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A B S T R A C T   

By tracking the feature displacement between satellite images spaced approximately one year apart, surface 
runoff has been shown to have a long-term impact on the average ice flow of a land-terminating sector of 
Greenland. In this study, we revisit the multi-year trends in ice flow by assessing more carefully the impact of 
seasonal fluctuation in velocity on the annual mean ice velocity. We find that, depending on the length and 
period used to measure displacement, seasonal fluctuations do have an impact on observed velocities on up to 
15%, and can affect decadal trends. Nevertheless, the magnitude of this fluctuation is small enough to confirm 
the general slowdown observed during the 2000–2012 period. Between 2012 and 2019, we find significant re- 
acceleration of low-lying glaciers tongue but velocity trends elsewhere are generally insignificant and not 
spatially consistent. Finally, we propose a more selective approach to recovering velocity trends using satellite 
imagery that involves using only measurements where the image pair starting date is before summer, in order to 
have comparable measurements for every year, sampling a melt season and the following winter.   

1. Introduction 

Optical remote sensing for ice velocity mapping has been increas
ingly used in the past decades and has now proven its versatility in 
numerous applications (Fahnestock et al., 2016; Millan et al., 2022; 
Mouginot et al., 2017; Rabatel et al., 2018; Shen et al., 2018; Zhou et al., 
2021). 

Indeed, these observations are useful to quantify past and present 
rates of ice sheet mass changes and/or to improve our understanding of 
the physical processes acting on ice movement, with the interest to 
predict the evolution of ice masses in a warming climate. 

Changes in ice flow have been observed for the Greenland Ice Sheet 
(GrIS), as well as in mountain glaciers and in West Antarctica (e.g. 
Dehecq et al., 2019; Joughin et al., 2008; Lilien et al., 2018; Palmer 
et al., 2011; Parizek and Alley, 2004; Shepherd et al., 2009; Tuckett 
et al., 2019; Van De Wal et al., 2008, 2015; Zwally et al., 2002). 

Studying causes for such ice flow variations requires both geological 
settings where studied factors are as less entangled as possible, and an 
area where satellite data is available. 

The Southwest of the GrIS provides numerous land-terminating 
glaciers, which are ideal ice laboratories isolated from ocean-related 

processes, allowing to study the impact of various factors on the ice 
dynamics, and are also reasonably covered by satellites for ice velocity 
mapping (Davison et al., 2019; Derkacheva et al., 2020; Doyle et al., 
2014; Joughin et al., 2018; Lemos et al., 2018; Sole et al., 2013; Ted
stone et al., 2013, 2015; Williams et al., 2020). 

While being isolated from the ocean, land-terminating glaciers are 
also displaying slower velocities, leading potentially to smaller - i.e. less 
easily detectable - variations in time. The need to study such ice velocity 
trends therefore requires a combination of accurate velocity estimations, 
and long time-series (Joughin et al., 2018; Mouginot et al., 2017; Ted
stone et al., 2015; Williams et al., 2020). 

To study the long-term impact of surface run-off on ice flow, Ted
stone et al. (2015) and Williams et al. (2020) used feature-tracking on 
Landsat satellite image pairs separated by approximately one year to 
calculate ice velocities on a land-terminating part of the southwest 
sector of the GrIS. They identified respectively 475 and 2665 image 
pairs, covering April to October over the years 1985–2014 for the 
former, and 1985–2019 for the latter. 

The obtained velocity fields were then averaged to give median 
spatial velocity fields for every year, from which trends over the 
approximately 30 years could be derived and compared with trends in 
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surface run-off. 
With these observations, both studies found a long-term impact of 

the increase in surface melting on the mean ice velocity. Both found a 
decelerating trend starting around 2002 linked to the increasing surface 
run-off, and Williams et al. (2020) also found a significant re- 
acceleration from 2012 to 2019 associated this time with a decrease in 
surface run-off. 

In contrast, Joughin et al. (2018) using a combination of radar and 
optical data to compute trends with winter velocities, could not confirm 
the trends established by Tedstone et al. (2015). 

These contradictory results highlight the difficulty of determining 
trends in velocity fields that do not necessarily represent the same period 
of the year or the same spatial coverage. Thus, given the high seasonal 
variability of the ice flow in these regions (Derkacheva et al., 2020; 
Joughin et al., 2018; Moon et al., 2015), aggregating multiple individual 
measurements made during one year by performing a simple median or 
mean might result into biased annual velocity values, since the temporal 
and spatial sampling varies from one year to another. 

As underlined by Joughin et al. (2018), a sampling bias is possible in 
the dataset from Tedstone et al. (2015), since it includes velocity in
formation obtained from images separated by 352 to 400 days. Indeed, 
the date of the first image (“starting date”) used to derive displacements 
and the time between of the two acquisitions (“temporal baseline”) used 
could lead to a disproportionate sampling of summer when enhanced ice 
velocities are expected (Derkacheva et al., 2020; Lemos et al., 2018; 
Maier et al., 2019; Palmer et al., 2011). Thus, trends obtained for 
“yearly” velocities could potentially differ from trends derived only from 
winter velocities. 

Tedstone et al. (2015) and Williams et al. (2020) argue that 
combining many velocity measurements obtained at different dates and 
with different time interval between acquisitions for a given year does 
not have a significant impact on the estimation of the multi-annual 
trends. 

Tedstone et al. (2015) studied partly this impact by analysing the 
average date of year of satellite images used, the average baseline 
duration used, and the proportion of the baseline duration attributable 
to summer. However, the average start day-of-year does not describe the 
distribution of image pairs, and different combinations of image pairs 
can lead to the same average start day-of-year. The same applies to the 
average baseline duration. 

Here, we assess whether the starting date and baseline duration for 
around one-year image pairs have an impact on the overall velocity 
derived from these images. This is important as, the previously observed 
inter-annual trends in velocity are relatively small (− 1.5 m/yr2 for the 
period 2002–2014 in Tedstone et al. (2015)) compared to the seasonal 
variations, whose summer accelerations are typically of the order of 100 
m/yr. Potential biases caused by the measurement techniques (e.g. 
mapping speed using one-year pair) should therefore be assessed and 
reduced as much as possible. 

We first describe our processing approach to obtain ice velocity maps 
from Landsat 8 and Sentinel-2 images acquired about 1 year apart, and 
compare our results to GPS-derived velocities. We then compute the 
velocity trends using periods similar to the ones defined in Williams 
et al. (2020) from 2000 to 2012 and from 2012 to 2019, and discuss the 
impact of starting date (before, during or after summer) on the mean 
velocities. Finally, we discuss the significance of deriving mean velocity 
trends for a whole region, when local variations may be present. 

2. Methods 

2.1. Study area 

Our study area is located in Southwest Greenland and is displayed in 
Fig. 1. The area is south of Jakobshavn Isbræ and extends around 300 km 
to the South, and up to 1200 m altitude, covering both study areas of 
Tedstone et al. (2015) and Williams et al. (2020), but does not cover 

Joughin et al. (2018) study area, which extends much further south. This 
sector of the Greenland Ice sheet is mostly composed of land-terminating 
glaciers where it is assumed that changes in ice velocity is mostly 
controlled by changes in basal conditions (de Fleurian et al., 2016; 
Derkacheva et al., 2020). The glaciers (Isunnguata Sermia, Russell and 

Fig. 1. Map of the study area. Ice velocities displayed are derived by combining 
all velocity fields computed in this study from image pairs of Landsat 8 and 
Sentinel-2 for year 2019–2020. The red dot indicates the position of the GPS 
measurements made by Maier et al. (2019). The ice velocities are overlaying a 
2015 MODIS Mosaic of Greenland (MOG) at 100 m resolution (Haran et al., 
2018). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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Ørkendalen Gletscher) close to the town of Kangerlussuaq have been 
extensively studied. Indeed, this sector has been the subject of in-situ 
geophysical investigations such as mechanical properties of sediment 
bed underlying the glaciers and their influence on the ice flow (Dow 
et al., 2013; Harper et al., 2017; Kulessa et al., 2017; Maier et al., 2019; 
Wright et al., 2016), making it a privileged study site for numerical in
vestigations (Bougamont et al., 2014; Brinkerhoff et al., 2021; de 
Fleurian et al., 2016; Koziol and Arnold, 2017, 2018). Here, we make use 
of the precise ice motion measurements obtained on Isunnguata Sermia 
by GPS between 2014 and 2017 by Maier et al. (2019) (Fig. 1). 

2.2. Satellite observations 

In order to obtain ice velocities on a large scale, we applied 
commonly used optical feature-tracking on Landsat 7 (band 8), Landsat 
8 (band 8) and Sentinel-2 (band 8) imagery pairs (spatial resolution of 
15 m, 15 m (panchromatic) and 10 m (NIR), respectively), taking 
advantage of persisting features on the surface of the ice between two 
images to derive displacement maps (following e.g. Dehecq et al., 2015; 
Fahnestock et al., 2016; Jeong et al., 2017; Joughin, 2002; Millan et al., 
2019; Mouginot et al., 2019; Paul et al., 2015; Scambos et al., 1992). The 
dates of two images used in the feature-tracking are called hereafter the 
starting and ending dates, while the time interval between the two im
ages is called baseline duration. 

The processing chain is the same as used in Millan et al. (2019, 
2022); Mouginot et al. (2017, 2019). It is downloading all L1C satellite 
products from USGS and Copernicus databases in our region of interest, 
discarding images with cloud coverage above 40%. Image pairs are then 
defined by matching images from similar orbits and sensors. 

A Sobel filter is applied to images in order to enhance surface fea
tures (Dehecq et al., 2015; Millan et al., 2019). The processing chain 
then computes the normalized cross correlation between the two im
ages, with a window size of 64 × 64 pixels chosen for the sub-image, and 
uses an a priori velocity map in order to guide the correlation (Dehecq 
et al., 2015). The processing chain uses a modified version of the ampcor 
algorithm, part of the ROI-PAC package (Millan et al., 2022; Rosen et al., 
2004). 

We chose optical feature-tracking on images separated by about one 
year to increase signal to noise ratio and limit the impact of seasonal 
variations, as done for e.g. in Dehecq et al. (2015) and Tedstone et al. 
(2015). While being an average of the velocity between the two images, 
optical feature-tracking with one year temporal baseline also allows for 
a much greater level of precision compared to shorter baselines, with an 
expected tracking of features down to 0.1 pixels (Debella-Gilo and Kääb, 
2011), as directly shown with the same correlation algorithm in Millan 
et al. (2019) and Mouginot et al. (2017). Our final dataset ranges from 
2000 to 2020, and uses all image pair combinations separated by a 
baseline of 336–400 days for Landsat, and 335–395 days for Sentinel-2. 

Window sizes between 16 × 16 to 128 × 128 pixels have been tested, 
and correlation was found to be optimal for this region at 64 × 64 size, 
yielding better coverage for moderate ice velocity (velocities between 
50 and 100 m/yr) than smaller windows. 

To assist feature tracking, we use a-priori ice displacements from 
previous velocity maps. This step reduces the search area for pixel offsets 
at each location to about 4 × 4 pixels in size and thus reduce the 
computational load and generally improve correlation. However the 
limited search area and important surface changes occurring over one 
year do not allow to capture surface displacements for relatively fast- 
flowing areas of the land-terminating glaciers or the very fast tidewa
ter glacier Jakobshavn Isbræe in the north of the study area (Fig. 1). 

We use an automated calibration that takes advantage of ice velocity 
products from previous surveys (Mouginot et al., 2012, 2017). Offsets 
are first cleaned using a 9 × 9 pixels median filtering. Then the lowest 
speeds or ice-free areas are used for calibration. The calibration is per
formed by adjusting the difference between the reference map and the 
offset map with a constant value or a linear plane for Sentinel-2 and 

Landsat 8, respectively (Millan et al., 2019). The obtained velocity 
products are geocoded with the WGS 84 / NSIDC Sea Ice Polar Stereo
graphic North projection (EPSG:3413) and re-sampled at a resolution of 
150 m, similar to previous work (e.g. Derkacheva et al., 2020; Mouginot 
et al., 2017). With a revisiting time reduced from 16 days to 5 days with 
the launch of the Sentinel-2 constellation, our dataset is much richer 
from 2016, due to an increased number of image availability and com
binations (Fig. 2). An overview of all yearly velocity maps obtained is 
displayed in Fig. 3, and all data is publicly available ([dataset] Halas 
et al., 2022, released 2022-12-09). 

In addition, RMSE was calculated comparing obtained remotely- 
sensed velocities and ground-based measured velocity (Fig. 4). 

2.3. GPS measurements 

Ice velocity was measured by GPS on Isunnguata Sermia in West 
Greenland, from July 2014 to July 2017 (Maier et al., 2019). 

We take advantage of the quasi-continuity of the GPS data, to check 
our satellite-based velocities, and to assess whether the starting date of 
an image pair or the baseline between images affects the obtained 
velocities. 

From the GPS positions, ice velocity is estimated on a daily basis. The 
results highlights the enhanced and highly variable motion during the 
melt seasons and slow stable velocity during the winter months (Fig. 5) 
as already shown in Maier et al. (2019). 

GPS measurements are not available during parts of the winters, 
therefore a linear interpolation was applied to complete the time series, 
which seems an appropriate approximation since winter velocities are 
not expected to differ significantly from a linear trend in the studied area 
(Derkacheva et al., 2020; Joughin et al., 2018; Van De Wal et al., 2015). 
To obtain comparable outputs from the GPS data and our feature- 
tracking derived velocities, we compute left-aligned moving averages 
on GPS velocities, with window sizes ranging from 336 days to 400 days, 
since the displacement observed between the two satellite images can be 
compared with the sum of daily displacements for the same time in
terval. Since we only used satellite observations acquired along the same 
orbits, the nominal cycles for Landsat 8 and Sentinel-2 are 16 and 5 days 
respectively. Based on this, the window sizes used were therefore chosen 
to be the same as duration between images used for feature-tracking, 
368 days being the closest to yearly average for Landsat, and 336 and 
400 days being the shortest and longest baseline used in our study. We 
compared the GPS moving averages with the remote sensing data at the 
same location, by plotting all the velocity data points obtained by 

Fig. 2. Number of velocity data points according to the selection operated on 
the starting date, and at the same location as for the GPS study. 
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feature-tracking for a given year (Fig. 6), as explained earlier. As a 
convention in our plots, the yearly average velocity for both GPS moving 
averages and feature-tracking measurements is plotted at the date at 
which the moving window or image pair starts. 

2.4. Ice velocity trends 

Least-square linear regressions are used to obtain ice velocity trends 
through time at each pixel, i.e. every 150 m. As a result, we obtain a 
trend map, where each trend is computed independently from other 
surroundings pixels. While Tedstone et al. (2015) and Williams et al. 
(2020) combined all their measurements into one set of annual velocity 
maps from which trends have been derived, we use both the combined 
dataset as well as split them into three subgroups representing different 
times of the year. 

This temporal selection is done to determine the impact of the 
starting date on the trends. The groups are defined as follows:  

• speed measurements whose first image is before summer (BS), i.e. in 
April and May  

• speed measurements whose first image is during summer (DS), i.e. in 
June, July and August  

• speed measurements whose first image is after summer (AS), i.e. 
September and October  

• no temporal selection (ALL), i.e. all months are considered in the 
same way as for Tedstone et al. (2015) or Williams et al. (2020) 

The BS and AS groups were chosen to avoid having two summer 
seasons in one measurement. Unfortunately, this division into four 
groups was only possible for years after 2012, as only a limited number 
of velocity measurements can be made at the GPS position before 2012 
using Landsat 7. Indeed, only few measurements are available before the 
summer for the period 2000–2012 (Fig. 2). 

The trend maps including all data (ALL) are computed for both pe
riods 2000–2012 (Fig. 7) and 2012–2019 (Fig. 8). However, the sensi
tivity of the trends to the starting date is done by comparing the results 
for the groups BS, DS and AS, and can therefore only be made over the 
period 2012–2019 (Fig. 9). 

We combine measurements from each group by taking the median 

Fig. 3. Yearly velocity maps obtained in the study area between 2000 and 2019, averaging all velocities obtained with feature-tracking for every year.  

Fig. 4. Remotely sensed velocities plotted against GPS average over the cor
responding period. The RMSE was calculated from all the values available. 
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value at each pixel, resulting in four velocity maps for a given year, 
corresponding to the 4 groups BS, DS, AS and ALL. 

For each group, we obtain the velocity trend as the slope of the linear 
regression, the p-value representing the significance of the trend and r2 

the coefficient of determination and the number of measurements used 
for the regression. 

The number of available velocity data points every year for each 
pixel also varies. We notice that regressions where the number of mea
surements is too low performed badly. We therefore filter the trend maps 
where a low number of velocities are used to derive the trend, which was 
defined at 40% of the map per-pixel data points average. 

This filtering was carefully chosen in order to eliminate all obvious 
outliers while preserving as much as possible the spatial coverage. 

We also remove from the map all pixels we did not have a value for 
every year, except for the 2000–2012 period where year 2003 which had 
an insufficient spatial coverage compared to other years. 

The trend map of the ALL group (without any time selection) is 
defined as the reference map in the rest of the study and serves as a point 
of comparison for the other trend maps of the BS, DS and AS groups 

(Fig. 9). 

3. Results 

3.1. Velocity maps from feature-tracking 

After applying feature-tracking on all available satellite images, we 
obtain maps showing yearly averaged velocities (Fig. 3). The spatial 
coverage varies per year, depending on the amount of available images. 
After 2013, the coverage of our velocity maps improves with the launch 
of Landsat 8. Year 2003 has the least coverage of all maps from our 
dataset. All velocity maps clearly show the higher velocities of the gla
ciers, with velocities reaching above 150 m/yr, compared to other areas 
around flowing at speeds between 50 and 100 m/yr. 

We computed the root mean squared error at the GPS location for 
overlapping period between GPS and remotely sensed velocities, by 
performing a GPS average for the exact same period for 74 single 
measurements, and the value found is around 3.2 m/yr (Fig. 4). There is 
a good agreement between satellite observations and the GPS. It appears 
that satellite data is more scattered for higher velocities, but this might 
be explained by a smaller number of data for smaller velocities. Due to 
the mission start of Sentinel-2 after the GPS deployment, there is no 
overlap of Sentinel-2 with the GPS for faster velocities, not allowing 
comparison between the satellites at this range of velocities. 

3.2. Impact of starting date and baseline duration on velocities 

Due to the deployment period of the GPS, our moving averages 
completely cover winter season 2014, melt season 2015 and following 
winter 2015. Melt season of 2014 and 2016 are, however, only partially 
covered. 

Fig. 5 shows that both the starting date and the baseline duration 
have an effect on the calculated average velocity. The average velocity 
obtained for each window size is not constant throughout the year, and 
this evolution is different when the baseline is shortened or lengthened. 

The variations between baseline duration are greater in summer than 
in winter. The 3 baselines seem to be closer in winter, with the closest 
values just before the melt season in April or May. 

As the starting date of the moving average approaches the melt 
season, the results obtained for the different baselines are very different. 

The data averaged over 400 days, i.e. more than one year, varies 
more during the year and reaches a higher value during the summer than 
those averaged over 336 or 368 days. This is due to an over- 
representation of the summer months compared to the winter months 

Fig. 5. Daily average GPS velocities 
(right orange axis, thin orange line 
(Maier et al., 2019), and moving 
average with window size varying 
between 336, 368 and 400 days (left 
axis, thicker lines). GPS daily ice ve
locities and moving averages are 
plotted on different axis because daily 
ice velocities display greater varia
tions compared to moving yearly av
erages. As a convention in our plots, 
the yearly average velocity for GPS 
moving averages is plotted at the date 
at which the moving window starts.   

Fig. 6. Optical feature-tracking velocities from Landsat 8 and Sentinel-2 pairs, 
colored depending on the baseline between images. The dashed-line for each 
dataset represents a moving-average with size window 2. As a convention in our 
plots, the yearly average velocity for feature-tracking measurements is plotted 
at the date at which the image pair starts. The location is at the GPS point 
displayed in Fig. 1. 
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in the 400-day average. Conversely, during the winter months, an over- 
representation of the winter months compared to the summer months 
results in a lower average speed for the longer baselines compared to the 
shorter ones. 

Using recent satellite imagery on year 2019 where the sampling 
frequency is very high (Fig. 2), we observe similar patterns and evolu
tion of velocities depending on baseline and starting date (Fig. 6). 
Similar results are obtained for previous years, with 390–400 days 
baseline velocities being higher in summer than 360–370 days baseline, 
and 335–340 days showing slower velocities during summer than longer 
baselines. 

As with the GPS observations, we find that the different baselines 
yield similar velocity averages right before and after the melt season. 
The differences observed are well above the expected and estimated 
noise level, and can reach between 10% and 15% of differences between 
the lowest sampled velocity and the highest sampled velocity, compared 
to an annual average sampled before the melt season. 

The analysis of the GPS and feature-tracking velocities clearly shows 
the strong impact of seasonal variations on the annual averages. Thus, 
depending on the starting date and the baseline duration of the image 
pairs, the annual averages can vary significantly and can therefore have 

a potential impact of multi-annual velocity trends. 

3.3. Velocity trends 

The regression map combining all measurements (ALL) between 
2000 and 2012 displays a general pattern of deceleration across our 
study area (Fig. 7a), with the exception of the northernmost part. This 
northern acceleration is the signature of retreat of Jakobshavn Isbrae 
(Joughin et al., 2008, 2020), which is outside of the scope of this study 
(displaying a different behavior, and being ocean-terminating glacier). 
In addition, our parameters for feature-tracking are specifically set for 
better correlation on land-terminating glaciers, and therefore do not 
provide a complete velocity field for such a fast glacier. 

The p-values associated with the linear regressions indicate that 
trends are in vast majority extremely significant (p-value under 0.001, 
Fig. 7b), and the r2 coefficients are approaching the value 1, giving 
confidence in the robustness of the linearly decreasing trends (Fig. 7c). 
The exception to this are places where the p-value is over the 0.1 sig
nificant threshold and where r2 coefficient tends toward 0. These places 
where the trends are insignificant are generally located at or above the 
1000 m contour altitude. Indeed, above this altitude, feature-tracking 

Fig. 7. (a) Map displaying the linear regression slopes for our study area, computed for each pixel on data from 2000 to 2012; (b) Map of the associated p-values; (c) 
Map of the associated r2 coefficients. 
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tends to fail since the area undergoes less melting and remains mostly 
snow covered, limiting the presence of surface features that the cross- 
correlation algorithm can track. For the same reasons, almost no ve
locity tracking is possible above 1200 m in altitude. 

The regression map (ALL) combining all speed measurements made 
during the period between 2012 and 2019 shows a more contrasting 
pattern of acceleration and deceleration (Fig. 8a) than the one for the 
period 2000–2012. In the central part of our study area near Inuppaat 
Quuat, ice velocity has been decelerating, as well as the northernmost 
part of our study area, while the rest mostly either accelerated, or did not 
display any significant variation in velocity. Indeed, the associated p- 
value map shows that most of the trends observed are weakly (p ~ 0.05) 
or non-significant (>0.1) (Fig. 8b). It appears that only the faster parts of 
our study area (Nordenskiöld Gletscher, Saqqarliup Sermia and Alan
gorliup Sermia in north and south of Russel Gletscher) are displaying 
acceleration with significant p-values and r2 coefficients approaching 1 
(Fig. 8c). 

When computing regression maps for the different groups of data, we 
observe that all three groups of data (BS, DS, AS) display differences in 
velocities compared to the reference map (ALL) (Fig. 9). 

Taking data from before summer (BS) shows less accelerating 

patterns compared to the reference map (ALL), and in the center of our 
study area around and south of Inuppaat Quuat we find a more pro
nounced slowdown. Nordenskiöld Gletscher tongue is also found to be 
accelerating in the (BS) map, but the surroundings display slightly 
decelerating trends compared to the reference map (ALL). The most 
negative trends are found above 800 m of Usulluup Sermia, and are not 
really observed on the reference map (ALL) (Fig. 9b). 

The DS regression map appears on the opposite to be displaying more 
accelerating trend than the reference map (Fig. 9c). The deceleration 
trend found around Inuppaat Quuat for the reference map (ALL) is not as 
pronounced for the DS map. 

The AS regression map is displaying more trends toward deceleration 
compared to the reference map, but not as much as the BS map (Fig. 9d). 
The south of Russel Gletscher appears also to be decelerating using AS 
data, a trend that is not observed using ALL data. 

In the relatively fast-flowing area of Nordenskiöld Gletscher, data is 
missing for some maps, even though we usually obtained a better spatial 
coverage for low altitude ice in the rest of the map. 

The reason is the parameters chosen for the feature-tracking when 
optimizing toward slower velocities: since we found better correlation 
for the overall area with smaller search window, we used this parameter 

Fig. 8. (a) Map displaying the linear regression slopes for our study area, computed for each pixel on data from 2012 to 2019; (b) Map of the associated p-values; (c) 
Map of the associated r2 coefficients. 
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on the whole region and therefore have fewer data points in this faster 
flowing area. The affected pixels were then filtered out because the 
number of data points was below the threshold, as explained in Method 
2.4. 

Concluding, both the GPS dataset and the Satellite observations time 
series (Fig. 5 and Fig. 6) show that depending on the baseline duration 
and the start date, the obtained average velocity can vary between 10% 
and 15%. 

The different regression maps display differences depending on the 
starting date, implying that the sampling of data is not only impacting 
velocity averages, but also translates into an impact on trends. 

4. Discussion 

4.1. Image pair temporal baseline and start date impact 

For both moving averages on GPS data and satellite observations, 
differences in the annual velocities can be observed depending on the 
starting date and the baseline duration (Fig. 5, Fig. 6). This can be 
explained by the temporal baseline duration between images, and the 
percentage of summer velocities included in the average. When the 
starting date is close to the melt season and the baseline duration is 
longer than a year, the velocity measurement includes both the current 
and next year’s melt season, resulting in faster average velocity. The 
opposite occurs with the shorter baselines: when the starting date is 
during the melt season and the baseline is shorter than one year, it only 

partially captures the current melt season and stops before the following 
one. In this latter case, the relative importance of winter velocities in the 
average is greater, leading to a slower average speed. Similarly, long 
baselines with a starting date during winter captures more winter ve
locities, inducing slower speed. 

We show here that average velocities with their starting date during 
summer are dependent on both the current year melt season and on the 
following year melt season, and argue that they are therefore to a lesser 
extent representative of the current year ice velocity. We also argue that 
including next year’s melt season may cause comparisons between 
different combinations of temporal baselines and starting date to be 
erroneous, since the averages compared will not be representing the 
same period of the year. We however observed that differences between 
velocities derived from image pairs with different baseline duration is 
limited before the melt season. Since the objective is still to obtain the 
best spatial coverage, this time period less prone to variations between 
baselines could be used to take advantage of multiple image pairs, while 
gaining representativeness in yearly velocities (Fig. 5). 

Our findings therefore suggests that velocity trends should be done 
on velocities with image pairs starting before summer, including 
therefore for a given year, the melt season plus the following winter. 

4.2. Velocity trends 

When observing velocity trends on the whole region, the values for 
trends obtained for 2000–2012 are displaying a deceleration, similar to 

Fig. 9. (a) Map displaying the velocity trends computed for each pixel using all data from 2012 to 2019 (reference map); (b) Velocity trends using only before 
summer (BS) data; (c) Velocity trends using only during summer (DS) data; (d) Velocity trends using only after summer (AS) data. All for the period 2012 to 2019. 
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previous studies (Tedstone et al., 2015; Williams et al., 2020) (Fig. 7a). 
While Tedstone et al. (2015) found a deceleration trend for the area of 
− 1.5 m/yr2, and Williams et al. (2020) found − 1.64 m/yr2, we find a 
decelerating trend of − 1.13 m/yr2, closer to Joughin et al. (2018) value 
found for a part of Tedstone et al. (2015) area, with a decelerating trend 
around − 1.2 m/yr2. This new value is not directly comparable with 
Tedstone et al. (2015) and Williams et al. (2020) values since the new 
value given here is a median of all single statistically significant (p < 0.1) 
per-pixel linear regression velocity trends, while previous values were 
obtained with a single linear regression for the period and on the whole 
area. 

Also, Williams et al. (2020) did use pixels exclusively below 1000 m. 
Since in our 2000–2012 map we have a few pixels with velocities above 
1000 m, we recomputed the region decelerating trend excluding pixels 
above 1000 m, and found almost the exact same value, varying only 
after the third digit. Also, the time interval is not exactly the same since 
we decided to start our trends in 2000 to gather more data. We present 
here the map with the per-pixel linear regression slopes used for 
calculation of the study area velocity trend, instead of a difference map 
like previously done in Tedstone et al. (2015) and Williams et al. (2020), 
and find that the deceleration trend seems robust and widespread across 
the area over the period 2000 to 2012 (Fig. 7b). 

Joughin et al. (2018) did find a small area included in the Tedstone 
et al. (2015) study area where decelerating trends were observed, but 
concluded that this was an exception to Tedstone et al. (2015) area. 

For the period 2012–2019, we find significant positive regression 
slopes (acceleration) on low lying glaciers tongue, but velocity trends 
elsewhere are generally insignificant and not spatially. 

consistent. We therefore do not find the region-wide re-acceleration 
pattern over 2012–2019 found by Williams et al. (2020) (Fig. 8a). 

This suggests that giving an average trend on the whole area may 
hide more complex local ice behaviors, and that per-pixel linear re
gressions should be performed instead. 

Since Tedstone et al. (2015) and Williams et al. (2020) did not use a 
combination of Sentinel-2 and Landsat images as done here, we 
recomputed a per-pixel linear regressions map using only Landsat im
ages (map provided in Fig. S1 in Supplementary Information), and 
observed almost no difference between maps using either one or both 
sensors for regression maps (Fig. S1 a,b), and for associated p-value 
maps (Fig. S1 c,d). This allows us to confirm that the difference observed 
between results from Williams et al. (2020) and our results is not due to 
the use of different sensors. 

Finally, when computing p-values associated to our trends in the 
2012–2019 period, most trends on the map are not statistically signifi
cant (Fig. 8b). This could be explained by a weak statistical power due to 
a short period of time (8 years) or by a mismatch between complex ice 
behavior observed and the simple linearity of the least-square linear 
regression model chosen to explain observations. This nevertheless re
inforces the importance of displaying p-value maps associated with per- 
pixel linear regressions instead of map-wide linear regressions. 

The only region with statistically significant trends show large ac
celeration on glacier tongues, which could potentially drive the positive 
trend found by Williams et al. (2020). We are not confident interpreting 
the spatial patterns of significance found, as trends found for fast flowing 
ice might be significant due to faster velocities and thus, greater 
observed differences. In addition, a few more years of data may confirm 
or refute the trends observed, or may reveal a new breakpoint, such as 
the one around 2012 found earlier by Williams et al. (2020), that was 
not found in Tedstone et al. (2015) dataset stopping in 2014. 

Joughin et al. (2018) did not find significant deceleration trends in 
the low-lying glacier tongue, where we found a significant reaccelera
tion between 2012 and 2019. 

Differences in the results observed in these areas could therefore be 
due to the differences in time intervals for the per-pixel linear regres
sion, which was in Joughin et al. (2018) between 2000–2001 and 
2016–2017. In addition to this, methodology differences that could lead 

to such different findings in Joughin et al. (2018) could be related to the 
use of winter scenes, the number of years sampled that is lower in 
Joughin et al. (2018) due to winter scene availability between 2001 and 
2017, and the sampling of winter scenes used to obtain velocities. 

Joughin et al. (2018) uses velocity averages spanning over varying 
winter months (between October and April), period that can vary 
depending on the data availability. Even though the issue of varying 
sampling was addressed in Joughin et al. (2018), winter ice motion 
could display different behavior in different areas of our study region, 
and be varying enough such that the sampling of winter scenes affects 
trends observed more than previously thought. 

For comparison purposes with previous work done by Williams et al. 
(2020), we also performed per-pixel percentage velocity differences 
between 2012 and 2019 (Fig. S2 in Supplementary Information), and 
found an acceleration pattern on most of the area as found by Williams 
et al. (2020). We however still argue for per-pixel linear regressions that 
encompass more data and describe more accurately ice velocity trends in 
the region. 

4.3. Impact of image pair selection on trend maps 

The maps with different datasets for the period 2012–2019 show that 
the selection of the starting date has consequences on the obtained 
trends (Fig. 9). The results also show that the deviations between maps 
are heterogeneous and vary by region and altitude. For every image pair, 
feature-tracking is potentially yielding a different spatial extent of where 
features could be tracked. Both Tedstone et al. (2015) and Williams et al. 
(2020) did use a common set of subset of pixels on which a value was 
obtained for every year, but the combination of image pairs used to 
obtain an average velocity at each pixel may be different if no control is 
applied to which image is used at every pixel and every year. Therefore, 
by combining all possible data as done in Tedstone et al. (2015) and 
Williams et al. (2020), there is a risk to obtain an unbalanced repre
sentation of the year, that will be different for every year and for every 
pixel, and this is particularly true for years before the launch of Landsat 
8 due to an increase availability of optical images during summer. 

We also observed here that even with a rich dataset (2012–2019), 
combining numerous velocity data points for each pixel still lead to 
differences in trends between groups, indicating that combining an in
crease number of velocity data is not sufficient to obtain comparable 
yearly velocities (Fig. 9). 

Combining these results with the previous part, we argue that we 
should use image pairs starting before summer when that is applicable to 
avoid any comparison incompatibility between years. 

The differences between maps found here are only representative of 
the time interval for which the trends were derived (2012–2019) and it 
is not possible to directly transpose our results for earlier dataset, where 
velocity trends are different. We however expect that this result holds for 
preceding periods as the effect is mostly due to the seasonality of ve
locities. This analysis is only possible due to numerous velocity mea
surements made with recent satellites, and cannot be done with such 
precision for years before the launch of Landsat 8. However, when 
possible, it is critical to sample annual velocities using comparable data, 
i.e., image pairs representing a similar time interval for each year. 

5. Conclusion 

In our study, we find a decelerating velocity trend for the period 
2000–2012 as observed by Tedstone et al. (2015) and Williams et al. 
(2020), in the Southwest of the Greenland Ice Sheet, on a larger area 
extending South of the previous studies. While the velocity trends found 
for each pixel of the region for 2000–2012 are mostly decelerating, the 
velocity trend maps for 2012–2019 display both positive and negative 
velocity trends. This implies that giving an average acceleration esti
mate for the whole region is not correctly depicting the behavior of the 
ice sheet in this area, and that local velocity trend behaviors will be 
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hidden if we assume that the whole area has a similar behavior. 
This is reinforced by our p-value map, displaying that most per-pixel 

linear regressions are not significant for the last period, while Williams 
et al. (2020) were still able to find a significant trend when combining all 
pixels to perform a linear regression on velocities to describe the whole 
area. Unlike Tedstone et al. (2015) and Williams et al. (2020), we 
display maps with per-pixel linear regressions, and we argue that this 
should be done in order to see potential local behaviors as found here. 
These local differences in velocity trend can be missed otherwise, but are 
necessary to better understand the relation between surface melting and 
ice velocities. Trends must also be computed for each pixel, and not on 
the median of all pixels in the area. 

Concerning the image pairs used to obtain yearly ice velocities, a one 
year baseline is commonly used to avoid strong seasonal variations. 
However, we show that differences can still be observed when 
comparing velocities derived either from image pairs that do not have 
the same starting date, or that have a different baseline duration be
tween images. We do find differences in a yearly average whether the 
start date is before summer, during summer or after summer, as clearly 
shown on both the GPS dataset and with satellite observations. We also 
found that the baseline duration has a reduced impact if the start date is 
before summer, and has a maximum impact if the start date is during 
summer, being explained by the presence of the following summer ve
locities in the average when using pairs starting during summer. We 
were unable to perform different linear regression maps depending on 
the starting date on 2000–2012 due to lack of data, but differences were 
observed on the 2012–2019 dataset when using different starting dates 
to compute yearly ice velocity average. We acknowledge that the data, 
particularly before 2000 with Landsat 5, did not allow to perform such 
per-pixel linear regression, due to the limited number of images with 
sufficient quality. 

Recent satellite launches now allow us to precisely select the starting 
dates and baseline duration without compromising on the spatial 
coverage, thanks to increased temporal resolution. 

We therefore argue that, when possible, image pairs starting before 
summer should be used to draw accurate trends on velocities, so that 
yearly velocities obtained represent as much as possible the same ve
locity averages, in order to be compared. This is especially important 
when observed trends are relatively small compared to the amplitude of 
the signal. Such description of velocity trend, more accurate and on a 
more local scale, is required to understand and better assess the impact 
of future surface melting on ice sheet dynamics. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2022.113419. 
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