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Abstract
The viscous flow of two immiscible fluids in a porous

medium on the Darcy scale is governed by a system of

nonlinear parabolic equations. If infinite mobility of one

phase can be assumed (e.g., in soil layers in contact with

the atmosphere) the system can be substituted by the scalar

Richards model. Thus, the porous medium domain may

be partitioned into disjoint subdomains where either the

full two-phase or the simplified Richards model dynamics

are valid. Extending the previously considered one-model

situations we suggest coupling conditions for this hybrid

model approach. Based on an Euler implicit discretization,

a linear iterative (L-type) domain decomposition scheme

is proposed, and proved to be convergent. The theoretical

findings are verified by a comparative numerical study that

in particular confirms the efficiency of the hybrid ansatz as

compared to full two-phase model computations.
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1 INTRODUCTION

Multiphase flow through porous media occurs for a wide variety of natural and technical processes.

Examples in soil-related environmental sciences comprise enhanced oil recovery, remediation of con-

taminated soils, CO2 and energy storage systems or evaporation processes in the vadose zone. In the

technological realm we mention the design of filters, fuel cells or damping materials. Mathematical
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SEUS ET AL. 623

modeling and numerical simulation are essential tools for the understanding of multiphase flow pro-

cesses. However, due to varying material properties or changing flow regimes the governing equations

can become strongly heterogeneous leading to severe mathematical and in particular computational

problems. To meet these challenges, domain decomposition methods are an established approach (see

e.g., [3]). The basic idea is to split the domain in subdomains such that each of these subdomains can

be equipped with their respective model and numerical solver. Following an iterative scheme and by

construction of analytically and numerically appropriate coupling conditions an approximate solution

on the original mono-domain can then be recovered.

In contrast to existing approaches for homogeneous two-phase flow models, the purpose of the

present contribution is the development and analysis of a nonoverlapping domain decomposition

method for hybrid modeling. We consider Darcy scale flow of two incompressible, viscous and immis-

cible fluids in porous media. Let the fluids be denoted as the wetting (w) and the nonwetting (nw)

phase, respectively. The computational domain is decomposed into subdomains with the flow either

governed by the full two-phase (TP) model or by the simpler Richards (R) model. The latter applies for

example, for high mobilities of the nonwetting phase. Such regimes occur typically in the upper layers

of unconfined aquifers that are in contact with the atmosphere but fail to be valid in deeper regions

of the vadose zone. The partition might come along with changes in the relative permeability func-

tions, fluid viscosities and densities, as well as in porosities and intrinsic permeabilities. The major

advantage of the hybrid approach is the possible gain of computing time that can be obtained when

substituting the full two-phase model system by the (scalar) Richards equation on parts of the domain.

First, in Section 2, we present coupling conditions for the hybrid two-phase– Richards (TP–R)

model across the interfaces of subdomains. In fact, the coupling condition for the nonwetting flux in the

two-phase model is not at all obvious, given that on the Richards model domain there is no equation for

the nonwetting phase. This leads to an unmatched number of unknowns on the different subdomains.

We therefore introduce two different coupling conditions depending on the (non)occurrence of gravi-

tational forces. Extending our approach for homogeneous two-phase flow models in [1, 2], we proceed

then with the time-discrete problem and introduce a domain decomposition solver based on simulta-

neous L-scheme linearization, see [4, 5]. The resulting scheme is called LDD-TP–R solver. We further

provide a consistency result that ensures that (in case of convergence) the LDD-TP–R solver provides

the mono-domain solution (Lemma 1). Section 3 contains the core analytical result of the paper, that

is the convergence of the LDD-TP–R solver in Theorem 1. The idea of the proof is based on bound-

ing the series of iteration errors which implies that the sequence of iteration errors must vanish. A key

ingredient to achieve this is to detect matching interface Robin-type terms such that telescopic sums

are obtained. In fact, the latter is only possible if the pressure traces that are part of the Robin-type cou-

pling condition on interfaces act as functionals via the H1∕2

00
(Γ)-scalar product and not in the classical

way via the dual pairing H−1∕2(Γ)×H1∕2

00
(Γ) that stems from the L2

-scalar product, compare Remark 2

as well as [6]. The convergence is guaranteed under a restriction on the time-step size which reduces

to the restrictions obtained in [1, 2] for the respective single-model cases.

To limit the notational overhead and to keep the focus, Sections 2 and 3 are restricted to a

two-domain partition. In Section 4 we generalize the LDD-TP–R solver to a multidomain situation.

Finally, Section 5 provides the numerical validation of the performance of the LDD-TP–R solver. Illus-

trative simulations on two- and multidomain partitions for realistic soil parameters are performed. The

numerical results confirm the convergence statement from Theorem 1 revealing linear rates. We fur-

ther perform a sensitivity analysis on numerical and solver parameters (mesh size, time step, Robin

parameters, L-scheme parameters). For the multidomain case, a special focus is set on gravity effects.

Most importantly we show the advantage of the hybrid model approach in terms of computational effi-

ciency, as compared to the use of the full two-phase flow model on the entire mono-domain. The paper
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624 SEUS ET AL.

ends with an outlook how the LDD-TP–R solver can be utilized for an error-controlled model-adaptive

approach.

We conclude this introduction with a short overview on the literature for related

domain-decomposition methods and solvers for multiphase flow in porous media.

Independently of the underlying numerical approaches, domain decomposition methods allow to

reduce the computational complexity of the problem, and to follow parallel solver techniques. We refer

to [7, 8] for general descriptions of the field. Optimizing the parameters in the transmission condi-

tions is an important issue in all domain decomposition methods, see for example, [9] and references

therein. Concerning porous media flow on the Darcy scale, we refer to [10] for an overview of different

overlapping domain decomposition strategies. A combined non-overlapping domain decomposition

method and multigrid solver approach for the Richards equation has been presented in [11]. In [12, 13]

algorithms for multiphase porous media flow are introduced, including a-posteriori estimates to opti-

mize the parameters and the number of iterations. A time-adaptive domain decomposition concept is

pursued in [14]. Convergence of a Schwarz waveform relaxation method is established in [15] for the

transport equation in the fractional flow formulation of two-phase flow. Lunowa et al. in [16] apply

ideas from [1, 2] to a dynamic capillary pressure model with hysteresis on a two-domain setting. The

work [17] is concerned with two-phase flow with discontinuous capillary pressures. None of these

works address the case of a hybrid model ansatz.

In this work, we combine the domain-decomposition method for each time step with an L-scheme

(see [4, 5]) to linearize the complete system. This linearization approach, which is a stabilized Picard

method has been used for a variety of applications, for example, nonlinear poromechanics [18] or fully

coupled flow and transport [19]. The L-scheme has the advantage of not involving the computation of

derivatives, in contrast to the Newton or the modified Picard method [20]. Moreover, its implementa-

tion is very easy, it is globally convergent and the linear problems that need to be solved within each

iteration are much better conditioned as the ones stemming from e.g. the Newton method, see [5].

Nevertheless, a drawback of L-schemes is their slower (linear) convergence in comparison to New-

ton’s scheme. Albeit faster converging L-schemes have been suggested in [5, 21], this article adheres

to the standard L-scheme, focusing on an LDD scheme for a flexible, subdomain-wise combination of

the Richards equation and the full two-phase flow model. The decoupling of the subproblems result-

ing from the domain decomposition in the formulation of the L-scheme presented here is achieved

through a Robin-type interface term involving a parameter. It is well known for linear problems (both

elliptic and parabolic) that the convergence rate depends on the choice of this parameter and that opti-

mal choices are possible. While we do not dwell on such questions in this work, we point the reader

interested in such aspects to the works [22, 23, 24], and [25] as well as references therein.

2 TWO-PHASE FLOW MODELS AND THE LDD-TP–R SOLVER FOR THE
TWO-DOMAIN CASE

In this section, we introduce the notations, present the mathematical models (two-phase flow, the

Richards equation and the hybrid model) and the LDD-TP–R for the two-domain case. The consistency

of the solver is theoretically shown.

2.1 Coupling the full two-phase flow model with the Richards equation: The TP–R model

Let a Lipschitz domain Ω ⊂ R
𝑑
, 𝑑 ∈ {2, 3}, be decomposed into two non-overlapping Lipschitz

subdomains Ω1,Ω2 ⊂ R
𝑑

such that Ω = Ω1 ∪ Γ ∪ Ω2, with Γ ≔
(
Ω1 ∩ Ω2

)
∖𝜕Ω being the interface.
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SEUS ET AL. 625

FIGURE 1 Illustration of a layered soil domain Ω = Ω1 ∪ Ω2 ∪ Γ ⊂ R
𝑑

with fixed interface Γ. For the upper domain Ω1 we

use the Richards equation whereas the full two-phase model applies inΩ2. The normals n1,2 point out of the respective domains

The latter is assumed to be a (𝑑 − 1)-dimensional Lipschitz manifold. By n1,n2 we denote the outer

normals on the intersection of Γ and the boundaries of Ω1,Ω2. We refer to Figure 1 for a sketch of the

described situation. The entire domainΩ is filled by a porous medium which is assumed to be isotropic

on each subdomain. We consider the dynamics of two immiscible, incompressible and viscous fluids,

denoted as a wetting one (w) and a nonwetting one (nw). Considering a hybrid ansatz we suppose the

full two-phase model to be valid in domain Ω2, compare [26, 27], whereas we assume that on Ω1 the

simplified Richards model, compare [28, 29], is justified. A typical situation in which this occurs is the

flow of water and air through a porous medium that is so permeable that the air phase can be considered

to be “infinitely” mobile, resulting in a constant air pressure field equal to the atmospheric pressure.

In view of the model hierarchy discussed for example, in [30], the Richards model can be also viewed

as the limit of a two-phase flow regime if the ratio of the nonwetting and the wetting viscosity tends to

zero (and hence the mobility to infinity). With this interpretation, other situations than water and air

are conceivable for a hybrid model ansatz.

Precisely, we consider the following coupling of the Richards equation with the two-phase flow

model in pressure–pressure formulation.

Problem 1 (TP–R problem) For l ∈ {1, 2}, let Ωl,T ≔ Ωl × (0,T) and ΓT ≔ Γ× (0,T).
The coupled two-phase– Richards (TP–R) problem consists of finding phase pressures

pw,1, pw,2 and pnw,2 solving

Φ1𝜕tS1

(
pa, pw,1

)
− ∇ ⋅

(
ki,1

𝜇w
kw,1 (S1) ∇

(
pw,1 + zw

))
= fw,1 (1)

in Ω1,T together with

Φ2𝜕tS2

(
pnw,2, pw,2

)
− ∇ ⋅

(
ki,2

𝜇w
kw,2 (S2) ∇

(
pw,2 + zw

))
= fw,2, (2)

−Φ2𝜕tS2

(
pnw,2, pw,2

)
− ∇ ⋅

(
ki,2

𝜇nw
knw,2 (1 − S2) ∇

(
pnw,2 + znw

))
= fnw,2 (3)
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626 SEUS ET AL.

in Ω2,T . Equations (1)–(3) are coupled via

pw,1 = pw,2, Fw,1 ⋅ n1 = Fw,2 ⋅ n1,

pnw,2 = pa, Fnw,2 ⋅ n2 = Fnw,1 ⋅ n2 (4)

on ΓT . The problem is closed by suitable initial as well as boundary conditions.

We proceed to explain the notation used in Problem 1 including the specification of the fluxes in (4).

For subdomain index l ∈ {1, 2}, our primary unknowns are the wetting pressure pw,l and the nonwetting

pressure pnw,l on Ωl,T , respectively. The given constant atmospheric pressure is denoted by pa and on

Ω1,T , we have pnw,1 = pa, by assumption. The functions Sl = Sl
(
pnw,l, pw,l

)
∈ [0, 1] denote the wetting

saturations and are assumed to be functions of the phase pressures via the capillary pressure saturation

relationships pc,l (Sl) = pnw,l − pw,l, see for example, [26], that is, it is assumed that the functions pc,l
are invertible, compare Assumption 1. Since we model two-phase flow, we use the assumption that

on all subdomains Ωl only the two phases are present, that is, the nonwetting saturations Snw
l can be

expressed by the relations Snw
l = 1 − Sl. This is already built into the equation (3).

The porosities Φl ∈ (0, 1) on each subdomain Ωl are assumed to be constant and furthermore,

we denote by 𝜌𝛼 > 0 the density and by 𝜇𝛼 > 0 the viscosity of phase 𝛼 ∈ {w, nw}. For simplicity,

we assume that the intrinsic permeabilities Kl are isotropic on every subdomain, that is, Kl = ki,lEd.

Finally, for 𝛼 ∈ {w, nw}, k𝛼,l denotes the given relative permeability, f𝛼,l a source term and z𝛼 = 𝜌𝛼gx
𝑑

is the gravitational force term (g being the gravitational acceleration).

The fluxes in (4) determine the mass flow coupling between the domains. For (𝛼, l) ∈
{(w, 1), (w, 2), (nw, 2)} they are given by

F𝛼,l = −
ki,l

𝜇𝛼

k𝛼,l (Sl) ∇
(
p𝛼,l + z𝛼

)
. (5)

It remains to determine the flux Fnw,1. When coupling the Richards model with the two-phase flow

equations, it is not clear which conditions should be imposed in (4), because the nonwetting phase is

considered to be present, yet remains unmodelled. Since on Ω1 the nonwetting pressure is assumed to

be constant, pnw,l = pa, the part of the nonwetting Neumann flux containing the gradient of the pressure

(in a two-phase flow model) would have to vanish. However, this is not the case for the gravitational

part. Thus, there are two possible ways to account for the gravitational force of the nonwetting phase

on Ω1 at the interface. In view of the fact that the Richards model is the mathematical limit of the

two-phase model, compare [30], one choice is

Fnw,1 =
ki,1

𝜇nw
knw,1

(
1 − S1

(
pa, pw,1

))
∇znw. (6)

On the other hand, one could ignore the effect entirely, that is,

Fnw,1 = 0. (7)

The two coupling relations (6) and (7) are suggested in an adhoc manner. A rigorous derivation of cou-

pling conditions via e.g. homogenization techniques is out of the scope of the present paper. However,

we point out that the formulation of the LDD scheme and its proof of convergence work for both cases.

Remark 1 (Extended coupling conditions) The coupling conditions in Problem 1 are

the generic domain decomposition coupling conditions providing equivalence of the sub-

structured problem to a monodomain formulation. While natural in this sense, they exhibit

certain limitations from a modeling perspective. Indeed, since we prescribe the continuity

of the phase pressures, the capillary pressures are continuous as well.
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SEUS ET AL. 627

However, in general, capillary trapping phenomena can occur for heterogeneous soils, where a

phase might not enter into another soil layer due to a pressure barrier. This translates to a pressure jump

over the interface. Nonmatching capillary pressure curves that in addition are extended to multivalued

functions for vanishing (wetting or nonwetting) saturations, need to be considered in this case, com-

pare [31]. This approach reflects pressure discontinuities over the interface by imposing the continuity

of the capillary pressures together with the continuity of the wetting pressure in a generalized, mul-

tivalued sense. However, the analytical treatment (proof of existence of solutions) of this generalized

formulation consists in approximating nonmatching capillary pressure curves by a family of matching

curves with continuous phase pressures.

From the numerical point of view it is therefore important to investigate the applicability of the

LDD solver to the case of continuous pressures not only as a first step, but notably so as an approx-

imation of the more realistic discontinuous case. We refer to [17] for a recent contribution in this

direction.

2.2 Function spaces

Before we give the weak formulation for Problem 1 we introduce some notions for function spaces on

Lipschitz domains and their boundaries, the latter being essential for the analysis of the transmission

conditions in the domain decomposition method. In this section, Ω ⊂ R
𝑑

denotes a generic Lipschitz

domain. In particular, all notations apply to all domains Ω, Ωl, l = 1, 2 introduced in the previous

sections. Spaces on Ω. C∞
0
(Ω) denotes the space of smooth functions with compact support in Ω.

L2(Ω) is the space of square-integrable functions equipped with the scalar product ⟨⋅, ⋅⟩. For s ∈ R,

the space Hs (R𝑑
)

denotes the standard Sobolev-Slobodeckij space with norm ||u||Hs(Ω). We will need

H1

0
(Ω) = C∞

0
(Ω)H

1

, and for vector-valued functions v ∶ Ω → R
𝑑
, the space

H(div,Ω) ≔
{

v ∈
[
L2(Ω)

]𝑑 |||divv ∈ L2(Ω)
}
,

together with the norm ||v||2H(div,Ω) ≔ ||v||2L2 + ||divv||2L2 , divv being understood via the integration by

parts formula.

SPACES On Γ ⊂ 𝜕𝛺. The spaces Hs(Γ) for |s| ≤ 1 are defined by understanding that functions

on 𝜕𝛺 in local coordinates belong to Hs (R𝑑−1
)
. When the Lipschitz surface 𝜕𝛺 is divided into two

surfaces Γ1 and Γ2, 𝜕𝛺 = Γ1 ∪ 𝜕Γj ∪Γ2, with their common boundaries 𝜕Γj of dimension 𝑑 − 2 in turn

being Lipschitz, the spaces Hs (Γj
)

for |s| ≤ 1 can be introduced in the same way.

For a function u ∈ H1∕2
(
Γj
)

the extension
∼
⋅ by zero on 𝜕𝛺∖Γj does not imply u ∈ H1∕2(𝜕𝛺), see

[6, Theorem 3.4.4] and the discussion thereafter. In order to define Neumann traces in a generalized

sense via the Green formula on parts of the boundary, we need to define the subspace of those functions

in H1∕2(Γ) for which the extension by zero belongs to H1∕2(𝜕𝛺), that is

H1∕2

00
(Γ) ≔

{
u ∈ H1∕2(Γ) | ũ ∈ H1∕2(𝜕𝛺)

}
, ||u||H1∕2

00
(Γ) ≔ ||ũ||H1∕2(𝜕𝛺).

With the scalar product inherited from H1∕2(𝜕𝛺) the space H1∕2

00
(Γ) becomes a Hilbert space.

With these definitions, the trace operator 𝛾Γ ∶ H1(Ω) → H1∕2(Γ) can be defined as extension of

the restriction on smooth functions, acting as a bounded, surjective linear operator on these spaces

with bounded right inverse Γ ∶ H1∕2(Γ) → H1(Ω), compare [32, Theorem A.2.3 and p. 132 ff], [6,

Theorem 9.2.1, p. 118] or [33, 34]. To ease the notation, we will denote the trace by u|Γ instead of

𝛾Γu. Moreover, there is a unique linear continuous operator 𝛾
n
𝜕𝛺

∶ H(div,Ω) → H−1∕2(Γ) such that

𝛾
nu = (u ⋅ n)|Γ for u ∈ H(div,Ω) ∩ [C(Ω)]𝑑 . It is in this generalized sense that we will understand

Neumann fluxes.
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628 SEUS ET AL.

DUAL SPACES. Denoting the dual spaces  (Hs
,R) equipped with the standard norm by Hs′

,

functionals F ∈ Hs′
can be identified via the Riesz representation theorem as an element of vF ∈ Hs

itself, that is, F(u) = ⟨vF, u⟩Hs for u ∈ Hs
and ⟨⋅, ⋅⟩Hs denoting the scalar product. However, extending

the form (u, v)
R

𝑑 ≔ ⟨u, v⟩
H0

(
R

𝑑
) to H−s (Rn) × Hs (R𝑑

)
renders the spaces H−s (R𝑑

)
and Hs (R𝑑

)

mutually dual, providing an alternative representation of functionals on Hs
, compare [6, p. 9 ff]. A

similar duality holds for Hs
-spaces on Ω and Γ ⊂ 𝜕𝛺, see [6, Theorem 5.1.12, p. 61]. For the case

s = 1

2
which we need here, we have H1∕2

00
(Γ)′ = H−1∕2(Γ) for Γ ⊂ 𝜕𝛺. We will use the symbol ⟨⋅, ⋅⟩Γ

for the evaluation F(𝜑) of a functional F ∈ H−1∕2(Γ) with a function 𝜑 ∈ H1∕2

00
(Γ) also referred to as

dual pairing.

Remark 2 Note that the considerations on duality from above show that each functional

u in H1∕2

00
(Γ)′ has two representations. Namely, there is a function û ∈ H−1∕2(Γ) and

another function u ∈ H1∕2

00
(Γ) such that

⟨u, 𝜑⟩Γ = ⟨û, 𝜑⟩H0(Γ) and ⟨u, 𝜑⟩Γ = ⟨u, 𝜑⟩H1∕2

00
(Γ). (8)

hold. The choice of representation will be important in the formulation of the domain

decomposition scheme below.

2.3 The LDD-TP–R solver for the TP–R problem

In this section we introduce a time-discrete weak formulation of Problem 1 and formulate an LDD

solver for this setting. Based on Section 2.2 we define spaces associated to the subdomain partition.

For l ∈ {1, 2}, we define

l ≔
{

u ∈ H1 (Ωl) | u|𝜕Ωl∩𝜕𝛺 ≡ 0
}

and  ≔
{
(u1, u2) ∈ 1 × 2 | u1|Γ ≡ u2|Γ

}
,

where the norms in the spaces l are the standard H1 (Ωl)-norms, and on  the norm || ⋅ ||2

=
∑

l=1,2
|| ⋅

||2
l

is used. l′ denotes again the dual space of l and is equipped with the usual norm for functionals

||F||
l′ = sup

𝜑l∈l

||F𝜑l||l
||𝜑l||l

.

Remark 3 Henceforth, we assume that the atmospheric pressure pa vanishes. This can

be done without loss of generality: let p̃ be a physical pressure and p̃a the atmospheric

pressure. By introducing p ≔ p̃ − p̃a, the desired normalization pa = 0 is achieved and

(1), (2), (3) stay the same, since Dp = Dp̃ for all derivatives and p−1
c
(
p̃nw − p̃w

)
= S =

p−1
c
(
p̃nw − p̃a −

(
p̃w − p̃a

))
= p−1

c (pnw − pw).

As a consequence the nonwetting pressure unknown in the two-phase model domainΩ2 at a discrete

time step will be in H1

0
(Ω2) and not in the space 2.

As the first step toward the LDD solver, we formulate a time discrete version of Problem 1. For

N ∈ N, the introduction of the time step size 𝜏 ≔
T
N

partitions the interval [0,T] into the N + 1 time

steps tn
≔ n ⋅ 𝜏, n = 0, … ,N.

The functions pn
w,1 ∶ Ω1 → R and pn

w,2, pn
nw,2 ∶ Ω2 → R denote the unknown time-discrete

pressures at time step tn
. In addition, we set Sn

l = Sl
(
pn

nw,l, pn
w,l
)
(anticipating pn

nw,1 = pa = 0) and

abbreviate

kn
w,l ≔

ki,l

𝜇w
kw,l

(
Sn

l
)
, kn

nw,l ≔
ki,l

𝜇nw
knw,l

(
1 − Sn

l
)
. (9)
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SEUS ET AL. 629

Consequently the fluxes at tn
write as

Fn
w,l ≔ −kn

w,l∇
(
pn

w,l + zw
)
, l ∈ {1, 2} and Fn

nw,2 ≔ −kn
nw,2∇

(
pn

nw,2 + znw
)
.

Depending on the choices in (6) and (7) the time-discrete flux Fn
nw,1 is defined in the same way.

With a backward Euler discretization in time, the time-discrete coupled TP–R problem in weak

form then reads as follows.

Problem 2 (Time-discrete TP–R problem) For some n ∈ N, let
(
pn−1

w,1 , pn−1

w,2
)
∈

 and pn−1

nw,2 ∈ H1

0
(Ω2). Then, the time-discrete TP–R problem consists of finding

((
pn

w,1, pn
w,2
)
, pn

nw,2
)
∈  × H1

0
(Ω2), such that Fn

𝜶,l ⋅ nl ∈ H1∕2

00
(Γ)′ holds for l = 1, 2,

𝛼 ∈ {n, nw} and such that the equations

⟨
Φ1Sn

1
− Φ1Sn−1

1
, 𝜑w,1

⟩
− 𝜏

⟨
Fn

w,1,∇𝜑w,1
⟩
+ 𝜏

⟨
Fn

w,2 ⋅ n1, 𝜑w,1
⟩
Γ = 𝜏

⟨
f n
w,1, 𝜑w,1

⟩
, (10)

⟨
Φ2Sn

2
− Φ2Sn−1

2
, 𝜑w,2

⟩
− 𝜏

⟨
Fn

w,2,∇𝜑w,2
⟩
+ 𝜏

⟨
Fn

w,1 ⋅ n2, 𝜑w,2
⟩
Γ = 𝜏

⟨
f n
w,2, 𝜑w,2

⟩
, (11)

−
⟨
Φ2Sn

2
− Φ2Sn−1

2
, 𝜑nw,2

⟩
− 𝜏

⟨
Fn

nw,2,∇𝜑nw,2
⟩
+ 𝜏

⟨
Fn

nw,1 ⋅ n2, 𝜑nw,2
⟩
Γ = 𝜏

⟨
f n
nw,2, 𝜑nw,2

⟩
(12)

are satisfied for all
(
𝜑w,1, 𝜑w,2

)
∈ 1 × 2 and 𝜑nw,2 ∈ 2.

Remark 4 (i) In what follows, we will assume, that there is a unique solution((
pn

w,1, pn
w,2
)
, pn

nw,2
)
∈  ×H1

0
(Ω2) for the nonlinear time-discrete Problem 2. We are not

aware of any results concerning its well-posedness but we expect that an analytic fixed

point iteration combining existence results from linear elliptic theory and Schauder’s or

Banach’s fixed point theorem can be applied.

ii) Note that traces of functions are implicitly taken in (10)–(12). They are needed for the

dual pairings of functionals on Γ or likewise the scalar product of spaces on Γ, that is,

⟨u, 𝜑⟩Γ = ⟨u |Γ, 𝜑|Γ⟩Γ if u, 𝜑 ∈ l.

For each solution
((

pn
w,1, pn

w,2
)
, pn

nw,2
)

of Problem 2 the coupling conditions (4) are implicitly

fulfilled in a weaker form at each time step tn. Namely, we have pn
w,1
|||Γ = pn

w,2
|||Γ and pn

nw,2
|||Γ = 0

in the sense of traces by the definition of the spaces  , and H1

0
(Ω2). The continuity of the fluxes,

Fl
𝜶,l ⋅nl = Fn

𝜶,3−l ⋅nl, 𝛼 ∈ {w, nw}, is given as equality of functionals in H1∕2

00
(Γ)′. This is true regardless

of the different choices for Fn
nw,1.

Next, we define the iterative domain decomposition ansatz with iteration number i ∈ N0 based on

the time-discrete TP–R problem in weak formulation. Extending the notation once more, the functions

pn,i
w,1 ∶ Ω1 → R and pn.i

w,2, p
n,i
nw,2 ∶ Ω2 → R denote the unknown ith pressure iterate during the solving

for pressures of time step tn
. We set again Sn,i

l = Sl
(
pn,i

nw,l, p
n,i
w,l
)

using pn,i
nw,1 = pa = 0. With the

notations

kn,i
w,l ≔

ki,l

𝜇w
kw,l

(
Sn,i

l
)
, kn,i

nw,l ≔
ki,l

𝜇nw
knw,l

(
1 − Sn,i

l
)
, (13)

the flux iterates at tn
are given by

Fn,i
w,l ≔ −kn,i−1

w,l 𝛻

(
pn,i

w,l + zw
)
, l ∈ {1, 2} and Fn,i

nw,2 ≔ −kn,i−1

nw,2 𝛻
(
pn,i

nw,2 + znw
)
.

The flux iterate Fn,i
nw,1 is defined case by case in the same way.
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630 SEUS ET AL.

LDD schemes are designed to address simultaneously the two main challenges of Problem 2.

Firstly, each equation in Problem 2 is doubly nonlinear, nonlinearities being present in the discretized

time derivative, as well as in the fluxes. Secondly, the system of equations (10) to (12) is nonlinearly

coupled and the coupling conditions contain nonlinearities themselves. The LDD method tackles both

of these problems by linearizing and decoupling the equations in one single fixed point iteration.

We assume that
((

pn−1

w,1 , pn−1

w,2
)
, pn−1

nw,2
)
∈  × H1

0
(Ω2) is given and set as initial iterates in the nth

time step

pn,0
w,l ≔ pn−1

w,l on Ωl, l = 1, 2, and pn,0
nw,2 ≔ pn−1

nw,2, on Ω2, (14)

Let the numbers 𝜆𝛼 ∈ (0,∞), 𝛼 ∈ {n, nw} be given. They are introduced to control the ratio between

Dirichlet and flux-type transmission conditions. Following Lions, [3, 35], we introduce the Robin-type

interface terms

g0

𝛼,l ≔ Fn-1
𝜶,l ⋅ nl − 𝜆𝛼pn−1

𝛼,l
|||Γ (15)

as functionals in H1∕2

00
(Γ)′ for both phases and both subdomains. Since on Ω1 the nonwetting pressure

is constant, pnw,1 = pa = 0, we define either

g0

nw,1 ≔ Fn−1
nw,1 ⋅ n1 = kn−1

nw,1∇znw ⋅ n1 (16)

if gravity effects are included, corresponding to the right hand side of (6), or

g0

nw,1 ≔ Fn−1
nw,1 ⋅ n1 = 0 (17)

instead, in case gravity effects are excluded, as is expressed through the right hand side of (7).

Note 1 (Pressure functionals) For p ∈ l, we define the pressure functionals ⟨p, ⋅⟩Γ ∈
H1∕2

00
(Γ)′ on the interface such as the ones appearing in (15) according to

⟨p, ⋅⟩Γ ≔ ⟨p, ⋅⟩1∕2. (18)

In this way, the pressure traces p|Γ are representing the functionals ⟨p, ⋅⟩Γ ∈ H1∕2

00
(Γ)′ w.r.t

the H1∕2

00
(Γ)-scalar product, that is, p|Γ = p, compare Remark 2. This will be important

in the proof of Theorem 1.

Now, the LDD -TPR scheme approximates the solution to the time-discrete Problem 2 at time tn by

solving subsequently the following problem (LDD-TPR solver), together with the initial iterates given

in (14) and (15).

Problem 3 (LDD-TP–R solver) Let Lw,2,Lnw,2,Lw,1 > 0 and some previously known

iterates pn,i−1

𝛼,l ∈ l, gi−1

𝛼,l ∈ H1∕2

00
(Γ)′ be given for i ∈ N, n ≥ 1.

Find
(
pn,i

w,1, p
n,i
w,2, p

n,i
nw,2

)
∈ 1 × 2 × 2, such that

Lw,l
⟨

pn,i
w,l, 𝜑w,l

⟩
− 𝜏

⟨
Fn,i

w,l,∇𝜑w,l

⟩
+ 𝜏

⟨
𝜆wpn,i

w,l + gi
w,l, 𝜑w,l

⟩
Γ

= Lw,l

⟨
pn,i−1

w,l , 𝜑w,l

⟩
−
⟨
ΦlSn,i−1

l − ΦlSn−1

l , 𝜑w,l

⟩
+ 𝜏

⟨
f n
w,l, 𝜑w,l

⟩
(19)

is fulfilled for l ∈ {1, 2} with

⟨
gi

w,l, 𝜑w,l
⟩
Γ ≔

⟨
−2𝜆wpn,i−1

w,3−l − gi−1

w,3−l, 𝜑w,l

⟩

Γ
, (20)
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SEUS ET AL. 631

as well as

Lnw,2
⟨

pn,i
nw,2, 𝜑nw,2

⟩
− 𝜏

⟨
Fn,i

nw,2,∇𝜑nw,2

⟩
+ 𝜏

⟨
𝜆nwpn,i

nw,2 + gi
nw,2, 𝜑nw,2

⟩
Γ

= Lnw,2

⟨
pn,i−1

nw,2 , 𝜑nw,2

⟩
+
⟨
Φ2Sn,i−1

2
− Φ2Sn−1

2
, 𝜑nw,2

⟩
+ 𝜏

⟨
f n
nw,2, 𝜑nw,2

⟩
(21)

with
⟨

gi
nw,1, 𝜑nw,2

⟩
Γ ≔

⟨
−2𝜆nwpn,i−1

nw,2 − gi−1

nw,2, 𝜑nw,2

⟩

Γ
, (22)

⟨
gi

nw,2, 𝜑nw,2
⟩
Γ ≔

⟨
−gi−1

nw,1, 𝜑nw,2
⟩
Γ , (23)

for all 𝜑w,1 ∈ 1, 𝜑w,2 ∈ 2 and 𝜑nw,2 ∈ 2.

Notice that in a two-domain situation the index of the adjacent domain can be denoted by 3− l, for

any given l ∈ {1, 2}, since 3 − l = 2 for l = 1 and 3 − l = 1 for l = 2. This type of notation has been

used in Problem 3 and will be used henceforth.

Remark 5 It may look peculiar to introduce an update for the term gi
nw,1 in (22) and

(23) as we do not have any equation for the nonwetting phase on Ω1. However, it is pre-

cisely this way of updating the gi
𝛼,l terms, that liberates the nonwetting pressure iterates

pn,i
nw,2 of the requirement to being elements of H1

0
(Ω2), that is, to fulfill continuity to the

atmospheric pressure in each iteration. Instead, it allows to merely require that pn,i
nw,2 is an

element of 2. This is less restrictive. In the present formulation, the LDD solver enforces

pn,i
nw,2

|||Γ → 0 in the limit i → ∞ all by itself. Moreover, it enables us to formulate a scheme

that treats both model assumptions (6) and (7) in a unified manner.

The assertions of Remark 5 will be verified once Problem 2 is reformulated such that the reformu-

lation can be recognized as the formal limit system of the solver and the convergence of the LDD-TP–R

solver to this reformulation is proven. The reformulation of Problem 2 is given in the next section.

2.4 Consistency of the LDD-TP–R solver with the time-discrete TP–R Problem 2

Recall that for a solution
((

pn
w,1, pn

w,2
)
, pn

nw,2
)
∈  × H1

0
(Ω2) of Problem 2 the nonwetting Neumann

flux Fn
nw,1 ⋅ n1 is defined by the right hand side of either (6) or (7), compare also (17) and (16). Thus,

the functionals

gw,l ≔ −𝜆wpn
w,l
||Γ + Fn

w,l ⋅ nl (l = 1, 2), (24)

gnw,1 ≔ −𝜆nw pn
nw,1

||Γ
⏟⏟⏟

=pa=0

+ Fn
nw,1 ⋅ n1 and gnw,2 ≔ −𝜆nw pn

nw,2
||Γ

⏟⏟⏟

=0

+ Fn
nw,2 ⋅ n2, (25)

in H1∕2

00
(Γ)′ fulfill the relations

gw,l = −2𝜆wpn
w,3−l

||Γ + 𝜆wpn
w,3−l

|||Γ − Fn
w,3−l ⋅ n3−l = −2𝜆wpn

w,3−l
|||Γ − gw,3−l (l = 1, 2),

gnw,1 = −2𝜆nwpn
nw,2

||Γ − gnw,2 and gnw,2 = −gnw,1.
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632 SEUS ET AL.

Note that pn
w,1
|||Γ = pn

w,2
|||Γ, pn

nw,2
|||Γ = 0 and F

𝜶,1 ⋅ n1 = −F
𝜶,2 ⋅ n2 for 𝛼 ∈ {w, nw}. Problem 2 can

therefore be written as

⟨
ΦlSn

l − ΦlSn−1

l , 𝜑w,l
⟩
− 𝜏

⟨
Fn

w,l,∇𝜑w,l
⟩
+ 𝜏

⟨
𝜆wpn

w,l + gw,l, 𝜑w,l
⟩
Γ = 𝜏

⟨
f n
w,l, 𝜑w,l

⟩
(19

′
)

with

⟨gw,l, 𝜑w,l⟩Γ =
⟨
−2𝜆wpn

w,3−l − gw,3−l, 𝜑w,l
⟩
Γ , (20

′
)

for l ∈ {1, 2} as well as

−
⟨
Φ2Sn

2
− Φ2Sn−1

2
, 𝜑nw,2

⟩
−𝜏

⟨
Fn

nw,2,∇𝜑nw,2
⟩
+𝜏

⟨
𝜆nwpn

nw,2 + gnw,2, 𝜑nw,2
⟩
Γ = 𝜏

⟨
f n
nw,2, 𝜑nw,2

⟩
(21

′
)

together with

⟨gnw,1, 𝜑nw,2⟩Γ =
⟨
−2𝜆nwpn

nw,2 − gnw,2, 𝜑nw,2
⟩
Γ , (22

′
)

⟨gnw,2, 𝜑nw,2⟩Γ = ⟨−gnw,1, 𝜑nw,2⟩Γ . (23
′
)

We know pn
nw,2

|||Γ = 0 since pn
nw,2 ∈ H1

0
(Ω2) and thus the pressure functionals in (21

′
)–(22

′
) actually

disappear. They are written out here to emphasize the structure.

Conversely, any tuple of functions
(
pn

w,1, pn
w,2, pn

nw,2
)
∈ 1×2×2 fulfilling (19

′
) – (23

′
) together

with

gnw,1 = Fn
nw,1 ⋅ n1, (26)

where Fn
nw,1 ⋅ n1 is defined by the right hand side of either (6) or (7), is a solution of Problem 2.

The argument supporting this claim for the wetting phase has been given in the proof of [1, Lemma

2] or [36, Lemma 2.3.12] and it carries over to the situation here.

Regarding the nonwetting phase on Ω2, notice that pn
nw,2

|||Γ = 0 is contained in (23) and (22) as
⟨

pn
nw,2, 𝜑nw,2

⟩
Γ = 0 follows for all 𝜑nw,2 ∈ 2 by plugging (23

′
) into (22

′
). By our definition of the

pressure functionals, compare Note 1, as well as by virtue of the surjectivity of the trace operator, this

means

⟨
pn

nw,2
|||Γ , 𝜂

⟩

1∕2

=
⟨

pn
nw,2, 𝜂

⟩
Γ = 0 for all 𝜂 ∈ H1∕2

00
(Γ) and thus pn

nw,2
|||Γ = 0.

Using this and integrating (21
′
) by parts yields gnw,2 = Fn

nw,2 ⋅n2. Since gnw,2 = −gnw,1 = Fn
nw,1 ⋅n2

by (23
′
) and (26), the continuity of the fluxes follows.

Consequently, we have proven the following.

Lemma 1 (Limit of the LDD-TP–R solver) Let n ∈ N, n ≥ 1, be fixed, the tuple((
pn−1

w,1 , pn−1

w,2
)
, pn−1

nw,2
)
∈  × H1

0
(Ω2) be given and assume that functions (pn

w,1, pn
w,2,

pn
nw,2) ∈ 1 × 2 × 2 and g𝛼,l ∈ H1∕2

00
(Γ)′ exist for 𝛼 ∈ {n, nw} and l ∈ {1, 2}, such that

gnw,1 is given by (26), and such that these functions fulfill the system of equations (19′)-
(23′) for all 𝜑w,1 ∈ 1 and 𝜑w,2, 𝜑nw,2 ∈ 2.

Then, the interface conditions

pn
w,1
||Γ = pn

w,2
||Γ and pn

nw,2
||Γ = 0, (27)

Fn
𝜶,l ⋅ nl = Fn

𝜶,3−l ⋅ nl, 𝛼 ∈ {w, nw} (l ∈ {1, 2}) (28)

are satisfied in H1∕2

00
(Γ)′ and

((
pn

w,1, pn
w,2
)
, pn

nw,2
)

solves Problem 2. Moreover,

gw,l = −𝜆wpn
w,l
||Γ + Fn

w,l ⋅ nl (l = 1, 2) and (29)

gnw,2 = −𝜆nwpn
nw,2

||Γ + Fn
nw,2 ⋅ n2 (30)

in H1∕2

00
(Γ)′.
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SEUS ET AL. 633

Conversely, if
((

pn
w,1, pn

w,2
)
, pn

nw,2
)
∈  × H1

0
(Ω2) is a solution of Problem 2 and

gw,l is defined according to (29), gnw,2 according to (30) and gnw,1 given by (26), then((
pn

w,1, pn
w,2
)
, pn

nw,2
)

and g𝛼,l solve the system (19
′
)–(23

′
).

Remark 6 Theorem 1 below shows that the family
{(

pn,i
w,1, p

n,i
w,2, p

n,i
nw,2

)}
i∈N of subse-

quent solutions to Problem 3, together with the iterates
{

gi
𝛼,l
}

i∈N converge to a solution of

(19
′
)–(23

′
). By the just proven lemma, this means solving Problem 2. Thus, it is justified

to refer to equations (19
′
)–(23

′
) as the limit system to Problem 3.

3 CONVERGENCE OF THE LDD-TP–R SOLVER

In this core section we analyze the convergence of the LDD-TP–R solver. Before doing so we state the

general assumptions needed (see also the setting in [4, 37]).

Assumption 1 Let l ∈ {1, 2}.
(a) The intrinsic permeabilities ki,l belong to L∞ (Ω,R+) ∩ C0,1 (Ω,R+).
(b) The relative permeabilities of the wetting phases kw,l ∶ [0, 1] → [0, 1] are strictly

monotonically increasing and Lipschitz continuous functions with Lipschitz constants

Lkw,l . The relative permeabilities of the nonwetting phases knw,l ∶ [0, 1] → [0, 1] on both

domains are strictly monotonically decreasing (as functions of the wetting saturation) and

Lipschitz continuous functions with Lipschitz constants Lknw,l .

(c) There are numbers m1,m2 > 0 such that we have
k

i,lkw,1

𝜇w
≥ m1 and

m2 = min

{
min

s∈[0,1]

ki,2

𝜇w
kw,2(s), min

s∈[0,1]

ki,2

𝜇nw
knw,2(s)

}
. (31)

(d) The capillary pressure saturation relationships pl
c (Sl) ≔ pnw,l−pw,l are monotonically

decreasing functions and therefore the saturations, Sl
(
pl

c
)
= Sl

(
pnw,l − pw,l

)
are also

monotonically decreasing as functions of pl
c. Moreover, they are assumed to be Lipschitz

continuous with Lipschitz constants LSl .

Assumption 1(c) is required to ensure the existence of a solution in each LDD-TP–R solver step,

and for the convergence proof of the LDD-TP–R solver as well. It excludes degeneracy and implicitly

makes sure that both phases are present on both sides of the interface avoiding trapping effects.

Before stating our main result, we note the following lemma. In view of Assumption 1 it is a direct

consequence of the Lax-Milgram theorem and guarantees that solving Problem 3 is always possible.

Lemma 3 Let Assumptions 1 hold true. Given f n
𝛼,l ∈ l′ , Problem 3 has a unique

solution
(
pn,i

w,1, p
n,i
w,2, p

n,i
nw,2

)
∈ 1 × 2 × 2.

Considering a family of subsequent solutions to Problem 3, we can now prove the following

convergence result for the LDD-TP–R solver.

Theorem 1 (Convergence of the LDD-TP–R solver) Let Assumption 1 hold true and
suppose that there exists a pair

((
pn

w,1, pn
w,2
)
, pn

nw,2
)
∈  × H1

0
(Ω2) that uniquely solves

Problem 2 satisfying for some M > 0 the bound supl,𝛼 ||∇
(
pn
𝛼,l + z𝛼

)
||L∞ ≤ M. For
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634 SEUS ET AL.

l ∈ {1, 2}, 𝛼 ∈ {w, nw} let 𝜆𝛼 > 0 and L𝛼,l > 0 be such that we have

1

LS
2
Φ2

−
∑

𝛼

1

2L𝛼,2
> 0 and 1

LS
1
Φ1

− 1

2Lw,1
> 0. (32)

For arbitrary initial pressures pn,0
w,l ≔ 𝜈w,l ∈ l, l = 1, 2, and pn,0

nw,2 ≔ 𝜈nw,2 ∈ H1

0
(Ω2),

let
{((

pn,i
w,1, p

n,i
w,2
)
, pn,i

nw,2
)}

i∈N
0

∈ (1 × 2 × 2)N0 be a sequence of solutions to Problem
3,
{

gi
𝛼,l
}

i∈N
0

be defined by (20) and (22)–(23) and g𝛼,l by (24)–(25) for 𝛼 ∈ {w, nw} and
l ∈ {1, 2}. Assume, that the time step size 𝜏 has been chosen to satisfy the conditions

C2 ≔

1

LS
2
Φ2

−
∑

𝛼

1

2L𝛼,2
− 𝜏

∑

𝛼

L2

k
𝛼,2

M2

2m2Φ2

2

> 0, C1 ≔

1

LS
1
Φ1

− 1

2Lw,1
− 𝜏

L2

kw,1
M2

2m1Φ2

1

> 0. (33)

Then,

pn,i
w,l → pn

w,l in l

pn,i
nw,2 → pn

nw,2 in 2

, and
gi

w,l → gw,l in l′

gi
nw,l → gnw,l in l′

,

for l = 1, 2 as i →∞. Notably, pn,i
nw,2

|||Γ → 0 in H1∕2

00
(Γ) as i → ∞.

Remark 7 (Explicit time step restriction) The implicit restrictions (33) on the time step

size translate to the explicit form

𝜏 < min

⎧
⎪
⎨
⎪
⎩

(
1

LS
1
Φ1

− 1

2Lw,1

)
2m1Φ2

1

L2

kw,1
M2

,

1

LS2
Φ

2

−
∑

𝛼

1

2L
𝛼,2

∑
𝛼

[(
Lk

𝛼,2
M
)2∕

(
2m2Φ2

2

)]

⎫
⎪
⎬
⎪
⎭

. (34)

The above time step restriction is an assumption necessary for our convergence proof to

work. It is in no shape or form a sharp estimate. For practical numerical application the

value of 𝜏 must be guessed. It needs to be balanced between assuring convergence of the

scheme and reasonable simulation time. It is a general trait of L-type schemes, however,

to issue stable convergence behavior with coarser time step sizes, compare [1]. We test

this numerically in paragraph 5.1, see p. 20.

Proof. (of Theorem 3.3). Note that for the proof, we will actually denote by Lk
𝛼,l the

Lipschitz constant of the function
||k

i,l||∞k
𝛼,l

𝜇
𝛼

by slight abuse of notation. Define the itera-

tion errors ew,i
p,l ≔ pn

w,l − pn,i
w,l and enw,i

p,2 ≔ pn
nw,2 − pn,i

nw,2 as well as e𝛼,ig,l ≔ g𝛼,l − gi
𝛼,l for

l = 1, 2 and 𝛼 ∈ {w, nw}. Add Lw,l
⟨

pn
w,l, 𝜑w,l

⟩
− Lw,l

⟨
pn

w,l, 𝜑w,l
⟩

to (19) and respec-

tively Lnw,2
⟨

pn
nw,2, 𝜑nw,2

⟩
− Lnw,2

⟨
pn

nw,2, 𝜑nw,2
⟩

to (21) and subtract the corresponding

equations (19) as well as (21) to get

L𝛼,l
⟨

e𝛼,ip,l − e𝛼,i−1

p,l , 𝜑𝛼,l

⟩
+ 𝜏

⟨
𝜆𝛼e𝛼,ip,l + e𝛼,ig,l , 𝜑𝛼,l

⟩
Γ

+𝜏
⟨
−Fn

𝜶,l − kn,i−1

𝛼,l ∇
(
pn
𝛼,l + z𝛼

)
+ kn,i−1

𝛼,l ∇
(
pn
𝛼,l + z𝛼

)
+ Fn,i

𝜶,l,∇𝜑𝛼,l
⟩

(35)

= (−1)𝛿𝛼w
⟨
ΦlSn

l − ΦlSn−1

l , 𝜑𝛼,l
⟩
− (−1)𝛿𝛼w

⟨
ΦlSn,i−1

l − ΦlSn−1

l , 𝜑𝛼,l

⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(−1)𝛿𝛼w⟨ΦlSn
l −ΦlS

n,i−1

l ,𝜑
𝛼,l⟩

,
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SEUS ET AL. 635

where (35) is meaningful for the index combinations (𝛼, l) ∈ {(w, 1), (w, 2), (nw, 2)}. Note

the use of the Kronecker delta 𝛿𝛼w to account for the minus sign of the time discretization

for the nonwetting phase.

Inserting for all admissible index combinations 𝜑𝛼,l ≔ e𝛼,ip,l in (35) and making use of

the identity

L𝛼,l
⟨

e𝛼,ip,l − e𝛼,i−1

p,l , e𝛼,ip,l

⟩
= L𝛼,l

2

(
||e𝛼,ip,l||

2 − ||e𝛼,i−1

p,l ||2 + ||e𝛼,ip,l − e𝛼,i−1

p,l ||2
)
,

leads to

L𝛼,l
2

(
||e𝛼,ip,l||

2 − ||e𝛼,i−1

p,l ||2 + ||e𝛼,ip,l − e𝛼,i−1

p,l ||2
)
+ 𝜏𝜆𝛼

⟨
e𝛼,ip,l , e

𝛼,i
p,l
⟩
Γ =

⟨
ΦlSn

l − ΦlSn,i−1

l , (−1)𝛿𝛼w e𝛼,ip,l

⟩

−𝜏
⟨

e𝛼,ig,l , e
𝛼,i
p,l
⟩
Γ − 𝜏

⟨(
kn
𝛼,l − kn,i−1

𝛼,l

)
∇
(
pn
𝛼,l + z𝛼

)
,∇e𝛼,ip,l

⟩
− 𝜏

⟨
kn,i−1

𝛼,l ∇e𝛼,ip,l ,∇e𝛼,ip,l

⟩
. (36)

Summing over phases 𝛼 = w, nw in (36) for l = 2 and adding the term⟨
Φ2Sn

2
− Φ2Sn,i−1

2
, ew,i−1

p,2 − enw,i−1

p,2

⟩
on both sides of the equation, yields

∑

𝛼

L𝛼,2
2

(
||e𝛼,ip,2||

2 − ||e𝛼,i−1

p,2 ||2 + ||e𝛼,ip,2 − e𝛼,i−1

p,2 ||2
)
+
⟨
Φ2Sn

2
− Φ2Sn,i−1

2
, ew,i−1

p,2 − enw,i−1

p,2

⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

TP
1

=
⟨
Φ2Sn

2
− Φ2Sn,i−1

2
, ew,i−1

p,2 − ew,i
p,2 −

(
enw,i−1

p,2 − enw,i
p,2

)⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≕TP
2

− 𝜏
∑

𝛼

⟨
𝜆𝛼e𝛼,ip,2 + e𝛼,ig,2, e

𝛼,i
p,2
⟩
Γ

≕ITP

−𝜏
∑

𝛼

⟨
kn,i−1

𝛼,2
∇e𝛼,ip,2,∇e𝛼,ip,2

⟩

≕TP
4

− 𝜏
∑

𝛼

⟨(
kn
𝛼,2
− kn,i−1

𝛼,2

)
∇
(
pn
𝛼,2
+ z𝛼

)
,∇e𝛼,ip,2

⟩
.

≕TP
3

(37)

Similarly, adding

⟨
Φ1Sn

1
− Φ1Sn,i−1

1
, ew,i−1

p,1

⟩
to both sides of (36) for l = 1, one gets

Lw,1

2

(
||ew,i

p,1||
2 − ||ew,i−1

p,1 ||2 + ||ew,i
p,1 − ew,i−1

p,1 ||2
)
+
⟨
Φ1Sn

1
− Φ1Sn,i−1

1
, ew,i−1

p,1

⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

R
1

=
⟨
Φ1Sn

1
− Φ1Sn,i−1

1
, ew,i−1

p,1 − ew,i
p,1

⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≕R
2

− 𝜏
⟨
𝜆wew,i

p,1 + ew,i
g,1, e

w,i
p,1
⟩
Γ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≕IR

−𝜏
⟨(

kn
w,1 − kn,i−1

w,1

)
∇
(
pn

w,1 + zw
)
,∇ew,i

p,1

⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≕R
3

− 𝜏
⟨

kn,i−1

w,1 ∇ew,i
p,1,∇ew,i

p,1

⟩
.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≕R
4

(38)

We proceed to estimate the assigned terms TP1–TP4 and R1–R4 from (37) and (38).

TP1, R1 Recall that Sl
(
pw,l, pnw,l

)
=
(
pl

c
)−1 (pnw,l − pw,l

)
for both l and that pl

c
′
< 0

so that we actually have the dependence Sl
(
pw,l, pnw,l

)
= Sl

(
pnw,l − pw,l

)
where Sl as a

function of pl
c is monotonically decreasing. Even though pnw,1 = pa = 0 and there is
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636 SEUS ET AL.

no equation for pnw,1, we estimate both TP1 and R1 with the same reasoning by setting

pn
nw,1 = 0 and pn,i

nw,1 = 0 for all i ∈ N. Thereby, we have for l = 1, 2

||||
ΦlSl

(
pn

nw,l − pn
w,l
)
− ΦlSl

(
pn,i−1

nw,l − pn,i−1

w,l

)||||

2

≤ LSlΦl|ΦlSl
(
pn

nw,l − pn
w,l
)
− ΦlSl

(
pn,i−1

nw,l − pn,i−1

w,l

)
||enw,i−1

p,l − ew,i−1

p,l |

= LSlΦl

(
ΦlSl

(
pn

nw,l − pn
w,l
)
− ΦlSl

(
pn,i−1

nw,l − pn,i−1

w,l

))(
ew,i−1

p,l − enw,i−1

p,l

)
(39)

as a result of the Lipschitz continuity of Sl. The monotonicity of Sl allowed dropping the

absolute value. Therefore, by integrating (39), we estimate TP1 and R1 by

1

LSlΦl
||ΦlSn

l − ΦlSn,i−1

l ||2 ≤
⟨
ΦlSn

l − ΦlSn,i−1

l , ew,i−1

p,l − enw,i−1

p,l

⟩
. (40)

For l = 1, (40) is an estimate for R1 since we had set enw,i−1

p,1 = 0, and for l = 2 it is an

estimate for TP1. In this manner, (40) is a condensed notation of both estimates into one.

TP2, R2 Young’s inequality |xy| ≤ 𝜀|x|2 + 1

4𝜀
|y|2 with 𝜀 > 0 applied to the term TP2,

gives

|TP2| = |
⟨
Φ2Sn

2
− Φ2Sn,i−1

2
, ew,i−1

p,2 − ew,i
p,2 −

(
enw,i−1

p,2 − enw,i
p,2

)⟩
| ≤

Lw,2

2
||ew,i−1

p,2 − ew,i
p,2||

2

+Lnw,2

2

‖‖‖‖

(
enw,i−1

p,2 − enw,i
p,2

)‖‖‖‖

2

+
(

1

2Lw,2
+ 1

2Lnw,2

)
||Φ2Sn

2
− Φ2Sn,i−1

2
||2,

where we chose 𝜀
2
𝛼 =

L
𝛼,2

2
for 𝛼 = w, nw. The analogous choice of 𝜀

1
w = Lw,1

2
for l = 1

yields

|R2| = |
⟨
Φ1Sn

1
− Φ1Sn,i−1

1
, ew,i−1

p,1 − ew,i
p,1

⟩
| ≤

Lw,1

2
||ew,i−1

p,1 − ew,i
p,1||

2 + 1

2Lw,1
||Φ1Sn

1
− Φ1Sn,i−1

1
||2.

TP3, R3. TP3 and R3 can be estimated together as well. We have

|
⟨(

kn
𝛼,l − kn,i−1

𝛼,l

)
∇
(
pn
𝛼,l + z𝛼

)
,∇e𝛼,ip,l

⟩
| ≤

‖‖‖‖

(
kn
𝛼,l − kn,i−1

𝛼,l

)
∇
(
pn
𝛼,l + z𝛼

)‖‖‖‖
||∇e𝛼,ip,l||

≤

Lk
𝛼,l M
Φl

||ΦlSn
l − ΦlSn,i

l ||||∇e𝛼,ip,l|| ≤
Lk

𝛼,l M
Φl

𝜀𝛼,l||ΦlSn
l − ΦlSn,i

l ||
2 +

Lk
𝛼,l M

4𝜀𝛼,lΦl
||∇e𝛼,ip,l||

2
(41)

for (𝛼, l) ∈ {(w, 1), (w, 2), (nw, 2)}. To derive (41), the Lipschitz-continuity of k𝛼,l and the

assumption ||∇
(
pn
𝛼,l + z𝛼

)
||∞ < M was used. 𝜀𝛼,l will be chosen later. Equation (41) is

the estimate for R3 for l = 1, 𝛼 = w and the estimate for TP3 is obtained by summing over

the phase index 𝛼,

|TP3| ≤ 𝜏
∑

𝛼

Lk
𝛼,2

M𝜀𝛼,2
Φ2

||Φ2Sn
2
− Φ2Sn,i

2
||2 + 𝜏

∑

𝛼

Lk
𝛼,2

M
4𝜀𝛼,2Φ2

||∇e𝛼,ip,2||
2
. (42)

TP4, R4. Finally, by Assumption 1(c), we estimate R4 by

R4 = 𝜏
⟨

kn,i−1

w,1 ∇ew,i
p,1,∇ew,i

p,1

⟩
> 𝜏m1||∇ew,i

p,1||
2

(43)
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SEUS ET AL. 637

Analogously on the two-phase domain for TP4, we have the estimate

TP4 = 𝜏
∑

𝛼

⟨
kn,i−1

𝛼,2
∇e𝛼,ip,2,∇e𝛼,ip,2

⟩
> 𝜏m2

∑

𝛼

||∇e𝛼,ip,2||
2
. (44)

Combining the just derived estimates in (40)–(43) and (44) with Equations (37) and (38),

one arrives at

∑

𝛼

L𝛼,2
2

(
||e𝛼,ip,2||

2 − ||e𝛼,i−1

p,2 ||2
)
+ 1

LS
2
Φ2

||Φ2Sn
2
− Φ2Sn,i−1

2
||2

+𝜏
∑

𝛼

⟨
𝜆𝛼e𝛼,ip,2 + e𝛼,ig,2, e

𝛼,i
p,2
⟩
Γ + 𝜏m2

∑

𝛼

||∇e𝛼,ip,2||
2
≤

∑

𝛼

1

2L𝛼,2
||Φ2Sn

2
− Φ2Sn,i−1

2
||2

+𝜏
∑

𝛼

Lk
𝛼,2

M
4𝜀𝛼,2Φ2

||∇e𝛼,ip,2||
2 + 𝜏

∑

𝛼

Lk
𝛼,2

M𝜀𝛼,2
Φ2

||Φ2Sn
2
− Φ2Sn,i

2
||2 (45)

on Ω2, and on Ω1 at

Lw,1

2

(
||ew,i

p,1||
2 − ||ew,i−1

p,1 ||2
)
+ 1

LS
1
Φ1

||Φ1Sn
1
− Φ1Sn,i−1

1
||2 + 𝜏

⟨
𝜆wew,i

p,1 + ew,i
g,1, e

w,i
p,1
⟩
Γ + 𝜏m1||∇ew,i

p,1||
2

≤

1

2Lw,1
||Φ1Sn

1
− Φ1Sn,i−1

1
||2 + 𝜏

Lk
𝛼,1

M
4𝜀w,1Φ1

||∇ew,i
p,1||

2 + 𝜏Lkw,1

M𝜀w,1

Φ1

||Φ1Sn
1
− Φ1Sn,i

1
||2. (46)

In order to handle the interface terms IR in (38) and ITP in (37), recall that we defined the

pressure functionals according to Note 1. This allows us to treat the interface terms in the

following way: Subtracting (20) from (20
′
) for 𝛼 = w and (22), (23) from (22

′
) and (22),

(23
′
) respectively for 𝛼 = nw, all the while using the representations e𝛼,ig,l ∈ H1∕2

00
(Γ) of

the functionals e𝛼,ig,l ∈ H1∕2

00
(Γ)′(cf. Remark 2), we obtain

e𝛼,ig,l = −2𝜆𝛼e𝛼,i−1

p,3−l − e𝛼,i−1

g,3−l

for (𝛼, l) ∈ {(w, 1), (w, 2), (nw, 1)} as well as

enw,i
g,2 = −enw,i−1

g,1 .

This leads to the relations

||ew,i
p,l ||

2

1∕2
= 1

4𝜆
2
w

(
||ew,i+1

g,3−l ||
2

1∕2
− ||ew,i

g,l ||
2

1∕2
− 4𝜆w

⟨
ew,i

g,l , e
w,i
p,l
⟩
Γ

)
, (47)

||enw,i
p,2 ||

2

1∕2
= 1

4𝜆
2
nw

(
||enw,i+1

g,1 ||2
1∕2
− ||enw,i

g,2 ||
2

1∕2
− 4𝜆nw

⟨
enw,i

g,2 , e
nw,i
p,2
⟩
Γ

)
, (48)

0 = 1

4𝜆
2
nw

(
||enw,i+1

g,2 ||2
1∕2
− ||enw,i

g,1 ||
2

1∕2

)
. (49)

Inserting for l = 1 Equation (47) into (46) and for l = 2 (47) as well as (48) in (45), yields

(
1

LS
2
Φ2

−
∑

𝛼

(
1

2L𝛼,2
+ 𝜏Lk

𝛼,2

M𝜀𝛼,2
Φ2

))

||Φ2Sn
2
− Φ2Sn,i−1

2
||2 + 𝜏

∑

𝛼

(
m2 −

Lk
𝛼,2

M
4𝜀𝛼,2Φ2

)
||∇e𝛼,ip,2||

2

≤

∑

𝛼

L𝛼,2
2

(
||e𝛼,i−1

p,2 ||2 − ||e𝛼,ip,2||
2

)
+ 𝜏

∑

𝛼

1

4𝜆𝛼

(
||e𝛼,ig,2||

2

1∕2
− ||e𝛼,i+1

g,1 ||2
1∕2

)
(50)
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638 SEUS ET AL.

for Ω2 and

(
1

LS
1
Φ1

− 1

2Lw,1
− 𝜏Lkw,1

M𝜀w,1

Φ1

)
||Φ1Sn

1
− Φ1Sn,i−1

1
||2 + 𝜏

(
m1 −

Lkw,1 M
4𝜀w,1Φ1

)
||∇ew,i

p,1||
2

≤

Lw,1

2

(
||ew,i−1

p,1 ||2 − ||ew,i
p,1||

2

)
+ 𝜏

4𝜆w

(
||ew,i

g,1||
2

1∕2
− ||ew,i+1

g,2 ||2
1∕2

)
, (51)

for Ω1, where we dropped denoting the representing element by ⋅.
Now choose 𝜀𝛼,l = Lk

𝛼,l M∕ (2mlΦl) such that ml − Lk
𝛼,l M∕

(
4𝜀𝛼,lΦl

)
= ml

2
> 0.

Recall that by assumption the numbers L𝛼,l have been chosen large enough that
1

LS2
Φ

2

−
1

2

∑
𝛼

1

L
𝛼,2

> 0 as well as
1

LS1
Φ

1

− 1

2Lw,1
> 0, and in addition the time step restriction (33) is

satisfied for a sufficiently small 𝜏. Summing up the equations (50) and (51), then adding

zero in the form of (49) to the result and thereafter summing with respect to iterations

i = 1, … , r leads to

r∑

i=1

∑

l=1,2

Cl||ΦlSn
l − ΦlSn,i−1

l ||2 + 𝜏
r∑

i=1

(
m1

2
||∇ew,i

p,1||
2 + m2

2

∑

𝛼

||∇e𝛼,ip,2||
2

)

≤

∑

𝛼

L𝛼,2
2

(
||e𝛼,0p,2||

2 − ||e𝛼,rp,2||
2

)
+ Lw,1

2

(
||ew,0

p,1 ||
2 − ||ew,r

p,1 ||
2

)

+ 𝜏
2∑

l=1

∑

𝛼

1

4𝜆𝛼

(
||e𝛼,1g,l ||

2

1∕2
− ||e𝛼,r+1

g,l ||2
1∕2

)
, (52)

where Cl is defined in (33) and the telescopic nature of the sums on the right hand side

have been exploited. Equation (52) implies the estimates

r∑

i=1

2∑

l=1

Cl||ΦlSn
l − ΦlSn,i−1

l ||2 ≤ C, (53)

𝜏

r∑

i=1

(
m1

2
||∇ew,i

p,1||
2 + m2

2

∑

𝛼

||∇e𝛼,ip,2||
2

)

≤ C, (54)

∑

𝛼

L𝛼,2
2
||e𝛼,rp,2||

2 + Lw,1

2
||ew,r

p,1 ||
2 + 𝜏

2∑

l=1

∑

𝛼

1

4𝜆𝛼

||e𝛼,r+1

g,l ||2
1∕2
≤ C, (55)

with

C ≔
∑

𝛼

L𝛼,2
2
||e𝛼,0p,2||

2 + Lw,1

2
||ew,0

p,1 ||
2 + 𝜏

2∑

l=1

∑

𝛼

1

4𝜆𝛼

||e𝛼,1g,l ||
2

1∕2
.

Since C is independent of r, we thereby conclude that

||ΦlSn
l − ΦlSn,i−1

l ||, ||∇e𝛼,ip,l||→ 0 as i →∞, (56)

for all appearing combinations of l ∈ {1, 2} and 𝛼 ∈ {w, nw}. Due to the partial homo-

geneous Dirichlet boundary, the Poincaré inequality is applicable compare [32, Theorem

A.2.5, p. 252] for functions inl. Thus, equation (56) further implies ||e𝛼,ip,l||→ 0 as i → ∞
for all admissible index combinations.
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SEUS ET AL. 639

In order to show that e𝛼,ig,l → 0 in l′ for all appearing indices, we subtract (19) from

(19
′
) for 𝛼 = w, l = 1, 2, and (21) from (21

′
) for 𝛼 = nw, l = 2 and consider only test

functions in 𝜑𝛼,l ∈ C∞
0
(Ωl), that is,

−𝜏
⟨

Fn
𝜶,l − Fn,i

𝜶,l,∇𝜑𝛼,l
⟩
= L𝛼,l

⟨
e𝛼,i−1

p,l − e𝛼,ip,l , 𝜑𝛼,l

⟩
+ (−1)𝛿𝛼w

⟨
ΦlSn

l − ΦlSn,i−1

l , 𝜑𝛼,l

⟩
. (57)

Thus, ∇ ⋅
(

Fn
𝜶,l − Fn,i

𝜶,l

)
exists in L2 (Ωl) and

−𝜏∇ ⋅
(

Fn
𝜶,l − Fn,i

𝜶,l

)
= L𝛼,l

(
e𝛼,ip,l − e𝛼,i−1

p,l

)
+ (−1)𝛿𝛼nw

(
ΦlSn

l − ΦlSn,i−1

l

)
(58)

almost everywhere, from which we deduce for 𝜑𝛼,l now taken to be in l

|
⟨
∇ ⋅

(
Fn
𝜶,l − Fn,i

𝜶,l

)
, 𝜑𝛼,l

⟩
| ≤

L𝛼,l
𝜏

||e𝛼,ip,l − e𝛼,i−1

p,l ||||𝜑𝛼,l|| +
1

𝜏

||ΦlSn
l − ΦlSn,i−1

l ||||𝜑𝛼,l||. (59)

Introducing the abbreviation |Ψn,i
𝛼,l
(
𝜑𝛼,l

)
| for the left hand side of (59), the limit

sup
𝜑
𝛼,l∈l
𝜑
𝛼,l≠0

|Ψn,i
𝛼,l
(
𝜑𝛼,l

)
|

||𝜑𝛼,l||l

≤

L𝛼,l
𝜏

|||
|||e
𝛼,i
p,l − e𝛼,i−1

p,l
|||
||| +

1

𝜏

|||
|||ΦlSn

l − ΦlSn,i−1

l
|||
|||→ 0

as i → ∞ follows as a consequence of (53) and (54). In other words ||Ψn,i
𝛼,l||l′ → 0 as

i → ∞. On the other hand, starting again from (35) (without the added zero term), this

time however inserting 𝜑𝛼,l ∈ l and integrating by parts, keeping in mind (58), one

deduces that

⟨
e𝛼,ig,l , 𝜑𝛼,l

⟩
Γ = −𝜆𝛼

⟨
e𝛼,ip,l , 𝜑𝛼,l

⟩
Γ +

⟨(
Fn
𝜶,l − Fn,i

𝜶,l

)
⋅ nl, 𝜑𝛼,l

⟩

Γ
. (60)

We already know, that ||e𝛼,ip,l||l → 0 as i → 0 and we will use the continuity of the trace

operator to deal with the term
⟨

e𝛼,ip,l , 𝜑𝛼,l
⟩
Γ. For the last summand in (60) we have by the

integration by parts formula

⟨(
Fn
𝜶,l − Fn,i

𝜶,l

)
⋅ nl, 𝜑𝛼,l

⟩

Γ
= Ψn,i

𝛼,l
(
𝜑𝛼,l

)
+
⟨

Fn
𝜶,l − Fn,i

𝜶,l,∇𝜑𝛼,l
⟩
, (61)

and the second term can be estimated by

|||

⟨
kn
𝛼,l∇

(
pn
𝛼,l + z𝛼

)
− kn,i−1

𝛼,l ∇
(
pn,i
𝛼,l + z𝛼

)
,∇𝜑𝛼,l

⟩ |||

≤

|||

⟨(
kn
𝛼,l − kn,i−1

𝛼,l

)
∇
(
pn
𝛼,l + z𝛼

)
− kn,i−1

𝛼,l ∇e𝛼,ip,l ,∇𝜑𝛼,l
⟩ |||

≤

Lk
𝛼,l M
Φl

|||
|||ΦlSn

l − ΦlSn,i−1

l
|||
|||
|||
|||𝜑𝛼,l

|||
|||l
+Mk

𝛼,l

|||
|||∇e𝛼,ip,l

|||
|||
|||
|||𝜑𝛼,l

|||
|||l
,

where we used the same reasoning as in (41) and max |k𝛼,l| ≤ Mk
𝛼,l . With this, we get

sup
𝜑
𝛼,l∈l

||||𝜑𝛼,l||||l
=1

|||

⟨(
Fn
𝜶,l − Fn,i

𝜶,l

)
⋅ nl, 𝜑𝛼,l

⟩

Γ

||| ≤
|||
|||Ψ

n,i
𝛼,l
|||
|||l′

+
Lk

𝛼,l M
Φl

|||
|||ΦlSn

l − ΦlSn,i−1

l
|||
||| +Mk

𝛼,l

|||
|||∇e𝛼,ip,l

|||
|||→ 0,
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640 SEUS ET AL.

as i → ∞ from (61). Finally, we deduce from (60) and the continuity of the trace operator

(with constant C̃) on Lipschitz domains

sup
𝜑
𝛼,l∈l
𝜑
𝛼,l≠0

|||
⟨

e𝛼,ig,l , 𝜑𝛼,l
⟩
Γ
|||

||||𝜑a,l||||l

≤ 𝜆𝛼C̃|||
|||e
𝛼,i
p,l
|||
|||l
+ |||
|||Ψ

n,i
𝛼,l
|||
|||l′

+
Lk

𝛼,l M
Φl

|||
|||ΦlSn

l − ΦlSn,i−1

l
|||
||| +Mk

𝛼,l

|||
|||∇e𝛼,ip,l

|||
|||→ 0,

as i → ∞. This shows e𝛼,ig,l → 0 in l′ for all valid index combinations and concludes the

proof. ▪

4 THE LDD-TPR SOLVER FOR THE MULTIDOMAIN CASE

In this section we provide a generalization of Problem 2 to a multidomain setting. An in-depth

presentation with a multidomain convergence result can be found in [36, Section 4.4].

We start with a generalization of our geometric notation. The domain Ω ⊂ R
𝑑

is partitioned into

a finite number of non-overlapping Lipschitz subdomains Ωl ⊂ Ω such that Ω = ∪W
l=1
Ωl. The interior

of intersections of the boundary of neighboring domains, Γkl ≔ Ωk ∩ Ωl∖𝜕
(
Ωk ∪ Ωl

)
that in addition

have non-zero (𝑑 − 1)-dimensional Hausdorff measure are called interfaces and are submanifolds of

dimension 𝑑 − 1. As a consequence, the outer normal nkl ∈ S𝑑−1
pointing from Ωk to Ωl is defined

almost everywhere on Γkl, compare [34, p. 97 ff.] and [6] for more details on definitions. Figure 2b,

p. 18, illustrates the notation. Given Ωl, let  l ⊂  = {1, … ,W} be the set of indices denoting

those neighboring subdomains Ωk for which Γlk is an interface. Furthermore, let Γl ≔ int
(
𝜕𝛺 ∩ Ωl

)

denote that particular part of the boundary of Ωl intersecting with 𝜕𝛺 for all l ∈  for which Γl is

(𝑑 − 1)-dimensional. Then 𝜕𝛺 = ∪l∈Γl and 𝜕Ωl = ∪k∈ l

(
Γkl ∪ Γl

)
.

Let 
R
,

TP
⊂  with  = R∪TP

be the (possibly empty) sets of indices denoting the subdomains

Ωl on which the Richards equation
(
l ∈ R)

or the full two-phase system
(
l ∈ TP)

is imposed. If

neither 
R
≠ ∅ nor 

TP
≠ ∅, denote by 

TP
R ⊂ 

TP
the indices of domain patches, that model the full

two-phase flow but have at least one neighboring subdomain that assumes the Richards model sharing

an interface of dimension (𝑑 − 1). Similarly, define the subset 
R
TP ⊂ 

R
of Richards subdomains with

a two-phase neighbor. Given a subdomain Ωk with k ∈ TP
R , let 

TP
k,R ⊂ k be the set of indices of

neighboring Richards subdomains. Analogously, for Ωk with k ∈ R
TP, let 

R
k,TP ⊂ k be the set of

indices of neighboring two-phase subdomains.

Turning to function spaces, we decompose H1

0
(Ω) into spaces

l ≔
{

u ∈ H1 (Ωl) |u | 𝜕Ωl∩𝜕𝛺 = 0
}

and set

̂
w
≔

W∏

j=1

j, and 
w =

{
(u1, … , uW ) ∈ ̂w |ul ||Γlk = uk||Γlk

, l ∈ , k ∈  l

}
,

the latter being H1

0
(Ω). In case Ωk is an internal subdomain, that is, 𝜕Ωk ∩ 𝜕𝛺 = ∅, we have k =

H1 (Ωk).
If a purely Richards or purely two-phase domain decomposition is considered, that is, no TP–R

coupling occurs, the space 
w

can be used for the wetting phases, (Richards) and also the nonwetting

phases (two-phase). If both models are present, however, we refine the notion of 
nw

, the space for the

nonwetting phase. For all k ∈ TP
define 

nw
l ≔ l, 

nw
k = {0} for k ∈ R

and set the general space
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SEUS ET AL. 641

for the nonwetting phase

̂
nw
≔

W∏

j=1

j and 
nw
≔

{
(u1, … , uW ) ∈ ̂nw ||ul ||Γlk = uk||Γlk

, l ∈ TP
}
.

Note, that since for k ∈ R
we set 

nw
k = {0}, ul ||Γlk = uk||Γlk

for k ∈ TP
l,R actually means ul|Γlk

= 0.

Lastly, in order to define Neumann traces, we need those subspaces of the spaces 
𝛼

k and 
𝛼

for which

traces on each interface to neighbors can be extended by zero. We set


𝛼

k,00
≔

{
u ∈ 𝛼k |u|Γkl ∈ H1∕2

00
(Γkl) , l ∈ k

}
and ̂

𝛼

00
≔

W∏

j=1


𝛼

j,00
,

for 𝛼 ∈ {w, nw}.
With the above notations a multidomain semidiscrete formulation of Problem 2 reads as.

Problem 4 (Semidiscrete TP–R problem, multidomain) Given functions(
pn−1

w , pn−1
nw
)
∈ 

w × nw
, find (pn

w, pn
nw) ∈ 

w × nw
, such that all fluxes fulfill

Fn
𝜶,l ⋅ nlk ∈ H1∕2

00
(Γlk)′ for l ∈ , k ∈  l, 𝛼 ∈ {w, nw}, and the equations

⟨
ΦlSn

l − ΦlSn−1

l , 𝜑w,l
⟩
− 𝜏

⟨
Fn

w,l,∇𝜑w,l
⟩
+ 𝜏

∑

k∈ l

⟨
Fn

w,k ⋅ nlk, 𝜑w,l
⟩
Γlk
= 𝜏

⟨
f n
w,l, 𝜑w,l

⟩

as well as

⟨
ΦjSn

j − ΦjSn−1

j , 𝜑w,j
⟩
− 𝜏

⟨
Fn

w,j,∇𝜑w,j
⟩
+ 𝜏

∑

k∈ j

⟨
Fn

w,k ⋅ njk, 𝜑w,j
⟩
Γjk
= 𝜏

⟨
f n
w,j, 𝜑w,j

⟩
,

−
⟨
ΦjSn

j − ΦjSn−1

j , 𝜑nw,j
⟩
− 𝜏

⟨
Fn

nw,j,∇𝜑nw,j
⟩
+ 𝜏

∑

k∈ j

⟨
Fn

nw,k ⋅ njk, 𝜑nw,j
⟩
Γjk
= 𝜏

⟨
f n
nw,j, 𝜑nw,j

⟩

are satisfied for l ∈ R
, j ∈ TP

and for all
(
𝜑𝛼,1, 𝜑𝛼,2, … , 𝜑𝛼,W

)
∈ ̂𝛼[00].

As we have seen in the previous section, compare Lemma 1, introducing a Robin type

formulation allows to drop the pressure continuity that is implicitly contained in the

definition of our spaces 
w

and 
nw

. Instead, the pressure continuity becomes part of the

equations to solve and is thereby more accessible to implementation. Setting analogously

to equations (24)–(25) for 𝜆
lk
𝛼 = 𝜆kl

𝛼 > 0

g𝛼,lk ≔ −𝜆lk
𝛼 pn

𝛼,l
|||Γlk

+ Fn
𝜶,l ⋅ nlk, (l ∈ ), (k ∈  l) and 𝛼 ∈ {n, nw},

in H1∕2

00
(Γlk)′, where as in the previous sections gnw,lk = Fn

nw,l ⋅nlk on Richards subdomains

l ∈ R
are only nonzero if the neighborΩk assumes the two-phase model, that is, k ∈ R

l,TP
and gravity is included, Problem 4 can be equivalently reformulated into.

Problem 5 (Semidiscrete TP–R problem, limit formulation, multidomain) Let func-

tions
(
pn−1

w , pn−1
nw
)
∈ w × nw

as well as real numbers 𝜆
lk
𝛼 = 𝜆

kl
𝛼 > 0 be given for all

interfaces Γlk, l ∈ , k ∈  l, and appearing phases 𝛼.

Find (pn
w, pn

nw) ∈ ̂w × ̂nw
and g𝛼,lk ∈ H1∕2

00
(Γlk)′, l ∈ , k ∈  l, 𝛼 ∈ {w, nw} such that

on Richards domains, that is, l ∈ R
, the terms g𝛼,lk are given by

gnw,lk = Fn
nw,l ⋅ nlk, for l ∈ R

TP, and k ∈ R
l,TP,

gnw,lk = 0, for l ∈ R
TP and k ∈  l∖R

l,TP,

gnw,lk = 0, for l ∈ R∖R
TP, and k ∈  j,

(62)
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642 SEUS ET AL.

where Fn
nw,l ⋅ nlk ∈ H1∕2

00
(Γlk)′ are defined by the right hand side of either (6) or (7), and

these functions (pn
w, pn

nw) and g𝛼,lk fulfill the equations

⟨
ΦlSn

l − ΦlSn−1

l , 𝜑w,l
⟩
− 𝜏

⟨
Fn

w,l,∇𝜑w,l
⟩
+
∑

k∈ l

𝜏

⟨
𝜆

lk
wpn

w,l + gw,lk, 𝜑w,l
⟩
Γlk
= 𝜏

⟨
f n
w,l, 𝜑w,l

⟩
, (63)

for l ∈ R
with

⟨gw,lk, 𝜑w,l⟩Γlk
=
⟨
−2𝜆

lk
wpn

w,k − gw,kl, 𝜑w,l
⟩
Γlk

(k ∈ l) , (64)

⟨gnw,lk, 𝜑nw,k⟩Γlk
=
⟨
−2𝜆

lk
nwpn

nw,k − gnw,kl, 𝜑nw,k
⟩
Γlk

(
k ∈ R

l,TP
)
, (65)

and for j ∈ TP
the equations

⟨
ΦjSn

j −ΦjSn−1

j , 𝜑w,j
⟩
−𝜏

⟨
Fn

w,j,∇𝜑w,j
⟩
+𝜏

∑

k∈ j

⟨
𝜆

jk
wpn

w,l+gw,jk, 𝜑w,j

⟩

Γjk

= 𝜏
⟨

f n
w,j, 𝜑w,j

⟩
, (66)

−
⟨
ΦjSn

j −ΦjSn−1

j , 𝜑nw,j
⟩
−𝜏
⟨

Fn
nw,j,∇𝜑nw,j

⟩
+𝜏
∑

k∈ j

⟨
𝜆

jk
nwpn

nw,l + gnw,jk, 𝜑nw,j

⟩

Γjk

= 𝜏
⟨

f n
nw,j, 𝜑nw,j

⟩
, (67)

together with

⟨
gw,jk, 𝜑w,j

⟩
Γjk
=
⟨
−2𝜆

jk
wpn

w,k − gw,kj, 𝜑w,j

⟩

Γjk

(
k ∈ j

)
, (68)

⟨
gnw,jk, 𝜑w,j

⟩
Γjk
=
⟨
−2𝜆

jk
nwpn

nw,k − gnw,kj, 𝜑nw,j

⟩

Γjk

(
k ∈ j ∩ TP)

, (69)

⟨
gnw,jk, 𝜑nw,j

⟩
Γjk
=
⟨
−gnw,kj, 𝜑nw,j

⟩
Γjk

(
k ∈ TP

j,R
)
, (70)

for all
(
𝜑𝛼,1, 𝜑𝛼,2, … , 𝜑𝛼,W

)
∈ ̂𝛼[00].

Remark 8 (Necessity of ̂
𝛼

00
as test function space) In order to define Neumann traces

on parts of a boundary Γ ⊂ 𝜕𝛺 of a Lipschitz domain Ω, test functions 𝜑 ∈ H1∕2(Γ)
need to be extendable by zero and these are precisely the functions in H1∕2

00
(Γ). If we

tested the above problems with functions 𝜑𝛼,l ∈ 𝛼l the traces 𝜑l|Γlk
for k ∈  l a priori

would only lie in H1∕2 (Γlk). For the Neumann traces appearing in Problems 4 and 5 to be

well-defined, we need 𝜑l|Γlk
∈ H1∕2

00
(Γlk) for k ∈  l, however. Testing with 𝜑𝛼,l ∈ ̂𝛼00

precisely alleviates that problem.

As before, Problem 5 shows how to design the multidomain LDD-TP–R solver step.

Problem 6 (LDD-TP–R solver step, multidomain, version 1) Given
(
pn−1

w , pn−1
nw
)
∈


w × nw

, set on all subdomains Ωl, l ∈ , for some L𝛼,l > 0 as initial iterates

pn,0
𝛼,l ≔ pn−1

𝛼,l , (71)

where 𝛼 ∈ {w} for l ∈ R
and 𝛼 ∈ {w, nw} for l ∈ TP

as well as

g0

𝛼,lk ≔ Fn-1
𝜶,l ⋅ nlk − 𝜆lk

𝛼 pn−1

𝛼,l
|||Γlk

(72)
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SEUS ET AL. 643

in H1∕2

00
(Γlk)′ for k ∈  l and 𝜆

lk
𝛼 = 𝜆kl

𝛼 > 0. As before, for Richards domains, Ωl with l ∈


R
, and on interfaces Γlk to a two-phase domain, that is, k ∈ R

l,TP, equation (72) becomes

g0

𝛼,lk ≔ Fn-1
𝜶,l ⋅ nlk (73)

and the fluxes Fn-1
𝜶,l ⋅ nlk are defined by the right hand side of either (6) or (7). On

interfaces Γlk between Richards domains, we take

g0

nw,lk = 0. (74)

Given the iterates
(
pn,i−1

w , pn,i−1
nw

)
∈ ̂w × ̂nw

, as well as gi−1

𝛼,lk ∈ H1∕2

00
(Γlk)′, (N ∈ i ≥ 1),

one step of the LDD-TP–R solver consists of finding
(
pn,i

w , pn,i
nw
)
∈ ̂n × ̂nw such that on

Richards subdomains, that is, l ∈ R
, the equations

Lw,l
⟨

pn,i
w,l, 𝜑w,l

⟩
− 𝜏

⟨
Fn,i

w,l,∇𝜑w,l

⟩
+ 𝜏

∑

k∈ l

⟨
𝜆

lk
wpn,i

w,l + gi
w,lk, 𝜑w,l

⟩
Γlk

= Lw,l

⟨
pn,i−1

w,l , 𝜑w,l

⟩
−
⟨
ΦlSn,i−1

l − ΦlSn−1

l , 𝜑w,l

⟩
+ 𝜏

⟨
f n
w,l, 𝜑w,l

⟩
, (75)

with ⟨
gi

w,lk, 𝜑w,l
⟩
Γlk
≔

⟨
−2𝜆

lk
wpn,i−1

w,k − gi−1

w,kl, 𝜑w,l

⟩

Γlk

(k ∈ l) , (76)

⟨
gi

nw,lk, 𝜑nw,k
⟩
Γlk
≔

⟨
−2𝜆

lk
nwpn,i−1

nw,k − gi−1

nw,kl, 𝜑nw,k

⟩

Γlk

(
k ∈ R

l,TP
)

(77)

are satisfied, and on two-phase domains,
(
j ∈ TP)

, the equations

L𝛼,j
⟨

pn,i
𝛼,j, 𝜑𝛼,j

⟩
− 𝜏

⟨
Fn,i
𝜶,j,∇𝜑𝛼,j

⟩
+ 𝜏

∑

k∈ j

⟨
𝜆

jk
𝛼 pn,i

𝛼,j + gi
𝛼,jk, 𝜑𝛼,j

⟩

Γjk

= L𝛼,j
⟨

pn,i−1

𝛼,j , 𝜑𝛼,j

⟩
+ (−1)𝛿𝛼w

⟨
ΦjSn,i−1

j − ΦjSn−1

j , 𝜑𝛼,j

⟩
+ 𝜏

⟨
f n
𝛼,2
, 𝜑𝛼,j

⟩
, (78)

for 𝛼 ∈ {n, nw} along with

⟨
gi

w,jk, 𝜑w,j
⟩
Γjk
≔

⟨
−2𝜆

jk
wpn,i−1

w,k − gi−1

w,kj, 𝜑w,j

⟩

Γjk

(
k ∈ j

)
, (79)

⟨
gi

nw,jk, 𝜑w,j
⟩
Γjk
≔

⟨
−2𝜆

jk
nwpn,i−1

nw,k − gi−1

nw,kj, 𝜑nw,j

⟩

Γjk

(
k ∈ j ∩ TP)

, (80)

⟨
gi

nw,jk, 𝜑nw,j
⟩
Γjk
≔

⟨
−gi−1

nw,kj, 𝜑nw,j
⟩
Γjk

(
k ∈ TP

j,R
)

(81)

are fulfilled for all test functions (𝜑w, 𝜑nw) ∈ ̂w
00
× ̂nw

00
.

Remark 9 We note that the iterates
(
pn,i

w , pn,i
nw
)

are only required to be in ̂
w × ̂nw

and

need not to be in 
w × nw

(the latter meaning continuity over interfaces). If the family

of subsequent solutions to the LDD-TP–R solver step, Problem 8, converge to a solution

of Problem 5, then the continuity of the pressures is guaranteed in the limit.

From the proof of Theorem 1 we expect that the convergence of the solver holds also in the multido-

main case irrespectively of the choice of initial iterates. Therefore, it is possible to choose other initial

iterates than given in (71) and (72). In particular, g0

𝛼,lk can instead be chosen to belong to H1∕2(Γlk)′
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644 SEUS ET AL.

providing gi
𝛼,lk ∈ H1∕2(Γlk)′ as well, and Problem 6 can be tested with functions (𝜑w, 𝜑nw) ∈ ̂w× ̂nw

instead of (𝜑w, 𝜑nw) ∈ ̂w
00
× ̂nw

00
. While in general it is not clear whether it is possible to approximate

the Neumann fluxes in Problem 5 by functionals in H1∕2

00
(Γlk)′, in situations, where ̂

w × ̂nw
can be

chosen as test function space, it is useful to do so for two reasons. First, this makes the Lax–Milgram

arguments from Lemma 3 carry over to the multidomain situation here, so that a solution to each

iteration of the solver can be guaranteed. Secondly, implementation is facilitated, as the requirement

(𝜑w, 𝜑nw) ∈ ̂w
00
× ̂nw

00
is more difficult to achieve in an implementation than (𝜑w, 𝜑nw) ∈ ̂w × ̂nw

.

Thus, a more practical formulation of the LDD-TP–R solver used in Section 5 below is given by.

Problem 8 (LDD-TP–R solver step, multidomain, version 2) Let functions
(
pn−1

w , pn−1
nw
)

∈ w × nw
be given and define on all subdomains Ωl, l ∈ , for arbitrary 𝜈

𝛼

l ∈ 𝛼l and

𝜁
𝛼

lk ∈ H1∕2

00
(Γlk)′, k ∈  l, as initial iterates

pn,0
𝛼,l ≔ 𝜈

𝛼

l ,

where 𝛼 ∈ {w} for l ∈ R
and 𝛼 ∈ {w, nw} for l ∈ TP

as well as

g0

𝛼,lk ≔ 𝜁
𝛼

lk

in H1∕2

00
(Γlk)′. On interfaces Γlk between Richards domains, we take

g0

nw,lk = 0.

In addition, choose on each domain Ωl, l ∈ , some real number L𝛼,l > 0 and on all

interfaces Γlk, k ∈  l, real numbers 𝜆
lk
𝛼 = 𝜆

kl
𝛼 > 0. Given previously known iterates(

pn,i−1
w , pn,i−1

nw
)
∈ ̂w × ̂nw

, as well as gi−1

𝛼,lk ∈ H1∕2

00
(Γlk)′, (N ∈ i ≥ 1), one step of

the LDD-TP–R solver consists of finding
(
pn,i

w , pn,i
nw
)
∈ ̂w × ̂nw

such that on Richards

subdomains, l ∈ R
, the equations (75) together with (76), (77) are satisfied, and on

two-phase domains, j ∈ TP
, the equations (78) for 𝛼 ∈ {n, nw} along with (79), (80),

and (81) are fulfilled for all test functions (𝜑w, 𝜑nw) ∈ ̂w × ̂nw
.

Remark 10 Note that the key difference between Problems 6 and 8 is the test function

space and consequently the space on which the functionals gi
𝛼,l act.

5 NUMERICAL VALIDATION OF THE LDD-TP–R SOLVER

In this section, we turn to the numerical validation of the LDD-TP–R solver for the case 𝑑 = 2. We pro-

vide examples for two different substructurings. For a two-domain case, we compare the performance

of the LDD-TP–R solver to the full two-phase flow model. In addition, we discuss the choice of solver

parameters. For a multidomain example involving an inner subdomain, we illustrate the performance

as well. Both domain partitions are displayed in Figure 2.

All experiments were implemented using Python and Fenics’ main library Dolfin, compare [38,

39]. The code for all examples along with its documentation can be found at [40].

For a detailed description of the design principles we refer to [36]. Here we restrict ourselves to a

listed summary regarding the grid and the ansatz functions.

SUBSTRUCTURING AND MESHES. All subdomains Ωl ⊂ Ω ⊂ R
2

and triangular meshes are

constructed by the Fenics mesh tool Mshr. To ensure that the meshes are matching, submeshes l on

each subdomain Ωl are always extracted from a global conforming mesh  on Ω. This means, mesh
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SEUS ET AL. 645

(a) (b)

FIGURE 2 Domains used in the numerical experiments. All domains are polygonal subdivisions of the unit square

[0, 1] × [0, 1]. The nomenclature of the interfaces follows the conventions introduced in Section 4

vertices and faces always lie on the polygons defining the interfaces, and no facets intersect interfaces.

In this way, neighboring subdomains share vertices and facets over interfaces. Dolfin was instructed

to use ParMETIS as mesh partitioner. An example of such a mesh can be seen in Figure 7b). If 𝑑𝛥 is

the diameter (two times the circumradius) of a mesh cell (triangle) 𝛥 ∈ l, the mesh size hl on each

domain is defined as hl = max {𝑑𝛥 |𝛥 ∈ l}.
On each subdomain mesh, Fenics’ first-order Lagrange finite elements, 1Λ0

, were used as ansatz

spaces h,l ⊂ l.

INTERFACES TERMS AND COMMUNICATION. The calculation of the Robin-interface terms

across interfaces and the data exchange across interfaces requires manual assembly of the fluxes

involving gradients of 1Λ0
functions. The calculation of interface terms is done dof-wise and their

communication over interfaces needs to take into account the different mesh and dof numberings

on each subdomain adjacent to a given interface. The calculation of the approximations gh,i
𝛼,lk of the

gi
𝛼,lk-terms uses discontinuous Galerkin elements of degree 1, 1Λ2

. The reason is twofold. On the one

hand, the calculation of gh,0
𝛼,lk necessitates the assembly of fluxes (since we use the initial iterates of

Problem 6), involving thereby the gradient of a P1 function, hence the need for discontinuous ansatz

functions, and on the other hand it seemed desirable to have the same number of degrees of freedom

as the pressures that need to be added to these terms.

The implementation of the gh,i
𝛼,lk terms is done in the following way. The LDD solver, upon entering

time step n, first assembles gh,0
𝛼,lk: On each domain Ωl, l ∈ , the approximation Fh,n−1

𝜶,l of the flux

Fn−1
n,l is assembled in 1Λ2 × 1Λ2

and Fh,n−1
𝜶,l ⋅ nlk ∈ 1Λ2

is added dof-wise to ph,n−1

𝛼,l
|||Γlk

for dofs

that lie on facets belonging to the interface Γlk, k ∈  l. The resulting dofs of the gh,0
𝛼,l -term are then

saved to interface dictionaries for communication. During the ith iteration of the LDD solver onΩl, the

gh,i−1

𝛼,kl and ph,i−1

𝛼,k dofs of the neighbor k are read from these interface dictionaries and are added—again

dof-wise—along Γlk to get gh,i
𝛼,lk ∈ 1Λ2

. Since the form assembly of Problem 8 is done in 1Λ0
, the

gh,i
𝛼,lk terms enter the form as projections Πgh,i

𝛼,lk ∈ 1Λ0
, where Π ∶ 1Λ2 → 1Λ0

is the projection

onto 1Λ0
.
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646 SEUS ET AL.

TABLE 1 TP–R coupling on two domains: coefficient functions and exact solutions

Data 𝜴1 𝜴2

kw,l(s) s2 s3

knw,l(s) (1 − s)2 (1 − s)3

Sl (pc)
⎧
⎪
⎨
⎪
⎩

1

(1+pc)
1

2

pc ≥ 0

1 pc < 0

⎧
⎪
⎨
⎪
⎩

1

(1+pc)1∕3
pc ≥ 0

1 pc < 0

pe
w,l(x, y, t) −7 −

(
1 + t2

) (
1 + x2 + y2

)
−7 −

(
1 + t2

) (
1 + x2

)

pe
nw,l(x, y, t) -

(
−2 − t

(
1.1 + y + x2

))
y2

All appearing linear systems were solved using the Generalized Minimal Residual Method

(GMRES) in conjunction with Incomplete LU preconditioning (ILU) as realized in the Fenics library.

We will use the following.

Notation 1 By pe
𝛼,l we denote manufactured solutions, and pe,n

𝛼,l ≔ pe
𝛼,l (⋅, ⋅, tn) are their

evaluation at time step tn. We have pe,n
𝛼,l = pn

𝛼,l since manufactured solutions solve the

semidiscrete TP–R problem. Numerical approximations are denoted with an additional

h, that is, ph,n
𝛼,l is the numerical approximation of pe,n

𝛼,l∕pn
𝛼,l and the symbols ph,i

𝛼,l denote the

numerical approximation of the iterates pn,i
𝛼,l of the LDD-TP–R solver. Note, that the index

n is dropped in this case. This means that ph,i
𝛼,l always denotes the iterates in the calculation

of the nth time step.

5.1 Two-domain computations

Remark 11 (Choice of 𝜆𝛼) So far we have not addressed how to choose the parameters

𝜆𝛼 appearing in the LDD-TP–R scheme since no restrictions on these parameters were

necessary for the convergence analysis. Analysis on how to choose these parameters for

optimal convergence rates exists for linear elliptic and parabolic problems as well as for

the Stokes problem, see [22], [23], [24], and [25] as well as references therein. However,

it is not clear in our nonlinear case whether an optimal choice exists and how to choose

it. For the Richards-Richards case an optimal choice was found through numerical exper-

imentation, see [1], but for the present case this is an open question. We therefore chose

parameters through experimentation throughout this section.

We start the numerical validation of the LDD-TP–R solver for the two-domain case shown in

Figure 2a.

5.1.1 Homogeneous intrinsic permeability and porosity

We assume the permeability and porosity in both domains to be the same and demonstrate the con-

vergence of the scheme using a manufactured solution. Modeling the flow of water and air, all soil

parameters are listed in Table 2a. For the relative permeabilities, S-pc relationships as well as the

manufactured solution expressions we refer to Table 1.

Figure 3 shows the results for a simulation over 1500 time steps of size 𝜏 = 0.001 on the time

interval [0,T] = [0,1.5] using a mesh size h ≈ 0.071. The algorithm was set to terminate after the

 10982426, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.22906 by N
orw

egian Institute O
f Public H

ealth, W
iley O

nline L
ibrary on [30/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SEUS ET AL. 647

TABLE 2 TP–R coupling on two domains: soil parameters for same (a) and varying (b)

intrinsic permeabilities and porosities

(a) TP–R coupling on two domains: soil parameters for the case with same intrinsic
permeabilities and porosities

Parameter 𝛀1 𝛀2

Φl 0.22 0.22

ki,l 0.01 0.01

𝜶 w nw w nw

𝜇
𝛼
[kg∕(ms)] 1 - 1

1

50

𝜌
𝛼

[
kgm

−3
]

997 - 997 1.225

(b) TP–R coupling on two domains: case with varying intrinsic permeabilities and
porosities

Parameter 𝛀1 𝛀2

Φl 0.22 0.022

ki,l 0.01 0.0001

𝜶 w nw w nw

𝜇
𝛼
[kg∕(ms)] 1

1

50
1

1

50

𝜌
𝛼

[
kgm

−3
]

997 1.225 997 1.225

stopping criterion

||ph,i
𝛼,l − ph,i−1

𝛼,l ||
2
< 𝜀s ≔ 2 ⋅ 10

−6

had been reached for all appearing l and 𝛼. Parameters of the TP–R solver were chosen as Lw,1 = 0.007

and L𝛼,2 = 0.005 for all phases 𝛼 ∈ {w, nw} and 𝜆
12
w = 𝜆

12
nw = 0.75. Figure 3a shows the relative

error norms with respect to the exact solution over time, demonstrating that the accuracy remains

invariant over time. The relative error of the nonwetting phase remains steadily around 0.009, that of

the wetting phases below 0.01%. The nonwetting phase shows a greater approximation error, which is

not unexpected, since no nonwetting phase equation is assumed in Ω1. Figure 3b displays the errors of

the solver for the time step 1500 at time T = 1.5.

To determine how the use of the TP–R coupling in this situation affects both accuracy and per-

formance, we compare with a simulation of the same setting, assuming constant nonwetting pressure,

pnw,1 ≡ 0 on Ω1 and use the LDD solver for two-phase flow equations in Ω1 and Ω2 (LDD-TP–TP

solver, see [2] for details). As Figure 3c shows, the same precision is achieved in both cases, using

either the LDD-TP–R or the LDD-TP–TP solver. The worst relative error can be observed for the non-

wetting phase onΩ2, similarly to the case of the TP–R coupling shown in Figure 3a. This suggests that

the error is not dominated by the use of the TP–R coupling in place of the a complete TP–TP coupling.

Naturally, the LDD-TP–TP solver is slower, having to solve an additional system. The subsequent

errors at a fixed time step, Figure 3d, show in addition, that the LDD-TP–TP solver needs 199 iterations

in the 1500th time step to achieve the same stopping criterion. 29 iterations were needed in the first

time step.

These results show that in situations in which the assumptions for the validity of the Richards

equation hold, the hybrid LDD-TP–R solver excels over the LDD-TP–TP solver as there is a noticeable

performance gain at virtually no loss of approximation accuracy.
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648 SEUS ET AL.

(a) (b)

(c) (d)

FIGURE 3 TP–R coupling on two domains: Relative error norms (a) and subsequent errors at a fixed time step (b) for a

simulation over 1500 time steps with same intrinsic permeabilities and porosities, and parameters h ≈ 0.071, 𝜏 = 1 ⋅ 10
−3

,

Lw,1 = 0.007 and L
𝛼,2 = 0.005, 𝛼 ∈ {w, nw} and 𝜆

12
w = 𝜆12

nw = 0.75. Relative error norms (c) and subsequent errors at a fixed

time step (d) for a simulation of the same situation using the same parameters, but assuming a TP–TP coupling and assumed

zero nonwetting phase

5.1.2 Heterogeneous intrinsic permeabilities and porosities

We investigate numerically the influence of heterogeneneous soil parameters running a test case with

varying intrinsic permeabilities and porosities. The values used are listed in Table 2b. Relative per-

meabilities, pc–S relationships and the exact solutions are the same as before, compare Table 1. Grid

parameters remain the same, namely h ≈ 0.071, and 𝜏 = 0.001 for the time step. Figure 4 shows results

for a simulation comprising 1500 time steps using LDD-TP–R parameters 𝜆
12
𝛼 = 0.5, Lw,1 = 0.007,

and L𝛼,2 = 0.0005, for 𝛼 ∈ {w, nw}. The stopping criterion was set to 𝜀s = 2 ⋅ 10
−6

. As can be seen

from Figure 4a the final approximation precision is unaffected by the more challenging soil parameters
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SEUS ET AL. 649

(a) (b)

FIGURE 4 TP–R coupling on two domains: Relative error norms (a) and subsequent errors at a fixed time step (b) for a

simulation over 1500 time steps with varying intrinsic permeabilities and porosities, excluding gravity and parameters

h ≈ 0.071, 𝜏 = 1 ⋅ 10
−3

, 𝜆
12
𝛼
= 0.5, Lw,1 = 0.007 and L

𝛼,2 = 0.0005, for 𝛼 ∈ {w, nw}

compared to the case with same intrinsic permeabilities. Mind the adjusted LDD-TP–R parameters

L𝛼,l and 𝜆
12
𝛼 , however, which needed to be adjusted to stabilize the iteration. This was a general trend

observed in the experiments: The parameters need to be adapted to the situation specifically when

heterogeneous parameters were used, see also [36] for more examples on this. In contrast to the previ-

ously shown case more iterations are needed to achieve the stopping criterion precision as is visible in

Figure 4b. Required iterations ranged from 63 iterations in the first time step to 348 iterations in time

step 1500 shown in Figure 4b.

5.1.3 Comparison to coarser time step size

Figure 5a,b shows the same situation but simulated with a coarser time step 𝜏 = 1 ⋅ 10
−2

reaching

T = 15 after 1500 iterations. Interestingly, the error norms of all phases are in the same range as for

the simulation with the finer time step, compare Figure 5a, albeit the errors of the wetting phases

behaving noticeably worse. The increase of error that starts taking place around T = 10 is due to

solver maxing out the maximal iterations number, 1000. After t = 10 the solver always iterates 1000

times but fails to reach the stopping criterion. The effect is shown in Figure 5bc depicting the 1000

iterations in time step t1500 that the solver uses without reducing the subsequent errors sufficiently.

Notably, convergence is very slow.

To compare the behavior of the solver at a similar time than is depicted in Figures 4b, 5b shows the

behavior of the solver at t = 1, 67. 141 iterations were used to achieve the error tolerance 𝜀s = 1 ⋅10
−6

.

This means that up to this point in time, the LDD-TP–R solver needs less iterations in each time step

of the simulation using 𝜏 = 0.01 than in the example using 𝜏 = 0.001, all the while achieving the same

level of approximation error!

5.1.4 Influence of LDD-TP–R parameters

The LDD solver is sensitive to the numerical parameters. To illustrate this dependence, we revisit the

previous example with varying permeabilities and porosities keeping the grid parameters the same,

but varying the LDD-TP–R parameters: Figure 6 shows results of a simulation of 800 time steps using
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650 SEUS ET AL.

(a) (b)

(c)

FIGURE 5 TP–R coupling on two domains: Relative error norms (a) and subsequent errors at a fixed time step (b) and (c) for

the same situation as in Figure 4 simulated using a coarser time step 𝜏 = 1 ⋅ 10
−2

𝜆
12
𝛼 = 4, Lw,1 = 0.025 and Lw,2 = 0.05, Lnw,2 = 0.025 as well as 𝜀s = 3 ⋅ 10

−6
as the stopping criterion.

While the wetting phase error on Ω1 at around 0.01% compares to the one in Figure 4a, Figure 6a

shows that the errors of both phases on Ω2 are an order of magnitude worse than what has been shown

in Figure 4a. Accordingly, Figure 6b indicates by the high number of required iterations as well as the

tilts observable in the subsequent error plots of the phases on Ω2 that the solver struggles to find the

solution. The required iterations to achieve the stopping criterion in this case ranged from 40 in the

first time step to 577 in the 800th time step depicted in Figure 6b.

5.2 Multidomain computations

We advance from the two-domain examples to a multidomain example featuring an inner subdomain,

see Figure 2b. We assume the Richards equation on subdomains 1, 5 and the full two-phase flow model
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SEUS ET AL. 651

(a) (b)

FIGURE 6 TP–R coupling on two domains: Relative error norms (a) and subsequent errors at a fixed time step (b) for a

simulation over 800 time steps with varying intrinsic permeabilities and porosities, and parameters h ≈ 0.071, 𝜏 = 1 ⋅ 10
−3

,

𝜆
12
𝛼
= 4, Lw,1 = 0.025 and Lw,2 = 0.05, Lnw,2 = 0.025

(a) (b)

FIGURE 7 TP–R coupling on a five domain substructuring. Highlighted are the areas where different models are being used

(a). The dotted areas features Richards equations and the striped areas the two-phase flow model. Unstructured triangular

mesh (b) for mesh_resolution = 32

on subdomains 2–4. The inner subdomain isΩ3. According to Section 4, this means  = {1, 2, 3, 4, 5},


R = {1, 5} and 
TP = {2, 3, 4}, compare illustration in Figure 7a.

5.2.1 Excluding gravity

We first use an example excluding gravity featuring the manufactured solutions, relative permeabilities

and pc–S-relations given in Table 3. Soil parameters are listed in Table 4. Notice that the same porosity

Φl = 0.2 and intrinsic permeability ki,l = 0.01 is assumed on all subdomains, l ∈ .

Figure 8a shows the relative error norms over time for a simulation of 1000 time steps of size

𝜏 = 1 ⋅ 10
−3

. The LDD-TP–R parameters were set to Lw,l = 0.01, Lnw,l = 0.004 and 𝜆
lk
w = 1 as well
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652 SEUS ET AL.

TABLE 3 TP–R coupling on a five-domain with inner subdomain: assumed coefficient functions and manufactured solutions

Richards two-phase

Data Ω1, Ω5 Ω2-Ω4

kw,l(s) s2 s3

knw,l(s) (1 − s)2 (1 − s)3

Sl (pc)
⎧
⎪
⎨
⎪
⎩

1

(1+pc)1∕2
pc ≥ 0

1 pc < 0

⎧
⎪
⎨
⎪
⎩

1

(1+pc)1∕3
pc ≥ 0

1 pc < 0

pe
w,l(x, y, t) −7 −

(
1 + t2

) (
1 + x2 + y2

)
−7 −

(
1 + t2

) (
1 + x2

)

pe
nw,l(x, y, t) -

(
−3 − t

(
1 + y + x2

)
− t2

)
y2

TABLE 4 TP–R coupling on five-domain with inner subdomain: assumed soil parameters for case

with same intrinsic permeabilities and porosities

Richards Two-phase

Parameter Ω1, Ω5 Ω3 Ω2, Ω4

Φl 0.2 0.2 0.2

ki,l 0.01 0.01 0.01

hl 0.071 0.070 0.071

𝜶 w nw w nw w nw
𝜇
𝛼
[kg∕(ms)] 1 - 1

1

50
1

1

50

𝜌
𝛼

[
kgm

−3
]

997 - 997 1.225 997 1.225

as 𝜆
lk
nw = 0.25 for all l ∈  and k ∈ k. The error of the nonwetting phase of the inner subdomain

Ω3, which is the worst of all phases and subdomains stays consistently below 5 ⋅ 10
−3

. The nonwetting

phases ofΩ2 andΩ4 do not surpass 1 ⋅10
−3

and all wetting phases stay below 2 ⋅10
−4

. The nonwetting

phase on the inner subdomain shows a degradation in accuracy whereas the other phase errors are in

line with the two-domain examples.

Figure 8b shows the subsequent errors for the time step t1000. The stopping criterion was 𝜀s =
1 ⋅ 10

−6
and was reached after 202 iterations. The first time step required 106 iterations.

5.2.2 Including gravity

The behavior of the solver when gravity is taken into account is shown in Figure 9b. To stabilize the

solver, it was necessary to adjust the LDD-TP–R parameters to L𝛼,l = 0.5 and 𝜆
lk
𝛼 = 4 for all phases

𝛼 = w, nw, l ∈  and k ∈  l. A tilting behavior in the subsequent error curves can be seen. This

leads to plateaus in the curves and consequently, 370 iterations were required for time step t1000 = 1.0

to achieve the stopping criterion with 𝜀s = 5 ⋅ 10
−6

. During the calculation for the first time step,

193 iterations were required. Albeit the solver exhibiting more struggle, the overall approximation

quality, despite oscillating a bit seems unaffected as Figure 9a shows. The error of the nonwetting

phase of the inner subdomain remains under 5 ⋅ 10
−3

for all times, and all other errors are lower. The

tilting behavior and occurrence of plateaus was observed for all examples featuring the inclusion of

gravity and is most probably due to the inherent instability of standard finite element methods for

advection-dominated regimes.
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SEUS ET AL. 653

(a) (b)

FIGURE 8 TP–R coupling on five-domain substructuring with inner subdomain: Relative error norms (a) and subsequent

errors at a fixed time step (b) for a simulation over 1000 time steps with same intrinsic permeabilities and porosities, excluding
gravity and parameters h ≈ 0.070–0.071, 𝜏 = 1 ⋅ 10

−3
, Lw,l = 0.01, Lnw,l = 0.004 and 𝜆

lk
w = 1, 𝜆

lk
nw = 0.25, l ∈ , k ∈  l

(a) (b)

FIGURE 9 TP–R coupling on five-domain substructuring with inner subdomain: Relative error norms (a) and subsequent

errors at a fixed time step (b) for a simulation over 1000 time steps with same intrinsic permeabilities and porosities, including
gravity and parameters h ≈ 0.070–0.071, 𝜏 = 1 ⋅ 10

−3
, L

𝛼,l = 0.5, and 𝜆
lk
𝛼
= 4, for all appearing 𝛼 ∈ {w, nw} and l ∈ , k ∈  l

6 CONCLUSIONS

In this article, we proposed a new domain decomposition approach for hybrid two-phase flow systems.

For new coupling conditions between domains with different two-phase flow models we developed an

approach combining an L-type linearization of the nonlinearities with a generalized nonoverlapping

alternating Schwarz method, the LDD-TP–R solver. This formulation unifies the work of both, [1] and
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654 SEUS ET AL.

[2] on homogeneous two-phase models and allows for the treatment of complex modeling situations

involving very heterogeneous soil parameters. The LDD-TP–R solver has been analyzed rigorously on

the time-discrete level. Numerical experiments for two- and multidomain settings confirm the theo-

retical findings. In particular, they show the possible gain of computing time when using the hybrid

model instead of employing an expensive full two-phase model on the entire domain.

As the LDD-TP–R solver linearizes and decouples the substructured problem, it can either

be used as a pure domain decomposition method, as a basis for effective parallel computation,

or in a model-adaptive domain decomposition setting, in which an envisioned model change

(two-phase/Richards) dictate the substructuring. Future work will be directed to design such an

algorithm that might also include an adaptive choice of models based on our error analysis. We envis-

age that our approach is not only effective for the basic two-phase flow models encountered here but

can be also extended to more complex model hierarchies for multiphase flow and/or multicomponent

transport.
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