
1. Introduction
Variations in Southern Ocean and South Pacific primary productivity have been invoked as possible drivers of 
glacial-interglacial climate change and atmospheric CO2 variability (Brzezinski, 2002; Matsumoto et al., 2002; 
Sigman & Boyle, 2000; Toggweiler et al., 2006). Our understanding of the role primary productivity plays in 
the climate system on these timescales is partly attributable to records of opal mass accumulation rates (MAR) 
in marine sediments (Anderson et al., 2009; Bradtmiller et al., 2009; Charles et al., 1991; Dubois et al., 2010). 
Many of the records spanning glacial timescales, however, do not have adequate resolution to resolve (sub)
millennial-scale changes, which have been shown to influence both the inception and termination of glacial 
periods (Jouzel et al., 2007). This is partly because the traditional wet-alkaline methods that are used to derive 
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Plain Language Summary The color of marine sediments often corresponds to oceanic and 
sedimentary processes that can influence the global climate system. Visual inspection of new sediment cores 
collected from the Chilean Margin revealed substantial downcore changes in green and blue sediment colors. 
Greener sediment intervals were usually enriched with diatoms, whereas bluer sediments were rich in clay 
minerals. A specialized camera was used to scan the cores and enable us to quantitatively describe the core 
colors using the green/blue (G/B) ratio. The similarity of the downcore G/B ratio with Antarctic ice core 
records suggests that it may serve as a quick tool to estimate the age of the cores during the cruise. In this paper, 
we show that changes in the G/B ratio are a function of diatom (biogenic opal) productivity and use a calibrated 
relationship to calculate a continuous record of opal flux at the Chilean Margin over the last 150,000 years. A 
distinct opal flux maxima at 50,000 years ago is observed, similar to previous studies in the eastern equatorial 
Pacific. This common event implies a tight link between the high- and low-latitude eastern Pacific Ocean, 
potentially attributable to enhanced nutrient supply from the Southern Ocean.
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these records are laborious (e.g., Mortlock & Froelich, 1989), which limits the viability of generating continuous, 
high-resolution records of opal MAR across glacial-interglacial intervals.

One potential avenue to circumvent this obstacle and generate high-resolution opal MAR records is by utilizing the 
color spectrum of marine sediments derived from core image scanning and spectrometry (Mix et al., 1995; Neder-
bragt et al., 2000). Generation of sedimentary reflectance spectrometry records upon core recovery is standard for 
most paleoceanographic coring operations and can provide millimeter-scale resolution of sediment properties (e.g., 
Mix et al., 1992). These data are often calculated as L* (total light reflected), a* (blue and green), and b* (red and 
green) values, which have been widely used for core stratigraphy and paleoceanographic reconstructions (e.g., Peterson 
et al., 2000). For example, Mix et al. (1992) documented a close correlation between high Red/Blue ratios (calculated 
as b*/a*) and the presence of sulfides in eastern equatorial Pacific (EEP) marine sediment. However, the RGB data 
extracted from digital section images may be of equal utility since variations in the sediment color often correspond to 
key oceanic or sediment processes (e.g., primary productivity, terrigenous input, and sediment diagenesis; Nederbragt 
& Thurow, 2005). Penkrot et al. (2018) reported that the green/blue (G/B) ratio closely tracks biogenic opal in sediment 
cores taken from the Gulf of Alaska. While these are important observations, the established relationships are quali-
tative. To leverage these records with potentially millennial- or sub-orbital-scale resolution for reconstructing regional 
primary productivity, an empirical relationship between RGB variables (e.g., G/B) and a lithologic component (e.g., 
biogenic opal) must be established.

Recent drilling operations on the south Chilean Margin (D/V JOIDES Resolution Exp. 379T funded through the 
NSF JR100 program) recovered piston cores to a maximum depth of 100 m to investigate (sub)millennial-scale to 
glacial-interglacial variability since the penultimate glaciation. Here, we utilize Sites J1002 and J1007 (Figure 1),  

Figure 1. Map of the South Pacific and study region. (a) Core locations of J1002, J1007, and other sites discussed in this 
paper (Table 1). Black arrows show the path of the Southern Ocean Intermediate Water (SOIW), the surface flow of the 
Antarctic Circumpolar Current (ACC), and the Peru-Chile Current. (b) Zoomed-in view of the Chilean Margin (red box in 
panel (a)), with core locations superimposed on mean annual sea-surface chlorophyll-a concentration. J1002 (red), ODP Site 
1233 (light blue), J1007 (green), ODP Site 1234 (orange), and GeoB 3395-3 (light purple) are shown. Chlorophyll-a data are 
from the MODIS-Aqua Level 3 database.
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which document millennial-to sub-orbital-scale changes in the sediment G/B ratio. The G/B data were initially 
used onboard as a stratigraphic tool owing to similarities with global climate records (e.g., EDML ice core (the 
European Project for Ice Coring in Antarctica [EPICA] Dronning Maud Land ice core; EPICA Community 
Members, 2006). Shipboard lithologic analyses subsequently revealed that sediments enriched with diatoms 
coincide with high green values, whereas clay-rich sediments corresponded with high blue values (Figure 2). 
Thus, G/B records in Chilean Margin cores may serve as a paleoceanographic archive of opal percentage in 
regional sediments.

In this paper, we first explore the conceptual background of the proxy itself, as well as the rationale for using 
G/B in our stratigraphic efforts. We then test the hypothesis that the G/B record correlates with opal content in 
sediments on the Chilean Margin by calibrating the proxy to biogenic opal concentrations quantified by tradi-
tional methods (Mortlock & Froelich, 1989). Lastly, we use the G/B records and initial core stratigraphy based 

Figure 2. Core photos and smear slide photos representing intervals with high and low G/B values at Site J1002 (a) and Site J1007 (b). Core photos were taken by 
line-scan camera on Section Half Imaging Logger and smear slide photos under microscope during Expedition 379T. Greener sedimentary intervals (top core sections 
in both panels) and bluer sedimentary intervals (bottom core sections in both panels) for each site are evident from visual inspection. In both panels (a and b), smear 
slide photos in the left panels show intervals with abundant diatom presence, corresponding to greener sedimentary intervals, whereas the right panel smear slide images 
reflect low diatom abundance intervals from bluer intervals. Black arrows show typical diatoms observed in smear slides.
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on radiocarbon ages and benthic oxygen isotope records to generate continuous opal MAR records for the last 
∼150,000 years at Site J1007, offering the highest resolution record of diatom productivity in the south Pacific 
Ocean through most of the last glacial cycle.

2. Materials and Methods
2.1. Geological and Oceanographic Settings

Our study region in the southeast Pacific Ocean ranges from the central to south Chilean Margin, where the north-
ward deflection of Antarctic Circumpolar Current (ACC) forms the Peru-Chile Current (PCC; a.k.a Humboldt 
Current) between 40°S and 45°S (Strub, 1998). The northward flowing PCC dominates the surface circulation 
pattern along the west coast of South America (Figure 1). The poleward flowing Gunther Undercurrent underlies 
the PCC between 100 and 400 m water depth (Hebbeln et al., 2000; Strub, 1998). Between 500 and 1,200 m 
water depth flows Antarctic Intermediate Water (AAIW), which forms today at the Subpolar Front by mixing 
cold, fresh Polar Front waters with Subantarctic Mode Water (Piola & Georgi, 1982; Sallée et al., 2010; Sloyan 
& Rintoul, 2001). Beneath AAIW sits the northern flowing Antarctic Bottom Water and sluggish Pacific Deep 
Water (PDW) return flow, which enters the Southern Ocean at mid-depths (Talley, 2013). Coastal upwelling is 
intensive throughout the year north of 35°S but is restricted to late spring and early fall between 35° and 42°S. 
South of 42°S, coastal upwelling is inhibited by the prevailing southern westerly winds (Strub, 1998).

The current oceanographic regime makes the Chilean Margin a remarkably productive region in the modern setting. 
Annual chlorophyll concentration in surface waters along the Chilean Margin reaches up to 4 mg/m 3 (Figure 1b). 
Annual primary productivity in this region is dominated by diatoms (Abrantes et  al.,  2007), and based on satel-
lite-measured pigments is estimated to about ∼150 gC/m 2/yr off central Chile (31°–37°S) and ∼60 gC/m 2/yr along the 
south Chilean Margin (i.e., south of 37°S; Antoine & Morel, 1996). The latitudinal distribution pattern of opal contents 
(opal%) and organic carbon contents (Corg%) in surface sediment samples reflect the overlying pigment concentration; 
surface sediment opal% ranges from ∼5% off central Chile to ∼3% in the south (Romero & Hebbeln, 2003). Despite 
the high diatom productivity in this region, the opal percentages in the sediments are very low because of the extremely 
high sedimentation rates on the margin, which can exceed 200 cm/kyr (Hebbeln et al., 2007). High sedimentation rates 
along the Chilean Margin are largely attributable to significant regional precipitation and high elevations of the Coastal 
Range and the Andes. Precipitation can vary from <1,000 mm/yr in central Chile to >2,500 mm/yr south of 40°S, 
leading to increased terrigenous supply in the south (Stuut et al., 2006).

2.2. Study Sites

Sites J1002 and J1007 were recovered from the Chilean Margin using the D/V JOIDES Resolution drilling plat-
form during Expedition 379T in Summer 2019 (Figure 1, Table 1). Site J1002 (46° 4.2964′S and 75° 41.2300′W) 
is located on the south Chilean Margin offshore Northern Patagonia on a bench in the continental slope at a water 
depth of 1,534 m. At present, this site lies under the northern extent of the ACC and is bathed in PDW. Site J1007 

(36° 32.5400′S and 73° 39.9900′W) is located on the continental crust 60 km 
shoreward of the Chile Trench. With a water depth of 781 m, Site J1007 lies in 
the heart of modern AAIW (Bova et al., 2021).

Recovered sediments at both sites are assigned to single lithologic units composed 
primarily of Pleistocene silty clay. Variations of clay contents were presented by 
natural gamma radiation (NGR) at both sites (Figures S1 and S2 in Support-
ing Information S1), as higher NGR usually correlated to higher clay contents 
(Rosenthal et al., 2018). There is a general downhole trend of decreasing NGR 
at Site J1002 and increasing NGR at Site J1007. Minor biogenic components 
(primarily diatoms and second foraminifera and nannofossils) and frequent pres-
ence of sulfide minerals were found at both sites (Figures S1 and S2 in Support-
ing Information  S1). At J1007, large (2–10  cm) carbonate concretions were 
found at ∼59 and ∼97 m, close to the intervals with prominent low magnetic 
susceptibility. Overall, the dominance of siliciclastic component reflects hemi-
pelagic sedimentation at the two sites (Bova et al., 2021).

Core Name Latitude Longitude

Water 
depth 
(m) References

J1002 46° 4.30′ 75° 41.23′W 1,534 This study

J1007 36° 32.54′ 73° 39.99′W 808 This study

ODP Site 1233 41°S 74°27′W 838 Chase et al. (2014)

ODP Site 1234 36°14′S 73°41′W 1,051 Chase et al. (2014)

GeoB 3395-3 35°13′S 72°48.5′W 678 Romero et al. (2006)

V19-30 3°22.98′ 83°31.02′W 3,091 Hayes et al. (2011)

Table 1 
Site Locations in Figure 1
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2.3. Age Models

Age models for Site J1002 and J1007 (Figures S3 and S4 in Supporting Information S1; see age control points 
in Table S3 in Supporting Information S1) were based on a combination of AMS radiocarbon dating and the 
visual correlation of δ 18O records of benthic foraminifera to the LR04 benthic stack (Lisiecki and Raymo, 2005). 
Calendar ages for the upper parts of the core are based on AMS  14C dating of planktonic foraminifera (Globige-
rina bulloides): eight in the upper 67 m of Site J1002 and seven in the upper 23 m at Site J1007, with calendar 
corrections using IntCal20 (Reimer et al., 2020, Figure 3). Below these depths, stratigraphy is based on visual 
correlation between benthic foraminifer Uvigerina spp. δ 18O and the LR04 benthic stack. The Undatable program 
has been used to refine the original age models (Lougheed and Obrochta, 2019), improving the resolution and 
precision of the opal flux estimate simultaneously (see age-depth figures in Figures S3 and S4 in Supporting 
Information S1). Comparison with benthic δ 18O from the nearby ODP Site 1234 (36°14′S and 73°41′W, 1,015 m; 
de Bar et al., 2018; Heusser et al., 2006; Robinson et al., 2007) is further applied to constrain the J1007 age 
model. Nonetheless, we note that the J1007 age model below 66 m is loosely constrained due to limited resolution 
of the benthic δ 18O record. For J1007, the interval between 82 and 86 m is thought to represent the light δ 18O 
“plateau” of Marine Isotope Stage (MIS) 5e. However, the δ 18O of this recognized MIS 5e stage are not signif-
icantly more depleted than the Holocene as might be expected. Therefore, we caution that it is possible that the 
real MIS 5e “plateau” was missed due to low sampling resolution and the bottom of J1007 does not reach MIS 
5e. This uncertainty has, however, no bearings on the discussion and conclusion of the paper but should be noted 
by potential users of the core data.

2.4. Sedimentary G/B Ratio

Although extremely high sedimentation rates along the southern Chilean Margin offer the opportunity to 
generate high-resolution paleoproductivity records, they also pose a few challenges. First, the concentration of 
biogenic components (e.g., organic carbon% and opal%) are very low (Figures S1 and S2 in Supporting Infor-
mation S1), approaching the detection limits of the analytical methods. And second, taking advantage of the 

Figure 3. Stratigraphic correlations between Antarctic ice core δ 18O (EDML, EPICA Community Members, 2006), LR04 
benthic stack (Lisiecki and Raymo, 2005), the G/B, and benthic δ 18O for Site J1007 (a) and Site J1002 (b). Age control points 
from  14C ages are displayed (yellow diamonds). Tie points for visual correlation between benthic δ 18O and LR04 are denoted 
by vertical dashed lines.
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high sedimentation rates for generation of high-resolution records using traditional methods is laborious and 
practically unattainable. For example, to achieve ultra-high resolution in a 100 m sediment core would require 
collection and analysis of potentially 1,000 of samples. Therefore, scanning methods with 1-cm step can offer 
valuable information that cannot be obtained from traditional discrete measurements. The advantage of such 
a method is more in capturing the temporal variability at high resolution than in providing accurate concen-
trations. The sedimentary G/B ratio is a quantitative method to describe sediment color in the RGB channels 
of green and blue ranges (Nederbragt & Thurow,  2005). Digital section images were taken on the archive 
halves of the core using a line-scan camera on the automated Section Half Imaging Logger. Sediment cores 
were scraped using a glass slide after splitting, and the cleaned flat face of the archive half was immediately 
imaged to prevent color degradation at a resolution of 10 lines/mm. Data were presented as averaged digitized 
channels of red, green, and blue, with values ranging from 0 to 255 (Bova et al., 2021). The sedimentary G/B 
ratio was calculated as the green parameter divided by the blue parameter. It should be noted that the sedi-
ment color presented by the RGB channels is different from the L*, a*, b* tristimulus, as the previous one is 
extracted from digital section images and the latter one is calculated with spectral counts acquired using the 
light spectrophotometer.

Preliminary results of the shipboard smear slide description suggest a possible link between sediment color 
and lithology, in agreement with previous work (e.g., Mix et al., 1992, 1995; Nederbragt et al., 2000; Penkrot 
et al., 2018). Pigments are widely produced by marine algae like diatoms and coccolithophores (Leavitt & 
Hodgson, 2002). At our study sites, elevated abundance of diatoms is typically found in greener sedimen-
tary intervals (Figure  2). Similar latitudinal distribution patterns of opal%, Corg%, and pigment concentra-
tions suggest that diatoms are the dominant group of primary producers along the Chilean Margin (Abrantes 
et  al.,  2007; Romero & Hebbeln,  2003; Stuut et  al.,  2006), thus contributing to most of the pigments in 
sediments. The primary pigments of diatoms are the green chlorophyll-a and the blue-green chlorophyll-c 
(Kuczynska et al., 2015; Stauber & Jeffrey, 1988). Although chlorophyll can be degraded, most of the break-
down products (e.g., chlorins) are still detectable by regular spectrophotometric methods (Reuss et al., 2005). 
Indeed, downcore pigment records have been used to reconstruct productivity changes in lakes and estuar-
ies for decades (Reuss et al., 2005, 2013). Thus, it has been hypothesized that the color of green is mainly 
produced by diatom-related pigments in this region. In contrast, cores with a dominance of siliciclastic compo-
nents and a lower abundance of diatoms are usually found to be bluer (Figure 2). Considering the tremendous 
terrestrial input commonly found along the Chilean Margin, the siliciclastic component likely produces the 
blue color. We therefore hypothesize that the sedimentary G/B ratio reflects the relative abundance of biogenic 
silica in sediments, and based on our calibration, can use it as to quantify diatom productivity along the Chil-
ean Margin over time.

Given the high-temporal variability of the records, the sedimentary G/B ratio has also been a useful tool 
for stratigraphic correlations among holes drilled during Expedition 379T because it is likely linked to 
regional climate processes (Bova et al., 2021). Previous studies suggest that Antarctic climate changes have 
a significant impact on surface water dynamics and terrestrial input off the coast of Chile (Lamy et al., 2004; 
Kaiser et  al.,  2007). Regional surface water processes are closely linked to diatom production, hence the 
green parameter of the sediments. On the other hand, the terrestrial input is assumed to contribute to the 
blue parameter in sediments. The variation of sedimentary G/B ratio may be sensitive to climate dynamics, 
making it applicable for stratigraphic correlations. To validate these assumptions, we compare the downcore 
variations in G/B at J1002 and J1007 with the benthic foraminiferal δ 18O record at each site. The remarkable 
consistency between the G/B and benthic δ 18O at both sites validates the use of the G/B ratio for stratigraphic 
correlations along the Chilean Margin (Figure 3). Moreover, G/B ratios at both sites show good correlations 
with Antarctic ice core δ 18O records, with higher G/B values usually corresponding to warm intervals near 
Antarctica and lower G/B values corresponding with cold intervals; this observation further demonstrates its 
utility for stratigraphic correlations (Figure 3). This tool has been especially useful for shipboard correlation 
as other sedimentary property records in these regions (e.g., magnetic susceptibility, NGR, and other color 
properties) had muted signals. For example, magnetic susceptibility was widely used for shipboard correla-
tion among holes, but for high sedimentation rate sites—especially those with thick Holocene section that 
were devoid of any appreciable magnetic susceptibility signal—G/B ratios turned out to be the most applica-
ble stratigraphy tool (Bova et al., 2021).



Geochemistry, Geophysics, Geosystems

LI ET AL.

10.1029/2022GC010350

7 of 16

2.5. Biogenic Opal Analyses

J1002 and J1007 were sampled at intervals spanning the range of G/B values measured at each site to investi-
gate the relationship between opal% and G/B. Biogenic silica concentrations were measured by conventional 
wet-alkaline digestion, including mineral correction procedures modified after Conley and Schelske (2001). The 
mineral correction was critical for sediments with relatively low biogenic silica contents as it minimizes the 
effect of mineral silicates. A total of 22 samples from J1002 and 41 samples from J1007 were analyzed. About 
250 mg of freeze-dried sediments were homogenized using a mortar and pestle and digested by 1 mol/L Na2CO3 
solution in an 80°C water bath. The tubes were shaken quickly for complete digestion every 20 min. Subsamples 
of 1 mL were taken after 3, 4, and 5 hr of digestion time. Silicate concentration of each subsample was measured 
by molybdate blue spectrophotometric measurements using an Agilent Cary 60 UV-vis Spectrophotometer at 
Rutgers University peaked at 812 nm, modified after Mortlock and Froelich (1989) (see detailed experimental 
and data processing procedure in Text S1 in Supporting Information S1). Ideally, a linear regression was made 
with the three subsamples, with extrapolation to the intercept providing the final biogenic silica concentration 
(DeMaster, 1979). Finally, opal% was calculated as biogenic silica concentration multiplied by 2.4 (Mortlock 
and Froelich, 1989). The standard error of our measurements was 0.35% based on 14 duplicate measurements. 
Wet-alkaline digestion could be affected by “noise” from clay (Conley & Schelske, 2001). Our mineral correction 
protocol suggests, however, that clay only contributes to a stable background noise of 0.3% (Figure S5 in Support-
ing Information S1), which was then removed during the data processing procedure.

2.6. Quantifying U and Th Contents With Shipboard Natural Gamma Radiation Data

Full NGR data for Sites J1002 and J1007 were collected during Expedition 379T. Original NGR spectra obtained 
on board were composed of numerous peaks for the  238U and  232Th series. Thus, sedimentary contents of thorium 
( 232Th), and uranium ( 238U) were estimated by identifying and quantifying their characteristic energy peaks using 
a MATLAB algorithm by De Vleeschouwer et  al.  (2017). Note that the values reported here are concentra-
tion values instead of activity values. De Vleeschouwer et al. (2017) reported the precision of the algorithm as 
the correlation coefficient between calculated contents and contents measured by mass spectrometry (ICP-MS), 
which is 0.89 for Th and 0.84 for U based on 245 samples. The accuracy was evaluated by the slope and intercept 
of the regression line, suggesting a slight overestimation of Th and highly accurate estimates of U content.

3. Results and Discussions
3.1. Calibration of Sedimentary G/B With Measured Opal%

Shipboard sedimentary G/B records exhibit a generally northward increasing trend along the Chilean Margin, in 
agreement with annual chlorophyll distribution in surface waters (Figure 1b). In addition to lower average values, 
the G/B for Site J1002 also shows smaller variabilities than J1007. Measured opal% for Site J1002 and Site J1007 
vary between 0.36%–4.36% and 1.89%–5.35%, respectively. In general, measured opal% covary with the G/B, 
with higher measured opal% usually found in greener sediments (Figure 4a). Eight samples from J1007 and 
one sample from J1002, however, apparently underestimate opal% with respect to G/B (Table S2 in Supporting 
Information S1). In all cases, these intervals are associated with prominent low values of magnetic susceptibility 
(Figure 5), which hints to the possibility of diagenetic overprints. This marked decrease of magnetic suscep-
tibility is a widespread phenomenon in sediments of the continental margin, and is usually caused by diage-
netic processes within the zone of anaerobic oxidation of methane (Johnson et al., 2021; Riedinger et al., 2005). 
Distinct diagenetic processes may further induce color alteration of the sediments (Giosan et al., 2002), resulting 
in mismatch between G/B and measured opal% at these intervals.

At Site J1007, the organic carbon percentage (Corg%) correlates well with measured opal% (n = 21, r 2 = 0.51, 
p < 0.05; Figure 4b), in agreement with the robust correlation between opal% and Corg% in the nearby surface sedi-
ments (Romero & Hebbeln, 2003). Those samples with potentially underestimated opal%, within low magnetic 
susceptibility intervals, are similarly offset from the expected values based on average correlation between opal% 
and Corg%. Preliminary shipboard analysis shows the frequent presence of nannofossils and diatoms in sediments 
along the Chilean Margin (Bova et al., 2021). Discrete measurements onboard suggest that CaCO3% range from 
1% to 5% for Site J1007 and 0.3% to 8% for Site J1002 (Figures S1 and S2 in Supporting Information S1). But the 
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nannofossils only contribute a minor part of the CaCO3 according to estimates from the smear slides (see smear 
slide photos under cross polar light, Figure S6 in Supporting Information S1). Combining downcore and surface 
sediment records, it can be deduced that primary productivity in this area is dominated by diatomaceous species, 
with carbonate nannofossil species as a minor contributor. In contrast, Corg% shows only a weak correlation with 
G/B (Figure 4c), which suggests one or both indicators are impacted by degradation. Nonetheless, most degra-
dation products of chlorophyll retain their original color (Reuss et al., 2005). The color properties of chlorins (a 
typical chlorophyll degradation product) are measurable by spectrophotometry method in Pleistocene sediments 
at various sedimentation settings (e.g., Cartagena-Sierra et al., 2021; Gebhardt et al., 2008; Harris et al., 1996; 
Hodgson et al., 2003), reaching timescales over million years and burial depths of hundreds of meters (Cartage-
na-Sierra et al., 2021). It is likely the G/B proxy is a more robust indicator and possibly independent of organic 
matter preservation. Nonetheless, with these caveats in mind, data from low magnetic susceptibly intervals should 
be considered with higher uncertainty.

Excluding the underestimated data points (20% of entire data set, shown in Figure 5), strong exponential corre-
lations are found between G/B and measured opal% at both sites (J1002: ln(y) = 5.8x−6.3, n = 14, r 2 = 0.73, 
p  <  0.05; J1007: ln(y)  =  5.8x−5.5, n  =  22, r 2  =  0.48, p  <  0.05; where x and y are G/B values and opal%; 
Figure 4a). The calibrations of J1002 and J1007 show the same slope but different intercept, indicating similar 
sensitivity of G/B and differences in background colors. Root mean square deviation (RMSD) were calculated 
based on the differences between measured opal% and the reconstructed opal% derived from G/B values. The 
RMSD is 0.68% for J1002% and 0.72% for J1007, reflecting the uncertainty of regression models in this study.

Note that while the relationships between G/B, opal%, and Corg% are robust, the empirical calibrations are 
site-specific to J1002 and J1007 and cannot be transferred to other sites, even those in the same region. We 
hypothesize that variable clay mineralogy along the meridional transect (e.g., Lamy et al., 1998) cause spatial 
differences in the total “blue” content in the sediments, which were presented by different intercepts of the 
calibration equations. Although climatically induced changes may substantially influence the mineralogy of the 
siliciclastic inputs at both J1002 and J1007, such variability is unlikely to cause significant influences on the  G/B. 

Figure 4. Calibration of the G/B proxy. (a) Correlation between opal% and the sedimentary G/B ratio for Site J1002 (red 
squares) and Site J1007 (green circles). (b) Correlation between opal% and Corg% for Site J1007. (c) Correlation between 
Corg% and sedimentary G/B ratio for Site J1007. Open symbols in all panels represent potentially underestimated opal% data 
points from low magnetic susceptibility intervals. Shaded areas represent the 95% confidence interval for each regression.
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For example, chlorite could potentially contribute to the green coloration and is present as an important compo-
nent of clay mineralogy at the central- and southern Chilean Margin (Lamy et al., 1998). But the chlorite content 
at ∼35°S shows a decreasing trend from the LGM to the Holocene (Lamy et al., 1999), opposing the variation of 

Figure 5. Downcore opal%, U/Th, and magnetic susceptibility records for Site J1007 (a) and Site J1002 (b). Reconstructed 
opal% for the last ∼150 ka at J1007 (green) and 90 ka at J1002 (red) are shown as smoothed solid curves (MATLAB loess 
smoothing, window = 50) with the ±1 RMSD envelope. Measured opal% (green circles for J1007, red squares for J1002) are 
superimposed on each reconstructed record. Gray symbols represented potentially underestimated opal% data points from low 
magnetic susceptibility intervals. The standard error of opal% measurements (0.35%, based on 14 duplicate measurements) 
was shown as error bar on each data point. Note that we reject those from the calibrations but this does not affect our 
interpretations of the G/B records. U/Th records are presented as solid gray lines. Magnetic susceptibility at Site J1007 (blue) 
and Site J1002 (orange) are shown as smoothed solid curves (MATLAB loess smoothing, window = 50). Vertical gray bars 
denote intervals of low MS coinciding with underestimated opal% data at each site.
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G/B record at Site J1007. Similar to X-ray fluorescence (XRF) scanning records of cores, the G/B ratio may also 
provide a semi-quantitative record that will require a site-specific calibration at each site to convert the relative 
changes to a record of opal%. It is noteworthy, however, that the two studied sites represent a specific case where 
the opal concentrations are very low due to dilution from the very high sedimentation rates. It is likely that the 
method and calibration would be more robust in sites where the contribution of clays and sedimentation rates 
are  lower than those encountered on the Chilean Margin. But the calibrations with low opal% point to the poten-
tial utility of G/B proxy in a wide range of depositional settings.

3.2. Reconstructing Opal% Records

Having established the G/B proxy as a tracer of opal% at our study sites, we now use the exponential regression 
equations above to reconstruct past changes of opal% from the G/B records. Downcore opal% ranges between 
0.6%–2.5% and 1.6%–8.8% for J1002 and J1007, respectively (Figure 5). Reconstructed opal% shows relatively 
large-scale variability at Site J1007, with the highest opal% for the past 150 kyr found during Termination II and 
MIS 3 (Figure 5a). At Site J1002, reconstructed opal% shows a prominent peak during Holocene, but remains low 
and stable before Last Glacial Maximum (LGM, 23–19 ka; Figure 5b). At Site J1002, opal% only ranges ∼1% 
before the LGM, which can be almost entirely attributed to reconstruction uncertainty (2*RMSD = 1.36%, see 
pink shading in Figure 5). Thus, we caution against the utility of the J1002 opal% reconstruction before the LGM 
and do not use it for paleoceanographic interpretation.

Over the past 30 kyr, opal% at J1007 and J1002 gradually increases from the last glacial period to the Holocene. 
During the late Holocene, J1007 opal% is 4%–5%, similar to the opal content of ∼5% in nearby surface sedi-
ments (Romero & Hebbeln, 2003). Meanwhile, J1002 opal% of about 2.5% during the Holocene agrees with opal 
contents of ∼4% in surface sediments at 44°S (Chase et al., 2015; Romero & Hebbeln, 2003). The opal% range 
for J1007 over the last 30 kyr (2%–6%) is similar to that of two nearby sites, and the variation trend mimics GeoB 
3395-3. At Site J1002, the low opal% prior to the last glacial period is attributable to a marked increase in sedi-
mentation rate (>3 m/kyr), which appears to significantly dilute the opal% relative to the Holocene.

Previous opal% reconstructions along the Chilean Margin only covered the past 30 kyr, and vary in a similar 
range but with different patterns. On the central Chilean Margin, site GeoB 3395-3 (35°13′S and 72°48.5′W, 
678 m) has opal% ranging from ∼1.5% to 5% for the past 23 kyr, with the highest values appearing during late 
Holocene (Romero & Hebbeln, 2003; Romero et al., 2006). The opal% at ODP Site 1234 (36°14′S and 73°41′W, 
1,015 m) range from ∼2% to 5% for the last 30 kyr, with peak values occurring during the last glacial period 
(26–20 ka), but slightly before LGM (Chase et al., 2014). Moreover, it is worth noting that the chlorins content at 
nearby site GeoB 7165-1 (36°33′S and 73°40′W, 797 m) also increases from the LGM to late Holocene (Mohtadi 
et al., 2008). Further south, the diatom abundance record from ODP Site 1233 (41°S and 74°27′W, 838 m) is very 
similar to that of ODP 1234 (Chase et al., 2014). Overall, the consistent range of reconstructed opal% at J1002 
and J1007 with nearby sites strongly support the robustness of sedimentary G/B-opal% proxy.

3.3. Sedimentary U/Th

In nature, thorium occurs almost entirely as  232Th while uranium primarily exists as  238U, both of which are 
primarily supplied to the oceans by riverine runoff (McManus et al., 2006). As a non-redox-sensitive metal,  232Th 
has low solubility in rivers and oceans, and is largely absorbed on the surface of clay minerals (Harmsen & De 
Haan, 1980). On the other hand,  238U exist as both soluble U(VI) and insoluble U(IV) phases (Langmuir, 1978). 
In oxygenated seawater,  238U is present dominantly as a stable U(VI) carbonate complex, with a small fraction 
associated with particulate organic carbon flux (McManus et al., 2005). Under suboxic conditions, authigenic 
U accumulates in the sediments as a combination of the bio-authigenic phase associated with settling organic 
particles and that formed by diffusion of U into sedimentary pore waters (Barnes & Cochran, 1990; Henderson & 
Anderson, 2003; McManus et al., 2005). Therefore, sedimentary U/Th, which minimizes the influence of varia-
ble detrital sources and sedimentation rates (thus the authigenic U burial rate), can be used as a non-quantitative 
indicator of redox conditions of the sediments.

Both the thorium and uranium contents are higher at Site J1002 than Site J1007, corresponding to larger terres-
trial input to the south Chilean Margin. In contrast, U/Th at Site J1007 was found to be higher than that of 
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J1002 (Figure 5). Higher U/Th reflects more suboxic sedimentary conditions (referring to low dissolved oxygen 
availability in bottom waters), high organic carbon rain rates, or some combination of both processes (McManus 
et al., 2006). We observe marked similarities in both trends and magnitudes between measured opal%, G/B-re-
constructed opal%, and U/Th profiles at both sites (Figure 5). Authigenic U MARs were also calculated with 
different assumptions of lithogenic U/Th ratio at J1002 and J1007 (Figure S7 in Supporting Information S1). The 
authigenic U MAR generally tracks the changes of bulk U/Th at J1007, with increased authigenic U MAR found 
at the intervals with low magnetic susceptibility. As mentioned before, a marked decrease of magnetic suscep-
tibility is widely linked to diagenetic processes within the zone of anaerobic oxidation of methane (Johnson 
et al., 2021; Riedinger et al., 2005), likely resulting in elevated U precipitation. At J1002, calculated authigenic 
U MARs show different patterns to bulk U/Th, suggesting dominant control of sedimentation rate at this site. 
Taken together, the co-occurrence of high productivity intervals (high opal%, high G/B) and suboxic conditions, 
as indicated by high U/Th, supports the use of G/B as a proxy of diatom productivity on the Chilean Margin.

3.4. Reconstructed Opal MAR

Previous studies along the Chilean Margin provide only short and relatively low-resolution records of opal MAR 
(Chase et al., 2014; Hebbeln et al., 2002; Mohtadi & Hebbeln, 2004; Romero et al., 2006). To fill the research 
gap on sub-orbital-scale variability in diatom productivity, we generated opal MAR records with G/B-derived 
opal% from Site J1007. Opal MAR at Site J1002 was also calculated for comparisons between J1007 and J1002. 
Opal MAR was calculated as:

Opal MAR = opal% ∗ 𝜌𝜌dry ∗ LSR (1)

where the opal% is calculated from the calibrated sedimentary G/B ratio, ρdry is the shipboard-measured dry bulk 
density of the sediment (g/cm 3), and LSR is the linear sedimentation rate (cm/kyr) as established by J1007 age 
model.  230Th-normalization was not applied in this study considering that uncertainties inherent in normalization 
are especially critical for continental margin sediments with shallow water depth and tremendous lithogenic input 
(Francois et al., 2004).

In general, the sedimentary record of opal MAR shows large-amplitude variation at Site J1007 (Figure 6). Over 
the last 30 kyr, opal MAR of 2–3 g/cm 2/kyr were found before the LGM, which decreased to ∼1 g/cm 2/kyr 
during the deglaciation and into the Holocene. The opal flux records from two adjacent sites (GeoB 3395-3 
and ODP Site 1234) show a distinct peak of ∼1.5 g/cm 2/kyr during the LGM (Figure 6a; Chase et al., 2014; 
Romero et al., 2006). Further south, opal MAR from ODP Site 1233 reaches a peak during the last glacial period 
(1.8 g/cm 2/kyr) and decreases below 0.2 g/cm 2/kyr since 20 ka (Chase et al., 2014). Note that  230Th normalization 
was applied to opal MAR calculations at ODP Site 1234 and ODP Site 1233, but not at GeoB 3395-3. The opal 
MAR variation of Site J1007 shows higher levels with longer duration than observed at the other three nearby 
sites. The difference may be due to the difference in the data sources. The J1007 record is based on continuous 
high-resolution G/B ratio, whereas the other records are based on low-resolution discrete wet analyses (Figure 5). 
In fact, comparing the latter with our discrete samples from J1007 suggests a greater consistency among the 
record in terms of regional changes in opal productivity. We note, however, that changes in sedimentation rate at 
Site J1007 impart the largest influence on the opal MAR, and the broad peak reflects this. It should be clarified 
that while the G/B-derived opal% records are in high-resolution, the MAR is in low-resolution due to the limited 
age model tie points and their respective uncertainties. Thus, the discussion on (sub)millennial-scale opal flux 
changes is not feasible in this study.

On a longer timescale, the most outstanding features of the Site J1007 opal MAR record are two large peaks, 
one at ∼50 ka and a secondary peak that we tentatively place at Termination II based on benthic δ 18O tuning 
(Figure  3; Figure  6b). The possibility of an opal flux peak during MIS 3 cannot be ruled out at Site J1002 
(Figure 3; Figure S8 in Supporting Information S1). But it would be premature to over interpret the J1002 record 
given the large uncertainties. Admittedly, effects of lateral sediment transport and sediment focusing could not be 
ruled out in this study. But significant remobilization that would cause a distinct MAR peak is unlikely, consider-
ing the moderate fluctuations of sea level, shore line position, and bottom water condition during MIS 3. Besides 
that,  230Th-normalized opal fluxes show the same general pattern as opal MAR records at the Chilean Margin 
for the past 30 ka (Chase et al., 2014). There were inherent tradeoffs with both  230Th-normalized fluxes and the 
MAR, as the previous one may underestimate the vertical biogenic flux due to potential boundary scavenging, 
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while the latter one may overestimate the true vertical flux (Chase et al., 2014). We therefore suggest the 50-ka 
opal flux peak at Site J1007 results mostly from the vertical biogenic flux. Similar opal flux maxima during MIS 
3 have been documented at the site of V19-30 (Figure 6b) and other sites in the EEP (e.g., TR163-31, ME-24; 
Dubois et al., 2010; Hayes et al., 2011; Kienast et al., 2006). These opal MAR changes along the eastern Pacific 
basin are further echoed by a Diol index record offshore Southeastern Australia, which infers maximum Probos-
cia diatom abundance during MIS stages 1, 3, and 5e (Lopes dos Santos et al., 2012).

Previous studies consider enhanced opal preservation as an important contribution to opal MAR in addition to 
diatom productivity (e.g., Dubois et al., 2010; Tréguer & De La Rocha, 2013). Dissolution is usually found in 
the intervals with increased dominance of robust species (Shemesh et al., 1989). The smear slide observation 
shows no significant changes in the diatom assemblage during MIS 3 at Site J1007. On the other hand, enhanced 
opal preservation related to dust flux (Dubois et al., 2010) have been discussed as possible drivers for the 50-ka 
flux peak in the EEP, but are unlikely to influence sites at the Chilean Margin. Different from the two clear dust 
flux  peaks during MIS 4 and MIS 2 at the central and the EEP (Winckler et al., 2008), the Fe concentration 
record  from central Chilean margin show higher frequency variability during MIS 2-4 (Kaiser & Lamy, 2010). 

Figure 6. Downcore opal mass accumulation rate (MAR) records from the eastern Pacific Ocean. (a) Opal MAR variation 
for the last 30 ka at GeoB 3395-3 (yellow; Romero et al., 2006), ODP Site 1234 (pink; Chase et al., 2014), and ODP 
Site 1233 (blue; Chase et al., 2014). Site J1007 (green) opal MAR are shown as smoothed solid curves (MATLAB loess 
smoothing, window = 50) with the ±1 uncertainty envelope (by error propagation from 1 RMSD). Gray markers show opal 
MAR calculated from measured opal% (closed circle) and data points from low magnetic susceptibility (open circle). (b) Opal 
MAR variation for the last 150 ka at Site J1007 (green) and V19-30 (orange; Hayes et al., 2011). Linear sedimentation rate 
(LSR) for Site J1007 is shown in the bottom panel. The MIS three peak in opal flux is highlighted with pink shadings. The 
dashed arrow shows potential correlation between the Site J1007 and EEP opal MAR peak at Termination II based on benthic 
δ 18O tuning.
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Therefore, a common opal flux maxima along the eastern Pacific is more likely referring to a diatom productivity 
peak rather than an opal preservation peak during MIS 3.

Increased contribution of northern hemisphere waters with higher Si:N has been ruled out as the main control 
on the EEP opal flux maxima during MIS 3 (Hayes et  al.,  2011; Kienast et  al., 2006), and is less likely a 
significant source to mid-latitude South Pacific. Therefore, this common 50 ka event along the eastern Pacific 
meridional transect, paired with a peak diatom productivity offshore Southeastern Australia, implies a climatic 
connection between the high and low latitudes in the Southern Hemisphere, likely through nutrient-rich inter-
mediate waters exported from the Pacific-sector of the Southern Ocean (Talley, 2013). Southern Ocean Inter-
mediate Waters supply nitrogen, phosphorous, and silicate to the global thermocline, thereby supporting up to 
75% of tropical production (Ayers & Strutton, 2013; Sarmiento et al., 2004). The widely presented MIS 3 opal 
flux peak supports the idea of enhanced Si supply to low latitudes (Hayes et al., 2011), depicting a clear route 
of “oceanic tunneling” between the Antarctic and the equatorial Pacific (Pena et al., 2008; Spero & Lea, 2002). 
Moreover, the opal flux at Site J1007 is nearly 10 times greater that of EEP records, implying that mid-latitude 
continental margins could have served as an important sink for leaking Si from the glacial Southern Ocean 
(Bradtmiller et al., 2009).

4. Conclusions
Diatom production plays a major role in the biological pump, especially in the Southern Ocean and upwelling 
regions such as along the EEP and western margins of South American. However, because measuring opal% 
in sediment is analytically very laborious, obtaining high resolution sedimentary records of opal accumulation 
is practically impossible, especially in cores with very high-sedimentation rates like those along the Chilean 
Margin. This study demonstrates that using shipboard measurements of the sedimentary G/B ratio from newly 
recovered sediment cores on the Chilean Margin, coupled with calibration of discrete samples using traditional 
methods, can offer a new approach to generate high-resolution paleoceanographic records for reconstructing 
glacial-interglacial changes in South Pacific diatom productivity. In more detail, we conclude the following:

1.  The sedimentary G/B ratio in Chilean Margin sediments can serve as an efficient shipboard stratigraphic tool, 
where other shipboard data (e.g., magnetic susceptibility) are not conclusive.

2.  The G/B records provide high-resolution proxy records for regional changes in diatom productivity over time. 
The conversion of G/B data to opal% records requires site-specific calibrations from discrete opal% analysis 
using traditional wet-alkaline digestive methods. Offsets among sites in the G/B ratio to opal% relationships 
are likely related to lithological effects. Nevertheless, the records suggest that, despite diagenetic effects on 
biogenic silica and organic matter preservation, the G/B records may more reliably record paleoproductivity, 
especially in very high sedimentation rates environments where their concentration are diluted.

3.  Continuous records of opal MAR on the Chilean Margin over the last ∼150,000 years largely tracks existing 
records from the EEP, with a common opal flux peak at ∼50 ka. This suggests a climatic link between high 
and low latitudes in the South Pacific through intermediate waters.
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