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1

Introduction

On smooth manifolds, de Rham cohomology is a a topological invariant of the manifold.
In general a topological invariant is a property of a topological space which it shares
with all spaces which are the same in the topological sense. Explicitly, homeomorphic
spaces share topological invariants. Even though de Rham cohomology is defined
via the smooth structure on the manifold, it is actually isomorphic with the singular
cohomology [12, Thm 18.14], a result from 1931 by de Rham. The definition of the
k’th de Rham cohomology is the vector space of closed k-forms modulo the exact
k-forms.

On Riemannian manifolds, we can define the Laplace operator on k-forms. The
Lacplace operator is an elliptic operator which depends on the Riemannian metric
on the manifold. It is therefore unsuspected that on compact manifolds, the k’th
de Rham cohomology is isomorphic to the harmonic k-forms, i.e. the forms that
evaluate to zero. It is remarkable that the harmonic forms, which depends both
on the smooth structure of the manifold, and the Riemannian metric is actually a
topological invariant. Furthermore, we have a decomposition of the k-forms on the
manifold. Every k-form can be decomposed into an exact form, a co-exact form and
a harmonic form. This is the Hodge Decomposition, the proof of which involves a
great deal of analysis, especially theory about Sobolev spaces. For a compact oriented
Riemannian manifolds M, the classical Hodge theorem relates the k’th de Rham
cohomology, via an isomorphism to the harmonic k-forms on M. This is a exceptional
result, connecting the topology of M with analysis of the Laplace operator on M. It
was W.V.D. Hodge who in the 1930’s defined a generalization to the Beltrami Laplace
operator, to differential forms, in order to study the cohomology on manifolds [7].

For non-compact manifolds we do not have an inner-product on the space of smooth
forms on the manifold since there can exist forms that are not integrable. However, if
we do restrict to the integrable forms, then we can get a similar result. The difference
is that we take the closure of the exact forms, to get the reduced L2-cohomology. There
is also an un-reduced cohomology, however the unreduced cohomology is often not as
nice, while the reduced cohomology is a Hilbert space, the unreduced is not necessarily
a Hausdorff space[19, Prop 4.5]. If the subspace of exact k-forms is closed, the reduced
and unreduced cohomology coincide. The reduced and non-reduced cohomologies are
invariant under bi-Lipschitz maps, which in contrast to homeomorphisms, factor in
the Riemannian structure of the manifolds. This says that for complete there is much
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2 Introduction

more diversity in the space of forms that are harmonic, which, in contrast to compact
manifolds, depends on the geometry of M.

In both compact and the non-compact case, then curvature of the manifold has
impact on the space of harmonic forms on M. The Laplace operator can be decomposed
into an elliptic differential operator and a curvature operator called the Weitenböck
curvature. This is called the Weitzenböck decomposition. Via the Weitzenböck
decomposition, there are several result that connect the curvature of a Riemannian
manifold, with cohomology see e.g. [16, 1, 13], where the Weitzenböck curvature is
positive. The k’th Weitzenböck operator Rk is a generalization of the Ricci curvature,
since R1 = Ric. When the Ricci curvature is strictly greater than a positive constant,
the manifold is compact, by the Bonnet-Myers theorem. Because it is difficult for
the Weitzenböck operator to be positive without the manifold being compact, most
results involves compact manifolds. There is a result by S-T. Yau [24] which relate
non-negative Ricci curvature on a complete manifold with the space of harmonic forms.
We generalize this theorem to include the case where Rk ≥ 0.

The structure of this thesis is as follows:
In Chapter 2 we review some basic concepts from Riemannian geometry, on which

the rest of the material is built upon. We define the Laplace operator, and decompose
it into the Rough Laplace operator plus a linear map involving the curvature; this is
the Weitenböck formula.

Chapter 3 is devoted to the Hodge theorem, which relates the de Rham Cohomology,
and the Harmonic forms on M. We give a brief introduction to Fourier analysis on the
torus, and some useful theorems about elliptic operators. The results are necessary
for proving the Hodge theorem on compact manifolds. We also show that if the
Weitzenböck curvature operator is positive, then the cohomology is trivial.

In Chapter 4 we consider manifolds that are not compact, but which are complete.
We investigate if and how the results in Chapter 3 generalize to complete manifolds.
This involves investigating the L2-cohomologies. The end of the chapter includes my
generalization of the mentioned theorem by S-T. Yau [24], which we have not found
stated explicitly in the literature.

The Appendix serves as a refresher of some facts involving Hilbert spaces. It could
be read first if the reader is not too impatient. Although the appendix contains most of
the theory we need from functional analysis, we assume the reader to have familiarity
with basic functional analysis. However, the most important prerequisite is a good
knowledge of smooth manifolds.
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Riemannian Geometry and the Laplace Operator

2.1 Linear Algebra

In differential geometry, linear algebra plays an important role. Each fibre of a vector
bundle is a vector space. It is therefore necessary to elaborate on the theory before we
introduce Riemannian manifolds. Throughout this section, let V be an n-dimensional
inner product space over the real numbers. The inner product on V will be denoted
by g, but we will often use angled brackets ⟨·, ·⟩g with g as a subscript in equations, or
even just ⟨·, ·⟩, if it does not cause any confusion.

2.1.1 Extension of inner products

The inner product gives us a natural way to identify V with its dual V ∗, namely via
the musical isomorphisms ♭ : V → V ∗ and ♯ : V ∗ → V , defined by u♭(v) = ⟨u, v⟩g
and ⟨α♯, u⟩g = α(u). We use the musical isomorphisms to extend the inner product to
tensors. For elements in V ⊗a ⊗ (V ∗)⊗b the inner product is given by

⟨v1⊗· · ·⊗va⊗α1⊗· · ·⊗αb, w1⊗· · ·⊗wa⊗β1⊗· · ·⊗βb⟩ =
a∏

i=1
⟨vi, wi⟩g

b∏
j=1
⟨(αj)♯, (βj)♯⟩g .

We extend the inner product to the algebra of all tensors, by defining ⟨S, T ⟩ = 0 when
S and T are tensors of different type, and extend linearly. We include the tensors of
order zero, i.e. the scalars, and such that for x, y ∈ R we have ⟨x, y⟩ = xy.

In general, orthonormal bases for our vector spaces are to be favoured because it
simplifies the inner product ⟨x, y⟩ to the sum of the components x1y1 + · · ·+ xnyn. If
e1, . . . , en is an orthonormal basis for V , and θ1, . . . , θn is the dual basis, then we can
construct an orthonormal basis for the (a, b)-tensor space. The elements of the form

ei1 ⊗ · · · ⊗ eia ⊗ θj1 ⊗ · · · ⊗ θjb

constitutes a basis for V ⊗a ⊗ (V ∗)⊗b, and the elements are mutually orthogonal:

⟨eI ⊗ θJ , eK ⊗ θL⟩ =⟨ei1 ⊗ · · · ⊗ eia ⊗ θj1 ⊗ · · · ⊗ θjb , ek1 ⊗ · · · ⊗ eka ⊗ θℓ1 ⊗ · · · ⊗ θℓb⟩

=
a∏

r=1
⟨eir , ekr⟩g

b∏
s=1
⟨(θjs)♯, (θℓs)♯⟩g

=
a∏

r=1
⟨eir , ekr⟩g

b∏
s=1
⟨ejs , eℓs⟩g = δIJ

KL

3



4 Riemannian Geometry and the Laplace Operator

where δ•
• is the Kronecker delta, with respect to the multi-indices I, J,K,L of the

form I = {i1, . . . , ia}.
We can define the inner product on the exterior power Λa(V ) in a slightly different

way. Since permuting the vectors only changes the element by the sign of the per-
mutation, we want the inner product to give the same result after permutation, times
the sign of the permutation. This motivates the definition

⟨v1 ∧ · · · ∧ va, w1 ∧ · · · ∧ wa⟩g∧a =
∑

σ∈Sa

(sgn σ)
a∏

i=1
⟨vσ(i), wi⟩ = det[⟨vi, wj⟩]ai,j .

where Sa is the the set of permutations of the set {1, . . . , a}. We extend this inner
product to Λ(V ) =

⊕n
a=0 Λa(V ) as we did for the tensor algebra.

Let I denote a multi-index I = {i1 < . . . < ia}, and eI = ei1∧· · ·∧eia . The set {eI}
indexed over multi-indices I constitute a basis of Λk(V ). This basis is orthonormal; if
eI and eJ are elements in the basis, then

⟨eI , eJ⟩ = det[⟨eir , ejs⟩]ar,s = δIJ

because determinant vanishes when a row is the zero vector, which is the case for non-
equal multi-indices. The inner product of two elements u =

∑
I u

IeI and v =
∑

J v
JeJ

with respect to an orthonormal basis is a simple sum

⟨u, v⟩ =
∑
I,J

uIvJ⟨eI , eJ⟩ =
∑

I

uIvI

Remark. The inner products for regarding tensor and exterior product are essentially
the same, differing only by an integer multiple.

2.1.2 Wedge Product Inequality

If we take the product u ∧ v of an a-vector u and a b-vector v, where a+ b ≤ n, then
the magnitude of of the product is bounded by a multiple of the magnitude of the
factors. If we write u and v with respect to an orthonormal basis, and let the basis of
Λa+b(V ) be indexed by M , we have

u ∧ v =
∑
I,J

uIvJeI ∧ eJ =
∑
M

 ∑
eI∧eJ =σeM

(sgn σ)uIvJ

 eM

where σ is a permutation applied to eM which makes the equality below Σ hold.
Computing the magnitude by using the formula and using Schwartz inequality yields

|u ∧ v|2 =
∑
M

 ∑
eI∧eJ =σeM

(sgn σ)uIvJ

2

≤
∑
M

 ∑
eI∧eJ =σeM

(uI)2

 ∑
eI∧eJ =σeM

(vJ)2


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where the last sum is less than C|u|2|v|2, where C is a positive integer which depends
only on a, b and the dimension n of V . So there is a constant K such that the inequality

|u ∧ v| ≤ K|u||v| (2.1)

holds for all u, v ∈ Λ(V ).
In Section 2.2 we define Riemannian manifolds, and we will see that we can do

all these constructions on the tangent spaces TpM, where the inner product g is the
Riemannian metric on the manifold M.

2.1.3 Hodge Star Operator

The one-dimensional vector space Λn(V ) has basis a element volg = e1 ∧ · · · ∧ en,
composed from an orthonormal basis on V , called the volume element. Let ẽ =
[ẽ1, . . . , ẽn] be another orthonormal basis and e = ẽA for some matrix A. The matrix
A has inverse A−1 = AT :

δij = ⟨ei, ej⟩ = Ak
iA

ℓ
j⟨ẽk, ẽℓ⟩ =

∑
k

Ak
iA

k
j =

∑
(AT )i

kA
k
j

and thus ATA = I = AAT . By basic properties of determinants detA = ±1. Going
back to the volume element, we see that

e1 ∧ · · · ∧ en =Ai1
1 . . . A

in
n ẽi1 ∧ · · · ∧ ẽin

=
∑

σ∈Sn

A
σ(1)
1 . . . Aσ(n)

n (sgn σ)ẽ1 ∧ · · · ∧ ẽn

=(detA)ẽ1 ∧ · · · ∧ ẽn

which means that that any two volume elements differ only by a sign. A choice of
volume element in Λn(V )equivalent to choosing an orientation on the vector space V .
Let volg define our choice of orientation.

Theorem 1. There exists a unique linear operator ⋆ : Λa(V ) → Λn−a(V ) with the
property that ⟨α, β⟩ volg = α ∧ ⋆β.

Proof. Suppose that ⋆ is an operator which satisfies the last property. Then ⋆ is linear
since

α∧⋆(β+γ) = ⟨α, β+γ⟩ volg = ⟨α, β⟩ volg +⟨α, γ⟩ volg = α∧⋆β+α∧⋆γ = α∧(⋆β+⋆γ) .

Suppose ⋄ has the same property as ⋆. Then

⟨⋆β − ⋄β, α⟩ volg = (⋆β − ⋄β) ∧ ⋆α = (−1)a(n−a)⟨⋆α, β − β⟩ = 0
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which shows that ⋆ is unique. In the orthonormal basis {eI} constructed from the
orthonormal vector e1, . . . , en then we define ⋆ on the basis elements by

⋆(ei1 ∧ · · · ∧ eia) = sgn(π)ei(a+1) ∧ · · · ∧ ein

giving the rest of the basis elements ei, where π is the permutation π = (i1, . . . , in) of
{1, . . . , n}. If α, β ∈ Λa(V ) then

α ∧ ⋆β =
∑
I,J

αIβJeI ∧ ⋆eJ =
∑

I

αIβI volg = ⟨α, β⟩ volg

because eI ∧ ⋆eJ = δIJ .

The linear operator ⋆ : Λa(V ) → Λn−a(V ) is called the Hodge star operator.
From its definition, it is readily seen that ⋆1 = volg and ⋆ volg = 1. Taking ⋆ two
times gives ⋆2 = (−1)a(n−a), as we have to make a(n − a) transpositions to obtain
volg. The Hodge star operator is an isometry: If α, β ∈ Λa(V ), then

⟨⋆α, ⋆β⟩ = ⋆
(
(⋆α) ∧ ⋆2β

)
= (−1)2a(n−a) ⋆ (β ∧ ⋆α) = ⟨α, β⟩ .

Definition. Let F : V → V be an endomorphism, and e = [e1, . . . , en] be an orthonor-
mal basis for V . Then we define the trace of F by

trF =
n∑

i=1
⟨Fei, ei⟩ .

The trace does not depend on choice of orthonormal basis. Let ẽ = [ẽ1, . . . , ẽn]
be another orthonormal basis and define t̃r. Let the two bases be related by ẽ = eA,
where A is a matrix. Then

trF =
n∑

i=1
⟨F ẽi, ẽi⟩ =

n∑
i,j,k=1

⟨FAj
iej , A

k
i ek⟩ =

n∑
i,j,k=1

Aj
i (AT )i

k⟨Fej , ek⟩ =
n∑

i=1
⟨Fei, ei⟩

2.2 Riemannian Manifolds

A central part of this thesis will revolve around the de Rham cohomology of a manifold.
Before we can define this cohomology theory, we must first make some definitions.
Throughout this thesis, M will denote smooth manifold of dimension n. Unless specified
otherwise, we assume that M has an orientation, i.e. there exists a nowhere-vanishing
smooth n-from ν on M [20, Thm 21.5], and we have chosen −ν or ν to specify the
orientation on M. We say that an ordered basis e1, . . . , en of the tangent space TpM
is consistent with the orientation if ν(e1, . . . , en) > 0.

The vector space of real smooth maps on M are denoted by E (M), and the subspace
consisting only of maps with compact support is denoted by D(M). We let C∞Λk(M)
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denote the E (M)-module of smooth k-forms on M, and C∞Λ(M) =
⊕n

k=1C
∞Λk(M).

The subspace of C∞Λk(M) consisting only of forms with compact support is denoted
by C∞

0 Λk(M). If there is no possibility for confusion, we will omit “(M)” and write
just C∞Λk, and do the same for other entities depending on M. The set of vector
fields on M is denoted by X(M).

2.2.1 Exterior derivative

Even without specifying an orientation, there is natural way to differentiate differential
forms. The exterior derivative is the unique [20, Thm 19.4] anti-derivation of degree
1 on the graded algebra C∞Λ, with the property that d2 = 0 and df(X) = Xf for
0-forms. It is defined locally by

d(aIdx
I) = daI

dxi
dxi ∧ dxI .

Here and throughout the text, we will use the Einstein summation convention; that
if an index or multi-index appears both as an upper and a lower index, we sum over
that index. This rule also applies to multi-indices, such as in the example above. If we
do use the summation sign and multiple indices are involved, only those that appear
in a summand are to be summed over.

There is also a coordinate-free description of the exterior derivative. Let ω a
smooth k-form and X0, . . . , Xk smooth vector fields. Then

dω(X0, . . . , Xk) =
k∑

i=0
(−1)iXiω(X0 . . . , X̂i, . . . , Xk)

+
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

where the caret “̂” means that we omit the element. For a proof that the two
formulas for the exterior derivative coincide, again see [20, Thm 20.14].

Giving the manifold M Riemannian structure, allows us to define more in a sense
natural differential operators on M.

2.2.2 Riemannian Metric

Definition. A Riemannian manifold is a smooth manifold M together with a
symmetric non-degenerate smooth section g : M→ T ∗M⊗T ∗M called a Riemannian
metric.

More conveniently, gp : TpM× TpM→ R is an inner product on the tangent space
TpM at the point p ∈ M, which varies smoothly with p. Restricting ourselves to
Riemannian manifolds is not very strict at all, since all manifolds can be endowed with
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a Riemannian metric [21, Thm 1.12]. When evaluating on tangent vectors u, v ∈ TpM,
we often write ⟨u, v⟩ instead of g(u, v). Given a basis e1, . . . , en of TpM, the metric is
defined completely by specifying it on basis elements. Let gij := g(ei, ej). Then the
matrix [gij ] determines the metric. Let [gij ] be the inverse matrix of [gij ]. If θ1, . . . , θn

is the dual basis of e1 . . . , en, then θj = Ak
j ek, and

δj
i = ⟨ei, (θj)♯⟩ = ⟨ei, A

k
j ek⟩ = gikA

k
j

which shows that (θj)♯ = gjkek. We also have ⟨(θi)♯, (θj)♯⟩ = θi(gjkek) = gij .

2.2.3 Distance on Riemannian Manifolds

Definition. For two points p and q in a connected Riemannian manifold, we can
define the distance between then

dg(p, q) := inf
γ

∫
[a,b]
|γ′(t)| dt

where the infimum is taken over all piecewise smooth curves γ : [a, b]→M from p to
q. We call dg the distance function with respect to g. We say that a manifold is
metrically complete, if every Cauchy sequence with respect to dg converges.

The topology defined by the metric dg is the same as the topology already defined
on the manifold [11, Thm 13.29]. Examples of metrically complete manifolds are
abundant, for example regular Euclidean space and compact manifolds. We give an
example of a manifold which is not complete.

Example 2. Let M = R2 − 0, with the regular euclidean metric. Then for any point
p ∈M , the sequence pn = p/n is a Cauchy sequence, with no limit point in M.

2.2.4 Integrating Functions on Riemannian Manifolds

Let E1, . . . , En be an orthonormal frame in a neighbourhood U in M which is consistent
with the orientation on M, and θ1, . . . , θn the dual co-frame. The volume form on M
is the n-form defined by

volg = θ1 ∧ · · · ∧ θn

locally. The definition is independent of choice of orthonormal co-frame with the same
orientation. A similar calculation as in the beginning of 2.1.3 yields

volg =
√

det g dx1 ∧ · · · ∧ dxn .

The volume form gives us a way of integrating real or complex functions on M with
compact support. Let f : M→ C have compact support. Then we define the integral
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of f on M by ∫
M
f dx :=

∫
M

Re f volg +i
∫
M

Im f volg

where Re f volg and Im f volg are n-forms with compact support, which we already
know how to integrate by using a partition of unity sub-ordinate to an atlas, and
pulling each summand back to Rn on the coordinate patches, see [20, Sec 23].

For every ω, τ ∈ C∞
0 Λk, the real map ⟨ω, τ⟩ has compact support, and is therefore

integrable. We define the L2 inner product on C∞
0 Λk by

⟪ω, τ⟫ =
∫
M
⟨ω, τ⟩ dx ,

and corresponding norm

∥ω∥ =
{∫

M
|ω|2 dx

}1/2

where |ω| = ⟨ω, ω⟩1/2.

2.2.5 Co-differential Operator

Definition. The co-differential is a differential operator δk+1 : C∞Λk+1 → C∞Λk

defined by
δk+1 = (−1)nk+1 ⋆ dn−k−1⋆

Theorem 3. The co-differential δk+1 is the formal adjoint of dk in the the sense that

⟪dkω, τ⟫ = ⟪ω, δk+1τ⟫ .

for all ω ∈ C∞
0 Λk and τ ∈ C∞

0 Λk+1.

Proof. Let ω and τ be as in the statement of the theorem, then

d(ω ∧ ⋆τ) =(dω) ∧ ⋆τ + (−1)kω ∧ (d ⋆ τ)

=(dω) ∧ ⋆τ + (−1)kω ∧ (⋆−1 ⋆ d ⋆ τ)

=(dω) ∧ ⋆τ + (−1)sω ∧ (⋆δτ)

=⟨dω, τ⟩ − ⟨ω, δτ⟩

where s = k(k + 1) + 1, which is odd. Let S be an n-dimensional sub-manifold of M
with boundary such that suppω, supp τ ⊂ S. By Stokes theorem

0 =
∫

∂S
α ∧ ⋆τ =

∫
M
d(α ∧ ⋆τ) = ⟪dα, τ⟫− ⟪α, δτ⟫
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We can use the co-differential to define the divergence of a vector field. For a
vector field X, let divX := −δX♭. There is another definition of the divergence of a
vector field X, namely

(divX) volg = dιX volg

where volg is the volume form. These definitions coincide. Let θ1 . . . , θn be an
orthonormal frame in the neighbourhood U , then

dιX volg =d(Xiθ1 ∧ · · · ∧ θ̂i ∧ · · · ∧ θn)(−1)i−1

=dXi ⋆ θi

=d ⋆ X♭

such that divX = ⋆d ⋆ X♭ = −δX♭. The divergence is used to pass derivatives to the
vector fields under the integral sign in the following sense.

Proposition 4. If either f ∈ E or X ∈ X have compact support, then we have the
integration by parts formula ∫

M
Xf dx = −

∫
M
f divX dx

Proof. Let volg denote the volume form. Let E1, . . . , En be an orthonormal frame
about p, then

Xf volg = (ιXdf) volg = ιX(df ∧ volg) + df ∧ ιX volg = dιX(f volg)− fdιX volg

By Stokes’s theorem∫
M
Xf volg =

∫
M
dιX(f volg)−

∫
M
fdιX volg = −

∫
M
f(divX) volg

If f = gh we have ⟪Xg, h⟫+⟪g,Xh⟫ = −⟪gh,divX⟫ such that the formal adjoint
of ∇X is −(∇X + divX), where ∇X is the operator defined by f 7→ Xf .

2.2.6 The Laplace Operator

We can now define the Laplace operator ∆: C∞Λk → C∞Λk by ∆ = −(δd+ dδ).
The Laplace operator is symmetric when restricted to forms with compact support in
the sense that if ω, τ ∈ C∞

0 Λk, then

⟪∆ω, τ⟫ = ⟪−(dδ + δd)ω, τ⟫ = − (⟪dω, dτ⟫+ ⟪δω, δτ⟫) = ⟪ω,∆τ⟫ .

Differential forms ω for which ∆ω = 0 are called harmonic, or just H for short. The
subspace of C∞Λk consisting of harmonic forms is denoted by H Λk.
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2.3 Connections and Curvature

Definition. Let π : B → M be a vector bundle over a Riemannian manifold M.
For any such bundle, let Γ(B) denote the E -module of smooth sections of B. A
connection on B is a map

∇ : X(M)× Γ(B) −→Γ(B)

(X, s) 7−→∇Xs

which is E -linear in the first argument, R-linear in the second argument, and satisfies
the Leibniz rule in its second argument, in the sense that ∇X(fs) = (Xf)s+ f∇Xs

for f ∈ E .

2.3.1 Connections as Bundle Maps

The connection is a type of derivative, where at each point p ∈M we take the derivative
in the Xp-direction. The derivative at one point, does not depend on the vector field X
at other points. We can therefore instead take the equivalent point of view that for each
section s ∈ γ(B), ∇s : assigns at each point p ∈ M a linear map ∇Xps : TpM→ Bp.
This point of view is justified by the following theorem

Theorem 5. [21, Thm 7.26] There is a one-to-one correspondence

{ C∞ bundle maps φ : E → F} ←→ {E -linear maps α : Γ(E)→ Γ(F )}

φ 7−→ φ#

where φ#(s)p = φ(sp).

For each s ∈ Γ(B), we have an E -linear map ∇s : X(M)→ Γ(B), and by Theorem 5,
a smooth bundle map ∇s : TM → B. For any real vector spaces V,W we have an
isomorphism Hom(V,W ) ∼= W ⊗ V ∗. Using this relation on each fibre, Theorem 5
generalizes to tensor fields on the left and E -multilinear maps on the right in [21, Thm
21.11]. Substitute tensors involving TpM for tensors involving Ep and Fp in . We will
therefore equate the two notions for the most part.

2.3.2 Connections Locally

We will see investigate how ∇XY ∈ B is represented on the trivializing subset U with
respect to the local frame E1, . . . , En of the bundle π : B → M. In U the sections
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X,Y can be written as X = XiEi, Y = Y jej which yields:

∇XY =∇XY
jEj

=(XY j)Ej + Y j∇XEj

=(XY j)Ej + Y jωk
j (X)Ek

=(XY j)Ej + Y jXi(ωi)k
jEk , (2.2)

where the two last lines, are just ∇Xej written out in the chosen basis. The coefficients
ωk

j (X) define smooth 1-forms on U . The E -linearity in the second argument of ∇
ensures that ωk

j (fX) = fωk
j (X) for all f ∈ E and X ∈ X. We call ωk

j the connection
forms, with respect to the trivialization. The smooth maps (ωi)k

j := ωk
j (Ei) are the

connection coefficients. From (2.2), we see that any collection of smooth maps
(ωi)k

j define an affine connection on U , by covering the manifold with such open sets
we can patch the connections to one that is defined globally, using a partition of unity.
This leaves us many choices of connections.

2.3.3 Levi-Civita Connection

Of most interest are the affine connections, i.e. connections on the tangent bundle.
We define two E -linear operators on TM.

Definition. Let the tangent bundle π : TM→ M be endowed with a connection ∇.
We define the torsion T : X× X→ X and the curvature R : X× X→ End(X) by

T (X,Y ) =∇XY −∇Y X − [X,Y ]

R(X,Y ) =∇X∇Y −∇Y∇X −∇[X,Y ]

The curvature will be important later, since it is the building block for what we will
call curvature operators. The torsion is useful in narrowing down which connections
are appropriate. A connection is called torsion-free if T (X,Y ) = 0 for all X,Y ∈ X.

Definition. An affine connection is compatible with the metric if the equality

X⟨Y,Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇XZ⟩

holds for all X,Y, Z ∈ X.

If ∇ is compatible with the metric, the connection forms (ωi)j
k with respect to a

local orthonormal frame are anti-symmetric in j and k. If ∇ is torsion-free, and the
frame is the partial derivatives relative to a chart, then (ωi)k

j are called the Christoffel
symbols and are then denoted by Γk

ij := (ωi)k
j . The Christoffel symbols are symmetric
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in the lower indices. We will mostly work with either a coordinate frame, or an
orthonormal frame, and using one over the other (ωi)k

j or Γk
ij communicates in which

indices we have symmetry.

Theorem 6. [21, Thm 6.6] There exists an affine connection ∇ which is both compatible
and torsion-free. Moreover this connection is unique.

We call the unique connection ∇ from the theorem above the Levi-Civita con-
nection.

2.3.4 Connection on Tensor Bundles

If ∇ is an affine connection, then ∇ can be extended to all tensor fields T , i.e. T
is a smooth section of (TM)⊗a ⊗ (T ∗M)⊗b. First we define ∇Xω for 1-forms ω by
∇Xω(Y ) = Xω(Y )− ω(∇XY ). It is defined for a tensor field T by

(∇XT )(ω1, . . . , ωa, Y1, . . . , Yb) =∇XT (ω1, . . . , ωa, Y1, . . . , Yb)

−
a∑
i

T (ω1, . . . ,∇Xω
i, . . . , ωa, Y1, . . . , Y

b)

−
b∑
j

T (ω1, . . . , ωa, Y1, . . . ,∇XYj , . . . , Yb)

It also satisfies ∇X(S ⊗ T ) = ∇XS ⊗ T +S ⊗∇XT , for any tensor fields S and T [12],
and therefore also ∇X(α ∧ β) = ∇Xα ∧ β + α ∧∇Xβ for differential forms.

The map ∇T defined by ∇T (. . . , X) = ∇XT (. . . ) is a another tensor field of
covariant order one more than T . From now on, we will always let ∇ denote the
Levi-Civita connection. Recall that the Levi-Civita connection is compatible with the
metric g, that is

∇Xg)X,Y ) = Xg(Y,Z)− g(∇XY, Z)− g(Y,∇XZ) = 0 .

In other words ∇g = 0. The connection is also compatible with the musical isomorph-
isms in the following sense

Lemma 7. Let X,Y, Z ∈ X and ω ∈ C∞Λ1. Then

(∇XY )♭ = ∇XY
♭ and (∇Xα)♯ = ∇Xα

♯.

Proof. We have

0 = ∇Xg(Z, Y ) =Xg(Z, Y )− g(∇XZ, Y )− g(Y,∇XZ)

=XY ♭(Z)− Y ♭(∇XZ)− (∇XY )♭(Z)

=(∇XY
♭)(Z)− (∇XY )♭(Z)
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so (∇XY )♭ = ∇XY
♭. If Y = ω♯, we have the second equality via the isomorphism ♯

on both sides.

2.3.5 Curvature Operators

The curvature can be used to define severalE -linear operators on the tangent bundle.

Definition. The Riemannian curvature Rm is defined by

Rm(X,Y, Z,W ) = ⟨R(X,Y )Z,W ⟩

Let U be an open set in which E1, . . . , En is an orthonormal frame. Let X,Y ∈ X,
we define the Ricci curvature by

Ric(X,Y ) =
n∑

i=1
Rm(Ei, X, Y,Ei) .

For two linearly independent tangent vectors u, v ∈ TpM, their sectional curvature
is

sec(u, v) = Rm(u, v, v, u)
|u ∧ v|2

= ⟨R(u, v)v, u⟩
⟨u, u⟩⟨v, v⟩ − ⟨u, v⟩2

.

This is interpreted as the sectional curvature of the linear subspace spanned by u and
v in the tangent space, since sec(u, v) is independent of which basis we choose for
the subspace. If we choose u and v orthonormal, the denominator is just 1, and the
formula simplifies to sec(u, v) = ⟨R(u, v)v, u⟩. If e1, . . . , en is a basis of TpM, we can
find the sectional curvature for all the

(n
2
)

subspaces spanned by pairs of basis vectors.
Taking a kind of average of the sectional curvatures produces the scalar curvature.
It is given by the formula ∑

i,j

sec(ei, ej) .

The scalar curvature is also the trace of the endomorphism defined by the Ricci
curvature, which should convince the reader that the sectional curvature does not
depend on the basis.

The Ricci curvature is completely defined by the sectional curvature. For any two
tangent vectors u, v ∈ TpM, we have

Theorem 8. If e1 . . . , en is an orthonormal basis of TpM, then

Ric(e1, e1) =
n∑

i=2
sec(eie1)

Proof.

Ric(e1, e1) =
n∑

i=1
Rm(ei, e1, e1, ei) =

n∑
i=2

sec(ei, e1)
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because the the term Rm(ei, ei, ei, ei) is zero by symmetries of the Riemannian
curvature tensor, and |ei ∧ e1| = 1 when i ̸= 1.

This is enough to describe the Ricci curvature because

Ric(u, v) = 1
4(Ric(u+ v, u+ v)− Ric(u− v, u− v))

2.4 Parallel translation

The Levi-Civita connection gives us a way of differentiating vector fields. If a vector
field is defined on the image of a smooth curve γ, the connection also gives a way of
differentiating it in the direction of γ. Differentiating vector fields gives an idea how
the vector field twists and stretches along the curve. A vector fields that does not is
said to be parallel along the curve. Most results in this section are from [21, Section
13–15].

2.4.1 Covariant Differentiation

Theorem 9. Let M be a manifold with an affine connection ∇, and γ : [a, b]→M a
smooth curve in M. Then there is a unique map

D

dt
: Γ(TM|γ)→ Γ(TM|γ)

such that for V ∈ Γ(TM|γ)

(i) D
dt(cV ) = cDV

dt for any real number c.

(ii) For any smooth function f on [a, b],

D

dt
(fV ) = df

dt
V + f

DV

dt

(iii) If V (t) = Ṽ (γ(t)) for some C∞ vector field Ṽ ∈ X, then

DV

dt
= ∇γ′(t)Ṽ

The operation D
dt is called covariant differentiation. A smooth vector field V (t)

along a γ : I →M is parallel if DV
dt = 0 for all t ∈ I. If the vector field V (t) = γ′(t),

and V (t) is parallel, then γ is a geodesic. If V (t) is parallel on the curve γ : [a, b]→M
from p to q , and v = V (a) ∈ TpM, w = V (b) ∈ TqM, then w is a parallel translate
of v along γ. A geodesic γ : [a, b]→M is minimal if its length is equal to the distance
between the endpoints, with respect to dg. It is maximal if its domain cannot be
extended to a larger interval.
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Figure 2.1: Sketch of parallel translation along a curve

Suppose V (t) is a vector field along the curve γ. Let U be a coordinate neighbour-
hood about γ(t0). In coordinates V (t) = vi(t)∂i. By the defining properties of the
covariant derivative

D

dt
vi(t)∂i =dvi

dt
∂i + viD

dt
∂i

=dvi

dt
∂i + vi∇γ′(t)∂i

=
(
dvk

dt
+ vi(γj)′(t)Γk

ij

)
∂k

which shows that V (t) is parallel if and only if the equations dvk

dt + vi(γj)′(t)Γk
ij = 0

are satisfied.

2.4.2 Existence of Geodesics

By using the theory of ordinary differential equations, one can prove the following
theorems.

Theorem 10. Let M be a manifold with connection ∇. Given a point p ∈M, and a
tangent vector v ∈ TpM, there is a geodesic γ(t) with initial conditions: γ(0) = p and
γ′(0) = v. The geodesic is unique in the sense that any other geodesic which satisfies
the initial conditions, agrees with γ(t) on the intersection of their domains.

For a tangent vector v let γv denote the unique maximal geodesic defined by
the theorem above. We want to define a map expp whose domain D(expp) is a
subset of the tangent space at p, and codomain will be a neighbourhood of p. Let
D(expp) = {v ∈ TpM : 1 is in the domain of γv}.

Definition. Let expp : D(expp)→ M be defined by expp(v) = γv(1). Let D(exp) =⋃
p∈MD(expp), and exp: D(exp)→M be defined as the natural extension of expp to⋃
p∈MD(expp).
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In the Riemannian case where we use the Levi-Civita connection, we can, in a small
enough neighbourhood of p, and for small enough tangent vectors, find a geodesic
defined on (−c, c), c > 0.

Theorem 11. For any point p of a Riemannian manifold M and any c > 0, there
is a neighbourhood U about p, and ε > 0 such that for any q ∈ U and v ∈ TqM with
|v| < ε, there is a unique geodesic γ : (−c, c)→M with γ(0) = q and γ′(0) = v.

The last theorem ensures that at each point (p, 0) ∈ TM there exist a neighbourhood
U ×Bε(0) where exp is defined.

Theorem 12. Let M be a Riemannian manifold with connection ∇ and let γ : [a, b]→
M be a smooth curve in M. There exists for every vector v0 ∈ Tγ(a)M a vector filed
along γ which parallel translates v0 to a vector v1 in Tγ(b). Let φa,b : Tγ(a)M→ Tγ(b)M
be the map that takes tangent vectors to its parallel translate along γ. Then φa,b is an
R-linear isomorphism.

2.4.3 Complete Manifolds

Definition. A Riemannian manifold M is said to be geodesically complete if the
domain of every geodesic in M can be extended to the entire real line.

There are equivalent notions of completeness.

Theorem 13 (Hopf–Rinow). [15, Thm 5.7.1] On a connected Riemannian manifold
M, the following statements are equivalent:

1. M is geodesically complete

2. M is metrically complete

3. Every closed and bounded subset of M with respect to the metric is compact

Because geodesic and metric completeness are equivalent, there is no ambiguity in
saying that a connected Riemannian manifold is complete. The third property is very
useful, for example we can deduce that the connected compact manifolds are exactly
the complete manifolds with finite diameter.

Remark. If a manifold is not connected, but is geodesically complete, we can substitute
M for “each connected component of M” in the two last statements.
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2.4.4 Global Results from Pointwise Operators

On complete connected manifolds, there are many results that relate properties of
curvature operators, which are defined on tensor products of the tangent spaces,
with global properties of the manifold. We will concentrate on the cases where the
curvature is “more or less” positive. We mention a result where the sectional curvature
is negative.

Theorem 14 (Cartan–Hadamard). [12, Thm 12.8] If M is a connected complete
Riemannian manifold with non-positive sectional curvature, then for every point p
in M, the map expp : TpM → M is a smooth covering map. Thus the universal
covering space of M is diffeomorphic to Rn. If M is simply connected, then M itself is
diffeomorphic to Rn.

On the other hand, when the sectional curvatures are more positive:

Theorem 15 (Bonnet–Myers). [12, Thm 12.24] Let M be a complete, connected
Riemannian manifold, and suppose there is a positive constant r such that the Ricci
curvature of M satisfies

Ric(v, v) ≥ n− 1
r2

for all unit vectors v. Then M is compact, with diameter less than or equal to πr, and
its fundamental group is finite.

This theorem divides the investigation of manifolds with non-negative Ricci
curvature into two classes, compact manifolds, and manifolds where the greatest
lower bound of the ricci curvature is zero. The first class will be dealt with in
Chapter 3, and the second in Chapter 4.

2.5 Weitzenböck Formula

In this sections we will define the Laplace operator, which we will decompose into a
differential operator and an E -linear map which depends on the curvature of M.

2.5.1 Local Frame Parallel at a Point

First we show that about each point there is an orthonormal frame, which makes a lot
of computations easier.

Lemma 16. [23, Lem 1.1] Let p be a point in M. There is an orthonormal frame
E1, . . . , En in a neighbourhood of p such that ∇XEj(p) = 0 for all X ∈ X.
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Proof. Let (U, ϕ) be a coordinate chart centred at p with ϕ(U) star-shaped. For any
q ∈ U we define a smooth curve γq(t) = ϕ−1(tϕ(q)) from p to q. For a basis e1, . . . , er

of Bp, let Ei(q) be the parallel translate of ei to Bq along γq. We claim that E1, . . . , Er

is a smooth frame in U . The covariant derivative of Ei(t) along γq is zero from the
definition of parallel translation, and we get

0 = D

dt
Ei|t=1 = ∇γ′

q(1)Ei = xj∇∂j
Ei|q = xjωk

i (∂j)Ek|q

where we abuse notation and let Ei also be the vector field along γ. The real maps
xjωk

i (∂j) = 0 on U for each k. We can differentiate each in the ∂ℓ direction.
and evaluating at p on both sides gives

ωk
i (∂ℓ)(p) + xj(p) ∂

∂xℓ
ωk

i (∂j)(p) = ωk
i (∂ℓ)(p) = 0 .

This still holds for any k; and since ∂ℓ and Ei was arbitrary the equation holds for
any i, k and ℓ. We now have that for any X = Xj∂j

∇XEi(p) = Xj∇∂j
Ei(p) = Xjωk

i (∂j)|pEk = 0

By the Gram-Schmidt process, we can choose e1, . . . , er to be orthonormal. Because
∇ is compatible with g, we have that

d

dt
⟨Ei, Ej⟩ =

〈
D

dt
Ei, Ej

〉
+
〈
Ei,

D

dt
Ej

〉
= ⟨0, Ej⟩+ ⟨Ei, 0⟩ = 0 .

where Ei, Ej are vector fields along some γq. Therefore ⟨Ei, Ej⟩ is constantly zero.

This is the same as saying that the connection forms vanish at p, ωj
i (p) = 0. Since

the Levi-Civita connection is torsion-free, 0 = T (Ei, Ej) = ∇EiEj −∇EjEi − [Ei, Ej ],
so [Ei, Ej ] = 0 at the point p. Let θi = (Ei)♭. Then we also have ∇Xθ

i = 0 at p by
Lemma 7 . This extends to the basis elements of Λk(TpM) of the form θI = θi1∧· · ·∧θik

since
∇Xθ

I =
∑

r

θi1 ∧ · · · ∧ ∇Xθ
ir︸ ︷︷ ︸

=0

∧ · · · ∧ θik = 0

As a demonstration of the usefulness of this kind of frame, we show that the Levi-Civita
connection is compatible with the metric on forms, in the sense that ∇X⟨α, β⟩ =
⟨∇Xα, β⟩ + ⟨α,∇Xβ⟩. Let E1, . . . , En be a frame parallel at p. Then ∇XαIθ

I =
(∇XαI)θI + αi∇Xθ

I = (∇XαI)θI and

∇X⟨α, β⟩ = ∇X

∑
I

αIβI =
∑

I

(∇XαI)βI + αI(∇XβI) = ⟨∇Xα, β⟩+ ⟨α,∇Xβ⟩
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2.5.2 Local Formula for the Exterior Derivative and Co-differential

Theorem 17. Let E1, . . . En be an orthonormal frame in a an open subset U of M.
Then we can write the exterior derivative and the co-differential as

dα =
n∑

j=1
θj ∧ (∇Ejα)

and
δα = −

n∑
j=1

ιEj∇Ejα

in U .

Proof. In the proof, let d denote the operator defined as above. We have to check the
three defining properties of the exterior derivative which uniquely defines it.

1. That df(X) = Xf for f ∈ E : Let f ∈ E , and X ∈X , then

df(X) = θj ∧∇Ejf(X) = (Ejf)θj(X) = XjEjf = Xf

2. That d is an anti-derivation of degree 1: Let ω ∈ C∞Λk and τ ∈ C∞Λℓ

d(ω∧τ) = θj∧∇Ej (ω∧τ) = θj∧(∇Ejω)∧τ+θj∧ω∧(∇Ejτ) = dω∧τ+(−1)kω∧dτ

3. That d2 = 0: Let Ẽ1, . . . , Ẽn be a frame as in Lemma 16, and θ̃1, . . . , θ̃n the
dual frame. If A is the matrix such that Ẽ = EA , then ATA = 1. At any point
in U we can substitute orthonormal frame because

θ̃j ∧∇Ẽj
= Ak

j θ
k ∧∇Aℓ

jEℓ
= Ak

jA
ℓ
jθ

k ∧∇Eℓ
= (AAT )k

ℓ θ
k ∧∇Eℓ

= θk ∧∇Ek

We can therefore assume that E1, . . . , En is of the type as defined in Lemma 16.
Let f ∈ C∞Λ0.

d2f =
∑

i

θi ∧∇Ei(
∑

j

(Ejf)θj) =
∑
i,j

(EiEjf)θj ∧ θi

where all terms with i = j vanish, so the ones remaining are

∑
i<j

(EiEjf)θj ∧ θi +
∑
j<i

(EiEjf)θj ∧ θi

which after a change of index in the right sum is

=
∑
i<j

([Ei, Ej ]f)θj ∧ θi = 0



2.5 Weitzenböck Formula 21

since ∇ is torsion-free, and [Ei, Ej ] vanishes at p. Suppose dk+1dk = 0 where
k < ℓ . If ω ∈ C∞Λℓ, then

d2ω =d
(
d(ωIdx

I1 ∧ · · · ∧ dxIℓ−1) ∧ dxIℓ + (−1)ℓ−1(ωIdx
I1 ∧ · · · ∧ dxIℓ−1) ∧ d2xIℓ

)
=(d2(ωIdx

I1 ∧ · · · ∧ dxIℓ−1)) ∧ dxIℓ + (−1)ℓ(d(ωIdx
I1 ∧ · · · ∧ dxIℓ−1)) ∧ d2xIℓ)

=0

and by induction d2 = 0

In the second equation of the theorem we may also assume that the frame E1 . . . , En

is such that ∇Ei = [Ei, Ej ] = 0 at p, and the computations are carried out at this
point. Recall that δk+1 = (−1)nk+1 ⋆ d⋆. By using our equivalent definition of d, we
can write

δk+1ω = (−1)nk+1 ⋆
∑

j

θj ∧∇Ej ⋆ ω

We see that the new formula for δ coincides with the old.

−
∑

j

ιEj∇Ejω =−
∑

j

ιEj (EjωI)θI =

=−
∑

j

∑
r

(EjωI)δir
j (−1)r−1θi1 ∧ · · · ∧ θ̂ir ∧ · · · ∧ θik+1

=−
∑

j

∑
r

(EjωI)δir
j (−1)(n−(k+1))k ⋆ (θir ∧ ⋆θI)

= ⋆
∑

j

(−1)nk+1θj ∧ (EjωI) ⋆ θI

=(−1)nk+1 ⋆
∑

j

θj ∧∇Ej ⋆ ω

2.5.3 The Rough Laplacian

Let ∇ be an affine connection. We have seen that for any tensor field T , we have
covariant derivative ∇T which is another tensor field. Applying ∇ to ∇T gives another
tensor field ∇2T called the Hessian of T . The Hessian of T defines an E -linear map
(X,Y ) 7→ ∇2

X,Y T , where

∇2
X,Y T = (∇X∇Y −∇∇XY )T .

Linearity in the first variable is trivial. Let f ∈ E ,

∇2
X,fY α =∇X∇fY α−∇∇XfY α

=(Xf)∇Y α+ f∇X∇Y α−∇(Xf)Y +f∇XY α

=f(∇X∇Y −∇∇XY )α
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If ∇ is torsion-free, then (∇2
X,Y −∇2

Y,X)α = R(X,Y )α.
The Rough Laplacian L is the trace of the Hessian. If α is a k-form, and

E1, . . . , En is an orthonormal frame in an open subset U of M, then Lα is given by

Lα =
∑

i

∇2
Ei,Ei

α

2.5.4 Decomposition of the Laplace Operator

We need a small lemma in order to prove the decomposition of the Laplace operator.

Lemma 18. Let X,Y ∈ X and ω ∈ C∞Λk. Covariant differentiation of ιY ω satisfies
the Leibniz rule in sense that

∇X(ιY ω) = ι∇XY ω + ιY∇Xω

Proof.

∇X(ιY ω)(Z1, . . . , Zk) =XιY ω(Z1, . . . , Zk)−
k∑

j=1
ιY ω(Z1, . . . ,∇XZj , . . . , Zk)

=Xω(Y, Z1, . . . , Zk)−
k∑

j=1
ω(Y,Z1, . . . ,∇XZj , . . . , Zk)

=ιY∇Xω(Z1, . . . , Zk) + ι∇XY ω(Z1, . . . , Zk)

Theorem 19 (Weitzenböck Formula). The Laplace operator ∆ can be written as

∆ = L+
∑
i,j

θi ∧ ιEjR(Ei, Ej) = L−R

where R is an E -module endomorphism on C∞Λk(M)

Proof. Let E1, . . . , En be an orthonormal frame about p which is parallel at p. Let
θ1, . . . , θn be the dual co-frame. At the point p, we have

∆ω =
∑
i,j

ιEj∇Ej (θi ∧∇Eiω) + θi ∧ (∇EiιEj∇Ejω)

=
∑
i,j

ιEj (θi ∧∇Ej∇Eiω) + θi ∧ (∇EiιEj∇Ejω)

=
∑

i

∇Ei∇Eiω + θi ∧ (∇EiιEj∇Ejω − ιEj∇Ej∇Eiω)

=
∑

i

∇Ei∇Eiω +
∑
i,j

θi ∧ ιEj

(
R(Ei, Ej) +∇[Ei,Ej ]

)
ω

And since both ∇∇Ei
Ei and ∇[Ei,Ej ] vanish at p we have our desired equality at that

point. That R is an E -module endomorphism is clear since R(Ei, Ej) is E -linear.
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Hodge Theory

3.1 De Rham cohomology

A topological invariant, is a property of topological spaces which are common to spaces
that are homeomorphic. For smooth manifolds, one topological invariant is the de
Rham cohomology. The k’th de Rham cohomology of M, denoted by Hk

dR(M) is a real
vector space, and is a topological invariant of M [11, Cor 17.12]

3.1.1 De Rham Complexes

The de Rham cohomologies are constructed by taking quotients in a complex of vector
spaces. Since the exterior derivative d has the property that dk+1dk = 0, we can form
the complex

C∞Λ0 C∞Λ1 · · · C∞Λk C∞Λk+1 · · ·d0 d1 dk−1 dk dk+1

called the de Rham complex. At each C∞Λk we define the k’th de Rham
cohomology by

Hk
dR(M) = Ker dk

Im dk−1

We can also the define the compact de Rham cohomology Hk
0,dR(M) by taking quotients

in the complex

C∞
0 Λ0 C∞

0 Λ1 · · · C∞
0 Λk C∞

0 Λk+1 · · ·d0 d1 dk−1 dk dk+1

where C∞
0 Λk is the space of k-forms with compact support. The quotient

Hk
0,dR(M) := Ker d(C∞Λk

Im d(C∞
0 Λk+1)

makes sense since for any (k+1)-form ω, supp dω is a closed subset of suppω. Difference
between C∞Λk and C∞

0 Λk exists, of course, only when M is not compact; and the
same is true for Hk

0,dR(M) and Hk
dR(M).

3.1.2 Hodge Theorem

In the rest of the chapter we will study only compact Riemannian manifolds M, with
an orientation, and no boundary. The main result in this chapter is a decomposition
of the differential forms on for manifolds of this type.

23
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Theorem 20 (Hodge Decomposition). Let M be a compact oriented Riemannian
manifold. For each integer 0 ≤ k ≤ n, the k’th de Rham cohomology Hk

dR(M) is finite
dimensional, and we have the following orthogonal decomposition of C∞Λk:

C∞Λk =∆(C∞Λk)⊕H Λk

=δd(C∞Λk)⊕ dδ(C∞Λk)⊕H Λk

=δ(C∞Λk+1)⊕ d(C∞Λk−1)⊕H Λk

We postpone the proof, to first explain the decomposition’s relation with the de
Rham cohomology. For ω ∈ C∞Λk, let Hk : C∞Λk → C∞Λk be the projection taking
ω onto its harmonic part of Hkω. We can restrict Hk to the closed forms, defining a
surjective map Hk : Ker dk →H Λk. The kernel of Hk is clearly the set of forms ω
that are of the form ω = dα+ δβ. Since we know dω = 0 we have

0 = ⟪dω, β⟫ = ⟪d2α+ dδβ, β⟫ = ∥δβ∥2

and therefore ω = dα, i.e. ω ∈ Im dk−1. We therefore have isomorphism H Λk ∼=
Hk

dR(M). The isomorphism between de Rham cohomology and the harmonic forms is
known as the Hodge Theorem.

3.2 Differential operators

To prove the Hodge decomposition theorem, need two analytical result from the theory
of Fourier Analysis. Most of the material in this sections can be found in [22, Chap 6],
where the reader can also find proofs for various statements in this section.

3.2.1 Fourier Series

We need some notation for higher derivatives.

Definition. Let α ∈ Zn, then [α] = α1 + α2 + · · ·+ αn. We define

Dα :=
(1
i

)[α] ∂[α]

∂xα1
1 · · · ∂x

αn
n

and ξα := ξα1
1 · · · ξ

αn
n

when ξ ∈ Rn. The 1/i therm is there to simplify formulas by cancelling the imaginary
unit when differentiating e−ix·ξ.

Definition. Let C∞
2π(Rn,Cm) denote the smooth maps f : Rn → Cm, which are

(2π)-periodic, i.e. f(x1, . . . , xi + 2π, . . . , xn) = f(x1, . . . xi, . . . , xn). The elements
of C∞

2π(Rn,Cm) can be identified with smooth maps on the cube Q = [0, 2π]n with
opposite sides identified.
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Each function f in C∞
2π(Rn,Cm) can be represented as an infinite sum

f(x) =
∑

ξ∈Zn

fξe
ix·ξ (3.1)

where fξ ∈ Cm, and the sum converges uniformly to f . The j’th coordinate of fξ is
the Fourier transform of the j’th component

(fξ)j = 1
(2π)n

∫
Q
f j(x)e−ix·ξ dx (3.2)

evaluated at ξ. We call (fξ)ξ∈Zn the Fourier coefficients of f , and the whole series
the Fourier series of f . We can now identify each f in C∞

2π(Rn,Cm) with a sequence
(fξ)ξ∈Zn of complex vectors fξ ∈ Cm.

The space of all sequences (aξ)ξ∈Zn ⊂ Cm is denoted by S . There is an injection
C∞

2π(Rn,Cm) ↪→ S , by f 7→ (fξ)ξ∈Zn .
The Fourier coefficient of the derivative Dkf have components

(Dkfξ)j = 1
(2π)n

∫
Q

(Dkf j(x))e−ix·ξ dx = − 1
(2π)n

∫
Q
f j(x)Dke−ix·ξ dx = ξk(fξ)j

where we integrate by parts in the second step. Higher derivatives therefore are of the
form

Dαf(x) =
∑

ξ∈Zn

ξαfξe
ix·ξ .

Differentiation of elements in C∞
2π(Rn,Cm) is therefore done, simply by substituting

Dα for ξα.

3.2.2 Sobolev Spaces

The Fourier Series representation of the derivatives Dαf motivates a definition of the
derivative on S , simply by defining Dα(aξ)ξ∈Zn = (ξαaξ)ξ∈Zn . The s’th Sobolev
space Hs is the subspace of S containing elements (aξ)ξ∈Zn such that the squared
norm of the derivatives |Dα|2 =

∑
ξ∈Zn |ξαfξ|2 converge for each α with [α] ≤ s. The

elements of the s’th Sobolev space is interpreted as the elements that are s times
differentiable.

There are positive constants c, C such that

c(1 + |ξ|2)s ≤
∑

[α]≤s

|ξα|2 ≤ C(1 + |ξ|2)s (3.3)

holds for each ξ ∈ Zn, and therefore an equivalent description of Hs is all elements
(aξ)ξ∈Zn in S such that ∑

ξ

(1 + |ξ|2)s|aξ|2 < +∞ .
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Each Sobolev space Hs have inner product

⟪(aξ), (bξ)⟫Hs =
∑

ξ∈Zn

(1 + |ξ|2)saξ · bξ

making it a Hilbert space, that all contain C∞
2π(Rn,Cm) as a dense subspace. For

elements in C∞
2π(Rn,Cm), the inner product in H0 is the same as the usual L2 inner

product, i.e.
1

(2π)n

∫
f · g dx =

∑
ξ

fξ · gξ

for all f, g ∈ C∞
2π(Rn,Cm). We also define H−∞ :=

⋃
s∈ZH

s.
The two next lemmas are important in the proof of the Hodge Decomposition.

Since the s’th Sobolev Spaces are formally functions that are s-times differentiable,
the following theorem makes sense.

Lemma 21 (Sobolev). If u ∈ Hs for each s ∈ Z, then u ∈ C∞
2π(Rn,Cm).

The Sobolev theorem can be stated in greater generality [22, Lem 6.22], but for
our purpose this is sufficient.

Lemma 22 (Rellich). The injections Hs+ℓ → Hs, where ℓ > 0, are compact.

3.2.3 Differential Operators in Euclidean Space

We define differential operators on Euclidean space first. Later we will see how this
generalizes to manifolds.

Definition. A differential operator P of order ℓ on an open set U ⊂ Rn consists
of a matrix [Pij ], where

Pij =
∑

[α]≤ℓ

aij
αD

α (3.4)

where each aij
α is a C∞ function on U . A differential operator on Rn is a differential

operator on C∞
2π(Rn,Cm) if each aij

α is (2π) periodic.

We can decompose P as P = Pℓ + P<ℓ such that (Pℓ)ij =
∑

[α]=ℓ a
ij
αD

α, and
(P<ℓ)ij =

∑
[α]<ℓ a

ij
αD

α. The operator Pℓ is called the principal part of P . Substi-
tuting Dα for ξα in Pℓ yields a matrix of polynomials Pℓ(ξ) with ξ as indeterminate.
At each point x ∈ U we define a map σx : Rn → Rm×m defined by the polynomial
Pℓ(ξ) is called the symbol of P . We say that the operator P is elliptic at x if ξ ̸= 0
implies σx(ξ) ∈ GL(m,C), i.e. σx(ξ) is non-degenerate, for each point p in U .
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3.2.4 Differential Operators on Manifolds

Definition. Let π : B → M be a smooth vector bundle of rank r. A differential
operator P of order ℓ on the bundle π : B →M is an R-linear map P : Γ(B)→ Γ(B),
and for each point there is a trivializing coordinate patch U such that on π−1(U) ∼=
U × Rr, P can be written as a differential operator on ϕ(U). That is to say that if s
is a C∞ section of B, which by the local trivialization is equivalent to being a smooth
map s : ϕ(U)→ Rr, then Ps is defined by a differential operator on ϕ(U).

We allow the fibers of B to be complex vector spaces. If they are not, we must
make sure that the differential operator does not involve any complex numbers.

An operator P is elliptic if it is defined locally by an elliptic operator on ϕ(U).
This definition of ellipticity is independent of trivialization. Let Ap be the matrix
such that sp = Aps̃p where sp and s̃p are coordinate vector with respect to two
different trivializations. Let (Ps)p = Qpsp = Q̃ps̃p where Q and Q̃ are matrices of the
form described in (3.4). Then Qp(Aps̃p) = Q̃ps̃p. By the Leibniz rule, the principal
part of Q̃p is QpAp where (QpAp)ij = aik

α A
k
jD

α. Therefore σQ̃(ξ) = σQ(ξ)A, where
A ∈ GL(r,R). Similarly, a coordinate change substitutes ∂

∂xi with
∑ ∂x̃j

∂xi
∂

∂x̃j , and
therefore substitutes ξ for Jξ where J is the Jacobian matrix, which is non-degenerate
since coordinated changes are diffeomorphisms. So if Q and Q̃ define P with respect
to x and x̃, then σQ̃(ξ) = σQ(Jξ), such that Q̃ defineds an elliptic operator if and only
if Q defines an elliptic operator.

For us, the most important example of a an elliptic operator is the Laplace operator:

Proposition 23. The Laplace operator ∆ is elliptic on M.

Proof. Let U a coordinate chart where we also have an orthonormal frame E1, . . . , En.
Then by the Weitzenböck formula, the Laplace operator is given by

∆ = L−R =
∑

i

∇2
Ei,Ei

+
∑
i,j

θi ∧ ιEjR(Ei, Ej) .

The frames {Ei} and {∂j} are related by a matrix A, such that Ei = Aj
i∂j . Notice

that (AAT )i
j =

∑
k A

i
kA

j
k, and that

δi
j =gikgkj

=gik⟨∂k, ∂j⟩g
=gik⟨(A−1)r

kEr, (A−1)s
jEs⟩g

=gik((A−1)T )k
r (A−1)r

j

=gik((AAT )−1)k
j

=(g−1(AAT )−1)i
j ,
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which shows that gij =
∑

k A
i
kA

j
k. Clearly the principal part of ∆ is contained in L.

Let α be a smooth k-form.

Lα =
∑

i

∇2
Ei,Ei

α

=
∑

i

Ak
iA

ℓ
i∇2

∂k,∂ℓ
α

=gkℓ(∇∂k,∇∂ℓ
αJθ

J −∇∇∂k
∂ℓ
αJθ

J)

=gkℓ(∂k∂ℓαJθ
J + ∂kαJ∇∂ℓ

θJ + ∂ℓ∇∂k
θJ + αJ∇∂i

∇∂ℓ
θJ

− (∇∂k
∂ℓαJ)θJ − α∇∇∂k

∂ℓ
θJ)

which means that ∆ has principal part which is non-zero only on the diagonal. The
determinant of the symbol is therefore of the form −(ξT g−1ξ)r, which equals zero if
and only if ξ = 0 , because g−1 is positive definite.

3.2.5 Elliptic Operators on Sobolev Functions

For real maps a(x), b(x) with common domain D, the statement “a(x) ≲ b(x)” for
x ∈ D” means that there is some constant C > 0 such that a(x) ≤ Cb(x) for all x ∈ D.
For example, a linear map M on a normed space X is bounded if ∥Mx∥ ≲ ∥x∥ for
x ∈ X.

On the Sobolev spaces, elliptic operators have some nice properties. These are
needed to prove properties for elliptic operators on manifolds, especially the Laplace
operator. A differential operator P of order ℓ on C∞

2π(Rn,Cm) defines a bounded
operator P : Hs+ℓ → Hs by defining P on the dense subset C∞

2π(Rn,Cm) and extend
by continuity.

Theorem 24. [22, Prop 6.29] Let P be an elliptic operator on C∞
2π(R,Cm) of order ℓ,

and let s be an integer. Then

∥u∥Hs+ℓ ≲ ∥Pu∥Hs + ∥u∥Hs

for u ∈ Hs+ℓ .

The other theorem we need is

Theorem 25. [22, Thm 6.30] Let P be an elliptic operator on C∞
2π(Rn,Cm) of order

ℓ. If u ∈ H−∞, v ∈ Hs and Pu = v; then u ∈ Hs+ℓ.

The spirit of the last theorem is that if Pu = v is s-times differentiable, then u is
s+ ℓ times differentiable.



3.2 Differential operators 29

3.2.6 Properties of the Laplace operator

Let L2Λk be the completion [19, p.97] of C∞Λk with respect to the L2-norm on C∞
0 Λk.

The Laplace operator will be considered as an unbounded operator whose domain
Dom ∆ is C∞

0 Λk. Let ∆∗ be the adjoint of ∆. We say that λ ∈ L2Λk is a weak
solution to the equation ∆α = ω, if

⟪∆∗λ, φ⟫ = ⟪λ,∆φ⟫ = ⟪ω, φ⟫

for each φ in C∞Λk. By Riesz representation theorem, λ can also be considered as an
element of (L2Λk)′.

Theorem 26. [22, Thm 6.5] Let ω ∈ C∞Λk, and λ a weak solution of the equation
∆α = ω. Then there exists α ∈ C∞Λk such that λ = ⟪α, · ⟫, and ∆α = ω.

Proof. We will show that at each point p of the manifold, there is a C∞ k-form αp

defined in a small neighbourhood Np of p, such that for each φ ∈ C∞Λk with support
in Np, λ(φ) = ⟪αp, φ⟫. We see that if p ≠ q and Npq := Np ∩Nq is non-empty, then
for any φ with support in Npq, we have

⟪αp − αq, φ⟫ = ⟪αp, φ⟫− ⟪αq, φ⟫ = λ(φ)− λ(φ) = 0

and therefore αp = αq in Npq. Let {ρp} be a partition of unity sub-ordinate to {Np}.
The C∞ k-form α :=

∑
p ρpαp agrees with λ since for any φ ∈ C∞

0 Λk

⟪α,φ⟫ =
∑
⟪αp, ρpφ⟫ =

∑
λ(ρpφ) = λ(φ)

The rest of the proof is showing that we can find αp for each p ∈M. Let p be a fixed
point in M, and ϕ be a coordinate chart about p. We can find an open neighbourhood
U ⊂ Rn of q := ϕ(p) which is contained in a (2π)-cube in Rn, small enough that
ϕ−1(U) is an open trivializing neighbourhood of p. Let V be a smaller neighbourhood
of q whose closure is contained in U . There exists a C∞ map η : Rn → [0, 1] which is
identically 1 on V and zero outside U [10, Cor 2.14]. Because ϕ−1(U) is trivializing we
can find an orthonormal frame E1, . . . , Ek for TM and corresponding frame θI1 , . . . , θIm

for ΛkT ∗M where m =
(n

k

)
. We have a correspondence

{f ∈ C∞(Rn,Cm) : supp f ⊂ U} ↔
{
α ∈ C∞Λk : suppα ⊂ ϕ−1(U)

}
(3.5)

(f1, . . . , fm) 7→ (f1 ◦ ϕ)θI1 + · · ·+ (fm ◦ ϕ)θIm

We can therefore, for example treat a function f : Rn → Cm with support in U as a
form with support in ϕ−1(U), and vice versa. For example, if f ∈ C∞

2π(Rn,Cm) define

∥ηf∥ := ∥(η ◦ ϕ )((f1 ◦ ϕ)θI1 + · · ·+ (fm ◦ ϕ)θIm)∥
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In addition to the H0-inner product

⟪φ,ψ⟫H0 := 1
(2π)n

∫
U

∑
i

φiψi dr

we can also take into account the volume scaling induced by the metric on ϕ−1(U)
which yields

⟪φ,ψ⟫ =
∫

ϕ−1(U)
⟨φ,ψ⟩ dx =

∫
U

∑
φiψi√g dr ≤ {sup

r∈U
(2π)n√g(r)}⟪φ,ψ⟫H0

and therefore
⟪φ,ψ⟫H0 ≲ ⟪φ,ψ⟫ ≲ ⟪φ,ψ⟫H0

for φ,ψ in C∞(Rn,Cm) with support in U . Let A = (2π)n√g, then we have the
relations

⟪φ,Aψ⟫H0 = ⟪φ,ψ⟫ and ⟪φ,A−1ψ⟫ = ⟪φ,ψ⟫H0

Because C∞
2π(Rn,Cm) is dense in H0, we can for each u ∈ H0 find a sequence (uj) of C∞

periodic maps converging to u. Let λ̃ be the extension of λ to H0 by λ̃(u) = limλ(ηuj).
Since λ̃ is a continuous linear functional on the Hilbert space H0, there is by Riesz’
theorem some element y ∈ H0 such that ⟪y, ·⟫H0 = λ̃. The Laplace operator ∆ defines
a differential operator ∆̃ for functions f ∈ C∞

2π(Rn,Cm) with compact support in U by

∆̃f = ((∆̃f)1, . . . , (∆̃f)m)

where
(∆̃f)j = ⟨∆(f1θ

I1 + · · · fmθ
Im), θIj ⟩

The operator ∆̃ is elliptic on U . We would like to substitute ∆̃ with an elliptic operator
which is periodic on Rn in order to apply Theorem 25. An obvious example of such
an operator is the operator M =

(∑n
i=1

∂
∂ri

∂
∂ri

)
I where I is the identity matrix. The

differential operator P = η∆̃ + (1− η)M agrees with ∆̃ on V , but also agree with M

around the boundary of Q. We see that P is elliptic since

(−1)m((ηξT gξ)m + ((1− η)|ξ|2)m) ̸= 0

for every ξ ∈ R, at every point in Q. By extending P periodically, we have a periodic
elliptic operator on C∞

2π(Rn,Cm). There exists an adjoint operator P ∗ such that

⟪Pφ,ψ⟫H0 = ⟪φ, P ∗ψ⟫H0

for every φ,ψ ∈ C∞
2π(Rn,Cm). If either φ or ψ have support in V , then

⟪φ, P ∗ψ⟫H0 = ⟪Pφ,ψ⟫H0 = ⟪∆φ,A−1ψ⟫ = ⟪φ,∆A−1ψ⟫ = ⟪φ,A∆A−1ψ⟫H0
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Let (yj) ⊂ C∞
2π(Rn,Cm), yj → y in H0 and φ ∈ C∞

2π(Rn,Cm). Then

⟪Py, φ⟫H0 =⟪P (y − yj), φ⟫H0 + ⟪Pyj , φ⟫H0

=⟪P (y − yj), φ⟫H0 + ⟪yj , P
∗φ⟫H0 (3.6)

=⟪P (y − yj), φ⟫H0 − ⟪y − yj , P
∗φ⟫H0 + ⟪y, P ∗φ⟫H0

and since P : H0 → H−2 is a bounded operator

|⟪P (y − yj), φ⟫H0 − ⟪y − yj , P
∗φ⟫H0 | ≲ ∥y − yj∥H0(∥φ∥H−2 + ∥P ∗φ∥H0)

which goes to zero as j →∞, and we have the equality

⟪Py, φ⟫H0 = ⟪y, P ∗φ⟫H0

and if φ has support in V , then P ∗ = A∆A−1 in (3.6), and

⟪Py, φ⟫ = ⟪y,A∆A−1φ⟫

Via the identification (3.5), ηω : U → Cm. We claim that ηPy = ηω, so ηPy is C∞.
Let φ ∈ C∞

2π(Rn,Cm), then

⟪ηPy − ηω, φ⟫H0 =⟪Py, ηφ⟫H0 − ⟪ηω, φ⟫H0

=⟪y,∆A−1ηφ⟫L2 − ⟪ω,A−1ηφ⟫L2

=λ(∆A−1ηφ)− λ(∆A−1ηφ) = 0

Now P (ηy) = ηPy + [P, η]y where [P, η] is a first order operator. Therefore [P, η]y ∈
H−1 and so is P (ηy). Let W be neighbourhood of q, with W ⊂ V . There exists a
sequence (Sj)j∈N of open neighbourhoods of q such that

W ⊂ Sj+1 ⊂ Sj+1 ⊂ Sj ⊂ Sj ⊂ V

for each j ∈ N, and corresponding C∞ functions ηj : Q→ [0, 1] that are identically 1
on Sj and vanish outside Sj+1. They have the property that ηj+1ηj = ηj+1 for each
j. By the elliptic regularity theorem, η1y ∈ H1. By induction, ηjy = ηjηj−1 . . . η1η

is an element of Hj . Let η∞ be a smooth map that is identically equal to 1 on Ω
and 0 outside W . Then η∞y = η∞ηjy for each j and is therefore contained in each
Hj and must therefore be C∞ by Lemma 21. Let αp be the C∞ k-form defined on
Np = ϕ−1(Ω) by αp = A−1η∞y. Then for any φ with support in Np,

⟪αp, φ⟫L2 = ⟪A−1η∞y, φ⟫L2 = ⟪y, η∞φ⟫H0 = λ(φ)
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q

Figure 3.1: Sketch of the neighbourhoods around q.

Theorem 27. Let (αi) be a sequence of smooth k-forms on the compact manifold
M such that ∥αi∥ + ∥∆αi∥ < C for some C > 0. Then a sub-sequence of (αn) is a
Cauchy sequence in C∞Λk.

Proof. We use the same set up as in the proof above. Around ϕ(p), there is a
neighbourhood V such that ∆ agrees with a periodic second order operator P . Let
Bp = ϕ(V ). Because M is compact, there is a finite sub-cover {Bκ} of {Bp} covering
M. Let {ρκ} be a partition of unity subordinate to the covering {Bκ}. By Theorem 24

∥ρκαi∥H1 ≲∥Pρκαi∥H−1 + ∥ρκαi∥H−1

≲∥ρκPαi∥H−1 + ∥[P, ρκ](ηαi)∥H−1 + ∥ρκηαi∥H0

≲∥ρκ∆αi∥H0 + ∥ηαi∥H0 + ∥ρκ∥∞∥ηαi∥H0

≲∥∆αi∥+ ∥αi∥

≲C

for each αn. By Rellich lemma, the injections Hs+1 → Hs are compact, i.e. there is
some sub-sequence (ρκαn) which converges in H0. We can find a sub-sequence which
converges for each κ, and thus αn is a Cauchy sequence.

∥αi − αj∥L2 ≲
∑

κ

∥ρκ(αi − αj)∥H0 ≲ ε (3.7)

for large enough i, j.

Notice that the the compactness of M is necessary for the last theorem since this
allows us to add up a finite number of terms in (3.7).
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3.3 Hodge Decomposition

3.3.1 Proof of Hodge Decomposition

Proof. There are some advantages with assuming C∞Λk are complex forms. By abuse
of notation C∞Λk is the space of complex k-forms. Of course the real forms are
contained in C∞Λk. There is a natural way to extend the inner product to the
complex forms, such that the new inner product is Hermitian. Since ∆ is densely
defined, we have the decomposition L2Λk = Im ∆⊕Ker ∆∗. However, if ∆∗α = 0, then
α is a weak solution to the equation ∆α = 0. This in turn means that α is smooth by
Theorem 26 . We know from before that on smooth forms ∆∗ = ∆. Therefore we have
L2Λk = Im ∆ ⊕H Λk. We will show that H Λk is finite dimensional. Assume the
contrary. Then there exists an orthonormal sequence of harmonic forms (εi). Clearly

∥εj∥+ ∥∆εj∥ = ∥εj∥ ≤ 1 ,

and by Theorem 27, (εj) is a Cauchy sequence, which is absurd since ∥εi − εj∥2 = 2.
Therefore Hk must be finite dimensional. Suppose ω is a smooth form. By the
decomposition ω = lim ∆αi +β where β is harmonic. The element lim ∆αi is a smooth
form, that is to say that there is a smooth form γ such that for all φ ∈ C∞Λk, we have
lim⟪∆αi, φ⟫ = ⟪γ, φ⟫. Then again by regularity, there is a smooth form α such that
∆α = γ. So for smooth forms we have decomposition C∞Λk = Im ∆⊕Hk. The rest
follow from the fact that Im d ⊥ Im δ and that ∆ω = 0 if and only if dω = δω = 0.

We can see immediately that if f ∈ E is H , then∫
M
|df |2 dx =

∫
M
⟨−∆f, f⟩ dx = 0

which by continuity of df means that f is constant on each connected component.
By the Hodge Decomposition H0

dR(M) ∼= H Λ0(M) ∼= Rp where p is the number of
connected component of M. We have a similar theorem where we only assume that f
is sub-harmonic, i.e. ∆f ≥ 0.

Lemma 28. Suppose f ∈ E (M) and f,∆f ≥ 0. Then f is constant on each connected
component.

Proof. Let f be as in the statement, then

0 ≤ ∥df∥2 = ⟪δdf, f⟫ = −
∫
M

(∆f)f dx ≤ 0

so f is constant .
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3.3.2 Positive Weitzenböck Curvature

We shall see that information about the Weitzenböck operator Rk : ΛkT ∗M→ ΛkT ∗M
determines much about the de Rham cohomologies. We say that Rk > 0 at the point
p ∈ M if ⟨Rkαp, αp⟩ > 0 for every non-zero αp ∈ ΛkTpM. Similarly we can have
Rk ≥ 0.

Theorem 29. If M is a connected compact manifold with Rk ≥ 0 almost everywhere,
and Rk > 0 at some point p, then Hk

dR(M) = 0.

Proof. By the Weitzenböck formula ∆k = L−Rk. Now, let ω ∈ C∞Λk, and E1, . . . , En

an orthonormal frame parallel at p, then computation at p yields

∆|ω|2 = L|ω|2 =
∑

i

∇Ei∇Ei⟨ω, ω⟩ = 2
∑

i

|∇Eiω|2 + 2⟨∆kω, ω⟩+ 2⟨Rkω, ω⟩

If ω is harmonic, then

1
2∆|ω|2 =

∑
i

|∇Eiω|2 + ⟨Rω, ω⟩ ≥ 0

By Lemma 28, |ω|2 is constant, all its derivatives vanish and hence ∆|ω|2 = 0. This
gives

0 =
∑

i

|∇Eiω|2 + ⟨Rω, ω⟩

We necessarily have |∇ω| = 0, everywhere. Because R > 0 at one point p, ωp = 0.
And since |∇ω| = 0, ω is identically zero.

3.3.3 Poincaré Duality

Theorem 30. The bilinear map (·, ·) : Hk
dR(M)×Hn−k

dR (M)→ R defined by

([α], [ω]) =
∫
M
α ∧ ω

is a non-degenerate pairing, and therefore determines an isomorphism between Hk
dR(M)

and
(
Hn−k

dR (M)
)∗

.

Proof. First, notice that the if α and β are co-homologous closed k-forms, and α−β =
dγ. Then for any closed (n− k)-form ω,∫

M
α ∧ ω =

∫
M

(β + dγ) ∧ ω =
∫
M
β ∧ ω +

∫
M
d(γ ∧ ω)±

∫
M
γ ∧ dω =

∫
M
β ∧ ω

The bi-linear map (·, ·) is therefore well-defined. To show that the bi-linear map is non-
degenerate, it suffices to show that any non-zero element of Hk

dR(M) defines a functional
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which is not identically zero. Let α ∈ Hk
dR(M) be the harmonic representative of a

non-zero cohomology class. Because α is harmonic, 0 = δα = ± ⋆ d ⋆ α. Since the
Hodge star is an isometry, d⋆α = 0 and therefore represents the class [⋆α] in Hn−k

dR (M).
Evaluating gives

([α], [⋆α]) =
∫
M
α ∧ ⋆α = ∥α∥2 > 0

which shows that ([α], ·) is not identically zero.

Since the cohomologies of the compact manifold M are finite dimensional, we also
have isomorphisms Hk

dR(M) ∼= Hn−k(M).
De Rham cohomology is isomorphic to the singular cohomology with coefficients

in R, a fact which is called the De Rham theorem [11, 18.14].
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Cohomology on Non-Compact Complete Manifolds

4.1 Stokes’ Theorem on Complete Manifolds

When M is a complete connected manifold, we have a Stoke’s theorem for L2-forms.
The proof is dependent of the existence of a sequence of maps whose support exhausts
the manifold, and have controlled derivatives.

4.1.1 Cut-off Function on M

Let o be a fixed point in M, the function ρ : M → [0,∞) defined by ρ(p) = d(o, p)
gives the distance from our chosen origin o. The closed sets Br = ρ−1([0, r]) form
a sequence which exhaust M. For each pair Br and Bs r < s there exists a smooth
function χr<s : M → [0, 1] with the property that χr<s = 1 on Br, and χr<s = 0 on
M \ Bs. They also have the property that |dχr<s|L∞ ≤ c/(s− r) for some constant
c. By using the “Gaffney cut-off trick” [8] one can show that the above theorem has

o r−rM = R

− 1
s−r

−c 1
s−r1

χr<s

χr<s′

s
−s−s′

s′

Figure 4.1: Sketch of cut-off function on the real line. The idea is the same on any
complete manifold.

an analogue where we do not require any of the forms to have compact support. Let
the L1-norm be defined on forms by ∥ω∥L1 =

∫
M |ω| dx. The main theorem in [8] is a

Stokes’ theorem for complete manifolds

Theorem 31 (Stokes). Let M be a complete Riemannian manifold. If ω ∈ C∞Λn−1

and ∥ω∥L1 , ∥dω∥L1 <∞, then ∫
M
dω = 0

37
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Proof. Let 0 < r < s. Now∣∣∣∣∫
M
χr<sdω

∣∣∣∣ =
∣∣∣∣∫

M
d(χr<sω)− (dχr<s) ∧ ω

∣∣∣∣ ≤ K∥dχr<s∥L∞∥ω∥L2 ≤ K∥ω∥L2
1

s− r

and since χr<sdω → dω as r →∞

∥dω∥ = ∥dω − χr<sdω∥+ ∥χr<sdω∥ < ε

for large enough r and s.

Theorem 31 gives us the necessary means to prove a generalization of Theorem 3
to complete manifolds.

Corollary 32. Let M be a complete manifold. If α ∈ C∞Λk ∩ L2Λk, dα ∈ L2Λk+1

and β ∈ C∞Λk+1 ∩ L2Λk+1, δβ ∈ L2Λk, then

⟪dα, β⟫ = ⟪α, δβ⟫

Proof. Now,
⟨dα, β⟩ volg = dα ∧ ⋆β = d(α ∧ ⋆β) + ⟨α, δβ⟩ volg (4.1)

We claim that α∧⋆β satisfies the requirements to use Theorem 31. There is a constant
K from (2.1), for which the inequality

|α ∧ ⋆β| ≤ K|α||β| = K⟨|α|, |β|⟩

holds at every point p ∈M. Integrating and using the Schwartz-inequality gives

∥α ∧ ⋆β∥L1 ≤ K∥α∥L2∥β∥L2 <∞

similarly
|d(α ∧ ⋆β)| = |dα ∧ ⋆β − α ∧ ⋆δβ| ≤ K (|dα||β|+ |α||δβ|)

such that
∥d(α ∧ ⋆β)∥L1 ≤ K (∥dα∥L2∥β∥L2 + ∥α∥L2∥δβ∥L2) <∞ .

Integrating (4.1) gives

⟪dα, β⟫ =
∫
M
d(α ∧ ⋆β) + ⟪α, δβ⟫

where the middle term vanishes.
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4.1.2 Eigenvalues of the Laplace operator

In the next section, we will follow [18] to show that on the completion C∞
0 Λk = L2Λk,

the Laplace operator has unique closed extension. The first is that ∆ has only negative
eigenvalues.

Proposition 33. Suppose ∆ω = λω for some non-zero ω ∈ C∞Λk ∩ L2Λk. Then
λ < 0.

Proof.
λ∥ω∥2 = ⟪∆ω, ω⟫ = −(∥dω∥2 + ∥δω∥2) (4.2)

such that λ < 0.

The last theorem gives us sufficient conditions of the Laplace operator to show that
it is essentially self-adjoint, i.e. it has a unique closed extension which is self-adjoint.

4.2 L2-cohomology

In this section we will investigate if the Hodge theorem extends in some way to also
hold for non-compact complete Riemannian manifolds. It is possible to define de
Rham cohomology groups on complete Riemannian manifolds, however it does not
capture information at infinity [6]. Therefore we extend the class of forms we are
investigating, to include forms that are square-integrable, in the sense that∫

M
|ω|2 dx < +∞ .

4.2.1 L2-Hilbert Complex

We want to employ techniques from the theory of Hilbert spaces, as we did in the
previous chapter. We repeat the process and define L2Λk = C∞

0 Λk, where the
completion is taken with respect to the norm on C∞

0 Λk. We could also complete
the space of all square-integrable forms, which would produce an isometric Hilbert
space. It is convenient to have a complex Hilbert space, and therefore, we abuse
notation and let C∞

0 Λk denote the smooth sections of the complex vector bundle
ΛkTM where each fibre is ΛkTpM⊗ C, with the canonical Hermitian inner product.
For any smooth ω ∈ L2, there is an injection of the smooth k-forms ω for which the
integral

∫
M |ω|2 dx <∞, into L2 since each such form defines a linear functional, which

is identified by Riesz’s theorem.
The exterior derivative d is not defined on the whole of L2Λk. It is defined on the

dense subspace C∞
0 Λk, and is therefore an unbounded operator on L2Λk. Genereally,

linear operators define on a subspace D of a Hilbert space is called an unbounded
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operator, see the Appendix. The operator d has a priori many closed extensions. The
domain of the various extensions gives an oredering between them, where d1 ≤ d2 if
Dom d1 ⊂ d2. The largest extension of d is the adjoint dmax := d∗. The smallest is the
closure dmin = d, defined for elements ω = limωj , such that dωj converges.

Let WΛk be the domain of any closed extension d̄k of dk, which will also satisfy
d̄kd̄k−1 = 0. The resulting complex

WΛ0 WΛ1 · · · WΛk WΛk+1 · · ·d̄0 d̄1 d̄k−1 d̄k d̄k+1 (4.3)

is a Hilbert complex. A choice of closed extension d̄ is an ideal boundary
condition. On complete manifolds, there is only one choice for the closed extension
[2], i.e. the domains of dmin and dmax coincide and dmin = dmax, which we will come
back to. We will denote by WΛk the domain of d := dmin = dmax. The space WΛk is
the closure of C∞

0 Λk with respect to the norm

∥ω∥2W := ∥ω∥2L2 + ∥dω∥2L2 .

We can form the unreduced L2-cohomologies by

Hk
L2(M) = Ker d̄k

Im d̄k−1

and the reduced L2-cohomologies

H̃k
L2(M) = Ker d̄k

cl(Im d̄k−1)

where we quotient out by the closure of Im d̄k−1 with respect to the L2-norm. The un-
reduced and reduced cohomologies different from each other. The reduced cohomology
is a Hilbert space, while the unreduced is not necessarily Hausdorff [19, Prop 4.5].

4.2.2 Lipschitz Invariance of L2-Cohomology

The unreduced cohomologies are preserved under bi-Lipschitz maps between manifolds.
A continuous map F : (M, g1)→ (L, g2) is Lipschitz if (F∗)p : TpM→ TpL is defined
almost everywhere on M, and there is a constant C > 0 such that at all points where
(F∗)p is defined the equation

|(F∗)pv|g2 ≤ C|v|g1

holds for each v ∈ TM. A homeomorphism F : M→ L is called bi-Lipschitz if both
F and F−1 are Lipschitz map. The pull-back map F ∗ preserve integrable forms. Let
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F : M→ L be a Lipschitz map, and ω ∈ L2Λk(L). Let E1, . . . , En be an orthonormal
frame around p ∈ M and Ẽ1, . . . , Ẽn and orthonormal frame around F (p). Let
(i1, . . . , ik) range over ascending multi-indices, then

|F ∗ω|2 =
∑

(i1,...,ik)
F ∗ω(Ei1 , . . . , Eik

)2 =
∑

(i1,...,ik)
ω(F∗Ei1 , . . . , F∗Eik

)2

where
ω(F∗Ei1 , . . . , F∗Eik

) =
∑

s1,...,sk

(F∗Ei1)s1 · · · (F∗Ei1)skωs1,...,sk

By Schwartz inequality, and the Lipschitz property of F

|F ∗ω|2 ≤K ′ ∑
(i1,...,ik)

(
|F∗Ei1 |2 · · · |F∗Eik

|2
∑

s1,...,sk

ω2
s1,...,sk

)

≤K|ω|2

where K is independent of p. Integrating yields ∥F ∗ω∥ ≤ K∥ω∥. We of course also
have dF ∗ω = F ∗dω which ensures that closed forms are mapped to closed forms,
and exact forms are mapped to exact forms. This gives an isomorphism Hk

L2(L) ∼=
Hk

L2(M). This extends to the reduced cohomology as well, suppose ω = lim dτj , then
limF ∗dτj = lim dF ∗τj . Actually, we can also generalize to Lipschitz maps that are
Lipschitz-homotopic [14]. This is analogues to how de Rham cohomology is invariant
under homotopy equivalence.

4.2.3 Relation between L2 and de Rham cohomology

G.Carron has proved a connection between the L2-cohomology, and the de Rham
cohomology for complete manifolds with one flat end. One flat end means that for any
compact subset S ⊂M, the complement M∖ S has only one unbounded connected
component, or end, denoted by E. Let M be a complete manifold with zero cuvature
outside a compact subset S. We have two cases depending on the volume growth [3]:

1. If the volume growth Vol(r) =
∫

B(p,r) volg is at most quadratic, i.e . limr→∞ Vol(r)/r2 <

∞ then

H Λk(M) ∼= Im
(
Hk

0,dR(M)→ Hk
dR(M)

)
.

2. If limr→∞ Vol(r)/r2 = ∞, then the boundary of E has a finite covering space
diffeomorphic to the product Sν−1 × T where T is a flat (n − ν)-torus. Let
π : T → ∂E be the induced immersion, then

H k(M) ∼= Hk(M∖ E,Kerπ∗)
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where

Hk(M∖ E,Kerπ∗) := C∞Λk(M∖ E) ∩Ker dk ∩Kerπ∗

C∞Λk(M∖ E) ∩ Im dk−1 ∩Kerπ∗

4.2.4 Self-adjointness of the Laplace Operator

We will use the fact that the Laplace operator has only negative eigenvalues to show
that it is essentially self-adjoint, i.e. it has a unique closed extension which is
self-adjoint.

Theorem 34. [17, Prop 3.9] Let T be a densely defined symmetric operator on the
Hilbert space H, which is bounded below by m. If Ker(T ∗ − λ) = 0 for some λ < m,
then T is essentially self -adjoint.

We will use this criterion to show that −∆, which is bounded below by 0, is
essentially self-adjoint.

Theorem 35. The Laplace operator ∆ is essentially self-adjoint.

Proof. Suppose ω ∈ Ker(−∆∗ − λ) then

0 = ⟪(−∆∗ − λ)ω, α⟫ = ⟪ω,−∆α⟫− ⟪λω, α⟫

for all α ∈ C∞Λk ∩ L2Λk This means that ω is a weak solution to the equation
∆f = −λω .

By using the method in the proof of the regularity theorem, we see by induction
that ω is C∞. We may therefore use the symmetry of ∆ on its domain to infer that
−∆ω − λω = 0 for some negative λ which by Proposition 33 implies that ω = 0.

The

Theorem 36. [2, Lemma 3.8.] If the elliptic differential operator dδ + δd associated
to the elliptic complex

C∞
0 E0 C∞

0 E1 · · · C∞
0 Ek C∞

0 Ek+1 · · ·d0 d1 dk−1 dk dk+1 (4.4)

is essentially self-adjoint, then there is a unique Hilbert complex

WΛ0 WΛ1 · · · WΛk WΛk+1 · · ·d̄0 d̄1 d̄k−1 d̄k d̄k+1

associated to (4.4) i.e. the elliptic complex has a unique boundary condition. In
particular dmin = dmax.
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4.2.5 Decomposition on L2-forms

The following theorem is called the weak decomposition.

Theorem 37. The square-integrable forms have decomposition

L2Λk = H Λk ⊕ Im d⊕ Im d
∗

Proof. This is [2, Lem 2.1] because ∆ω = 0 if and only if dω = d∗ω = 0 by Corollary 32.

We also have strong decomposition by Gromov [9]

Theorem 38. If there exist some constant C > 0 such that for every ω ∈ C∞Λk∩L2Λk

∥ω∥2 ≤ C⟪−∆ω, ω⟫

then Im d and Im d
∗ is closed. And we have decomposition

L2Λk = H Λk ⊕ Im d⊕ Im d
∗

This theorem can be extended to include some instances of Lp integrable forms,
see [13]

The weak decomposition gives a Hodge theorem. The kernel of the map Hk : Ker dk →
H Λk are all the elements ω of the form

ω = lim
j

(dαj + δβj)

and since
0 = lim

j
(d2αj + dδβj) = lim

j
dδβj

we have
0 = lim

j
⟪dδβj , βj⟫ = lim

j
∥δβj∥2

so δβ = 0. Therefore ω = limj dαj for some (αj) ∈ Dom dk−1. So we have an
isomorphism H̃k

L2(M) ∼= H Λk(M).

4.3 Non-Negative Weitzenböck Curvature

The next theorem is my generalization of [24, Thm 6] by S-T. Yau.

Theorem 39. Let α be a smooth harmonic k-form which is square-integrable on the
complete manifold M. If Rp ≥ 0 for all p in M, then α is parallel. If Rq > 0 at some
point q, then α vanishes.
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S-T. Yau proved this theorem for 1-forms and (n−1)-forms. For 1-forms, ⟨Rα, α⟩ =
Ric(α♯, α♯), and similarly for (n− 1)-forms via the Hodge star. We need a few result
before the proof.

Theorem 40. If f : M→ R is a smooth square integrable function, and f,∆f ≥ 0,
then f is constant.

Proof. Because the Stokes theorem holds for square-integrable forms, we can use the
same technique as in the proof of Lemma 28

Theorem 41. If α is a smooth square integrable harmonic form, then α is both closed
and co-closed.

Proof. Let ω be harmonic, and square integrable. Then

0 = ⟪∆ω, ω⟫ = −(∥dω∥2 + ∥δω∥2) ,

and ω is therefore both closed and co-closed.

We can now prove our main theorem.

Proof of Theorem 39. In the proof of Theorem 29 showed that for any C∞ form α we
have equality

1
2∆|α|2 = ⟨∆α, α⟩g + |∇α|2 + ⟨Rα, α⟩g . (4.5)

We will show that when α is harmonic and square integrable, then ∆|α| ≥ 0, and
|α| is therefore constant, by Theorem 40. For such forms α, equation (4.5) reduces to
0 = |∇α|+ ⟨Rα, α⟩g, and the hypothesis that R ≥ 0 implies that |∇α| = 0. By adding
to the hypothesis that, Rp > 0 at the point p, we have that αp = 0 and since α is
parallel, α is identically 0. Now we will show that ∆|α| ≥ 0, when α is harmonic. First
of all, we prove, that (4.5) holds. Let E1, . . . , En be an orthonormal frame parallel at
p, and θi is the dual to Ei. Then

∆|α|2 = ∆
(∑

J

α2
J

)
= 2

∑
J,i

∇Ei(αJ∇EiαJ) = 2
∑
J,i

(∇EiαJ)2 + αJ∇Ei∇EiαJ

which is just the local expression for

2|∇α|2 + 2⟨Lα,α⟩ = 2|∇α|2 + 2⟨∆α, α⟩+ 2⟨Rα, α⟩

where the equality comes from the Weitzenböck formula. By the chain rule we have

∆|α|2 = 2|∇|α||2 + 2|α|∆|α| (4.6)
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and

|∇|α||2 =
∑

i

(∇Ei |α|)2 = 1
|α|2

∑
i

(∑
J

(∇EiαJ)αJ

)2

. (4.7)

Recall that
dα =

∑
i

θi ∧∇Eiα and δα = −
∑

i

ιEi∇Eiα

Since α is harmonic, dα = 0 and δα = 0 which we write out in bases at p

∑
J

∑
i/∈J

(∇EiαJ)θi ∧ θJ = 0 and
∑

J

∑
i∈J

(∇EiαJ)θj1 ∧ · · · ∧ θ̂i ∧ · · · ∧ θjk = 0

and we see that ∇EiαJ vanishes for all i /∈ J , because dα = 0, and for all i ∈ J because
δα = 0. Therefore each term in the sum in (4.7) is zero. All we have to worry about
is the case in which |α| = 0. We can lift the function |α|2 a little which yields

∆(|α|2 + ε)1/2 = −(|α|2 + ε)−3/2|α|2|∇|α||2 + (|α|2 + ε)−1/2(|∇|α||2 + |α|∆|α|) .

where the middle term vanishes, and by (4.6)

∆(|α|2 + ε)1/2 = 1√
|α|2 + ε

(|∇α|2 + ⟨Rα, α⟩) ≥ 0 .

By Theorem 40 the integrable function (|α|2 + ε)1/2 is constant, and so is |α|.

4.3.1 Final Words

By Theorem 38, the strong decomposition follows if we can find a constant C > 0
such that

∥ω∥2 ≤ C⟪−∆ω, ω⟫

for every ω ∈ C∞Λk ∩ L2Λk. By (4.5)

1
2∆|α|2 = ⟨∆α, α⟩g + |∇α|2 + ⟨Rα, α⟩g

If Rp > 0 , then∫
|α|2 dx ≤

∫ 1
Rp
⟨Rα, α⟩ dx ≤ ∥ 1

Rp
∥L∞

∫
⟨Rα, α⟩ dx

= 1
2

∫
∆|α|2 dx+ ⟪−∆α, α⟫− ∥∇α∥2

if ∆|α|2 is integrable ∫
| ⋆ d ⋆ d|α|2| dx =

∫
|d ⋆ d|α|2| dx <∞
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and by Theorem 31,
∫

∆|α|2 dx = 0. We therefore have inequality

∥α∥2 ≤ ∥ 1
Rp
∥L∞⟪−∆α, α⟫

and hence we have strong decomposition as long as the Weitzenböck curvature is
bounded below by a constant c > 0. It is however difficult to have Rk > c1 > 0
without also Ric > c2 > 0, which would imply that M is compact by Theorem 15.

Since the Weitzenböck curvature reduces to the Ricci curvature on for 1-forms, the
condition that R1 > c > 0 does not bring any new information to the table because
Ric > c > 0 implies again that M is compact. It is also showed by Chen [4] that if M
is a non-compact complete Riemannian manifold with Ric ≥ 0, then the bottom of the
spectrum of the Laplace operator on 0-forms is zero. It would therefore be difficult to
prove that the reduced cohomology is isomorphic to the unreduced. It is not clear if
the the same is clear for k-forms where k > 0.

Lastly we give an example of a non-compact manifold with R1 = Ric > 0 where we
can apply Theorem 39. Let M be the surface defined by the equation x = −1

2(y2 + z2).
The Ricci curvature is related to the Gaussian curvature by Ric = Kg[12, Cor 8.28],
and the Gaussian curvature K of M is given by

K(y, z) = 1/(1 + y2 + z2)2 .

Hence Ric > 0, but there is on constant such that Ric ≥ c > 0, which by Myers
theorem would mean that the manifold is compact. By Theorem 39, H Λ1(M) = 0.

rx

rx

Figure 4.2: Sketch of the surface defined by x = 1
2(y2 + z2). Notice that rx →∞, for

x→∞.



Appendix

Unbounded Operators on Hilbert Spaces

This appendix is supposed to give some basic facts on Hilbert spaces, and operators
between Hilbert spaces. A general reference for the material covered can be found in
[5] and [10].

Definition. A Hilbert space V is a vector space over the real or complex numbers,
which is endowed with an inner product ⟨·, ·⟩ and norm defined by

∥v∥ =
√
⟨v, v⟩

such that every Cauchy sequnece with respect to the norm converges.

Proposition A.1 (Schwartz inequality). For any two vectors v, w in V we have
inequality

|⟨v, w⟩| ≤ ∥v∥∥w∥

Proof. If either v or w are zero, the proof is trivial. We therefore assume they are
non-zero vectors, and first assume ∥w∥ = 1. Let λ ∈ C, then

0 ≤ ∥v − λw∥2 = ∥v∥2 − λ⟨v, w⟩ − λ⟨v, w⟩+ |λ|2∥w∥2

Setting λ = ⟨v, w⟩/2 gives us

0 ≤ ∥v∥2 − |⟨v, w⟩|2 ⇐⇒ |⟨v, w⟩| ≤ ∥v∥

If w is a general non-zero vector, then

|⟨v, w⟩| = ∥w∥|⟨v, w/∥w∥⟩| ≤ ∥v∥∥w∥

Example A.2. The complex vector space Cn with inner product

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · ·+ xnyn

is a complex Hilbert space. The Schwartz inequality takes the form∣∣∣∣∣
n∑

i=1
xiyi

∣∣∣∣∣ ≤
(

n∑
i=1
|xi|2

)1/2( n∑
i=1
|yi|2

)1/2
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Definition. A set S of vectors in V is said to be orthonormal, if every vector has unit
length and for any two vectors v and w in S, ⟨v, w⟩ = 0. The set S is an orthonormal
basis if S is maximal.

Theorem A.3. Every Hilbert space has an orthonormal basis.

Proof. Let C be a chain of orthonormal sets Sj , where Sj ⊂ Sj+1. The union
U =

⋃
Sj∈C Sj is clearly an upper bound of C , if it is orthonormal. For any two

elements v, w ∈ U , there is some orthonormal Sj which contains both, and they are
therefore orthonormal. The partially ordered set of the orthonormal sets, satisfies the
conditions to apply Zorn’s lemma, which states that the collection of orthonormal sets
contains a maximal set.

Theorem A.4. For every continuous linear functional ϕ ∈ V ′, there is a unique
element u ∈ V such that ϕ(v) = ⟨v, u⟩ for all v in V . This correspondence defines an
isometry between V and V ′.

If S is a subset of V , the orthogonal complement of S is

S⊥ = {v ∈ V : ⟨u, v⟩ = 0 for all u ∈ S} .

For any closed subspace S of V , we have orthogonal decomposition V = S⊥ ⊕ S.
Any vector v can be written uniquely as v = u + w where v ∈ S⊥ and w ∈ S, and
⟨u,w⟩ = 0. The map Pv := u is called the orthogonal projection onto S⊥. The
element Pv is the vector in S⊥ closest to v. Similarly we have projection onto S.

Definition. A linear operator A : D(⊂ V )→W between Hilbert spaces defined on a
subset D of V is called an unbounded operator. The unbounded operator A is said
to be closed if and only if for every sequence (vi) in D converging to an element v in
V , and Avi → w in W ; then v ∈ D and Tv = w.

We will write A : V →W even though A is not defined on the whole space V . By
DomA we will always mean the domain D where A is defined.

Definition. Let A : V →W be a densely defined unbounded operator. The adjoint
of A is a closed unbounded operator A∗ : W → V , with the property that

⟨Av,w⟩W = ⟨v,A∗w⟩V

for all v ∈ DomA, when w ∈ DomA∗. The domain DomA∗ are the elements w ∈W
such that the map ϕw : v 7→ ⟨Av,w⟩W is bounded. Since A is defined on a dense
subset, we can extend ϕw to the whole of V . By Theorem A.4, there is a unique
element u ∈ V such that ϕw = ⟨·, u⟩. We define A∗w to be u, A∗w := u . When
A : V → V and A∗ = A, we say that A is self-adjoint.
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Theorem A.5. If A : V →W is a densely defined unbounded operator, then

W = KerA∗ ⊕ ImA .

Proof. We have decomposition W = ImA
⊥ ⊕ ImA. All we need to show is that

ImA
⊥ = KerA∗. Let u ∈ KerA∗, w = limAvj . Then

⟨u,w⟩ = lim⟨u,Avj⟩ = lim⟨A∗u, vj⟩ = 0

which shows that KerA∗ ⊂ ImA
⊥. Conversely, if w ∈ ImA

⊥ and v = lim uj where
uj ∈ DomA, then

⟨A∗w, v⟩ = lim⟨A∗w, uj⟩ = lim⟨w,Auj⟩ = 0

for all v ∈ V . Thus A∗v must be 0 by the non-degeneracy of the inner product.
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