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Abstract

The six infinite families of power APN functions are among the oldest known instances of APN functions, and it has been
conjectured in 2000 that they exhaust all possible power APN functions. Another long-standing open problem is that of the Walsh
spectrum of the Dobbertin power family, for which it still remains unknown. We derive alternative representations for the infinite
APN monomial families. We show how the Niho, Welch, and Dobbertin functions can be represented as the composition xi ◦x1/j

of two power functions, and prove that our representations are optimal, i.e. no two power functions of lesser algebraic degree
can produce the same composition. We investigate compositions xi ◦ L ◦ x1/j for a linear polynomial L, and compute all APN
functions of this form for n ≤ 9 and for L with binary coefficients, thereby confirming that our theoretical constructions exhaust
all possible cases. We present observations and data on power functions with exponent

∑k−1
i=1 22ni − 1 which generalize the

inverse and Dobbertin families. We present data on the Walsh spectrum of the Dobbertin function for n ≤ 35, and conjecture
its exact form. As an application of our results, we determine exact values of the Walsh transform of the Kasami function at all
points of a special form. Computations performed for n ≤ 21 shows, that the number of this points covers about 2/3 of the field.

I. INTRODUCTION

Let n and m be positive integers, and let F2n denote the finite field with 2n elements. The multiplicative group of F2n will
be denoted by F∗2n , and Trn will denote the absolute trace function from F2n to F2 given by

Trn(x) = x+ x2 + x2
2

+ · · ·+ x2
n−1

;

if the dimension n is clear from context, we will simply write Tr instead of Trn.
An (n,m)-function, or vectorial Boolean function, is any mapping F from F2n to F2m . When n = m, any (n, n)-function

can be uniquely represented as a univariate polynomial of the form F (x) =
∑2n−1
i=0 aix

i, for ai ∈ F2n . We say that an
(n, n)-function F is a power, or monomial, function, if its univariate representation is of the form F (x) = xd for some positive
integer d. An n-dimensional Boolean function is simply an (n, 1)-function for some n.

Given a positive integer i, its binary weight (also called 2-weight) is the number of ones in its binary notation. More
precisely, if i =

∑K
j=0 ci2

i for some positive integer K and for ci ∈ {0, 1} for 0 ≤ j ≤ K, then the binary weight of i is
w(i) =

∑K
j=0 ci. The largest binary weight of any exponent i in the univariate representation of an (n, n)-function F with

ai 6= 0 is the algebraic degree of F . A function of algebraic degree 1, resp, 2, resp. 3 is said to be affine, resp. quadratic,
resp. cubic. A linear function is an affine function F with F (0) = 0.

Vectorial Boolean functions are widely applied to the design of block ciphers in cryptography, where they are used in the
design of so-called substitution boxes, or S-boxes, whose input and output are then both sequences of bits. This is possible
since F2n can be seen as an n-dimensional vector space over the prime field F2, thanks to which F2n can be identified with
Fn2 . This then implies that any element of F2n can be interpreted as an n-dimensional binary vector, i.e. a vector consisting of
zeros and ones. A prominent example is the AES, or Rijndael, block cipher, which contains an (8, 8)-function at its core [20].

It is clearly important to analyze the resistance of any given vectorial Boolean function against various kinds of cryptanalytic
attacks when it is used as an S-box. One of the most powerful attacks against block ciphers is differential cryptanalysis [2],
which exploits statistical dependencies between the difference a = x − y (or, equivalently, a = x + y since addition and
subtraction coincide in characteristic 2) of two inputs and the difference b = F (x) − F (y) (or b = F (x) + F (y)) of their
corresponding outputs under F : F2n → F2n ; if, for some input difference a ∈ F2n , the probability of obtaining some output
difference b ∈ F2n is greater than uniform, this correlation can be used to mount an attack on the corresponding block cipher.
Furthermore, the efficiency of the attack is directly related to the largest probability among all pairs (a, b) ∈ F2

2n of input
and output differences. The relationship between the difference of two inputs and their corresponding outputs under an (n, n)-
function F is expressed by the so-called derivative DaF of F in the direction a ∈ F2n , which is defined as the (n, n)-function
DaF given by DaF (x) = F (a+ x) + F (a).

The notion of the differential uniformity of a function is introduced in [38] as a measurement of contribution of the function
to the resistance of the block cipher against differential cryptanalysis. More precisely, the differential uniformity ∆F of an
(n, n)-function F is defined as the largest number of solutions x ∈ F2n to any equation of the form DaF (x) = b, i.e.
F (x) + F (a+ x) = b for a, b ∈ F2n with a 6= 0, i.e.

∆F = max
a∈F∗

2n
,b∈F2n

#{x ∈ F2n : F (a+ x) + F (x) = b}.
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Since a + x is a solution to F (x) + F (a + x) = b whenever x is, ∆F must be even for any F , and hence can be no lower
than 2. The (n, n)-functions attaining this lower bound with equality are called almost perfect nonlinear (APN) and provide
the best possible resistance to differential cryptanalysis.

Another powerful attack employed against block ciphers is linear cryptanalysis [37], which is successful if a nonzero linear
combination of the bits of the output of a function F (viewed as valued in Fn2 thanks to the identification of F2n with Fn2
described above) can be approximated by a linear combination of the bits of its input. The nonlinearity of F is introduced as
a measurement of the contribution of the function to the resistance against this kind of cryptanalysis [38]. In contrast to the
case of differential uniformity, higher values of the nonlinearity correspond to stronger resistance to linear attacks. It is also
worth remarking that taking a function at random usually has very bad, i.e. high, differential uniformity, while its nonlinearity
is typically not small. To make this notion more precise, we first introduce the concept of component functions. If F is an
(n,m)-function for some n and m, then a component function of F is any (n, 1)-function of the form Fc(x) = Tr(cF (x))
for c ∈ F∗2m . The nonlinearity NL(F ) of an (n,m)-function F is defined as the minimum Hamming distance between any
component of F and any affine (m, 1)-function; symbolically,

NL(F ) = min
c∈F2m ,l:F2n→F2

deg(l)=1

dH(Fc, l),

where the Hamming distance between two (n,m)-functions F and G is defined as dH(F,G) = #{x ∈ F2n : F (x) 6= G(x)},
i.e. as the number of inputs on which the values of F and G disagree.

A useful tool that is frequently used in the analysis of vectorial Boolean function is the so-called Walsh transform WF :
F2n × F2m → Z, which, for an (n,m)-function F , is defined as

WF (a, b) =
∑
x∈F2n

(−1)Trm(bF (x))+Trn(ax),

with the sum computed over Z. The function F can be uniquely reconstructed from WF , and in this sense the Walsh transform
constitutes another possible representation of (n,m)-functions. The multiset {WF (a, b) : a ∈ F2n , b ∈ F2m} of all values of
WF is called the Walsh spectrum of F ; the multiset {|WF (a, b)| : a ∈ F2n , b ∈ F2m} of the absolute values of WF is referred
to as the extended Walsh spectrum, and is noteworthy because (unlike the Walsh spectrum) it remains invariant under certain
equivalence relations to be discussed below.

The nonlinearity of an (n,m)-function F can be expressed as

2n−1 − 1

2
max

a∈F∗
2n
,b∈F2m

|WF (a, b)|.

Furthermore, the nonlinearity of any (n, n)-function is bounded from above by 2n−1 − 2(n−1)/2 [18]. This bound is tight,
and functions attaining it with equality are called almost bent (AB); consequently, AB functions provide the best possible
resistance to linear cryptanalysis. Clearly, AB functions can exist only for odd values of n; in the case of even n, functions
with nonlinearity 2n−1 − 2n/2 are known, and it is conjectured that this is the highest possible value of the nonlinearity in
the even case. Any AB function is necessarily APN [18], and thus AB functions provide the best possible resistance to both
differential and linear cryptanalysis. We note that AB functions do have certain drawbacks, however: as shown in [12], their
composition with vectorial functions does not provide a function with a large enough algebraic degree, and this is problematic
since the algebraic degree of the vectorial function equal to the output of the r-th round of a block cipher should reach the
optimum for r as small as possible.

APN and AB functions are typically classified with respect to CCZ-equivalence, which is currently the most general known
equivalence relation that preserves the differential uniformity and nonlinearity [16]. Two (n, n)-functions F and G are said to
be Carlet-Charpin-Zinoviev-equivalent, or CCZ-equivalent, if their graphs ΓF = {(x, F (x)) : x ∈ F2n} and ΓG = {(x,G(x)) :
x ∈ F2n} are affine equivalent, i.e. if there is an affine permutation A : F2

2n → F2
2n such that A(ΓF ) = ΓG. For instance, a

permutation and its inverse are always CCZ-equivalent. Another equivalence relation preserving differential uniformity is the
so-called extended affine equivalence, or EA-equivalence. Two functions F and G are said to be EA-equivalent if there exist
affine permutations A1, A2 of F2n and an affine function A : F2n → F2n such that A1 ◦ F ◦A2 +A = G. EA-equivalence is
a particular case of CCZ-equivalence, with the latter being strictly more general than EA-equivalence and taking inverses of
permutations [9].

In the case of power functions, CCZ-equivalence (as well as EA-equivalence) coincides with cyclotomic equivalence [42].
Two power functions F (x) = xd and G(x) = xe over F2n , where d, e, n are positive integers, are said to be cyclotomic
equivalent if d ≡ 2ke mod (2n − 1) for some positive integer k, or if d−1 ≡ 2ke mod (2n − 1) for some positive integer k
in the case that gcd(d, 2n − 1) = 1, with d−1 being the multiplicative inverse of d modulo 2n − 1. Cyclotomic equivalence
has the advantage of being significantly simpler to test than both EA- and CCZ-equivalence.

APN functions have been studied since the 90’s, and only around 16 infinite families of such functions are known to date.
In particular, this illustrates that it is quite challenging to construct such functions. Among the known APN functions, the
power APN functions play a particularly prominent role. For one, they have contributed the earliest known examples of APN
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TABLE I
KNOWN INFINITE FAMILIES OF APN POWER FUNCTIONS OVER F2n

Family Exponent Conditions Algebraic degree Source
Gold 2i + 1 gcd(i, n) = 1 2 [28], [38]

Kasami 22i − 2i + 1 gcd(i, n) = 1 i+ 1 [32], [39]
Welch 2t + 3 n = 2t+ 1 3 [23]

Niho 2t + 2t/2 − 1, t even
n = 2t+ 1

(t+ 2)/2 [24]
2t + 2(3t+1)/2 − 1, t odd t+ 1

Inverse 22t − 1 n = 2t+ 1 n− 1 [1], [38]
Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [25]

functions and of infinite families of APN functions. For another, all known APN functions (including both instances of infinite
families and unclassified sporadic examples) are CCZ-equivalent to power functions or quadratic functions (that is, functions
of algebraic degree 2, which is considered too small for cryptographic purposes), with only one known exception in F26 [27].

The six known infinite families of APN monomials are given in Table I. It is conjectured by Dobbertin that this classification
is complete up to CCZ-equivalence [25], i.e. any APN power function is CCZ-equivalent to an instance from one of the families
in Table I. The conjecture is verified computationally for n ≤ 24 by Anne Canteaut according to [25] and later by Yves Edel
for n ≤ 34 and n = 36, 38, 40, 42 (unpublished).

To date, the Walsh spectrum and even the nonlinearity of the Dobbertin family of power functions remain unknown. This
is remarkable, as the exact Walsh spectra of the remaining five power families in Table I have been determined. The problem
of determining the Walsh spectrum of the Dobbertin family has already been open for 20 years, and without any progress
since the seminal work of Canteaut, Charpin and Dobbertin from 2000, in which they proved that all Walsh coefficients of
the Dobbertin function over F25m are divisible by 22m [11]. As hinted above, the Walsh spectrum of a function contains a lot
of information about its properties, and so its computation is an important result per se. Moreover, there is a correspondence
between the Walsh coefficients of a power function and the weight distribution of an associated linear code, as shown in e.g.
[16]; thus, knowing the Walsh spectrum of the APN power functions has fundamental significance for the theory of linear
codes. Furthermore, it is known that the extended Walsh spectrum is invariant under CCZ-equivalence, and knowing it can
potentially allow to justify the inequivalence of functions belonging to distinct CCZ-equivalence classes. For more information
about cryptographic Boolean functions see [13].

Motivated by the above, in this paper we investigate alternative representations of the infinite power families from Table I,
and for the Dobbertin functions in particular, in the hope that they can facilitate the computation of its Walsh spectrum. For
n odd, the Kasami exponent 22i − 2i + 1, where gcd(i, n) = 1, which is itself of algebraic degree i + 1, can be represented
as the fraction (23i + 1)/(2i + 1) of two quadratic exponents, i.e. the corresponding Kasami function equals the compositions
of a quadratic power function x2

3i+1 and the inverse x1/(2
i+1) of another quadratic power function [26]. As shown in [26],

[14], this representation leads to a simpler proof of the AB-ness of the Kasami function for odd dimensions, and facilitates
the derivation of its Walsh spectrum. We thus look for similar representations of the known APN power functions (and the
Dobbertin function in particular). In Section II, we show how the Welch, Niho, and Kasami functions can be expressed as
fractions of low-degree exponents, and argue that these representations are optimal in the sense that fractions of exponents of
lower algebraic degree cannot possibly provide a representation of these functions. The representation of the Dobbertin function
obtained in Section II allows to immediately determine a lower bound on its nonlinearity. This bound is weaker than the bound
obtained in [15], but it illustrates how new representations may sometimes (but not always) bring new knowledge. In Section
III, we examine a construction in which linear functions are composed on the left and on the right with power functions,
allowing us to obtain one class of APN power functions from another. In particular, we obtain the Kasami power functions
via the Gold power functions. This allows us to determine the exact values of the Walsh transform at all point of the form
(bd−1 + b2

−id−1 + b2
−2id−1, 1), for any non-zero b ∈ F2n , where d is the exponent of the Kasami function d = 22i − 2i + 1,

gcd(i, n) = 1. Note that the only point at which the exact value (that is, the sign) of the Walsh transform of the Kasami
function is known and is not zero is the point (1,1). Moreover, the support of the Kasami function is known only when 3i ≡ 1
mod n and 5i ≡ 1 mod n (and in the latter case, its knowledge is complex). During fifteen years (since [34]), no advance
of any kind had been made on the Walsh spectrum of the Kasami functions. Our new result illustrates (now, succesfully)
how new representations as those we introduce may bring new knowledge. In Section IV, we present some observations and
computational data on the differential spectrum of power functions xd with exponent of the form d =

∑k−1
i=1 2ni − 1 over

F2nk ; since the exponents of both the inverse and the Dobbertin family are special cases of this form, investigating these
exponents is a potential direction for approaching the problem of the existence of APN power functions inequivalent to the
ones in Table I. Finally, in Section V, we formulate a conjecture based on our experimental data which completely describes
the Walsh spectrum of the Dobbertin function. We hope that the simplified representation for the Dobbertin function developed
in Section II will allow this conjecture to be approached more easily.

Some of the contents from Sections II, III and V has previously been presented at Sequences and their Application (SETA)
2020 [6], [7]. All the results presented in Section II with the exception of those on the Dobbertin power functions are completely
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new, as well as all the results of Section IV.

II. SIMPLIFYING THE EXPONENTS OF THE INFINITE APN MONOMIAL FAMILIES

It is known that the exponent of the Kasami function in the case of odd n can be represented as 22i − 2i + 1 = 23i+1
2i+1 ,

that is, the function can be expressed as the composition of a quadratic power function with the inverse of another quadratic
power function. As shown in [26], this property gives a simple explanation of the AB-ness of the Kasami function for n odd.
In this section we study whether a similar property can be derived for other APN power functions, and in particular, for the
Dobbertin function.

We show that the Niho APN power functions (in the case of both even and odd dimension) can be represented as the
composition of x3 and the inverse of a cubic function; and the Dobbertin function is cyclotomic-equivalent to a composition of
a cubic function and the inverse of a quadratic function. Moreover, we prove that the derived representations are optimal, in the
sense that the exponents of the Niho and Dobbertin functions cannot be represented as a fraction of two quadratic exponents.
In this sense, the Welch exponent is optimal as well.

A. On the Wech exponent

Consider the Welch function: x2
t+3, n = 2t + 1. Clearly, the binary weight of its exponent is 3 for t > 1. Proposition 1

shows that the exponent 2t + 3 cannot be represented as a fraction of two numbers of binary weight 2, in general. Thus, the
canonical representation of the Welch function is optimal in this sense.

Proposition 1. Let t be a positive integer strictly greater than 3. Then, for any positive integers j, l, r such that 1 ≤ j, l, r <
2t+ 1, we have (

2t + 21 + 1
)

(2j + 1) 6≡ 2l + 2r mod (22t+1 − 1). (1)

Proof. We shall show that for any 1 ≤ j < 2t+ 1 and t > 3, the binary weight of the left-hand side of (1) is always strictly
greater than 2. Consider the following possible cases:

1) 1 ≤ j ≤ t:
a) j 6∈ {1, t− 1, t},
b) j ∈ {1, t− 1, t};

2) j = t+ j′, 1 ≤ j′ < t:

a) j 6∈ {1, 2},
b) j ∈ {1, 2};

3) j = 2t.

In all the cases the binary weight of (2t + 21 + 1)(2j + 1) is equal to an integer between 4 and 6. Indeed, for 1 ≤ j ≤ t,
we get

(2t + 21 + 1)(2j + 1) = 2t+j + 2t + 2j+1 + 2j + 21 + 1.

(a) If j 6∈ {1, t− 1, t}, then, obviously, wt
(

(2t + 21 + 1)(2j + 1)
)

= 6.
(b) If j ∈ {1, t− 1, t}, then, for instance, when j = t, we obtain

(2t + 21 + 1)(2t + 1) = 22t + 2t+2 + 2 + 1,

therefore

wt
(

(2t + 21 + 1)(2t + 1)
)

= 4.

In the same way, we show that for j = 1, wt
(

(2t + 21 + 1)(2j + 1)
)

is 4 and for j = t− 1 that is 5.
Similarly, for j = t+ j′, 1 ≤ j′ ≤ t− 1, we can write

(2t + 21 + 1)(2t+j
′
+ 1) = 22t+j

′
+ 2t+j

′+1 + 2t+j
′
+ 2t + 21 + 1 ≡

2t+j
′+1 + 2t+j

′
+ 2t + 2j

′−1 + 2 + 1 mod (22t+1 − 1).

(a) If j′ 6∈ {1, 2}, then wt
(

(2t + 21 + 1)(2t+j
′
+ 1)

)
= 6.

(b) If j′ ∈ {1, 2}, then wt
(

(2t + 21 + 1)(2t+j
′
+ 1)

)
is either 4 or 5. For instance, taking j′ equals to 2, we get

(2t + 21 + 1)(2t+2 + 1) ≡ 2t+3 + 2t+2 + 2t + 21 + 2 + 1 ≡
2t+3 + 2t+2 + 2t + 22 + 2 mod (22t+1 − 1).
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Since t > 3, we then have

wt
(

(2t + 21 + 1)(2t+2 + 1)
)

= 5.

In the exact same way, we obtain that for j′ = 1, the binary weight of the left-hand side of (1) is 4 in the case j = 2t as
well.

Remark 2. It is easy to verify that for t = 2, the binary weight of (2t + 21 + 1)(2j + 1) is either 1 or 3; and for t = 3,
wt
(

(2t + 21 + 1)(2j + 1)
)

is either 2, 4 or 5 (it equals to 2 only for j = 2t = 6).

B. On the Niho exponent

In this subsection we consider the Niho functions. Below we prove that the Niho power APN functions in the even case
can be represented as the composition of x3 and the inverse of a cubic power function.

Lemma 3. For any positive even integer t the following congruences hold:

(2t + 2
t
2 − 1) ≡ 2

t
2−1

3

2
3t
2 + 2t + 1

≡

2t
3

2
3t
2 +1 + 2

t
2+1 + 1

≡

2
3t
2

3

2t+1 + 2
t
2 + 1

mod (22t+1 − 1).

Proof. We first prove that 2
3t
2 + 2t + 1, 2

3t
2 +1 + 2

t
2+1 + 1 and 2t+1 + 2

t
2 + 1 are invertible modulo 22t+1 − 1, i.e. that

gcd
(

2
3t
2 + 2t + 1, 22t+1 − 1

)
= gcd

(
2

3t
2 +1 + 2

t
2+1 + 1, 22t+1 − 1

)
=

gcd
(

2t+1 + 2
t
2 + 1, 22t+1 − 1

)
= 1.

For simplicity, we denote 2
t
2 by y. By the Euclidean algorithm, we easily get:

gcd
(

2y4 − 1, y3 + y2 + 1
)

= gcd
(
y3 + y2 + 1, 2y2 − 2y + 1

)
= gcd

(
2y2 − 2y + 1, y

)
= 1,

gcd
(

2y4 − 1, 2y3 + 2y + 1
)

= gcd
(

2y3 + 2y + 1, 2y2 + y + 1
)

= gcd
(

2y2 + y + 1, y + 1
)

=

gcd
(
y + 1, 2

)
= 1,

and

gcd
(

2y4 − 1, 2y2 + y + 1
)

= gcd
(

2y2 + y + 1, y − 1
)

= gcd(y − 1, 4) = 1.

To prove the first congruence it remains to check that (y2+y−1)(y3+y2+1) ≡ 3
2y mod (2y4−1) which is straightforward.

Indeed, computing the left-hand side of this congruence, we get:

(y2 + y − 1)(y3 + y2 + 1) = y5 + 2y4 + y − 1 ≡ 3

2
y mod (2y4 − 1).

This proves the first statement of the lemma. The other two congruences are proven in the same way.

The following lemma justifies the optimality of this representation.

Lemma 4. Let t be a positive even integer. Then, for any positive integers j, l, r such that 1 ≤ j, l, r < 2t+ 1, the following
incongruence holds:

(2t + 2
t
2 − 1)(2j + 1) 6≡ 2l + 2r mod (22t+1 − 1). (2)

Proof. Following the same approach as in the proof of Proposition 1, we will show that for any 1 ≤ j < 2t + 1, the binary
weight of the left-hand side of (2) is always strictly greater than 2.

We consider the following cases:
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1) 1 ≤ j ≤ t
2 :

a) j 6∈ { t2 ,
t
2 − 1},

b) j ∈ { t2 ,
t
2 − 1};

2) j = t
2 + j′, 1 ≤ j′ ≤ t

2 :
a) j′ 6∈ {1, t2 − 1, t2},
b) j′ 6∈ {1, t2 − 1, t2};

3) j = t+ j′, 1 ≤ j′ ≤ t
2 :

a) j′ 6∈ {1, 2, t2},
b) j′ ∈ {1, 2, t2}

1;
4) j = 3t

2 + j′, 1 ≤ j′ ≤ t
2 :

a) j′ 6∈ {1, 2, 3, t2} ,
b) j′ ∈ {1, 2, 3, t2}

2.

We now show that the binary weight of (2t + 2
t
2 − 1)(2j + 1), 1 ≤ j ≤ 2t takes every integer value from the interval

[ t2 + 2; t+ 2] depending on j.

Case 1. For 1 ≤ j ≤ t
2 , we get:

(2t + 2
t
2 − 1)(2j + 1) = 2t+j + 2

t
2+j + 2t + 2

t
2 − 2j − 1.

(a) If j 6∈ { t2 ,
t
2 − 1}, then we immediately get that

wt

((
2t + 2

t
2 − 1

)(
2j + 1

))
= wt

(
2t+j + 2

t
2+j + 2t

)
+ wt

(
2

t
2 − 2j − 1

)
= 3 +

( t
2
− 1
)

=
t

2
+ 2.

(b) If j ∈ { t2 ,
t
2 − 1}, then, for instance, when j = t

2 − 1, we get:(
2t + 2

t
2 − 1

)(
2

t
2−1 + 1

)
= 2

3t
2 −1 + 2t−1 + 2t + 2

t
2 − 2

t
2−1 − 1 = 2

3t
2 −1 + 2t + 2t−1 + 2

t
2−1 − 1,

hence

wt

((
2t + 2

t
2 − 1

)(
2

t
2−1 + 1

))
= wt

(
2

3t
2 −1 + 2t + 2t−1

)
+
(

2
t
2−1 − 1

)
= 3 +

( t
2
− 1
)

=
t

2
+ 2;

In the same way, for j = t
2 we get(

2t + 2
t
2 − 1

)(
2

t
2 + 1

)
= 2

3t
2 + 2t + 2t + 2

t
2 − 2

t
2 − 1 = 2

3t
2 + 2t+1 − 1,

hence

wt

((
2t + 2

t
2 − 1

)(
2

t
2−1 + 1

))
= wt

(
2

3t
2

)
+ wt

(
2t+1 − 1

)
= 1 + (t+ 1) = t+ 2.

Case 2. For j = t
2 + j′, 1 ≤ j′ ≤ t

2 .(
2t + 2

t
2 − 1

)(
2

t
2+j

′
+ 1
)

= 2
3t
2 +j′ + 2t+j

′
+ 2t − 2

t
2+j

′
+ 2

t
2 − 1.

(a) If j′ 6∈ {1, t2 − 1, t2}, then

wt

((
2t + 2

t
2 − 1

)(
2j + 1

))
= wt

(
2

3t
2 +j′ + 2t+j

′
)

+ wt
(

2t − 2
t
2+j

′
)

+ wt
(

2
t
2 − 1

)
=

2 +
(
t−
( t

2
+ j′

))
+
t

2
= (t+ 2)− j′.

Thus, t
2 + 3 < wt

((
2t + 2

t
2 − 1

)(
2j + 1

))
< t+ 1, for 1 < j′ < t

2 − 1.

(b) If j′ ∈ {1, t2 − 1, t2}, then:

• for j′ = 1:(
2t + 2

t
2 − 1

)(
2

t
2+1 + 1

)
= 2

3t
2 +1 + 2t+1 − 2

t
2+1 + 2t + 2

t
2 − 1 = 2

3t
2 +1 + 2t+1 + 2t − 2

t
2 − 1,

hence

wt

((
2t + 2

t
2 − 1

)(
2

t
2+1 + 1

))
= wt

(
2

3t
2 +1 + 2t+1

)
+
(

2t − 2
t
2 − 1

)
= 2 + (t− 1) = t+ 1.

1j′ = 2 is meaningful only for t > 2.
2j′ = 2 is meaningful only for t > 2, j′ = 3 is meaningful only for t > 4.
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• for j′ = t
2 − 1:(

2t + 2
t
2 − 1

)(
2t−1 + 1

)
= 22t−1 + 2

3t
2 −1 − 2t−1 + 2t + 2

t
2 − 1 = 22t−1 + 2

3t
2 −1 + 2t−1 + 2

t
2 − 1,

thus

wt

((
2t + 2

t
2 − 1

)(
2t−1 + 1

))
= wt

(
22t−1 + 2

3t
2 −1 + 2t−1

)
+ wt

(
2

t
2 − 1

)
=
t

2
+ 3.

• for j′ = t
2 : (

2t + 2
t
2 − 1

)(
2t + 1

)
= 22t + 2

3t
2 − 2t + 2t + 2

t
2 − 1 = 22t + 2

3t
2 + 2

t
2 − 1,

hence

wt

((
2t + 2

t
2 − 1

)(
2t + 1

))
= wt

(
22t + 2

3t
2

)
+ wt

(
2

t
2 − 1

)
=
t

2
+ 2.

Thus, in Case 2 we can conclude that wt

((
2t + 2

t
2 − 1

)(
2

t
2+j

′
+ 1
))

, 1 ≤ j′ ≤ t
2 takes every integer value from the

interval [ t2 + 2; t+ 1].

In the exact same way, we can obtain the following results for the two remaining cases; we omit the proofs for the sake of
brevity.

Case 3. wt

((
2t + 2

t
2 − 1

)(
2t+j

′
+ 1
))

, 1 ≤ j′ ≤ t
2 − 1 takes every integer value from the interval [ t2 + 2; t− 1].

Case 4. wt

((
2t + 2

t
2 − 1

)(
2

3
2 t+j

′
+ 1
))

, 1 ≤ j′ < t
2 equals to either t

2 + 2 or t+ 2.

Thus, the weight of the right-hand side of (2) takes every integer value from the interval [ t2 + 2; t+ 2] depending on j.

The following corollary follows immediately from Lemmas 3 and 4. Recall that, in the case of power functions, cyclotomic
equivalence, EA-equivalence, and CCZ-equivalence coincide. Throughout the rest of this section, if we refer to two power
functions being equivalent or inequivalent, we are having cyclotomic equivalence in mind.

Corollary 5. Let xd be a power function defined over the field F22t+1 with d = 2t + 2
t
2 − 1, with t even integer. Then xd

is cyclotomic equivalent to the power functions with exponents 3

2
3t
2 +2t+1

, 3

2
3t
2

+1+2
t
2
+1+1

and 3

22
t+1+ t

2 +1
. Furthermore, these

representations are optimal, in the sense that xd is cyclotomic inequivalent to any power function whose exponent is a fraction
of two quadratic exponents.

The next two lemmas address the exponent of the Niho power APN function in the odd case.

Lemma 6. For any positive odd integer t, we have

(2
3t+1

2 + 2t − 1) ≡ 2t
3

2
3(t+1)

2 + 2
t+1
2 + 1

≡

2t−1
3

2
3t+1

2 + 2t+1 + 1
≡

2
3t−1

2
3

2t + 2
t−1
2 + 1

mod (22t+1 − 1)

Proof. Following the proof of Lemma 3, we first show that 2
3(t+1)

2 +2
t+1
2 +1, 2

3t+1
2 +2t+1 +1 and 2t+2

t−1
2 +1 are invertible

modulo 22t+1 − 1, then we prove the corresponding congruences.
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For simplicity, we denote 2
t+1
2 by y and apply the Euclidean algorithm to obtain

gcd
(1

2
y4 − 1, y3 + y + 1

)
= gcd

(
y3 + y + 1,

1

2
y2 +

1

2
y + 1

)
= gcd

(1

2
y2 +

1

2
y + 1, 3

)
= 1,

gcd
(1

2
y4 − 1,

1

2
y3 + y2 + 1

)
= gcd

(1

2
y3 + y2 + 1, 2y2 − y + 1

)
=

gcd
(

2y2 − y + 1, y − 1
)

= gcd(y − 1, 2) = 1

and

gcd
(1

2
y4 − 1,

1

2
y2 +

1

2
y + 1

)
= gcd

(1

2
y2 +

1

2
y + 1, y

)
= 1.

To prove the first statement of this lemma it remains to verify the congruence: 2(y3+y2−1)(y3+y+1) ≡ 3y2 mod (y4−2)
which is straightforward. Indeed, computing the left-hand side of it, we get

(y3 + y2 − 2)(y3 + y + 1) = y6 + y5 + y4 + y2 − 2y − 1 ≡ 3y2 mod (y4 − 2).

The remaining two congruences are proven in a similar way.

Lemma 7. Let t be a positive odd integer. Then, for any positive integers j, l, r such that 1 ≤ j, l, r < 2t + 1, the following
incongruence holds:

(2
3t+1

2 + 2t − 1)(2j + 1) 6≡ 2l + 2r mod (22t+1 − 1). (3)

Proof. Similar to Lemma 4, we shall show that for any 1 ≤ j < 2t+ 1, the binary weight of(
2

3t+1
2 + 2t − 1

)(
2j + 1

)
is always strictly greater than 2. Consider the following possible cases:

1) 1 ≤ j < t+1
2 ;

2) j = t−1
2 + j′, 1 ≤ j′ ≤ t+1

2 :
a) j′ 6∈ {1, 2, t−12 , t+1

2 },
b) j′ ∈ {1, 2, t−12 , t+1

2 }
3;

3) j = t+ j′, 1 ≤ j′ ≤ t+1
2 :

a) j′ 6∈ {1, 2, t−12 , t+1
2 },

b) j′ ∈ {1, 2, t−12 , t+1
2 }

4;
4) j = 3t+1

2 + j′, 1 ≤ j′ ≤ t−1
2 :

a) j′ 6∈ {1, t−12 },
b) j′ ∈ {1, t−12 }.

In all cases, the binary weight the left-hand side of (3) equals either to t+ 2, t+3
2 or t+1

2 , depending on a choice of j.

Case 1: 1 ≤ j < t+1
2 .

(
2

3t+1
2 + 2t − 1

)(
2j + 1

)
= 2

3t+1
2 +j + 2

3t+1
2 + 2t+j + 2t − 2j − 1,

hence

wt

((
2

3t+1
2 + 2t − 1

)(
2j + 1

))
= wt

(
2

3t+1
2 +j + 2

3t+1
2 + 2t+j

)
+ wt

(
2t − 2j − 1

)
= 3 + (t− 1) = t+ 2.

Case 2. j = t−1
2 + j′, 1 ≤ j′ ≤ t+1

2 :

(
2

3t+1
2 + 2t − 1

)(
2

t−1
2 +j′ + 1

)
= 22t+j

′
+ 2

3t−1
2 +j′ − 2

t−1
2 +j′ + 2

3t+1
2 + 2t − 1 ≡

2
3t−1

2 +j′ + 2
3t+1

2 + 2t − 2
t−1
2 +j′ + 2j

′−1 − 1 mod (22t+1 − 1).

(a) If j′ 6∈ {1, 2, t−12 , t+1
2 }, then

wt

((
2

3t+1
2 + 2t − 1

)(
2

t+1
2 +j′ + 1

))
= wt

(
2

3t−1
2 +j′ + 2

3t+1
2

)
+ wt

(
2t − 2

t−1
2 +j′

)
+ wt

(
2j
′−1 − 1

)
=

2 +
(
t−
( t− 1

2
+ j′

))
+ (j′ − 1) =

t+ 3

2
.

3j′ = 2 is meaningful only for t > 3.
4j′ = 2 is meaningful only for t > 3.
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(b) If j′ ∈ {1, 2, t−12 , t+1
2 }, then, for instance, take j′ = 1:

(
2

3t+1
2 + 2t − 1

)(
2

t−1
2 +1 + 1

)
≡ 2

3t−1
2 +1 + 2

3t+1
2 + 2t − 2

t−1
2 +1 ≡ 2

3t+1
2 +1 + 2t − 2

t+1
2 mod (22t+1 − 1),

hence

wt

((
2

3t+1
2 + 2t − 1

)(
2

t−1
2 +1 + 1

))
= wt

(
2

3t+1
2 +1

)
+ wt

(
2t − 2

t+1
2

)
= 1 +

(
t− t+ 1

2

)
=
t+ 1

2
.

The remaining cases are proven in the exact same way.

The next statement follows from Lemma 6 and Lemma 7.

Corollary 8. Let xd be a power function defined over the field F22t+1 with d = 2
3t+1

2 + 2t − 1, with t odd. Then xd is
cyclotomic equivalent to the power functions with exponents 3

2
3(t+1)

2 +2
t+1
2 +1

, 3

2
3t+1

2 +2t+1+1
and 3

2t+2
t−1
2 +1

. Furthermore,

these representations are optimal, in the sense that xd is cyclotomic inequivalent to any function whose exponent is a fraction
of two quadratic exponents.

C. On the Dobbertin exponent

Let us focus in this subsection on the exponent of the Dobbertin power function d = 24m + 23m + 22m + 2m − 1. In the
next two lemmas we prove that xd is equivalent to a power function composed from a cubic power function and the inverse
of a quadratic power function.

Lemma 9. For any positive integer m the following equivalences are true:
4∑
i=1

2im − 1 ≡ 22m+1 22m + 2m + 1

2m + 1
≡

2m+1 23m + 22m + 1

22m + 1
≡

2m+1 23m + 2m + 1

23m + 1
≡

2m+1 22m + 2m + 1

24m + 1
mod (25m − 1).

Proof. Consider the first congruence. We first prove that 2m+1 is invertible modulo 25m−1, i.e. that gcd(2m+1, 25m−1) = 1.
This follows from

gcd(2k + 1, 2l − 1) =

{
1, if l/ gcd(l, k) is odd;

2gcd(l,k) + 1, if l/ gcd(l, k) is even.
(4)

Indeed, since gcd(m, 5m) = m, we have gcd(2m + 1, 25m − 1) = 1.
For simplicity, we denote 2m by y. It remains to check the equivalence (y + 1)(y4 + y3 + y2 + y − 1) ≡ 2y2(y2 + y + 1)
mod (y5 − 1) which is straightforward. Indeed, computing the left-hand side of this equivalence, we get
(y+ 1)(y4 + y3 + y2 + y− 1) = y5 + 2y4 + 2y3 + 2y2 − 1 ≡ 2y4 + 2y3 + 2y2 mod (y5 − 1). This proves the first statement
of the lemma.

The other three equivalences are proven in the same way. A justification that 22m + 1, 23m + 1 and 24m + 1 are invertible
modulo 25m − 1 easily follows from (4). The corresponding congruences are then straightforward to check.

Lemma 10. Let m be a positive integer. Then, for any positive integers j, l, r such that 1 ≤ j, l, r < 5m, the following
inequivalence holds: (

4∑
i=1

2im − 1

)
(2j + 1) 6≡ 2l + 2r mod (25m − 1). (5)

Proof. We shall show that for any 1 ≤ j < 5m, the binary weight of the left-hand side of (5) is always strictly greater than

2. The cases j ∈ {m, 2m, 3m, 4m} are covered in Lemma 1 when the binary weight of
(

4∑
i=1

2im − 1

)
(2j + 1) equals 3. We

thus consider the remaining 5 cases:
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1) 1 ≤ j < m,
2) j = m+ j′, 1 ≤ j′ < m,
3) j = 2m+ j′, 1 ≤ j′ < m,

4) j = 3m+ j′, 1 ≤ j′ < m,
5) j = 4m+ j′, 1 ≤ j′ < m.

In all of these cases, the binary weight of
(

4∑
i=1

2im − 1

)
(2j + 1) is equal to m+ 6. Indeed, for 1 ≤ j < m we get(

4∑
i=1

2im − 1

)
(2j + 1) ≡ (

4∑
i=1

2im+j − 2j +

4∑
i=1

2im − 1) mod (25m − 1).

Hence,

wt

((
4∑
i=1

2im − 1

)
(2j + 1)

)
= wt

( 4∑
i=1

2im+j +

4∑
i=2

2im
)

+ wt(2m − 2j − 1
)

= 7 + (m− 1) = m+ 6.

Similarly, for j = m+ j′, 1 ≤ j′ < m:(
4∑
i=1

2im − 1

)
(2j + 1) =

(
4∑
i=1

2im − 1

)
(2m+j′ + 1) =

5∑
i=2

2im+j′ − 2m+j′ +

4∑
i=1

2im − 1

≡
( 4∑
i=2

2im+j′ − 2m+j′ +

4∑
i=1

2im + 2j
′
− 1
)

mod (25m − 1).

Therefore,

wt

((
4∑
i=1

2im − 1

)
(2j + 1)

)
= wt

(
4∑
i=2

2im+j′ − 2m+j′ +

4∑
i=1

2im + 2j
′
− 1

)

= wt(

4∑
i=2

2im+j′ + 24m + 23m + 2m) + wt(22m − 2m+j′)

+wt(2j
′
− 1) = 6 + (m− j′) + j′ = 6 +m.

The remaining cases are proven in the exact same way.

The following corollary is a straightforward consequence of Lemma 1 and Lemma 2.

Corollary 11. Let xd be the power function defined over the field F25m with d = 24m + 23m + 22m + 2m − 1. Then
xd is cyclotomic equivalent to the power functions with the exponents 22m+2m+1

2m+1 , 23m+22m+1
22m+1 , 23m+2m+1

23m+1 and 22m+2m+1
24m+1 .

Furthermore, these representations are optimal, in the sense that xd is cyclotomic inequivalent to any power function whose
exponent is a fraction of two quadratic exponents.

Remark 12. The representation of the Dobbertin function obtained in Corollary 11 allows to immediately determine an upper
bound on the absolute Walsh values of the Dobbertin function, that is, a lower bound on the nonlinearity of the Dobbertin
function.
Let F (x) = xd be the power function defined over the field F25m with d = 24m + 23m + 22m + 2m − 1. Then

NL(F ) ≥ 2n−2 − 23m−2.

Indeed, from Corollary 11 follows in particular that F (x) = x2
4m+23m+22m+2m−1 = x2

2m+1 22m+2m+1
2m+1 . Then, for any a ∈ F2n ,

substituting x by x2
m+1 (which is a permutation over F25m)), we easily get

WF (a, 1) =
∑
x∈F2n

(−1)Trn(F (x)+ax) =
∑
x∈F2n

(−1)Trn(x
22m+2m+1+ax2m+1),

which is the character sum of a non-constant cubic function fa = Trn(x2
2m+2m+1+ax2

m+1), whose distance to the two constant
Boolean functions is then at least 2n−3, we have: |WF (a, 1)| ≤ 2n − 2n−2. Indeed, we have dH(fa, 0) = 2n−1 − Wfa (0)

2 =

2n−1 − WF (a,1)
2 ≥ 2n−3 and dH(fa, 1) = 2n−1 + WF (a,1)

2 ≥ 2n−3. The Walsh values of the Kasami function are then all of
absolute value bounded above by 2n− 2n−2 and its nonlinearity is then at least 2n−3. Let us improve upon these inequalities.
For the function fa, we have D1fa(x) = trn(x2

2m+1 + (a2
−m

+ a + 1)x + a + 1). The linear kernel of D1fa has equation
x2

2m

+ x2
−2m

= 0, that is, it equals F2m .
For every x ∈ F2m , we have

D1fa(x) = trn(x2 +(a2
−m

+a+1)x+a+1) = trn((a2
−m

+a)x+a+1) = trm(trnm(a2
−m

+a)x)+ trn(a+1) = trn(a+1).
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Hence, D1fa being constant on its linear kernel, it is not balanced and then
∑
x∈F2n

(−1)D1fa(x) = εa2(m+n)/2 = εa23m,
where εa ∈ {−1, 1}.
We deduce that wH(D1fa) = 2n−1 − εa23m−1. This implies that wH(fa) = dH(fa, 0) ≥ wH(D1fa)

2 = 2n−2 − εa23m−2 and
wH(fa) ≤ wH(D1fa)

2 + (2n − wH(D1fa)) = 2n − wH(D1fa)
2 = 3 · 2n−2 + εa23m−2, that is, dH(fa, 1) ≥ 2n−2 − εa23m−2.

Hence we have:
|WF (a, 1)| ≤ 2n−1 + εa23m−1.

Hence, all the Walsh values of F have absolute value bounded by 2n−1 + 23m−1 from above, that is, the nonlinearity of the
Dobbertin function is at least 2n−2 − 23m−2.

Remark 13. Unfortunately, the lower bound obtained in Remark 12 is weaker then the lower bound known for any power APN
functions [15].

III. COMPOSITION OF POWER FUNCTIONS WITH LINEAR FUNCTIONS

In this section, we consider a different way of representing some of the known APN power functions, in which a linear
polynomial is “inserted” between two power functions, so that the composition has the form xi ◦ L ◦ xj . To facilitate the
discussion, we introduce the following shorthand notation for the various APN power functions:

1) Pi(x) = xi for any positive integer i;
2) Gi(x) = x2

i+1 is the Gold function with parameter i;
3) Ki(x) = x2

2i−2i+1 is the Kasami function with parameter i;
4) W (x) = x2

t+3 is the Welch function, where n = 2t+ 1;
5) N(x) = x2

t+2t/2−1 and N(x) = x2
t+2(3t+1)/2−1 is the Niho function for t even and for t odd, respectively, where

n = 2t+ 1;
6) I(x) = x2

n−2 is the inverse function;
7) D(x) = x2

4i+23i+22i+2i−1 is the Dobbertin function, where n = 5i.

A. The case of odd dimension

This direction of study is motivated by an initial observation that, over any finite field F2n with n odd, composing the
Gold function Gi(x) = x2

i+1 with its inverse G−1i (x) (where i is any positive integer with gcd(i, n) = 1) and the linear
polynomial L(x) = x2

2i

+ x in between gives a function EA-equivalent to the Kasami function Ki(x) = x2
2i−2i+1 with the

same parameter i. More precisely, we observe that

Gi ◦ L ◦G−1i (x) = Ki(x) + x2
2i

+ x2
i

+ x.

More generally, taking Lµ(x) = x2
2i

+ µx, we have

Gi ◦ Lµ ◦G−1i (x) = µKi(x) + x2
2i

+ µ2ix2
i

+ µ2i+1x

for any µ ∈ F∗2n .
We thus see that in certain cases, a function CCZ-equivalent to a Kasami function can be obtained by combining a Gold

function and the inverse of a Gold function with a linear polynomial. A formal treatment of this observation is provided in
the following proposition. This suggests that functions CCZ-inequivalent to Pi and Pj can be expressed as Pi ◦ L ◦ Pj . We
contrast this with EA-equivalence, in which an (n, n)-function F is composed with two linear permutations L1, L2 in the form
L1 ◦ F ◦ L2. We note that all linear polynomials L that we compose with in Propositions 14 and 18 are 2-to-1 over F2n ,
while the linear functions L1 and L2 in the definition of EA-equivalence are necessarily bijective. In particular, this shows that
while the Kasami functions (and their inverses) are always 1-to-1 functions for odd dimensions, the addition of certain linear
functions can make them 2-to-1 functions.

Proposition 14. Let n = 2m+ 1, and denote Lµi (x) = µx2
i

+ x. Then, for any 1 ≤ i ≤ n− 1, we have

Gi ◦ Lµ2i ◦G
−1
i (x) = Aµi (x) + µ2iKi(x), (6)

where Aµi (x) = µ2i+1x2
2i

+ µx2
i

+ x.
Similarly, for any 1 ≤ i ≤ n− 1, we have

Gi ◦ Lµn−2i ◦G
−1
i (x) = µKi(x

2−2i

) + Cµi (x2
−2i

), (7)

where Cµi (x) = µ2i+1x+ µ2ix2
i

+ x2
2i

.
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Proof. Denoting x = y2
i+1, we obtain

Gi ◦ Lµ2i ◦G
−1
i (x) =

(
µy2

2i

+ y
)2i+1

= µ2i+1y2
2i(2i+1) + µ2iy2

3i+1 + µy2
i(2i+1) + y2

i+1

= µ2i+1x2
2i

+ µ2ix(2
3i+1)/(2i+1) + µx2

i

+ x

= Aµi (x) + µ2iKi(x)

due to Ki(x) = x2
2i−2i+1 = x(2

3i+1)/(2i+1). The proof in the case of Lµn−2i is similar.

The representation of the Kasami power function obtained in Proposition 14 allows to determine its Walsh coefficient at the
point (1, 1) in more easy way than it has been done in [34]. Moreover, it allows to determine the exact value of the Walsh
transform of the Kasami function at any point (a, 1) with a of the form bd−1 + b2

−id−1 + b2
−2id−1, for any non-zero b ∈ F2n ,

where d is the exponent of the Kasami function. As far as we know, the only point at which an exact nonzero value (with its
sign) of the Walsh transform of the Kasami function is known is a = 1. During fifteen years (since [34])), no advance of any
kind had been made on the Walsh spectrum of the Kasami functions.

Corollary 15. Let n be an odd positive integer. Then, for any 1 ≤ i ≤ n− 1 co-prime with n,

WKi
(a, 1) =

∑
x∈F2n

(−1)Trn(bx
2i+1+x), (8)

where a = bd−1 + b2
−id−1 + b2

−2id−1, for any b ∈ F∗2n , and d = 22i − 2i + 1.
In particular, for b = 1, we have:

WKi
(1, 1) =

∑
x∈F2n

(−1)tr(x
2i+1+x).

Proof. By Proposition 14, in particular, we have Ki(x) = K ′i(x) +L′(x), where K ′i(x) = Gi ◦L ◦G−1i (x), L(x) = x+ x2
2i

,
and L′(x) = x+ x2

i

+ x2
2i

. Then, it is easy to see that for any a, b ∈ F2n , b 6= 0 WKi
(a, b) = WK′i

(a+ b+ b2
−i

+ b2
−2i

, b).
Indeed, from

Trn(bKi(x) + bL′(x) + ax) = Trn(bK ′i(x) + b(x+ x2
i

+ x2
2i

) + ax) = Trn(bK ′i(x) + (b+ b2
−i

+ b2
−2i

+ a)x)

follows

WKi(a, b) =
∑
x∈F2n

(−1)Trn(bKi(x)+bL
′(x)+ax) =

∑
x∈F2n

(−1)Trn(bK
′
i(x)+(b+b2

−i
+b2
−2i

+a)x) = WK′i
(a+ b+ b2

−i

+ b2
−2i

, b).

Taking a = b+ b2
−i

+ b2
−2i

, we get:

WKi
(b+ b2

−i

+ b2
−2i

, b) = WK′i
(0, b) = WGi◦L(0, b).

Recall that the function L is 2-to-1 and is a mapping from F2n onto {x ∈ F2n | tr(x) = 0}. Then we obtain

WKi
(b+ b2

−i

+ b2
−2i

, b) = WGi◦L(0, b) =
∑
x∈F2n

(−1)Trn(bGi◦L) = 2
∑

x∈F2n ,Trn(x)=0

(−1)Trn(bx
2i+1)

=
∑
x∈F2n

(−1)Trn(bx
2i+1) +

∑
x∈F2n

(−1)Trn(bx
2i+1+x) =

∑
x∈F2n

(−1)Trn(bx
2i+1+x).

Since Ki is a power permutation over F2n , we have

WKi(b+ b2
−i

+ b2
−2i

, b) = WKi

(b+ b2
−i

+ b2
−2i

b
1
d

, 1
)

= WKi(b
d−1 + b2

−id−1 + b2
−2id−1, 1),

hence

WKi
(bd−1 + b2

−id−1 + b2
−2id−1, 1) =

∑
x∈F2n

(−1)Trn(bx
2i+1+x),

which proves the corollary.
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Remark 16. The value of
∑

x∈F2n

(−1)Trn(bx
2i+1+x), gcd(i, n) = 1 is known ([17], [19], [22]). Indeed, substituting in the last

expression x by b
1

2k+1x, we get

∑
x∈F2n

(−1)Trn(bx
2i+1+x) =

∑
x∈F2n

(−1)Trn(x
2i+1+b

− 1
2k+1 x) =

{
0, if Trn(b

− 1

2i+1 ) = 0,

(−1)Trn(c
2i+1)WGi(1, 1), if Trn(b

− 1

2i+1 ) = 1,

where c is the unique element in F2n of trace 0 such that b−
1

2i+1 = 1 + c2
i

+ c2
−i

. The value of the Walsh transform of the
Gold function at point (1,1) is known as well: for every AB power function xd over F2n whose restriction to any subfield of

F2n is also AB,
∑
x∈F2n

(−1)trn(x
d+x)=

{
2

n+1
2 , if n ≡ ±1 mod 8,

−2
n+1
2 , if n ≡ ±3 mod 8.

Remark 17. For 3i ≡ 1 mod n, n odd the Walsh support of the Kasami Boolean function Trn(Ki) (that is, {a ∈
F2n |WTrn(Ki)(a) 6= 0}) equals5 the support of the Gold Boolean function Trn(Gi) (that is, the set {x ∈ F2n |trn(x2

i+1) = 1})
[21], [22]. For 5i ≡ 1 mod n, the Walsh support of the Kasami functions is also determined (it is more complex) [35].
The knowledge of the Walsh support gives the absolute value (but not the sign) of the Walsh transform of the Kasami function.
Our result obtained in Corollary 15 allows to determine, for any odd n and any i co-prime with n, the exact value of the
Walsh coefficients at any point of the set B = {(bd−1 + b2

−id−1 + b2
−2id−1, 1) : b ∈ F∗2n}, where d = 22i − 2i + 1.

We performed computational experiments in the case 3i ≡ 1 mod n to determine the intersection of the set B and the support
of the Gold Boolean function, for n = 5, 11, 17. The computational results show that the cardinality of the set B, for n = 5
and i = 2, is 22 (that is, 68 % of 2n), for n = 11 and i = 4 is 1366 (that is, 67 % of 2n), and, for n = 17 and i = 6, is 87382
(that is, 67% of 2n). The intersection of the set B with the support of the Gold Boolean function is 16, 1024, and 65536, for
n = 5, 11, 17, resp. This shows that in the computed dimensions, the set B contains approx. 30 − 35 percent more elements
than the support of the Gold Boolean function. Thus, new representation of the Kasami function from Proposition 14 leads
to new results on the values of the Walsh coefficients of the Kasami function even when the Walsh support of the Kasami
function is known in an exact way.

A natural question is whether APN functions other than the Kasami function can be obtained in the same manner. The
following two propositions demonstrate two ways in which we can reach the EA-equivalence class of the inverse of the
Kasami function by composing a Gold function and the inverse of a Gold function (with different parameters) with a linear
polynomial in between. We note that the polynomial expression of the inverse of the Kasami APN function in odd dimension
(that is, the expression of its exponent as a power function) can be quite complex [41]. The expression of K−1i in Proposition
18 is therefore rather interesting in this sense. We note that explicit formulas for the inverses of the Dobbertin and Welch
exponents have previously been studied in [40].

Proposition 18. Let n = 3s± r, 3s ≥ r and gcd(3s, r) = 1, n odd, and let Lµi (x) = µx2
i

+ x. Then

Gs ◦ Lµ2s ◦G−1r (x) =

{
Aµ ◦K−1s (x2

3s

) + µ2sx2
3s

n = 3s+ r

Aµ ◦K−1s (x) + µ2sx2
s

n = 3s− r,
(9)

where Aµ(x) = µ2s+1x2
2s

+ µx2
s

+ x is a linear permutation.
Similarly, we have

Gs ◦ Lµn−2s ◦G−1r (x) =

{
Bµs ◦K−1s (x) + µx2

−2s

n = 3s− r
Bµs ◦K−1s (x2

3s

) + µx2
s

n = 3s+ r,
(10)

where Bµs (x) = x+ µ2sx2
n−s

+ µ2s+1x2
n−2s

is a linear permutation.

Proof. Denoting by y = x1/(2
r+1) the inverse of Gr(x), we obtain by straightforward manipulation

Gs ◦ Lµ2s ◦G−1r (x) = Gs ◦ Lµ2s(y) =
(
µy2

2s

+ y
)2s+1

= µ2s+1y2
2s(2s+1) + µ2sy2

3s+1 + µy2
s(2s+1) + y2

s+1

= Aµ
(
y2

s+1
)

+ µ2sy(2
3s+1).

Suppose now that n = 3s+ r. Then

1

2r + 1
≡ 2n

2r + 2n
≡ 23s+r

2r(23s + 1)
≡ 23s

23s + 1
mod (2n − 1),

5 for n even, it equals the set {x ∈ F2n ; trn2 (x
2i+1) = 0}.
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so that y2
s+1 = x(2

s+1)/(2r+1) = x2
3s(2s+1)/(23s+1), which is precisely K−1s (x2

3s

) since Ks(x) = x2
2s−2s+1; equivalently,

Ks(x) = x(2
3s+1)/(2s+1), whence K−1s (x) = x(2

s+1)/(23s+1). Similarly, µy2
3s+1 = µx(2

3s+1)/(2r+1) = µx2
3s

, which
concludes the proof in the case of n = 3s+ r.

When n = 3s− r, we have
1

2r + 1
≡ 1

2n+r + 1
≡ 1

23s + 1
mod (2n − 1),

so that y2
s+1 = x(2

s+1)/(23s+1) = K−1s (x), and µy2
3s+1 = µx2

3s+12r + 1 = x, concluding the proof for Lµ2s.
Let j be a positive integer. We will prove that µ2j+1x2

2j

+ µx2
j

+ x permutes F2n whenever 3 - n by showing that it has
a trivial kernel. Suppose that µ2j+1x2

2j

+ µx2
j

+ x = 0. Raising both sides to the power 2j and multiplying by µ, we obtain
µ22j+2j+1x2

3j

+ µ2j+1x2
2j

+ µx2
j

= 0. Summing both of these identities, we have x = µ22j+2j+1x2
3j

, and hence, assuming
x 6= 0, x2

3j−1 = (1/µ)2
2j+2j+1. Since 23j − 1 = (22j + 2j + 1)(2j − 1), and gcd(22j + 2j + 1, 2n − 1) = 1 for 3 - n, this

implies x2
j−1 = 1/µ, whence x2

j

= x/µ and x2
2j

= x/µ2j+1. Substituting this into µ2j+1x2
2j

+ µx2
j

+ x = 0, we obtain
x/µ = 0, implying x = 0 and contradicting our assumption that x 6= 0.

The proof for Bµs follows the same logic. Denoting once again y = x1/(2
r+1), we obtain

Gs ◦ Lµn−2s ◦G−1r (x) =
(
y + µy(2

n−2s)
)2s+1

= y2
s+1 + µy2

n−2s+2s + µ2sy2
n−s+1 + µ2s+1y2

n−2s+2n−s

= Bµs (y2
s+1) + µy2

n−2s+2s .

We have already seen that y2
s+1 becomes K−1s (x2

3s

), resp. K−1s (x) when n = 3s+ r, resp. n = 3s− r. When n = 3s+ r,
the term µy2

n−2s+2s becomes
µy2

s+r+2s = µx2
s(2r+1)/(2r+1) = µx2

s

;

when n = 3s− r, we have

µy2
n−2s+2s = µy2

s−r+2s = µx2
s−r(2r+1)/(2r+1) = µx2

s−r

= µx2
−2s

.

Finally, showing that Bµs (x) is a permutation is done in the same way as for µ2j+1x2
2j

+ µx2
j

+ x.

While Proposition 18 explicitly describes only compositions of the form Gs ◦L ◦G−1r over F2n , where n = 3s± r, we can
observe that Gs and Gn−s yield EA-equivalent functions, and so the parameters s and r can be freely replaced with n − s
and n− r, respectively, thereby allowing for a wider range of compositions. Furthermore, if s ≡ s′ mod n, then Gs and Gs′
correspond to the same function, and so arbitrary multiples of the dimension n can be added or subtracted, allowing us even
more freedom. We thus have the following general principle.

Remark 19. Assuming the notation of Proposition 18, the following compositions are all equivalent for any linear function L:

Gi ◦ L ◦G−1j ,

Gn−i ◦ L ◦G−1j ,

Gi ◦ L ◦G−1n−j ,
Gn−i ◦ L ◦G−1n−j .

For instance, the composition G1 ◦ L ◦ G−13 over F27 cannot be directly expressed using Proposition 18; but taking s =
n− 1 = 6, and r = 11 ≡ 4 mod n so that n− 3 = 4, we have n = 3 · s− r, and we obtain the case G1 ◦ L ◦G−13 .

Corollary 20. Let n = 2m + 1 be odd with 3 - n, and let i be a positive integer in the range 1 ≤ i ≤ n − 1 such that
gcd(i, n) = 1. Let µ ∈ F∗2n be arbitrary, and denote Lµi (x) = µx2

i

+ x as before. Then the functions

Gi ◦ Lµ2i ◦G
−1
3i

and
Gi ◦ Lµn−2i ◦G

−1
3i

are APN, and EA-equivalent to the inverse K−1i of the Kasami function with parameter i.

Proof. Take s = i + n and r = 3s − n. We have 3s − r = n. Furthermore, s ≡ i mod n, and r ≡ 3i mod n. Thus, we
only have to show that the pair (s, r) satisfies the hypothesis of Proposition 18 in order to finish the proof. We want to show
that |r| ≤ 3s, i.e. −3s ≤ 3s − n ≤ 3s, which gives the inequalities n ≥ 0 and n ≤ 6s ≤ 6i + 6n. Both of these are clearly
always satisfied. Finally, we need to show that gcd(3s, r) = 1. Clearly, 3 - r since 3 - n by the hypothesis; thus, we only need
to show that gcd(s, r) = 1. Suppose d is a non-trivial common divisor of s and r = 3s− n; then d is a non-trivial common
divisor of s = i+ n and n, and hence of i and n. But since 1 ≤ i ≤ n− 1 by assumption, we reach a contradiction, and thus
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gcd(s, r) = gcd(3s, r) = 1 as claimed. Now, all conditions on (s, r) from the hypothesis of Proposition 18 are satisfied, and
an application of the latter concludes the proof.

Remark 21. We note that while Propositions 14 and 18 describe cases in which a composition of the form Pi ◦ L ◦ Pj is
EA-equivalent to a Kasami Ki function (or its inverse), in some cases we obtain K1 (or its inverse), which is actually the
Gold function G1 (or its inverse). In particular, this happens in Proposition 14 for i = 1, and in Proposition 18 for s = 1.

In our experimental results, we also observe combinations of the form G−1t ◦L ◦Gt, which are EA-equivalent to G−1t , and
combinations of the form I ◦ L ◦ I , which gives a function EA-equivalent to the inverse function I .

Observation 22. Let n = 2t + 1. Then the compositional inverse of Gt(x) = x2
t+1 is x2

t+1(2t+1−1). Consequently, the
composition G−1t ◦ L ◦Gt becomes

G−1t ◦ L ◦Gt(x) =
(
x2

t+1 + x2
2t+2t

)2t+1·(2t+1−1)
(11)

for L = x2
t

+ x, and

G−1t ◦ L ◦Gt(x) =
(
x2

t+1 + x2
2t+1+2t+1

)2t+1·(2t+1−1)
(12)

for L = x2
t+1

+ x. Similarly, we get

I ◦ L ◦ I(x) =
(
x2

2t−1 + x2
2t+1−2

)22t−1
(13)

for L = x2 + x, and

I ◦ L ◦ I(x) =
(
x2

2t−1 + x2
4t−22t

)22t−1
(14)

for L = x2
2t

+ x.
The functions in (11) and (12), and (13) and (14) are EA-equivalent to G−1t and I , respectively. Furthermore, for n ∈
{3, 5, 7, 9}, the combinations described in (11), (12), (13), and (14), and Propositions 14 and 18 exhaust all APN functions
over F2n that can be obtained as Pi ◦ L ◦ Pj for any affine function L with coefficients in F2.

Proof. We show that the functions from (11) and (13) are EA-equivalent to the Gold and inverse functions, respectively.
In the Gold case, we have n = 2t+ 1, and G−1t ◦L ◦Gt = (x2

t+1+1 + x2
t+1)2

t+1−1. Since 2t+1− 1 = 2t + 2t−1 + · · ·+ 1,
we have that this is equal to

t∏
j=0

(x2
t+1+1 + x2

t+1)2
j

=

t∏
j=0

x2
j(2t+1)

t∏
j=0

(x2
t

+ 1)2
j

= x2
t

t∏
j=0

(x2
t

+ 1)2
j

= x2
t
2t+1−1∑
j=0

(x2
t

)j .

The latter function is EA-equivalent to
2t+1∑
j=1

xj =
(x2

t+1+1 + 1)

x+ 1
+ 1.

Using the transformation x 7→ x+ 1 (and adding 1), we get the function

(x2
t+1+1 + x2

t+1

+ x)

x
= x2

t+1

+ x2
t+1−1 + 1,

which is EA-equivalent to G−1t .
As for the inverse case, the function from (13) can be written as 1/(x + 1) + x + 1. Indeed, I ◦ L ◦ I = ( 1

x2 + 1
x )−1 =

( 1+x
x2 )−1 = x2

1+x = 1
x+1 + x+ 1.

B. The case of even dimension

Our experimental results indicate that the case for even values of n is somewhat less interesting. For n = 6, no APN
functions can be obtained as Pi ◦ L ◦ Pj for L with coefficients in F2, while for n ∈ {4, 8}, only APN functions from the
EA-equivalence class of Pi can be obtained in this manner, as described in the following proposition.

Proposition 23. Let n = 2m, ln = 2n−1+1
3 , L(x) =

∑t
j=1 x

22ij be a permutation for some positive integer t and for some
non-negative integers ij for 1 ≤ j ≤ t, and let 1 ≤ i ≤ 2n − 2 be arbitrary with 3 | i. Then

Pi ◦ L ◦ Pln(x) = Pi ◦M, (15)
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and
Pi ◦ L ◦ P2ln+1 = P2i ◦M ′ ◦ x2,

where M(x) =
∑t
j=1 x

22ij−1

and M ′(x) =
∑t
j=1 x

22ij+1

. In particular, both Pi ◦ L ◦ Pln and Pi ◦ L ◦ P2ln+1 are linear
equivalent to Pi.

Proof. Let us denote y = xln . We will prove that

L(y)3 =

 t∑
j=1

y2
2ij

3

=

 t∑
j=1

x2
ij−1

3

= M(x)3;

this then implies the case for general i due to 3 | i.
In the following, we use the fact that

2n + 2

3
3j ≡ 3j mod (2n − 1)

for any integer j, and, in particular

2n + 2

3
(22ij − 1) ≡ 2n−k + 1 mod (2n − 1) (16)

for any integer ij .
Clearly, (x(2

n−1)/3f(x))3 = f(x)3 for any polynomial f(x) over F2n with f(0) = 0. We apply this to L(y)3 = L(xln)3.
The exponent of x in y2

2ij
= x2

2ij ln = x2
2ij (2n−1+1)/3 becomes

22ij
2n−1 + 1

3
+

2n − 1

3
=

2n+2ij−1 + 22ij + 2n − 1

3

=
2n + 2

3
(22ij−1 + 1)− 1 ≡ 22ij−1 mod (2n − 1)

for any non-negative integer ij . Thus, L(y)3 = M(x)3 as claimed.
The case for 2ln + 1 follows in the same way, but we multiply the expression by (x(2

n−1)/3)2. Denoting z = x2ln+1, the
exponent of x in z2

2ij becomes

22ij
(

2n + 2

3
+ 1

)
+

2n+1 − 2

3

= (22ij − 1)

(
2n + 2

3

)
+ 22ij +

2n + 2

3
+

2n+1 − 2

3

=
2n + 2

3
+ 22ij − 1 + 22ij +

2n+1 − 2

3
= 2n − 1 + 22ij+1 ≡ 22ij+1 mod (2n − 1).

The rest follows in the same way as in the previous case.

We then immediately have the following generalization.

Corollary 24. Let n = 2m be even, ln = 2n−1+1
3 , L(x) =

∑t
j=1 x

22ij be a permutation for some positive integer t and for
non-negative integers ij for 1 ≤ j ≤ t, and let F (x) = G(x3) for some (n, n)-function G. Then

F ◦ L ◦ Pln(x) = F ◦M,

F ◦ Lj ◦ P2ln+1(x) = F ◦ P2 ◦ L,

where M(x) =
∑t
j=1 x

2n−kj−1

+ x2
n−1

. In particular, F ◦ L ◦ Pln , and F ◦ L ◦ P2ln+1 are linear equivalent to F .

We note that all APN functions that we computationally obtain as Pi ◦L ◦ Pj for L linear with coefficients in F2 over F2n

with n ∈ {4, 6, 8} are described by Proposition 23.

C. Experimental results

For F2n with 4 ≤ n ≤ 9, we consider the function F = Pi ◦L ◦Pj for all possible linear L over F2n with coefficients in F2

and for a single i and j from each cyclotomic coset, and record the instances in which F is APN. We confirm that all such
cases correspond to one of the cases treated in Sections III-A and III-B.
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IV. ON POWER FUNCTIONS OVER F2nk WITH EXPONENTS OF THE FORM
∑k−1
i=1 2in − 1

In this section, we summarize some experimental results on power functions of the form xd with d =
∑k−1
i=1 2in − 1 over

F2nk for some n and k ≥ 2. We note that both the Dobbertin and the inverse power function can be expressed in this form.
Indeed, for n = 1, we have d =

∑k−1
i=1 2i − 1 = 2k − 2 over F2k , which is precisely the inverse; and for k = 5, we get

d =
∑4
i=1 2i − 1 = 24i + 23i + 22i + 2i − 1, which is precisely the Dobbertin exponent over F25n . In this way, exponents of

this form can be seen as generalizations of both the inverse and the Dobbertin families, and investigating them is one potential
direction of approaching the problem of the existence (or non-existence) of APN power functions cyclotomic inequivalent to
the six known infinite families from Table I.

Power functions of this form have already been studied, and it has been shown in [5, Proposition 12] that this type of
functions cannot be APN over F2kn whenever k = 2l + 2 for some positive integer l, or when k = 2 and n > 2. In [5,
Corollary 6], it has also been proved that these power functions cannot be AB. The case of k = 2 has also been characterized
in [3, Theorem 1], where the authors study power functions of the form x2

t−1 over a field F2m , for some m > 2.
We first recall the following theorem, which we can use for studying the behavior of the exponent d =

∑k−1
i=1 2in − 1 for

k = 2.

Theorem 25 ([3]). Let n > 1. Then the power function x2
n−1 is 2n−2-uniform over F22n . Let δ(b) be the number of solutions

of x2
n−1 + (x+ 1)2

n−1 = b, we have δ(0) = 2n − 2,

δ(1) =

{
2 if n is even
4 if n is odd

and δ(b) ∈ {0, 2} if b /∈ F2.

Now, if k = 3, we can see that the function x2
2n+2n−1 over F23n is equivalent to x2

2n−2n+1, which is a Kasami function.
The differential uniformity of x2

2k−2k+1 over F2n in the case of s = gcd(k, n) 6= 1 is determined in [30], where it is shown
that all its derivatives are 2s-to-1 mappings. Applying this, we then immediately obtain the following result.

Proposition 26. Let n > 1. Then the power function x2
2n+2n−1 is 2n-uniform over F23n ; moreover, all of its derivatives are

2n-to-1.

In Table II we report our computational results on the differential spectrum of the monomial xd with d =
∑k−1
i=1 2in− 1 for

values of k and n with kn ≤ 30. For each combination of n and k, we list the number of solutions x to xd + (x+ 1)d = b for
all b ∈ F2nk ; more precisely, we write ij if there are j elements b ∈ F2nk having i solutions x to the aforementioned equation.
The number of elements b having no solutions at all is omitted for the sake of brevity.

In addition to the cases of n = 1 and = 2, 3, 5, the case of k = 4 is also noteworthy. Based on the computational data, we
formulate the following conjecture.

Conjecture 27. Let d = 23n+22n+2n−1 and consider the power function xd over F24n . Then the equation xd+(x+1)d = b
has 22n solutions for one value of b; it has 22n− 2n solutions for 2n values of b; and has at most 2 solutions for all remaining
points b.

Remark 28. Conjecture 27 has recently been confirmed in [36]. The authors of [36] were familiar with our conjecture and
refer in their paper to a preprint [8] stating it.

V. A CONJECTURE ABOUT THE WALSH SPECTRUM OF THE DOBBERTIN FUNCTION

As remarked previously, the problem of computing the Walsh spectrum of the Dobbertin APN functions has been open for
quite some time, with virtually no progress since 2000, when it was shown that all values of its Walsh transform are divisible
by 22m, where n = 5m [11].

For n odd, the Gold, Niho, Welch and Niho APN functions from Table I are also AB (for the proofs of the AB property,
see [10], [11], [28], [31], [38], [39]). In the case of n even, the Gold and the Niho functions have the same Walsh spectrum:
{0,±2

n
2 ,±2

n+2
2 }. The Walsh transform of the inverse function takes any value divisible by 4 in the interval [1−2

n
2 +1, . . . , 1+

2
n
2 +1] [33].
In order get some insight about the form of the Walsh spectrum of the Dobbertin function, we experimentally computed the

Walsh coefficients of its instances over the fields F25m for m ≤ 7. Below, we present our computational data in two tables:
for n odd, and for n even.

Based on Tables III and IV, we make the following conjecture.

Conjecture 29. The Walsh spectrum of the Dobbertin function xd, where d = 24m + 23m + 22m + 2m − 1 over F25m has the
following possible forms depending on the parity of m:
• {0, 22m(2m + 1),±25k−2,±a · 22m | 1 ≤ a ≤ k · (k + 1), a odd} for m = 2k − 1, k ∈ N;
• {0,−22m(2m + 1),±25k,±25k+1,±a · 22m | 1 ≤ a ≤ k · (k + 2), a odd} for m = 2k, k ∈ N.
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TABLE II
DIFFERENTIAL SPECTRA OF xd FOR d =

∑k−1
i=1 2ni OVER F2nk

n \ k 2 3 4
2 28 416 296, 124, 161

3 227, 41, 61 864 21792, 568, 641

4 2121, 141 16256 230720, 24016, 2561

5 2495, 41, 301 321024 2507904, 99232, 10241

6 22017, 621 644096 28257536, 403264, 40961

7 28127, 41, 1261 12816384 2133169152, 1625618, 163841

8 232641, 2541 25665536

9 2130815, 41, 5101 512262144

10 2523777, 10221 1024133169152

n \ k 6
2 21434, 4262, 630

3 282812, 419422, 62558, 8378, 1046

4 25147136, 41261920, 6200688, 824576, 102784, 12168, 1424, 16136, 18120

n \ k 7
2 24753, 41079, 6329, 856, 1014

3 2655526, 4155316, 624101, 82261, 10189, 1221

4 281089988, 420333107, 63464027, 8447412, 1049287, 124970, 14413, 1656, 1814, 227

n \ k 8
2 221920, 44632, 6464, 848

3 25204996, 41259380, 6190068, 821736, 101512, 1224

n \ k 9
2 287087, 419135, 61773, 899

3 241588551, 410087560, 61535275, 8165807, 1014121, 12891, 1427

n \ k 10
2 2289405, 470910, 622935, 83860, 101350, 12240, 1445, 1611, 1825

3 2332825256, 480618460, 612297172, 81331025, 10109576, 126910, 14540

Moreover, WF (u, v) takes the maximum absolute value 22m(2m + 1) for u = v = 1: for even m, we have minWF (u, v) =
−22m(2m + 1), and for odd m, we have maxWF (u, v) = 22m(2m + 1). Hence, the nonlinearity of the Dobbertin function is

25m−1 − 22m−1(2m + 1).

TABLE III
WALSH COEFFICIENTS OF THE DOBBERTIN FUNCTION OVER F25m WITH m = 2k − 1, 1 ≤ k ≤ 4

n = 5,m = 1, k = 1 n = 15,m = 3, k = 2 n = 25,m = 5, k = 3 n = 35,m = 7, k = 4

0 0 0 0
12 = 22(21 + 1) 576 = 26(23 + 1) 33792 = 210(25 + 1) 2113536 = 214(27 + 1)
±8 = ±23 ±64 = ±26 ±1024 = ±210 ±16384 = ±214
±4 = ±22 ±256 = ±28 ±8192 = ±213 ±262144 = ±218

±192 = ±3 · 26 ±3072 = ±3 · 210 ±49152 = ±3 · 214
±320 = ±5 · 26 ±5120 = ±5 · 210 ±81920 = ±5 · 214

±7168 = ±7 · 210 ±114688 = ±7 · 214
±9216 = ±9 · 210 ±147456 = ±9 · 214
±11264 = ±11 · 210 ±180224 = ±11 · 214

±212992 = ±13 · 214
±245760 = ±15 · 214
±278528 = ±17 · 214
±311296 = ±19 · 214
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TABLE IV
WALSH COEFFICIENTS OF THE DOBBERTIN FUNCTION OVER F25m WITH m = 2k, 1 ≤ k ≤ 3

n = 10,m = 2, k = 1 n = 20,m = 4, k = 2 n = 30,m = 6, k = 3

0 0 0
−80 = −24(22 + 1) −4352 = −28(24 + 1) −266240 = −212(26 + 1)
±16 = ±24 ±256 = ±28 ±4096 = ±212
±32 = ±25 ±1024 = ±210 ±32768 = 215

±64 = ±26 ±2048 = ±211 ±65536 = ±216
±48 = ±3 · 24 ±768 = ±3 · 28 ±12288 = ±3 · 212

±1280 = ±5 · 28 ±20480 = ±5 · 212
±1792 = ±7 · 28 ±28672 = ±7 · 212

±36864 = ±9 · 212
±45056 = ±11 · 212
±53248 = ±13 · 212
±61440 = ±15 · 212

Conclusion

We have investigated two different approaches for obtaining alternative representations for functions from the known infinite
APN families, and have justified the optimality of our representation in some cases. We have described APN functions that
have the form xi ◦L ◦xj for L linear with coefficients in F2, and have computationally verified that our constructions exhaust
all possible cases over F2n with 4 ≤ n ≤ 9. We have also documented our experimental data for the Walsh spectrum of the
Dobbertin power functions and, based on it, we have formulated a conjecture describing the exact form of this Walsh spectrum.
In addition, we have reported experimental data on the differential spectrum of functions xd with d =

∑k−1
i=1 2ni − 1 over

F2nk .
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