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Introduction

On smooth manifolds, de Rham cohomology is a a topological invariant of the manifold.
In general a topological invariant is a property of a topological space which it shares
with all spaces which are the same in the topological sense. Explicitly, homeomorphic
spaces share topological invariants. Even though de Rham cohomology is defined
via the smooth structure on the manifold, it is actually isomorphic with the singular
cohomology [12, Thm 18.14], a result from 1931 by de Rham. The definition of the
k’th de Rham cohomology is the vector space of closed k-forms modulo the exact
k-forms.

On Riemannian manifolds, we can define the Laplace operator on k-forms. The
Lacplace operator is an elliptic operator which depends on the Riemannian metric
on the manifold. It is therefore unsuspected that on compact manifolds, the k’th
de Rham cohomology is isomorphic to the harmonic k-forms, i.e. the forms that
evaluate to zero. It is remarkable that the harmonic forms, which depends both
on the smooth structure of the manifold, and the Riemannian metric is actually a
topological invariant. Furthermore, we have a decomposition of the k-forms on the
manifold. Every k-form can be decomposed into an exact form, a co-exact form and
a harmonic form. This is the Hodge Decomposition, the proof of which involves a
great deal of analysis, especially theory about Sobolev spaces. For a compact oriented
Riemannian manifolds M, the classical Hodge theorem relates the k’th de Rham
cohomology, via an isomorphism to the harmonic k-forms on M. This is a exceptional
result, connecting the topology of M with analysis of the Laplace operator on M. It
was W.V.D. Hodge who in the 1930’s defined a generalization to the Beltrami Laplace
operator, to differential forms, in order to study the cohomology on manifolds [7].

For non-compact manifolds we do not have an inner-product on the space of smooth
forms on the manifold since there can exist forms that are not integrable. However, if
we do restrict to the integrable forms, then we can get a similar result. The difference
is that we take the closure of the exact forms, to get the reduced L?-cohomology. There
is also an un-reduced cohomology, however the unreduced cohomology is often not as
nice, while the reduced cohomology is a Hilbert space, the unreduced is not necessarily
a Hausdorff space[19, Prop 4.5]. If the subspace of exact k-forms is closed, the reduced
and unreduced cohomology coincide. The reduced and non-reduced cohomologies are
invariant under bi-Lipschitz maps, which in contrast to homeomorphisms, factor in

the Riemannian structure of the manifolds. This says that for complete there is much
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more diversity in the space of forms that are harmonic, which, in contrast to compact
manifolds, depends on the geometry of M.

In both compact and the non-compact case, then curvature of the manifold has
impact on the space of harmonic forms on M. The Laplace operator can be decomposed
into an elliptic differential operator and a curvature operator called the Weitenbock
curvature. This is called the Weitzenbéck decomposition. Via the Weitzenbock
decomposition, there are several result that connect the curvature of a Riemannian
manifold, with cohomology see e.g. [16] 1], [13], where the Weitzenbock curvature is
positive. The k’th Weitzenb6ck operator %y, is a generalization of the Ricci curvature,
since Z1 = Ric. When the Ricci curvature is strictly greater than a positive constant,
the manifold is compact, by the Bonnet-Myers theorem. Because it is difficult for
the Weitzenbock operator to be positive without the manifold being compact, most
results involves compact manifolds. There is a result by S-T. Yau [24] which relate
non-negative Ricci curvature on a complete manifold with the space of harmonic forms.
We generalize this theorem to include the case where % > 0.

The structure of this thesis is as follows:

In we review some basic concepts from Riemannian geometry, on which
the rest of the material is built upon. We define the Laplace operator, and decompose
it into the Rough Laplace operator plus a linear map involving the curvature; this is
the Weitenbock formula.

[Chapter 3|is devoted to the Hodge theorem, which relates the de Rham Cohomology,
and the Harmonic forms on M. We give a brief introduction to Fourier analysis on the
torus, and some useful theorems about elliptic operators. The results are necessary
for proving the Hodge theorem on compact manifolds. We also show that if the
Weitzenbock curvature operator is positive, then the cohomology is trivial.

In we consider manifolds that are not compact, but which are complete.
We investigate if and how the results in Chapter 3 generalize to complete manifolds.
This involves investigating the L2-cohomologies. The end of the chapter includes my
generalization of the mentioned theorem by S-T. Yau [24], which we have not found
stated explicitly in the literature.

The serves as a refresher of some facts involving Hilbert spaces. It could
be read first if the reader is not too impatient. Although the appendix contains most of
the theory we need from functional analysis, we assume the reader to have familiarity
with basic functional analysis. However, the most important prerequisite is a good

knowledge of smooth manifolds.
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Riemannian Geometry and the Laplace Operator

2.1 Linear Algebra

In differential geometry, linear algebra plays an important role. Each fibre of a vector
bundle is a vector space. It is therefore necessary to elaborate on the theory before we
introduce Riemannian manifolds. Throughout this section, let V' be an n-dimensional
inner product space over the real numbers. The inner product on V will be denoted
by g, but we will often use angled brackets (-, ), with g as a subscript in equations, or

even just (-,-), if it does not cause any confusion.

2.1.1 Extension of inner products

The inner product gives us a natural way to identify V' with its dual V*, namely via
the musical isomorphisms b: V — V* and £: V* — V, defined by v’ (v) = (u,v),
and (a*,u), = a(u). We use the musical isomorphisms to extend the inner product to

tensors. For elements in V¥% ® (V*)®? the inner product is given by
a .
(11® @00 ® @, W @ W @ - ®F%) = [[(vi, wi)y [[((F)*
—— .

We extend the inner product to the algebra of all tensors, by defining (S, T") = 0 when
S and T are tensors of different type, and extend linearly. We include the tensors of
order zero, i.e. the scalars, and such that for z,y € R we have (z,y) = zy.

In general, orthonormal bases for our vector spaces are to be favoured because it
simplifies the inner product (x,y) to the sum of the components x1y1 + - - - + xpyp. If
e1,..., ey is an orthonormal basis for V, and 6',... 6" is the dual basis, then we can

construct an orthonormal basis for the (a,b)-tensor space. The elements of the form
€i1®"‘®€ia®9jl®"'®9jb
constitutes a basis for V®¢ @ (V*)®" and the elements are mutually orthogonal:

(e1®07 e @08 =(e;, @ Qe 'R 6% e, @ - Dep, RO D@ 6%)
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where d7 is the Kronecker delta, with respect to the multi-indices I, J, K, L of the
form I = {iy,...,i.}.

We can define the inner product on the exterior power A*(V') in a slightly different
way. Since permuting the vectors only changes the element by the sign of the per-
mutation, we want the inner product to give the same result after permutation, times

the sign of the permutation. This motivates the definition

a
(VI A - ANvg,wp A+ A wa>gm = Z (sgno) H g(l det[(vi,wﬁ]ﬁj .
0ES, i=1
where S, is the the set of permutations of the set {1,...,a}. We extend this inner

product to A(V) = @;_y A%(V) as we did for the tensor algebra.
Let I denote a multi-index I = {i; < ... <.}, and e = e;; A---Ae;,. The set {er}
indexed over multi-indices I constitute a basis of A*(V'). This basis is orthonormal; if

er and ey are elements in the basis, then
(er, e5) = det[{e;,, €j,)]7 s = 617

because determinant vanishes when a row is the zero vector, which is the case for non-
equal multi-indices. The inner product of two elements u = 3", ule; and v =3 ;v”7e;

with respect to an orthonormal basis is a simple sum
I,.J I,
v) :Zu v’ {er,eg) = Zu v

I,J i

Remark. The inner products for regarding tensor and exterior product are essentially

the same, differing only by an integer multiple.

2.1.2 Wedge Product Inequality

If we take the product u A v of an a-vector v and a b-vector v, where a + b < n, then
the magnitude of of the product is bounded by a multiple of the magnitude of the
factors. If we write u and v with respect to an orthonormal basis, and let the basis of
A®*?(V) be indexed by M, we have

u/\v:ZuIU‘]e[/\eJ:Z Z (sgna)uIvJ em
I,J M \elnel=geM

where o is a permutation applied to ep; which makes the equality below X hold.

Computing the magnitude by using the formula and using Schwartz inequality yields

2
luAof = > (sgnoyv’ | <> 3 (Wh)? S ()

M \elpel=ceM M \elpel=ceM el Nel=ceM
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where the last sum is less than C|u|?|v|?, where C is a positive integer which depends

only on a, b and the dimension n of V. So there is a constant K such that the inequality
lu A v| < Klul|v] (2.1)

holds for all u,v € A(V).
In we define Riemannian manifolds, and we will see that we can do
all these constructions on the tangent spaces 1,M, where the inner product g is the

Riemannian metric on the manifold M.

2.1.3 Hodge Star Operator

The one-dimensional vector space A"(V) has basis a element vol, = e; A -+ A ey,
composed from an orthonormal basis on V, called the volume element. Let & =
[€1,...,€y] be another orthonormal basis and e = €A for some matrix A. The matrix
A has inverse A~ = AT:

8ij = (i, ej) = AV AL (e, e0) =Y AFAF =" (AT), A
k

and thus ATA =1 = AAT. By basic properties of determinants det A = +1. Going
back to the volume element, we see that
1A Ney =AD" Alng, N NG,

=3 AT AT (sgno)E AN,
UESTL

—(det A)éy A+ A &y

which means that that any two volume elements differ only by a sign. A choice of
volume element in A" (V' )equivalent to choosing an orientation on the vector space V.

Let volg define our choice of orientation.

Theorem 1. There exists a unique linear operator x : A*(V) — A"~ (V') with the
property that (o, ) voly = a A x[3.

Proof. Suppose that x is an operator which satisfies the last property. Then * is linear

since
an*(B+7) = (a, B+7) volg = (o, ) volg +(a, 7) volg = aAxf+ar*y = aA(*B+*7) .
Suppose ¢ has the same property as x. Then

(*B — 0B, a) volg = (%8 — o) Axa = (—=1)4""V (xa, f — B) = 0
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which shows that % is unique. In the orthonormal basis {e;} constructed from the

orthonormal vector eq,...,e, then we define x on the basis elements by

*(ej A+ Nej,) = sgn(m) A Neg,

€i(atr)

giving the rest of the basis elements e;, where 7 is the permutation © = (i1, ...,i,) of
{1,...,n}. If o, B € A%(V) then

aAxB = ZaIﬁJeI AN*ey = Zalﬁjvolg = (a, B) volg

1,J T
because e; A xey = 07J. O

The linear operator x: A*(V) — A" (V) is called the Hodge star operator.
From its definition, it is readily seen that x1 = vols and xvol; = 1. Taking x two
times gives x> = (—1)*"~%) as we have to make a(n — a) transpositions to obtain

volg. The Hodge star operator is an isometry: If o, 8 € A*(V'), then
(xat, xB) = x((xa) A x28) = (=1)2"=D & (B A xa) = (a, B) .

Definition. Let F': V' — V be an endomorphism, and e = [ey, ..., e,] be an orthonor-
mal basis for V. Then we define the trace of F' by

n
tr F' = Z(Fei, ei) .
i=1
The trace does not depend on choice of orthonormal basis. Let é = [é1,...,¢&,]
be another orthonormal basis and define tr. Let the two bases be related by é = eA,
where A is a matrix. Then

trF =) (F&,é)= Y. (FAle;, Akey) = > Ag(AT);‘C<Fej,ek>:Zwei,ei)

i—1 ij k=1 ij k=1 i=1
2.2 Riemannian Manifolds

A central part of this thesis will revolve around the de Rham cohomology of a manifold.
Before we can define this cohomology theory, we must first make some definitions.
Throughout this thesis, M will denote smooth manifold of dimension n. Unless specified
otherwise, we assume that M has an orientation, i.e. there exists a nowhere-vanishing
smooth n-from v on M [20, Thm 21.5], and we have chosen —v or v to specify the
orientation on M. We say that an ordered basis e, ..., e, of the tangent space T),M
is consistent with the orientation if v(ey,...,e,) > 0.

The vector space of real smooth maps on M are denoted by & (M), and the subspace
consisting only of maps with compact support is denoted by 2(M). We let C°A* (M)
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denote the & (M)-module of smooth k-forms on M, and C®A(M) = @}_; C°A*(M).
The subspace of C‘X’Ak(M) consisting only of forms with compact support is denoted
by C§°AF(M). If there is no possibility for confusion, we will omit “(M)” and write

just C*°A*, and do the same for other entities depending on M. The set of vector
fields on M is denoted by X(M).

2.2.1 Exterior derivative

Even without specifying an orientation, there is natural way to differentiate differential
forms. The exterior derivative is the unique [20, Thm 19.4] anti-derivation of degree
1 on the graded algebra C*°A, with the property that d*> = 0 and df(X) = X f for
O-forms. It is defined locally by

d .
d(ardz!’) = %d:cl Adz!
x

Here and throughout the text, we will use the Einstein summation convention; that
if an index or multi-index appears both as an upper and a lower index, we sum over
that index. This rule also applies to multi-indices, such as in the example above. If we
do use the summation sign and multiple indices are involved, only those that appear
in a summand are to be summed over.

There is also a coordinate-free description of the exterior derivative. Let w a

smooth k-form and X, ..., X} smooth vector fields. Then

k
dw(Xo, ..., Xg) =Y (1)’ Xiw(Xo ..., X;, ..., Xp)

=0
+ > (=DMw((X, X5), Xo, o Xiy o, Xy, Xp)

0<i<j<k

t W—"

where the care means that we omit the element. For a proof that the two
formulas for the exterior derivative coincide, again see [20, Thm 20.14].
Giving the manifold M Riemannian structure, allows us to define more in a sense

natural differential operators on M.

2.2.2 Riemannian Metric

Definition. A Riemannian manifold is a smooth manifold M together with a
symmetric non-degenerate smooth section g: Ml — T*M ® T*M called a Riemannian

metric.

More conveniently, g,: T,M x T,M — R is an inner product on the tangent space
T,M at the point p € M, which varies smoothly with p. Restricting ourselves to

Riemannian manifolds is not very strict at all, since all manifolds can be endowed with
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a Riemannian metric [21, Thm 1.12]. When evaluating on tangent vectors u,v € T,M,
we often write (u,v) instead of g(u,v). Given a basis e, ..., e, of T,M, the metric is
defined completely by specifying it on basis elements. Let g;; == g(e;, ej). Then the
matrix [g;;] determines the metric. Let [g*] be the inverse matrix of [g;;]. If 61,...,6"
is the dual basis of e ..., e,, then 7 = A?ek, and

81 = (es, (07)%) = (es, Abey) = g A

(2

which shows that (67)% = g7¥ej,. We also have ((6°)F, (67)F) = 0¢(g7%ey) = g¥.

2.2.3 Distance on Riemannian Manifolds

Definition. For two points p and ¢ in a connected Riemannian manifold, we can

define the distance between then
dy(p,q) = inf/ "()] dt
g(p Q) Y Jiasy |’Y( )|

where the infimum is taken over all piecewise smooth curves 7: [a,b] — M from p to
g. We call d; the distance function with respect to g. We say that a manifold is

metrically complete, if every Cauchy sequence with respect to d, converges.

The topology defined by the metric dy is the same as the topology already defined
on the manifold [ITI, Thm 13.29]. Examples of metrically complete manifolds are
abundant, for example regular Euclidean space and compact manifolds. We give an

example of a manifold which is not complete.

Example 2. Let M = R? — 0, with the regular euclidean metric. Then for any point

p € M, the sequence p, = p/n is a Cauchy sequence, with no limit point in M.

2.2.4 Integrating Functions on Riemannian Manifolds

Let F4, ..., E, be an orthonormal frame in a neighbourhood U in M which is consistent
with the orientation on M, and 64, ...,6, the dual co-frame. The volume form on M
is the n-form defined by

volg = 01 A --- A0,

locally. The definition is independent of choice of orthonormal co-frame with the same
orientation. A similar calculation as in the beginning of yields

volg = Vdetgdzt Ao Ada™.

The volume form gives us a way of integrating real or complex functions on M with

compact support. Let f: M — C have compact support. Then we define the integral
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of f on M by

/fdx::/Refvolg—i—z'/ Im f volg
M M M

where Re f vol; and Im f volg are n-forms with compact support, which we already
know how to integrate by using a partition of unity sub-ordinate to an atlas, and
pulling each summand back to R™ on the coordinate patches, see [20, Sec 23].

For every w, 7 € C§°AF, the real map (w,7) has compact support, and is therefore
integrable. We define the L? inner product on C§°A* by

(.7 = [ (w,)do.

and corresponding norm

where |w| = (w,w)!/2.

2.2.5 Co-differential Operator

Definition. The co-differential is a differential operator &4 : CCAFTL — CAF
defined by

e = (1) wdy 1%
Theorem 3. The co-differential 61 is the formal adjoint of di in the the sense that
(drw, ) = {w, Op17) -
for all w € CPA* and T € CPARFL.

Proof. Let w and 7 be as in the statement of the theorem, then

d(w A7) =(dw) A %1+ (=1 Fw A (dx7)
=(dw) A+ + (=1)*w A (x T xd*7)
=(dw) A *7 + (—1)°w A (%07)
=(dw, 7) = (w, 67)

where s = k(k + 1) + 1, which is odd. Let S be an n-dimensional sub-manifold of M
with boundary such that suppw,supp7 C S. By Stokes theorem

o:ésaA*Tz/N/ﬂd<aA*f>:<<dam>>—<<a,67>>
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We can use the co-differential to define the divergence of a vector field. For a
vector field X, let div X := —§X”. There is another definition of the divergence of a
vector field X, namely

(div X)) volg = dix volg

where vol, is the volume form. These definitions coincide. Let 6'...,6" be an

orthonormal frame in the neighbourhood U, then
dix volg =d(X 10 A NG A - A O (—1)
=dX" % 0"
—d* X’

such that div X = «d x X” = —§X”. The divergence is used to pass derivatives to the

vector fields under the integral sign in the following sense.

Proposition 4. If either f € & or X € X have compact support, then we have the

integration by parts formula

/Mdex:—/Mfdidex

Proof. Let vol, denote the volume form. Let Ej,...,FE, be an orthonormal frame

about p, then
X fvolg = (txdf ) volg = tx (df Avolg) + df A ux volg = dux (f volg) — fdux volg

By Stokes’s theorem

/ X fvolg = / dux (f volg) —/ fdux voly = —/ f(div X) volg
M M M M
O
If f = gh we have (Xg,h)+ (g, Xh)) = —(gh,div X)) such that the formal adjoint
of Vx is —(Vx + div X)), where Vx is the operator defined by f+— X f .
2.2.6 The Laplace Operator

We can now define the Laplace operator A: C®AF — C®A* by A = —(6d + df).
The Laplace operator is symmetric when restricted to forms with compact support in
the sense that if w, 7 € C§°A¥, then

(Aw, 7)) = (=(dd + dd)w, 7)) = = ({dw, d7)) + (6w, 7)) = (w, AT).

Differential forms w for which Aw = 0 are called harmonic, or just . for short. The

subspace of C®A* consisting of harmonic forms is denoted by JZA*.
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2.3 Connections and Curvature

Definition. Let 7: B — M be a vector bundle over a Riemannian manifold M.
For any such bundle, let I'(B) denote the &-module of smooth sections of B. A

connection on B is a map

V:X(M) x I'(B) —T'(B)
(X,s) —Vxs

which is &-linear in the first argument, R-linear in the second argument, and satisfies
the Leibniz rule in its second argument, in the sense that Vx(fs) = (Xf)s+ fVxs
for f € &.

2.3.1 Connections as Bundle Maps

The connection is a type of derivative, where at each point p € M we take the derivative
in the X,-direction. The derivative at one point, does not depend on the vector field X
at other points. We can therefore instead take the equivalent point of view that for each
section s € y(B), Vs: assigns at each point p € M a linear map Vx, s : T,M — B,,.
This point of view is justified by the following theorem

Theorem 5. [2I, Thm 7.26] There is a one-to-one correspondence

{ C*° bundle maps p: E — F'} <— {&-linear maps o: T'(E) — I'(F)}

P Px

where @4 (s)p = ©(sp).

For each s € I'(B), we have an &-linear map Vs: X(M) — I'(B), and by [Theorem 5]
a smooth bundle map Vs: TM — B. For any real vector spaces V, W we have an
isomorphism Hom(V, W) = W ® V*. Using this relation on each fibre,
generalizes to tensor fields on the left and &-multilinear maps on the right in [2I, Thm
21.11]. Substitute tensors involving T}, M for tensors involving E, and F), in . We will

therefore equate the two notions for the most part.

2.3.2 Connections Locally

We will see investigate how VxY € B is represented on the trivializing subset U with
respect to the local frame F1, ..., E, of the bundle 7: B — M. In U the sections
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X,Y can be written as X = X'E;, Y = Yjej which yields:

VxY =VxY7E;
=(XY))E; + Y/VxE;
=(XY7)E; + YWl (X)Ey
=(XY')E; + YIX'(w;)V By, (2.2)

where the two last lines, are just V xe; written out in the chosen basis. The coefficients

wf(X ) define smooth 1-forms on U. The &-linearity in the second argument of V

ensures that wé-“(fX) = fcu}“(X) for all f € & and X € X. We call wf the connection

forms, with respect to the trivialization. The smooth maps (wl)g€ = wf(Ez) are the
connection coefficients. From , we see that any collection of smooth maps
(cu,)éf define an affine connection on U, by covering the manifold with such open sets
we can patch the connections to one that is defined globally, using a partition of unity.

This leaves us many choices of connections.

2.3.3 Levi-Civita Connection

Of most interest are the affine connections, i.e. connections on the tangent bundle.

We define two &-linear operators on TM.

Definition. Let the tangent bundle 7: TM — M be endowed with a connection V.
We define the torsion 7: X x X — X and the curvature R: X x X — End(X) by

T(X,Y)=VxY - VyX — [X,Y]
R(X,Y)=VxVy - VyVx — Vixy]
The curvature will be important later, since it is the building block for what we will

call curvature operators. The torsion is useful in narrowing down which connections

are appropriate. A connection is called torsion-free if T(X,Y) =0 for all X,Y € X.

Definition. An affine connection is compatible with the metric if the equality
XY, Z)=(VxY,Z)+ (Y,VxZ)

holds for all X,Y, Z € X.

If V is compatible with the metric, the connection forms (u),)fC with respect to a
local orthonormal frame are anti-symmetric in 7 and k. If V is torsion-free, and the
frame is the partial derivatives relative to a chart, then (wz)éf are called the Christoffel
symbols and are then denoted by I‘,’fj = (z,ul);g The Christoffel symbols are symmetric
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in the lower indices. We will mostly work with either a coordinate frame, or an

k

; or Ffj communicates in which

orthonormal frame, and using one over the other (w;)

indices we have symmetry.

Theorem 6. [2I, Thm 6.6] There exists an affine connection V which is both compatible

and torsion-free. Moreover this connection is unique.

We call the unique connection V from the theorem above the Levi-Civita con-
nection.
2.3.4 Connection on Tensor Bundles

If V is an affine connection, then V can be extended to all tensor fields T' , i.e. T
is a smooth section of (TM)®? @ (T*M)®®. First we define Vxw for 1-forms w by
Vxw(Y) =Xw(Y) —w(VxY). It is defined for a tensor field T' by

(VxT)(wh, ... ,wh Y1,..., V) =VxT(w, ..., w Y1,..., V)

a
—ZT(wl,...,VXwi,...,w“,Yl,...,Yb)
7
b
=Y T WY, VXYY
J

It also satisfies Vx(S®T)=VxS®T +S® VxT, for any tensor fields S and T' [12],
and therefore also Vx(a A ) = Vxa A S+ a A Vxp for differential forms.

The map VT defined by VI'(...,X) = VxT(...) is a another tensor field of
covariant order one more than 7. From now on, we will always let V denote the
Levi-Civita connection. Recall that the Levi-Civita connection is compatible with the

metric g, that is
Vxg)X,Y)=Xg(Y,Z) - g(VxY,Z) = g(Y,VxZ) = 0.

In other words Vg = 0. The connection is also compatible with the musical isomorph-

isms in the following sense

Lemma 7. Let X,Y,7Z € X and w € C®A'. Then
(VxY) =VxY’ and (Vxa) = Vxal.
Proof. We have

0=Vxg(Z2,Y)=X9(Z,Y)—-9(VxZ,Y) - g(Y,VxZ)
=XY"(Z) - Y"(VxZ) — (VxY)'(Z)
=(VxY’)(Z) - (VxY)'(Z)
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so (VxY)? = VxY?. If Y = w!, we have the second equality via the isomorphism §
on both sides. O

2.3.5 Curvature Operators

The curvature can be used to define several&-linear operators on the tangent bundle.

Definition. The Riemannian curvature Rm is defined by
Rm(X,Y,Z, W) =(R(X,Y)Z, W)

Let U be an open set in which F1,..., E, is an orthonormal frame. Let X,Y € X,

we define the Ricci curvature by

n
Ric(X,Y) => Rm(E;, XY, E;).
i=1
For two linearly independent tangent vectors u,v € T,M, their sectional curvature
is
Rm(u,v,v,u) (R(u,v)v,u)
A u (o, v) — (w02

sec(u,v) =

This is interpreted as the sectional curvature of the linear subspace spanned by u and
v in the tangent space, since sec(u,v) is independent of which basis we choose for
the subspace. If we choose v and v orthonormal, the denominator is just 1, and the
formula simplifies to sec(u,v) = (R(u,v)v,u). If e1,..., e, is a basis of T,M, we can
find the sectional curvature for all the (g) subspaces spanned by pairs of basis vectors.
Taking a kind of average of the sectional curvatures produces the scalar curvature.

It is given by the formula

Zsec(ei, e;) .
1]

The scalar curvature is also the trace of the endomorphism defined by the Ricci
curvature, which should convince the reader that the sectional curvature does not
depend on the basis.

The Ricci curvature is completely defined by the sectional curvature. For any two

tangent vectors u, v € T,M, we have

Theorem 8. Ife;...,e, is an orthonormal basis of TyM, then

Ric(eq,e1) = Z sec(ejeq)
=2

Proof.

n n
Ric(e,e1) = ZRm(ei, e1,e1,6e;) = Zsec(ei, e1)
i=1 i=2
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because the the term Rm(e;,e;,e;,€;) is zero by symmetries of the Riemannian

curvature tensor, and |e; A ej| =1 when ¢ # 1. O

This is enough to describe the Ricci curvature because

Ric(u,v) = i(Ric(u +v,u+v) — Ric(u —v,u —v))

2.4 Parallel translation

The Levi-Civita connection gives us a way of differentiating vector fields. If a vector
field is defined on the image of a smooth curve -y, the connection also gives a way of
differentiating it in the direction of . Differentiating vector fields gives an idea how
the vector field twists and stretches along the curve. A vector fields that does not is
said to be parallel along the curve. Most results in this section are from [21I), Section
13-15].

2.4.1 Covariant Differentiation

Theorem 9. Let M be a manifold with an affine connection V, and v: [a,b] — M a

smooth curve in M. Then there is a unique map

D

it L(TM],) — I'(TM]4)

such that for V e I'(TM|,)
(i) B(cV) =L for any real number c.

(i) For any smooth function f on [a,b],

af |,

D
@(fv) o +f7

(iii) If V(t) = V(y(t)) for some C™ wvector field V € %, then

DV ~
W = V,y/(t)V

The operation % is called covariant differentiation. A smooth vector field V' (¢)
along a v: I — M is parallel if % =0 for all ¢t € I. If the vector field V (t) = ~/(¢),
and V (t) is parallel, then 7 is a geodesic. If V (¢) is parallel on the curve v: [a,b] — M
from p to ¢ , and v =V (a) € T,M, w = V(b) € T;M, then w is a parallel translate
of v along v. A geodesic v: [a,b] — M is minimal if its length is equal to the distance
between the endpoints, with respect to dy. It is maximal if its domain cannot be

extended to a larger interval.
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Figure 2.1: Sketch of parallel translation along a curve

Suppose V (t) is a vector field along the curve «. Let U be a coordinate neighbour-
hood about (o). In coordinates V (t) = v'(t)9;. By the defining properties of the

covariant derivative

D dv’ ;D
&’U (t)@l _Eal + v a@
dv’ i
_%87, +v ny’(t)az

which shows that V(t) is parallel if and only if the equations % + vt (47 (t)Ffj =0

are satisfied.

2.4.2 Existence of Geodesics

By using the theory of ordinary differential equations, one can prove the following

theorems.

Theorem 10. Let M be a manifold with connection V. Given a point p € M, and a
tangent vector v € T,M, there is a geodesic y(t) with initial conditions: v(0) = p and
~'(0) = v. The geodesic is unique in the sense that any other geodesic which satisfies

the initial conditions, agrees with ~y(t) on the intersection of their domains.

For a tangent vector v let ~, denote the unique maximal geodesic defined by
the theorem above. We want to define a map exp, whose domain D(expp) is a
subset of the tangent space at p, and codomain will be a neighbourhood of p. Let
D(exp,) = {v € T,M : 1 is in the domain of 7, }.

Definition. Let exp,: D(exp,) — M be defined by exp,(v) = v,(1). Let D(exp) =
Upem D(exp,), and exp: D(exp) — M be defined as the natural extension of exp,, to
UpEM D(epr).
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In the Riemannian case where we use the Levi-Civita connection, we can, in a small
enough neighbourhood of p, and for small enough tangent vectors, find a geodesic
defined on (—e¢,¢), ¢ > 0.

Theorem 11. For any point p of a Riemannian manifold M and any ¢ > 0, there
is a neighbourhood U about p, and € > 0 such that for any g € U and v € T;M with
|v| < e, there is a unique geodesic y: (—c,c) — M with v(0) = ¢ and ~'(0) = v.

The last theorem ensures that at each point (p,0) € TM there exist a neighbourhood
U x B.(0) where exp is defined.

Theorem 12. Let M be a Riemannian manifold with connection V and let 7y : [a, b] —
M be a smooth curve in M. There exists for every vector vg € Ty,)M a vector filed
along v which parallel translates vy to a vector vy in T y). Let pap: Tyo)M — T, M
be the map that takes tangent vectors to its parallel translate along vv. Then @, is an

R-linear isomorphism.

2.4.3 Complete Manifolds

Definition. A Riemannian manifold M is said to be geodesically complete if the

domain of every geodesic in M can be extended to the entire real line.
There are equivalent notions of completeness.

Theorem 13 (Hopf-Rinow). [I5, Thm 5.7.1] On a connected Riemannian manifold

M, the following statements are equivalent:
1. M is geodesically complete
2. M is metrically complete
3. Every closed and bounded subset of Ml with respect to the metric is compact

Because geodesic and metric completeness are equivalent, there is no ambiguity in
saying that a connected Riemannian manifold is complete. The third property is very
useful, for example we can deduce that the connected compact manifolds are exactly

the complete manifolds with finite diameter.

Remark. If a manifold is not connected, but is geodesically complete, we can substitute

M for “each connected component of M” in the two last statements.



18 Riemannian Geometry and the Laplace Operator

2.4.4 Global Results from Pointwise Operators

On complete connected manifolds, there are many results that relate properties of
curvature operators, which are defined on tensor products of the tangent spaces,
with global properties of the manifold. We will concentrate on the cases where the
curvature is “more or less” positive. We mention a result where the sectional curvature

is negative.

Theorem 14 (Cartan-Hadamard). [12, Thm 12.8] If M is a connected complete
Riemannian manifold with non-positive sectional curvature, then for every point p
in M, the map exp,: TyM — M is a smooth covering map. Thus the universal
covering space of M is diffeomorphic to R™. If Ml is simply connected, then M itself is
diffeomorphic to R™,

On the other hand, when the sectional curvatures are more positive:

Theorem 15 (Bonnet—Myers). [12, Thm 12.24] Let M be a complete, connected
Riemannian manifold, and suppose there is a positive constant r such that the Ricci

curvature of M satisfies
n—1
r2

Ric(v,v) >

for all unit vectors v. Then M is compact, with diameter less than or equal to wr, and

its fundamental group is finite.

This theorem divides the investigation of manifolds with non-negative Ricci
curvature into two classes, compact manifolds, and manifolds where the greatest

lower bound of the ricci curvature is zero. The first class will be dealt with in

and the second in

2.5 Weitzenbock Formula

In this sections we will define the Laplace operator, which we will decompose into a

differential operator and an &-linear map which depends on the curvature of M.

2.5.1 Local Frame Parallel at a Point

First we show that about each point there is an orthonormal frame, which makes a lot

of computations easier.

Lemma 16. |23, Lem 1.1] Let p be a point in M. There is an orthonormal frame
Ei,...,E, in a neighbourhood of p such that Vx E;j(p) =0 for all X € X.
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Proof. Let (U, ¢) be a coordinate chart centred at p with ¢(U) star-shaped. For any
q € U we define a smooth curve v,4(t) = ¢71(t¢(q)) from p to q. For a basis ey, ..., e,
of By, let E;(q) be the parallel translate of e; to B, along 7,. We claim that Ey, ..., E,
is a smooth frame in U. The covariant derivative of E;(t) along ~, is zero from the

definition of parallel translation, and we get

D ; ; .
0= 2 FEili=t = Vo) Bi = 27V, Bl = 2IwF(97) Ekl,
where we abuse notation and let F; also be the vector field along . The real maps
2wk (0j) =0 on U for each k. We can differentiate each in the d, direction.

and evaluating at p on both sides gives

@) () + 29 (p) - (0;)(p) = w(00) () = 0.

9t

This still holds for any k; and since 9, and F; was arbitrary the equation holds for
any i,k and . We now have that for any X = X709j

VxEi(p) = XV, Ei(p) = X/ wi(0;)|pEr =0

By the Gram-Schmidt process, we can choose ey, ..., e, to be orthonormal. Because
V is compatible with g, we have that
d D D

where E;, E; are vector fields along some ~,. Therefore (E;, E;) is constantly zero. [

This is the same as saying that the connection forms vanish at p, wg (p) = 0. Since
the Levi-Civita connection is torsion-free, 0 = T(E;, Ej) = Vg, Ej — Vg, E; — [E;, Ej],
so [Fi, ;] = 0 at the point p. Let 6 = (FE;)’. Then we also have Vx6" = 0 at p by
Lemma 7|. This extends to the basis elements of A*(T,M) of the form 6/ = § A- - - NG
since

0

Vx0' =3 0" A AVXOTA NG =0
'
As a demonstration of the usefulness of this kind of frame, we show that the Levi-Civita
connection is compatible with the metric on forms, in the sense that Vx (o, ) =
(Vxa,B) + (a,VxB). Let Fi,...,E, be a frame parallel at p. Then Vya;6/ =

(onq)el + ozNXHI = (Vqu)QI and

Vx{a,B) = Vx> arbr =Y (Vxar)br +ar(VxBr) = (Vxa, B) + (@, Vx )
i T
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2.5.2 Local Formula for the Exterior Derivative and Co-differential

Theorem 17. Let E1,...E, be an orthonormal frame in a an open subset U of M.

Then we can write the exterior derivative and the co-differential as
n .
do=> 07 A (Vg,a)
j=1
and
n
oo = — Z Lg;VE;Q
j=1

in U.

Proof. In the proof, let d denote the operator defined as above. We have to check the

three defining properties of the exterior derivative which uniquely defines it.

1. That df (X) = Xf for f € &: Let f € & and X € 27, then
df(X) =0 ANV, f(X) = (B; /)0 (X) = X'E;f = X f
2. That d is an anti-derivation of degree 1: Let w € C®A* and 7 € C>®A!

d(wAT) = 09 AV g, (WAT) = 0T A(V gw) AT+0T AWA(V E,7) = dwAT+(—1)Fwndr

3. That d? = 0: Let E\, ..., E, be a frame as in and 6',...,0" the
dual frame. If A is the matrix such that £ = FA , then ATA = 1. At any point

in U we can substitute orthonormal frame because
0 AV 5, = AFOF A Vg, = AP ASOM NV g, = (AAT)jOF AV E, = 0" AV,

We can therefore assume that Fy,..., E, is of the type as defined in
Let f € C®A°.

J i,J

df =3 0 AV Q_(BiN)07) = 3 _(EE; /)i AO°

where all terms with ¢ = j vanish, so the ones remaining are

S(EE; )07 NO"+ (EE; )67 A6

1<j j<t

which after a change of index in the right sum is

= (B ELHE A0 =0

i<j
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since V is torsion-free, and [E;, Ej] vanishes at p. Suppose dj41d,, = 0 where
k</t.If we CPAY, then

d’w :d(d(wjdxh Ao Adzfery Ada® + (—1) YN wrda™ A - A dzler) A deIf)
=(d*(wrdz™ A - Adzle-n)) Ada™ 4+ (=1 (d(wrdz™ A - Adater)) A dPa')
=0

and by induction d? = 0

In the second equation of the theorem we may also assume that the frame E; ..., E,
is such that VE; = [E;, Ej] = 0 at p, and the computations are carried out at this
point. Recall that 6,1 = (—1)"**1 « dx. By using our equivalent definition of d, we
can write
Op 1w = (_1)nk+1 * Z 67 A ij * W
J
We see that the new formula for § coincides with the old.

- Z LE;VEw=— Z LE; (Bjwi)o" =
J J

= Ejw)6r (—1) 10 A AGT A A G
> (EBjwn)dy (1710 0 o
7 r

= — E'Q}I '-T —1 n— * ir N *

y 5; (n—(k+1))k 4 (g o1

7 r

=% Z(—l)nk+19j N (Ejtd[) * 60!
J

=(—1)" %N G AV, xw
J

2.5.3 The Rough Laplacian

Let V be an affine connection. We have seen that for any tensor field 7', we have
covariant derivative VT which is another tensor field. Applying V to VT gives another
tensor field V2T called the Hessian of 7. The Hessian of T' defines an &-linear map
(X,Y) = V% T, where

ViyT = (VxVy = Vo, )T
Linearity in the first variable is trivial. Let f € &,

Vg(,fya :VXnya — vafyoz
=X f)Vya+ fVxVya = Vixpy vy
=f(VxVy — Vy,y)a
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If V is torsion-free, then (V% y — Vi x)a = R(X,Y ).
The Rough Laplacian L is the trace of the Hessian. If « is a k-form, and

FEq, ..., FE, is an orthonormal frame in an open subset U of M, then L« is given by

_ 2
La= Z VEmEia
%

2.5.4 Decomposition of the Laplace Operator
We need a small lemma in order to prove the decomposition of the Laplace operator.

Lemma 18. Let X,Y € X and w € C®°A*. Covariant differentiation of tyw satisfies

the Leibniz rule in sense that
Vx(tyw) = 1yyyw+ ty Vyw

Proof.

-

Il
—

Vx(yw)(Zy,...,Z) =Xwyw(Z1,...,Zk) — wyw(Zi,...,.VxZj,...,2Zy)

J

R

=Xw(Y, Z1, .. Zk) =Y w(Y, 21, ... ,NxZs, ... Z)

<.
Il
a

=1y Vxw(Z1,...,2Z) + vayw(Zl, cos Z)

Theorem 19 (Weitzenbock Formula). The Laplace operator A can be written as
A=L+> 0N R(E;,E;))=L-2%
i?j
where # is an &-module endomorphism on C*°AF (M)

Proof. Let Eq,...,E, be an orthonormal frame about p which is parallel at p. Let
6%, ...,0" be the dual co-frame. At the point p, we have
Aw = ZLEjij (01 N VEZOJ) + 0" A (inLEjVij)
12
= ZLE]. (9i A VEjinw) + 6° A (inLEjijw)
i,
= Z Ve VEw+0 A (Vg Vew—1pVEVEw)

=Y VEVew+ > 0 Aug, (R(E, By) + Vg, 5
i ij

And since both Vy 5, Ei and Vg, g, vanish at p we have our desired equality at that

point. That % is an &-module endomorphism is clear since R(E;, Ej) is &-linear. [
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Hodge Theory

3.1 De Rham cohomology

A topological invariant, is a property of topological spaces which are common to spaces
that are homeomorphic. For smooth manifolds, one topological invariant is the de
Rham cohomology. The k’th de Rham cohomology of M, denoted by H C’fR(M) is a real

vector space, and is a topological invariant of M [I1], Cor 17.12]

3.1.1 De Rham Complexes

The de Rham cohomologies are constructed by taking quotients in a complex of vector
spaces. Since the exterior derivative d has the property that dx11d; = 0, we can form

the complex

dy di—1

O A0 do Ol CooAk di, CooAkJrl di+1

called the de Rham complex. At each C®AF we define the k’th de Rham
cohomology by

Ker dk
Hip(M) = —— i

We can also the define the compact de Rham cohomology H(’i ar (M) by taking quotients

in the complex

dy dk—1

d, d d
CeA —= CgoAl CEEAF — CgeAR+! 5,

where C§°A* is the space of k-forms with compact support. The quotient

d(C®AF

k —
HO,dR(M) = Ker W

makes sense since for any (k+1)-form w, supp dw is a closed subset of supp w. Difference
between C®°A* and CgoAk exists, of course, only when M is not compact; and the
same is true for Hg,dR(M) and HX,(M).

3.1.2 Hodge Theorem

In the rest of the chapter we will study only compact Riemannian manifolds M, with
an orientation, and no boundary. The main result in this chapter is a decomposition

of the differential forms on for manifolds of this type.

23
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Theorem 20 (Hodge Decomposition). Let M be a compact oriented Riemannian
manifold. For each integer 0 < k < n, the k’th de Rham cohomology HZI“R(M) is finite

dimensional, and we have the following orthogonal decomposition of C*°AF:

C®AF =A(C®AF) @ s AF
=8d(C®A*) @ d6(CP°AF) & 2 \F
=§(CCA ) @ d(C®AFY) @ A

We postpone the proof, to first explain the decomposition’s relation with the de
Rham cohomology. For w € C®A*, let J4,: C°A* — C>A* be the projection taking
w onto its harmonic part of J&Gw. We can restrict J#; to the closed forms, defining a
surjective map 4 : Kerd, — S A*. The kernel of .7 is clearly the set of forms w

that are of the form w = da 4 3. Since we know dw = 0 we have

0 = (dw, B) = (d®a + doB, B) = ||66]?

and therefore w = da, i.e. w € Imdj,_;. We therefore have isomorphism J#ZAF =
H g’R(M). The isomorphism between de Rham cohomology and the harmonic forms is

known as the Hodge Theorem.

3.2 Differential operators

To prove the Hodge decomposition theorem, need two analytical result from the theory
of Fourier Analysis. Most of the material in this sections can be found in [22, Chap 6],

where the reader can also find proofs for various statements in this section.

3.2.1 Fourier Series

We need some notation for higher derivatives.

Definition. Let a € Z", then [a] = a1 + a2 + - -+ + ay,. We define

o 1\ [ ol o oo -
b= i oz - dapyr and £ =& g
when £ € R™. The 1/i therm is there to simplify formulas by cancelling the imaginary

unit when differentiating e=%*-¢.

Definition. Let C32(R™,C™) denote the smooth maps f: R® — C™, which are
(27)-periodic, i.e. f(z',..., 2" +2m, ..., 2") = f(z',...2%,...,2"). The elements
of C32(R™, C™) can be identified with smooth maps on the cube @ = [0, 27]" with
opposite sides identified.
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Each function f in C$2(R™,C™) can be represented as an infinite sum

fla)= > fee'™* (3.1)
gezn
where fe € C™, and the sum converges uniformly to f. The j’th coordinate of f¢ is

the Fourier transform of the j’th component

I = ! I(x)e € dg
(e = e [, P (e (3.2)

evaluated at £&. We call (f¢)¢ezn the Fourier coefficients of f, and the whole series
the Fourier series of f. We can now identify each f in C99(R", C™) with a sequence
(fe)eezn of complex vectors fe € C™.

The space of all sequences (ag)¢czn C C™ is denoted by .. There is an injection
CSS(R™,C™) > .7, by f > (fe)eean-

The Fourier coefficient of the derivative D* f have components

1
(2m)"

1
(2m)"

(DF fe) = /Q (D* fI (x))e ™ daw = — /Q f(x)D*e ¢ du = &(fe)’

where we integrate by parts in the second step. Higher derivatives therefore are of the
form
Df(a) = Y £ et
gen
Differentiation of elements in C53(R",C™) is therefore done, simply by substituting
D% for £~.

3.2.2 Sobolev Spaces

The Fourier Series representation of the derivatives D® f motivates a definition of the
derivative on .7, simply by defining D*(a¢)eczn = (§%ag¢)¢czn. The s'th Sobolev
space H* is the subspace of . containing elements (a¢)¢ezn such that the squared
norm of the derivatives |D%|? = > eezn €9 f¢|? converge for each a with [a] < s. The
elements of the s’th Sobolev space is interpreted as the elements that are s times
differentiable.

There are positive constants ¢, C' such that

c(1+1€f)* < Y [P < C+¢P)’ (3-3)

[a]<s

holds for each £ € Z™, and therefore an equivalent description of H? is all elements
(ag)¢ezn in & such that

> (L4 EP)%ag? < +oo.
¢
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Each Sobolev space H® have inner product

((ag), (be)hms = D (L + [€]*)%ac - be

cezn

making it a Hilbert space, that all contain CS2(R™,C™) as a dense subspace. For
elements in CS2(R™,C™), the inner product in HY is the same as the usual L? inner

product, i.e.
1
3

for all f,g € C32(R"™,C™). We also define H ™ := (J 7 H”.
The two next lemmas are important in the proof of the Hodge Decomposition.
Since the s’th Sobolev Spaces are formally functions that are s-times differentiable,

the following theorem makes sense.
Lemma 21 (Sobolev). If u € H® for each s € Z, then u € C33(R"™,C™).

The Sobolev theorem can be stated in greater generality [22, Lem 6.22], but for

our purpose this is sufficient.

Lemma 22 (Rellich). The injections H*** — H*, where { > 0, are compact.

3.2.3 Differential Operators in Euclidean Space

We define differential operators on Euclidean space first. Later we will see how this

generalizes to manifolds.

Definition. A differential operator P of order £ on an open set U C R" consists
of a matrix [P;;], where
Pj= Y aiD" (3.4)
[a]<t
where each a% is a C°° function on U. A differential operator on R" is a differential

operator on C5°(R"™,C™) if each a¥ is (27) periodic.

We can decompose P as P = P, + Py such that (F);; = Z[a]:e a¥ D, and
(P<g)ij = > [a)<e ad D*. The operator P is called the principal part of P. Substi-
tuting D® for £ in P, yields a matrix of polynomials P,(§) with £ as indeterminate.
At each point x € U we define a map o,: R" — R"™*"™ defined by the polynomial
Py(&) is called the symbol of P. We say that the operator P is elliptic at = if £ # 0
implies 0,(§) € GL(m,C), i.e. 0,(§) is non-degenerate, for each point p in U.
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3.2.4 Differential Operators on Manifolds

Definition. Let 7: B — M be a smooth vector bundle of rank r. A differential
operator P of order ¢ on the bundle 7: B — M is an R-linear map P: I'(B) — I'(B),
and for each point there is a trivializing coordinate patch U such that on 7= (U) 2
U x R", P can be written as a differential operator on ¢(U). That is to say that if s
is a C* section of B, which by the local trivialization is equivalent to being a smooth

map s: ¢(U) — R", then Ps is defined by a differential operator on ¢(U).

We allow the fibers of B to be complex vector spaces. If they are not, we must
make sure that the differential operator does not involve any complex numbers.

An operator P is elliptic if it is defined locally by an elliptic operator on ¢(U).
This definition of ellipticity is independent of trivialization. Let A, be the matrix
such that s, = A,5, where s, and 5, are coordinate vector with respect to two
different trivializations. Let (Ps), = Qpsp = Qp§p where Q and Q are matrices of the
form described in (3.4). Then Qp(Ay3,) = Qp§p. By the Leibniz rule, the principal
part of Q, is Q,A, where (Q,A,):; = affA?Da. Therefore 045(£) = 0¢(£§)A, where
A € GL(r,R). Similarly, a coordinate change substitutes % with > gfi 8?21" and
therefore substitutes & for J& where J is the Jacobian matrix, which is non-degenerate

since coordinated changes are diffeomorphisms. So if @ and Q define P with respect
to z and , then o (&) = 0g(JE), such that Q defineds an elliptic operator if and only
if () defines an elliptic operator.

For us, the most important example of a an elliptic operator is the Laplace operator:
Proposition 23. The Laplace operator A is elliptic on M.

Proof. Let U a coordinate chart where we also have an orthonormal frame FE, ..., E,.

Then by the Weitzenbock formula, the Laplace operator is given by

A=L-R=)> Vi p+> 0 NigR(E,Ej).
i irj
The frames {E;} and {0;} are related by a matrix A, such that E; = Ag 0;. Notice
that (AAT)i = ¥, AL A], and that

55 =9" i,
:gik@k;, dj)g
g (A (AT B,
=g ((AT)T)HATY;

—g*((AAT) S
(g (4AT) )],
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which shows that g%/ = 3", A};Ai. Clearly the principal part of A is contained in L.

Let o be a smooth k-form.

LQZZVQEi,Eia
7
_ k Alxr2
- Z Ai A; vak,aea
7

=g"(Va, Vo,as07 — Vv, o,0;0”)
:gkﬁ(akagaﬂ‘] + (9k04JVa[9J + 8@Vak9‘] + OéJV@Z.VaéHJ
— (Vo,00s)0” — aVy, 5,07)

which means that A has principal part which is non-zero only on the diagonal. The
determinant of the symbol is therefore of the form —(¢7¢g~1¢)", which equals zero if

1

and only if £ =0, because g~ is positive definite. O

3.2.5 Elliptic Operators on Sobolev Functions

For real maps a(x),b(z) with common domain D, the statement “a(x) < b(z)” for
x € D” means that there is some constant C' > 0 such that a(xz) < Cb(z) for all z € D.
For example, a linear map M on a normed space X is bounded if |Mz| < ||z| for
reX.

On the Sobolev spaces, elliptic operators have some nice properties. These are
needed to prove properties for elliptic operators on manifolds, especially the Laplace
operator. A differential operator P of order ¢ on CS2(R™,C™) defines a bounded
operator P: H*t¢ — H* by defining P on the dense subset C$°(R"”, C™) and extend
by continuity.

Theorem 24. [22, Prop 6.29] Let P be an elliptic operator on CS2(R,C™) of order ¢,

and let s be an integer. Then
ullgs+e S [|Pulls + [lull s
foru e H5H .

The other theorem we need is

Theorem 25. [22, Thm 6.30] Let P be an elliptic operator on C53(R™,C™) of order
0. Ifue H >, ve H® and Pu=v; then v € H.

The spirit of the last theorem is that if Pu = v is s-times differentiable, then w is
s + £ times differentiable.
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3.2.6 Properties of the Laplace operator

Let L2A* be the completion [19, p.97] of C*°A* with respect to the L?-norm on C$°AF.
The Laplace operator will be considered as an unbounded operator whose domain
Dom A is C§°A*. Let A* be the adjoint of A. We say that A € L?2A* is a weak

solution to the equation Aa = w, if

(A"A @) = (A Ap) = (w, »)

for each ¢ in C*°AF. By Riesz representation theorem, \ can also be considered as an
element of (L2A*).

Theorem 26. [22, Thm 6.5] Let w € C°A*, and \ a weak solution of the equation
Aa = w. Then there exists o € C®°AF such that A = {a,- ), and Aa = w.

Proof. We will show that at each point p of the manifold, there is a C* k-form «,
defined in a small neighbourhood NV, of p, such that for each ¢ € C>AF with support
in Np, M) = (ap, ). We see that if p # ¢ and N, := N, N N, is non-empty, then

for any ¢ with support in N,,, we have

{ap = ag, @) = (o, ©) = {aqg, ) = A(w) = AMp) =0

and therefore a, = o in N,q. Let {p,} be a partition of unity sub-ordinate to {INV,}.

The C* k-form « = 3_, ppay, agrees with A since for any ¢ € CSeAF

(o, 0) =D (ap, o) =D Mppe) = Ale)

The rest of the proof is showing that we can find «, for each p € M. Let p be a fixed
point in M, and ¢ be a coordinate chart about p. We can find an open neighbourhood
U C R” of q := ¢(p) which is contained in a (27)-cube in R™, small enough that
¢~ 1(U) is an open trivializing neighbourhood of p. Let V be a smaller neighbourhood
of ¢ whose closure is contained in U. There exists a C* map 7 : R" — [0, 1] which is
identically 1 on V' and zero outside U [10, Cor 2.14]. Because ¢~1(U) is trivializing we
can find an orthonormal frame E1, ..., Ej, for TM and corresponding frame 671, ... #'m

for A¥T*M where m = (Z) We have a correspondence
{f € C®R",C™):supp f C U} + {a e C®AF : suppa C gb_l(U)} (3.5)
(fhe e ™) (fro@)f 4o+ (f™ 0 )"

We can therefore, for example treat a function f: R™ — C™ with support in U as a

form with support in ¢~1(U), and vice versa. For example, if f € C5°(R"™, C™) define

£l = 1m0 ¢ )(f' 0 9)8" + -+ (f™ 0 ¢)8")]|
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In addition to the HO-inner product

(o, V) po = dr

we can also take into account the volume scaling induced by the metric on ¢~1(U)

which yields

(o) = [ | tethde = [ 3o dr < fsup (20" VG e, o

and therefore

(o, hmo < (e ¥) S (s ¥ ) o
for ¢,1 in C*°(R",C™) with support in U. Let A = (27)",/g, then we have the

relations

{0, AY)po = (@, v) and  (p, A7) = (@, ¥ o

Because C52(R™, C™) is dense in HY, we can for each u € H? find a sequence (u;) of C*
periodic maps converging to u. Let A be the extension of X to H® by A\(u) = lim A(nu;).
Since \ is a continuous linear functional on the Hilbert space H?, there is by Riesz’
theorem some element 3 € H° such that (y,-) yo = A. The Laplace operator A defines
a differential operator A for functions f e Cs2(R™,C™) with compact support in U by

where
(Af); = (A(H1O1 + - fn0Tm), 0%7)

The operator Ais elliptic on U. We would like to substitute A with an elliptic operator
which is periodic on R" in order to apply An obvious example of such

an operator is the operator M = < A %%) I where I is the identity matrix. The

differential operator P = nA + (1 — n)M agrees with A on V', but also agree with M
around the boundary of Q). We see that P is elliptic since

(=1)™((n€"g&)™ + (1 = n)[E)™) # 0

for every & € R, at every point in ). By extending P periodically, we have a periodic

elliptic operator on C32(R™, C™). There exists an adjoint operator P* such that

<<P907w>>H0 = <<(pa P*w»HO

for every ¢, € C32(R™,C™). If either ¢ or ¢ have support in V, then

{0, P ) o = (P, ) o = (D, A7) = (0, AATI ) = (0, ADA™ ) o
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Let (y;) C C2(R™,C™), y; — y in H® and ¢ € C2(R™,C™). Then

)

(Py, ) o =(P(y — y;3), o) o + (Pyj» ) o
(P(y—yi), ehmo + (ys, P o (3.6)
(P(y—vj),ehmo — (v — yj, P o) o + (v, P o) o

and since P: H — H~? is a bounded operator

[Py =wi)ehmo =y = yis Prod ol S My — yill o (lell -2 + 127l o)

which goes to zero as j — oo, and we have the equality

(Py, ) o = (y, P*0)) pro

and if  has support in V, then P* = AAA~! in (3.6), and

(Py, o) = (v, AAA™ o)

Via the identification (3.5), nw : U — C™. We claim that nPy = nw, so nPy is C*°.
Let ¢ € CS2(R™,C™), then

{(nPy — nw, ) o =(Py, ne) o — {nw, @) o
=y, AA o) 12 — (w, A" ) 12
=AAA™ ') = MAA ) =0

Now P(ny) = nPy + [P,n]y where [P, n] is a first order operator. Therefore [P, n]y €
H~1 and so is P(ny). Let W be neighbourhood of ¢, with W C V. There exists a

sequence (S;);jen of open neighbourhoods of ¢ such that
WCSj+1 C§j+1 CSj ng cVv

for each j € N, and corresponding C* functions 7;: @ — [0, 1] that are identically 1
on S; and vanish outside S;y1. They have the property that 7;17; = n;41 for each
j. By the elliptic regularity theorem, m1y € H'. By induction, njy = njnj_1...mn
is an element of H7. Let 75 be a smooth map that is identically equal to 1 on
and 0 outside W. Then sy = 1on;y for each j and is therefore contained in each

HJ and must therefore be C* by Let o) be the C* k-form defined on
N, = ¢71(Q) by a, = A7y, Then for any ¢ with support in N,

(op, )2 = (A Mooy, ) 12 = (Y, o) 0 = Alep)
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od

Figure 3.1: Sketch of the neighbourhoods around gq.

Theorem 27. Let (o;) be a sequence of smooth k-forms on the compact manifold
M such that ||a;|| + ||Aa;|| < C for some C > 0. Then a sub-sequence of (o) s a
Cauchy sequence in C®AF.

Proof. We use the same set up as in the proof above. Around ¢(p), there is a
neighbourhood V such that A agrees with a periodic second order operator P. Let

B, = ¢(V). Because M is compact, there is a finite sub-cover {B,} of {B,} covering
M. Let {p.} be a partition of unity subordinate to the covering { B, }. By [Theorem 24

loncillm SIIPprcill -1 + |l prcil| -1
SllosPaill -1 + I[P, pe](nei) | -1 + |l penail| o
SlocAai|l o + [Inail o + [|pslloollnet || o
SlAas]| + [l
<C

for each o,. By Rellich lemma, the injections H**! — H*® are compact, i.e. there is
some sub-sequence (p,a;,) which converges in H°. We can find a sub-sequence which

converges for each x, and thus «,, is a Cauchy sequence.
lai = il S D lloslai — ay)llpo S e (3.7)
K

for large enough 1, j. O

Notice that the the compactness of M is necessary for the last theorem since this
allows us to add up a finite number of terms in (3.7)).
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3.3 Hodge Decomposition

3.3.1 Proof of Hodge Decomposition

Proof. There are some advantages with assuming C>°A* are complex forms. By abuse
of notation C*®A* is the space of complex k-forms. Of course the real forms are
contained in C*°A¥. There is a natural way to extend the inner product to the
complex forms, such that the new inner product is Hermitian. Since A is densely
defined, we have the decomposition L2AF = Im A @ Ker A*. However, if A*a = 0, then
« is a weak solution to the equation A« = 0. This in turn means that « is smooth by
[Theorem 26l . We know from before that on smooth forms A* = A. Therefore we have
L2A* =Im A @ #ANF. We will show that s#ZAF is finite dimensional. Assume the

contrary. Then there exists an orthonormal sequence of harmonic forms (g;). Clearly
llesll + 1Ag;] = lle;ll < 1,

and by [Theorem 27, (¢;) is a Cauchy sequence, which is absurd since ||g; — &% = 2.

Therefore 74, must be finite dimensional. Suppose w is a smooth form. By the
decomposition w = lim A«q; + 8 where § is harmonic. The element lim Aq; is a smooth
form, that is to say that there is a smooth form ~ such that for all p € C°AF, we have
lim{Aai, ¢) = {7, ¢). Then again by regularity, there is a smooth form « such that
Aa = 7. So for smooth forms we have decomposition C*°A* = Im A @ J4,. The rest
follow from the fact that Imd L Im § and that Aw = 0 if and only if dw = dw =0. O

We can see immediately that if f € & is S, then

/M!df\2d$=/M<—Af,f>dx:0

which by continuity of df means that f is constant on each connected component.
By the Hodge Decomposition H)p(M) = 5#A°(M) = RP where p is the number of
connected component of M. We have a similar theorem where we only assume that f

is sub-harmonic, i.e. Af > 0.

Lemma 28. Suppose f € &M) and f,Af > 0. Then f is constant on each connected

component.

Proof. Let f be as in the statement, then

0 < ldf|1* = (8df, £) =~ [ (Ap)fdr <0
M

so f is constant . O
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3.3.2 Positive Weitzenbock Curvature

We shall see that information about the Weitzenb6ck operator %y, : A*T*M — AFT*M
determines much about the de Rham cohomologies. We say that %) > 0 at the point

p € M if (Zrayp, ) > 0 for every non-zero o, € AFT,M. Similarly we can have
Ry, > 0.

Theorem 29. If M is a connected compact manifold with %), > 0 almost everywhere,
and %y, > 0 at some point p, then HgR(M) =0.

Proof. By the Weitzenbock formula Ay, = L—2%),. Now, let w € C®A* and Ey, ..., E,

an orthonormal frame parallel at p, then computation at p yields

Alw|?* = Ljw|* = > Ve Ve (ww)y =2 IVE,w? 4+ 2(Aw, w) + 2(Zpw, w)

If w is harmonic, then

1
5A\w|2 =) |Vew]* + (Zw,w) >0

By |w|? is constant, all its derivatives vanish and hence Alw|? = 0. This
gives

0=> |Vewl + (#w,w)

We necessarily have |Vw| = 0, everywhere. Because # > 0 at one point p, w, = 0.

And since |Vw| = 0, w is identically zero. O

3.3.3 Poincaré Duality

Theorem 30. The bilinear map (-,-): Hip(M) x Hjz"(M) — R defined by

(lad, o) = [ anw

is a non-degenerate pairing, and therefore determines an isomorphism between HgR(M)

and (Hp" (D))"

Proof. First, notice that the if & and § are co-homologous closed k-forms, and a— § =

dry. Then for any closed (n — k)-form w,

/Ma/\w:/M(ﬂ—i-d’y)/\w:/Mﬁ/\w+/Md('y/\w)i/M’y/\dw:/Mﬁ/\w

The bi-linear map (-, -) is therefore well-defined. To show that the bi-linear map is non-

degenerate, it suffices to show that any non-zero element of H gR(M) defines a functional
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which is not identically zero. Let o € H ZjR(M) be the harmonic representative of a
non-zero cohomology class. Because a is harmonic, 0 = da = + * d x a. Since the
Hodge star is an isometry, dxa = 0 and therefore represents the class [xa] in Hjp F(M).
Evaluating gives

(lad,[sa)) = [ anwa = [af? >0

which shows that ([«],) is not identically zero. O

Since the cohomologies of the compact manifold M are finite dimensional, we also
have isomorphisms H¥, (M) & H"*(M).

De Rham cohomology is isomorphic to the singular cohomology with coefficients
in R, a fact which is called the De Rham theorem [11] 18.14].
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Cohomology on Non-Compact Complete Manifolds

4.1 Stokes’ Theorem on Complete Manifolds

When M is a complete connected manifold, we have a Stoke’s theorem for L?-forms.
The proof is dependent of the existence of a sequence of maps whose support exhausts

the manifold, and have controlled derivatives.

4.1.1 Cut-off Function on M

Let o be a fixed point in M, the function p: M — [0, 00) defined by p(p) = d(o,p)
gives the distance from our chosen origin 0. The closed sets B, = p~1([0,r]) form
a sequence which exhaust M. For each pair B, and Bs; r < s there exists a smooth
function y,<s: M — [0, 1] with the property that x,<s = 1 on B;, and x,<s = 0 on
M\ Bs. They also have the property that |dx,<s|r~ < ¢/(s — r) for some constant

c. By using the “Gaffney cut-off trick” [§] one can show that the above theorem has

Figure 4.1: Sketch of cut-off function on the real line. The idea is the same on any
complete manifold.

an analogue where we do not require any of the forms to have compact support. Let
the L'-norm be defined on forms by ||w||z1 = [y |w|dz. The main theorem in [§] is a

Stokes’ theorem for complete manifolds

Theorem 31 (Stokes). Let M be a complete Riemannian manifold. If w € C°A"~!
and ||w||z1, ||dw|| ;1 < oo, then

/ dw=0

M

37
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Proof. Let 0 < r < s. Now

j / xr<sdw\=] | d0<a) = (dxre) M| < Kool 2 < Kz

S—rT

and since Y,<sdw — dw as r — o0
ldwl| = [|dw — Xr<sdw|| + Ixr<sdw]| < &

for large enough 7 and s. O

eorem 31| gives us the necessary means to prove a generalization of [['heorem

to complete manifolds.

Corollary 32. Let M be a complete manifold. If o« € C®A* N L2AF, da € L2AFH!
and B € COAN+L N L2AFL 58 € L2AF, then

{(da, B) = (e, 68)

Proof. Now,
(da, B) volg = da A xff = d(a A xf3) + (o, §3) volg (4.1)

We claim that o Axf satisfies the requirements to use There is a constant
K from ({2.1)), for which the inequality

la Axf| < Klal|B] = K(|al, |5])
holds at every point p € M. Integrating and using the Schwartz-inequality gives
lee Al pr < Kllal| 28]l 2 < o0

similarly

|d(a A*xB)| = |da Ax8 — a Ax6B| < K (|dal|B] + |a]|68])

such that
[d(a AxB)|[pr < K ([[dal[z2]1B][ 12 + [lallz2][68]|12) < oo

Integrating (4.1]) gives

(da,8) = | d(@n8) +(a,35)

where the middle term vanishes. O
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4.1.2 Eigenvalues of the Laplace operator

In the next section, we will follow [I8] to show that on the completion C§°AF = L2A¥
the Laplace operator has unique closed extension. The first is that A has only negative

eigenvalues.

Proposition 33. Suppose Aw = \w for some non-zero w € CA* N L2A*. Then
A <O0.

Proof.
Mwl? = (Aw, w) = —([ldw]|* + [|6w]|) (4.2)

such that A < 0. ]

The last theorem gives us sufficient conditions of the Laplace operator to show that

it is essentially self-adjoint, i.e. it has a unique closed extension which is self-adjoint.

4.2 L?-cohomology

In this section we will investigate if the Hodge theorem extends in some way to also
hold for non-compact complete Riemannian manifolds. It is possible to define de
Rham cohomology groups on complete Riemannian manifolds, however it does not
capture information at infinity [6]. Therefore we extend the class of forms we are

investigating, to include forms that are square-integrable, in the sense that

/ |w|? dz < +o0.
M

4.2.1 L*-Hilbert Complex

We want to employ techniques from the theory of Hilbert spaces, as we did in the
previous chapter. We repeat the process and define L2AF = W, where the
completion is taken with respect to the norm on CgoAk. We could also complete
the space of all square-integrable forms, which would produce an isometric Hilbert
space. It is convenient to have a complex Hilbert space, and therefore, we abuse
notation and let CgoAk denote the smooth sections of the complex vector bundle
AFTM where each fibre is A*T, »M @ C, with the canonical Hermitian inner product.
For any smooth w € L?, there is an injection of the smooth k-forms w for which the
integral [y |w|? dx < oo, into L? since each such form defines a linear functional, which
is identified by Riesz’s theorem.

The exterior derivative d is not defined on the whole of L2A*. Tt is defined on the
dense subspace C(‘)X’Ak, and is therefore an unbounded operator on LZA*. Genereally,

linear operators define on a subspace D of a Hilbert space is called an unbounded
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operator, see the The operator d has a priori many closed extensions. The
domain of the various extensions gives an oredering between them, where d; < ds if
Domd; C ds. The largest extension of d is the adjoint d,,q. = d*. The smallest is the
closure dy;n = d, defined for elements w = lim wj, such that dw; converges.

Let WA* be the domain of any closed extension dj, of dj, which will also satisfy
dpdi—1 = 0. The resulting complex

di dk—1

WAL —%0, Al WAk By Akt B g

is a Hilbert complex. A choice of closed extension d is an ideal boundary
condition. On complete manifolds, there is only one choice for the closed extension
[2], i.e. the domains of dy,y, and dpqe, coincide and dpnin = dimae, which we will come
back to. We will denote by WA* the domain of d := dynin = dpmas. The space WAF is

the closure of C§°A* with respect to the norm
lwllfy = llwlZ2 + lldw] 72

We can form the unreduced L?-cohomologies by

Ker d,
Hp> (M) = —*
Im dk,1
and the reduced L?-cohomologies
. Kerd,
Hfa (M) = ————
cl(Imdg_1)

where we quotient out by the closure of Im dj,_; with respect to the L2-norm. The un-
reduced and reduced cohomologies different from each other. The reduced cohomology

is a Hilbert space, while the unreduced is not necessarily Hausdorff [19, Prop 4.5].

4.2.2 Lipschitz Invariance of L?-Cohomology

The unreduced cohomologies are preserved under bi-Lipschitz maps between manifolds.
A continuous map F': (M, g1) — (L, g2) is Lipschitz if (Fy),: T,M — T,L is defined
almost everywhere on M, and there is a constant C' > 0 such that at all points where

(Fy)p is defined the equation
|(F*)pv\92 < C|U|g1

holds for each v € TM. A homeomorphism F': M — L is called bi-Lipschitz if both
F and F~! are Lipschitz map. The pull-back map F* preserve integrable forms. Let
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F: M — L be a Lipschitz map, and w € L2AF(L). Let Ey,..., E, be an orthonormal
frame around p € M and Ei,...,E, and orthonormal frame around F(p). Let

(i1,...,1) range over ascending multi-indices, then

Frw|? = Y Fw (Eiyy..., B )* = > W(F.Eyy, ..., F.E;)?

(41,e0yik) (41,e0yik)

where

W(F*Eiu ceey F*E'Lk) = Z (F*Ei1)31 T (F*Eil)Skwslv---7

515--,5k

Sk

By Schwartz inequality, and the Lipschitz property of F

PP <k Y (rF*Eil|2~~-|F*Eik|2 5 w)

(i17"'7ik) 51,-4,5k

<K|w|?

where K is independent of p. Integrating yields | F*w|| < K|lw||. We of course also
have dF*w = F*dw which ensures that closed forms are mapped to closed forms,
and exact forms are mapped to exact forms. This gives an isomorphism H j’-jz (L) =
H fz (M). This extends to the reduced cohomology as well, suppose w = lim d7;, then
lim F*dr; = limdF*7;. Actually, we can also generalize to Lipschitz maps that are
Lipschitz-homotopic [I4]. This is analogues to how de Rham cohomology is invariant

under homotopy equivalence.

4.2.3 Relation between L? and de Rham cohomology

G.Carron has proved a connection between the L2-cohomology, and the de Rham
cohomology for complete manifolds with one flat end. One flat end means that for any
compact subset S C M, the complement M ~\ S has only one unbounded connected
component, or end, denoted by E. Let M be a complete manifold with zero cuvature

outside a compact subset S. We have two cases depending on the volume growth [3]:
1. If the volume growth Vol(r) = [, .y volg is at most quadratic, i.e . limy_,o0 Vol(r)/r? <
oo then
AR (M) 2 T (HE g (M) — Hjp(M)) .

2. If lim, ;o Vol(7)/r? = oo, then the boundary of E has a finite covering space
diffeomorphic to the product S¥~! x T where T is a flat (n — v)-torus. Let
w: T — OF be the induced immersion, then

Hk(M) = H*¥(M \ E, Ker 7*)
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where .
C*A*(M \ E)NKerd, NKern*
H¥(M \ E,Kern*) =
(M~ E, Ker ') C>®AF(M N E)NImdg_1 NKerm*

4.2.4 Self-adjointness of the Laplace Operator

We will use the fact that the Laplace operator has only negative eigenvalues to show
that it is essentially self-adjoint, i.e. it has a unique closed extension which is

self-adjoint.

Theorem 34. [I7, Prop 3.9] Let T be a densely defined symmetric operator on the
Hilbert space H, which is bounded below by m. If Ker(T* — X) = 0 for some A < m,
then T is essentially self -adjoint.

We will use this criterion to show that —A, which is bounded below by 0, is

essentially self-adjoint.
Theorem 35. The Laplace operator A is essentially self-adjoint.

Proof. Suppose w € Ker(—A* — \) then
0=((-A% = Nw, o) = (w, —Aa) — (Aw, @)

for all & € C®AF N L2A* This means that w is a weak solution to the equation
Af=-)w.
By using the method in the proof of the regularity theorem, we see by induction

that w is C*°. We may therefore use the symmetry of A on its domain to infer that
—Aw — Aw = 0 for some negative A which by |Proposition 33|implies that w =0. O

The

Theorem 36. [2, Lemma 3.8.] If the elliptic differential operator do + dd associated
to the elliptic complex

di_ d
CFEy —% oo Ty .0 B0 osopy B oo L L (44)

is essentially self-adjoint, then there is a unique Hilbert complex

d_l dkfl

WAO — % Al WAk %, pakt e

associated to (4.4) i.e. the elliptic complex has a unique boundary condition. In

particular dpyin = dmas-
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4.2.5 Decomposition on L-forms

The following theorem is called the weak decomposition.

Theorem 37. The square-integrable forms have decomposition
L*AF = N @ Imd & Imd”

Proof. This is [2, Lem 2.1] because Aw = 0 if and only if dw = d*w = 0 by [Corollary 32
O

We also have strong decomposition by Gromov [9]

Theorem 38. If there exist some constant C > 0 such that for every w € C°AFNL2AF
lwl? < C{—Aw,w)
then Imd and Imd" is closed. And we have decomposition
L2A* = #N @ Tmd @ Tmd”

This theorem can be extended to include some instances of L? integrable forms,
see [13]

The weak decomposition gives a Hodge theorem. The kernel of the map 54, Ker dp —
HAF are all the elements w of the form

w = lim(da; + 035)
J

and since
0 = lim(d*a; + déB;) = lim do;
J J

we have
0= lim(ddgs;, ;) = lim 3
so 68 = 0. Therefore w = lim;da; for some (oj) € Domdy_;. So we have an

isomorphism ﬁfz (M) = 2 AF(M).

4.3 Non-Negative Weitzenbock Curvature

The next theorem is my generalization of [24, Thm 6] by S-T. Yau.

Theorem 39. Let o be a smooth harmonic k-form which is square-integrable on the
complete manifold M. If %, > 0 for all p in M, then o is parallel. If Z, > 0 at some

point q, then o vanishes.
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S-T. Yau proved this theorem for 1-forms and (n—1)-forms. For 1-forms, (Za, o) =
Ric(af, af), and similarly for (n — 1)-forms via the Hodge star. We need a few result

before the proof.

Theorem 40. If f: M — R is a smooth square integrable function, and f,Af > 0,

then f is constant.

Proof. Because the Stokes theorem holds for square-integrable forms, we can use the

same technique as in the proof of O

Theorem 41. If « is a smooth square integrable harmonic form, then « is both closed

and co-closed.

Proof. Let w be harmonic, and square integrable. Then
0= (Aw,w) = —(ldw|® + [[6w]?),

and w is therefore both closed and co-closed. O

We can now prove our main theorem.

Proof of[Theorem 39. In the proof of showed that for any C* form a we
have equality

1
§A|a|2 = (Aa,a), + |Vaf?> + (Za, ), . (4.5)

We will show that when « is harmonic and square integrable, then Ala| > 0, and
|a| is therefore constant, by Theorem For such forms «, equation reduces to
0 = |Va|+ (Za, o), and the hypothesis that # > 0 implies that |Va| = 0. By adding
to the hypothesis that, #, > 0 at the point p, we have that o, = 0 and since « is
parallel, « is identically 0. Now we will show that A|a| > 0, when « is harmonic. First
of all, we prove, that holds. Let Fjy, ..., E, be an orthonormal frame parallel at
p, and @' is the dual to E;. Then

Ala? = A (Z Oz?]) = QZVEZ.(O(JVEZ-O(J) = QZ(VEZ.O&J)Q +a;VE VE oy
J Jyi Jyi

which is just the local expression for
2|Val* + 2(La, o) = 2|Val> + 2(Aa, a) + 2(Za, a)
where the equality comes from the Weitzenbock formula. By the chain rule we have

A|04|2 :2|V|a||2+2\a|A|a| (4.6)
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and

2
IV|a|? = Z(VE la)? ’2 Z (Z (VE,ag)a J> : (4.7)

Recall that
da:ZHi/\VEia and 50‘:_ZLEz‘inO‘

Since « is harmonic, da = 0 and da = 0 which we write out in bases at p

SN (Vg et Ao’ =0 and DD (Vgan)ft A AP A AGE=0
J igJd J ied

and we see that Vg, oy vanishes for all ¢ ¢ J, because da = 0, and for all ¢ € J because
0a = 0. Therefore each term in the sum in (4.7)) is zero. All we have to worry about

is the case in which |a| = 0. We can lift the function |a|? a little which yields
A(lal* +)'2 = —(jaf? +&)7*2|a|Via|* + (laf® + &)~ 2(IV]al* + o] Alal)

where the middle term vanishes, and by (4.6]

1

Va2 +e
By [Theorem 40| the integrable function (|o|? 4 €)/2 is constant, and so is |a]. O

A(jaf? + €)'/ = (IVal + (%a,a)) > 0.

4.3.1 Final Words

By the strong decomposition follows if we can find a constant C' > 0
such that
lwll* < C{—Aw,w)

for every w € C*°A* N L2A*. By (4.5)
S8lal = (Aa,0), + [Vl + (%, a),
If #, >0, then

/|a|2d:1: </ (Ba,a) dz < ||7||Loo /(%a,a} dz

1
=5 [ Blafda+ (~a,a) ~ |Val?

if Ala|? is integrable

/|*d*d\0z|2|dx:/|d*d|a|2|d:v<oo
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and by [Theorem 31, [ Ala|? dz = 0. We therefore have inequality

o2 < ||%1|Loo<<—Aa,a>>

and hence we have strong decomposition as long as the Weitzenbo6ck curvature is
bounded below by a constant ¢ > 0. It is however difficult to have %, > ¢; > 0
without also Ric > ¢o > 0, which would imply that M is compact by

Since the Weitzenbock curvature reduces to the Ricci curvature on for 1-forms, the
condition that %, > ¢ > 0 does not bring any new information to the table because
Ric > ¢ > 0 implies again that M is compact. It is also showed by Chen [4] that if M
is a non-compact complete Riemannian manifold with Ric > 0, then the bottom of the
spectrum of the Laplace operator on 0O-forms is zero. It would therefore be difficult to
prove that the reduced cohomology is isomorphic to the unreduced. It is not clear if
the the same is clear for k-forms where k£ > 0.

Lastly we give an example of a non-compact manifold with %; = Ric > 0 where we
can apply [Theorem 39l Let M be the surface defined by the equation z = —%(y2 + 22).
The Ricci curvature is related to the Gaussian curvature by Ric = Kg[12), Cor 8.28],

and the Gaussian curvature K of M is given by
K(y,z) =1/(1+y*+ 22

Hence Ric > 0, but there is on constant such that Ric > ¢ > 0, which by Myers
theorem would mean that the manifold is compact. By [Theorem 39, sZA!(M) = 0.

Ty

Ty

Figure 4.2: Sketch of the surface defined by = = %(y2 + 2%). Notice that r, — oo, for
x — 00.



— Appendix —

Unbounded Operators on Hilbert Spaces

This appendix is supposed to give some basic facts on Hilbert spaces, and operators
between Hilbert spaces. A general reference for the material covered can be found in
[5] and [10].

Definition. A Hilbert space V' is a vector space over the real or complex numbers,

which is endowed with an inner product (-,-) and norm defined by
[oll = +/(v,v)
such that every Cauchy sequnece with respect to the norm converges.

Proposition A.1 (Schwartz inequality). For any two vectors v,w in V we have
inequality
(v, w)| < JllfJwl]

Proof. If either v or w are zero, the proof is trivial. We therefore assume they are

non-zero vectors, and first assume ||w|| = 1. Let A € C, then
0 < [lv = Mwlf* = [[o]|* = X, w) = Xv, w) + [AP[w]®
Setting A = (v, w)/2 gives us
0 < [lol® = [, w)]* <= (v, w)] < [lv]|
If w is a general non-zero vector, then

[{v, w)| = Jlwl[|[(v, w/[w]H] < [Jvf[fw]]

Example A.2. The complex vector space C" with inner product

(@1 wn) - (Y1, yn) = 2T+ F Tl

is a complex Hilbert space. The Schwartz inequality takes the form

n 1/2 / p 1/2
< (Z |33'i|2> <Z |yi|2>
i=1 i=1

n
Z TiYi
i=1

47
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Definition. A set S of vectors in V' is said to be orthonormal, if every vector has unit
length and for any two vectors v and w in S, (v,w) = 0. The set S is an orthonormal

basis if S is maximal.
Theorem A.3. Every Hilbert space has an orthonormal basis.

Proof. Let € be a chain of orthonormal sets S;, where S; C Sjyi1. The union
uv=U ;e S; is clearly an upper bound of ¢, if it is orthonormal. For any two
elements v, w € U, there is some orthonormal S; which contains both, and they are
therefore orthonormal. The partially ordered set of the orthonormal sets, satisfies the
conditions to apply Zorn’s lemma, which states that the collection of orthonormal sets

contains a maximal set. OJ

Theorem A.4. For every continuous linear functional ¢ € V', there is a unique
element uw € V' such that ¢(v) = (v,u) for all v in V. This correspondence defines an

isometry between V and V'.

If S is a subset of V, the orthogonal complement of S is
St={veV:(uv)=0foralluecsS}.

For any closed subspace S of V, we have orthogonal decomposition V = S+ @ S.
Any vector v can be written uniquely as v = u + w where v € S+ and w € S, and
(u,w) = 0. The map Pv := u is called the orthogonal projection onto S*+. The

element Pv is the vector in S+ closest to v. Similarly we have projection onto S.

Definition. A linear operator A: D(C V) — W between Hilbert spaces defined on a
subset D of V is called an unbounded operator. The unbounded operator A is said
to be closed if and only if for every sequence (v;) in D converging to an element v in
V,and Av; — w in W; then v € D and Tv = w.

We will write A: V' — W even though A is not defined on the whole space V. By

Dom A we will always mean the domain D where A is defined.

Definition. Let A: V — W be a densely defined unbounded operator. The adjoint
of A is a closed unbounded operator A*: W — V, with the property that

(Av, wyw = (v, A%w)y

for all v € Dom A, when w € Dom A*. The domain Dom A* are the elements w € W
such that the map ¢, : v — (Av,w)w is bounded. Since A is defined on a dense
subset, we can extend ¢, to the whole of V. By there is a unique
element u € V such that ¢, = (-,u). We define A*w to be u, A*w := u. When
A:V —V and A* = A, we say that A is self-adjoint.
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Theorem A.5. If A: V — W is a densely defined unbounded operator, then
W=KerA*®ImA.

Proof. We have decomposition W = Im A @ ImA. All we need to show is that
Tm A" = Ker A*. Let u € Ker A*, w = lim Av;. Then

(u, w) = lim(u, Av;) = lim(A*u, v;) =0

which shows that Ker A* ¢ Tm A~ Conversely, if w € Im A" and v = lim uj where
uj € Dom A, then

(A*w,v) = lim(A*w, uj) = lim(w, Au;) = 0

for all v € V. Thus A*v must be 0 by the non-degeneracy of the inner product. [
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