practice of Model Transformations - 6th International Conference, ICMT 2013, Budapest, Hungary, June 18-19, 2013, Proceedings, 2013, 
pp. 108–124.

[60] J. Whittle, P.K. Jayaraman, A.M. Elkhodary, A. Moreira, J. Araújo, MATA: a unified approach for composing UML aspect models based on graph transfor-
mation, LNCS Trans. Aspect Oriented Softw. Dev. 6 (2009) 191–237, https://doi .org /10 .1007 /978 -3 -642 -03764 -1 _6.

[61] F. Durán, A. Moreno-Delgado, F. Orejas, S. Zschaler, Amalgamation of domain specific languages with behaviour, J. Log. Algebraic Methods Program. 86 
(2017) 208–235, https://doi .org /10 .1016 /j .jlamp .2015 .09 .005.

[62] A. Rensink, J. Kuperus, Repotting the geraniums: on nested graph transformation rules, ECEASST 18, https://doi .org /10 .14279 /tuj .eceasst .18 .260.
[63] D. Balasubramanian, A. Narayanan, S. Neema, F. Shi, R. Thibodeaux, G. Karsai, A subgraph operator for graph transformation languages, ECEASST 6, 

https://doi .org /10 .14279 /tuj .eceasst .6 .72.
37

http://refhub.elsevier.com/S2352-2208(22)00084-0/bibDFE3B09B44C6D61BC6B67B4374091738s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibDFE3B09B44C6D61BC6B67B4374091738s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibDFE3B09B44C6D61BC6B67B4374091738s1
https://bit.ly/2JeDEYi
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib98C7219B2C82447F2B22F7F2F9F85B9Ds1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bibB8F4884AC1E1122D3C314C23CADD74D4s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib1D4BE4BB3F2DAB6DB46061E76627C620s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib1D4BE4BB3F2DAB6DB46061E76627C620s1
https://doi.org/10.1007/s10270-013-0354-4
https://doi.org/10.1007/s10270-019-00762-9
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib08DF1C69E289DBF557918622A4E30012s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib08DF1C69E289DBF557918622A4E30012s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib08DF1C69E289DBF557918622A4E30012s1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib3E5DB9EA1E8EE7B8F785FBDCBBBFFBCDs1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib3E5DB9EA1E8EE7B8F785FBDCBBBFFBCDs1
http://refhub.elsevier.com/S2352-2208(22)00084-0/bib3E5DB9EA1E8EE7B8F785FBDCBBBFFBCDs1
https://doi.org/10.1007/978-3-642-03764-1_6
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.14279/tuj.eceasst.18.260
https://doi.org/10.14279/tuj.eceasst.6.72

	Composition of multilevel domain-specific modelling languages
	1 Introduction
	2 Background: multilevel modelling
	2.1 Multilevel modelling in MultEcore - structure
	2.2 Multilevel modelling in MultEcore - operational semantics

	3 Composition
	3.1 Standard composition approach
	3.2 Composition of hierarchies in MultEcore
	3.2.1 Composition of multilevel modelling hierarchies
	3.2.2 Amalgamation of MCMTs
	3.2.3 Amalgamation cases
	3.2.4 Amalgamated rule application


	4 Case study
	4.1 The process management hierarchy
	4.1.1 Structure of the process management hierarchy
	4.1.2 MCMTs for the process management hierarchy

	4.2 The human-being hierarchy
	4.2.1 Structure of the human-being hierarchy
	4.2.2 MCMTs for the human-being hierarchy

	4.3 Multilevel hierarchies combination
	4.4 MCMTs amalgamation
	4.5 Amalgamation in MultEcore
	4.6 Textual DSML for MCMTs

	5 Related work
	6 Conclusions and future work
	Declaration of competing interest
	Data availability
	Appendix A Complete process management multilevel hierarchy
	Appendix B Amalgamated MCMT rules computed in MultEcore
	References


