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Abstract

Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It
allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well
suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions
are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences
guaranteeing exsitence of fixed points, emerge as special cases.
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1 Graph normal form

Graph normal form (GNF) for propositional logic was introduced in [1] and applied in [5] to analysis
of paradoxes. We begin by showing in this section that it is normal form also for first-order logic
(FOL). Section 2 shows how to represent theories in GNF as graphs and their classical semantics as
graph kernels. Logical circularity emerges as graph cycles, of which only odd ones are vicious,
leading possibly to inconsistency. Using graph-theoretic terms, Section 3 formulates conditions
ensuring conservativity of extensions, which generalize those utilizing usual syntactic restrictions.
Definitional extensions provide a special case, while the conditions are applicable in many situations
involving extensions with circular or apparently circular definitions, like fixed-point definitions.

k %k %

Given an FOL language £ and a set D, by Tp we denote the free term algebra over D, and by Ap the
atomic formulas formed by application of any predicate symbol P € L to elements of D. The usual
atoms are thus Ar,, for some set of variables X.

DEFINITION 1.1
A formula of an FOL language £ is in GNF if it is an equivalence where

o the left side is an atom, LS € Ay,
e the right side, RS, is a (universally quantified) conjunction of negated atoms,
o all free variables of RS occur in LS, V(RS) C V(LS).

A theory, i.e. a set of formulas, I" is in GNF if each ¥ € I' is in GNF.

Atomic formulas are special cases of GNF, consisting of LS with empty RS. Predicate symbols not
occurring in LS of any formula of a GNF theory I are referred to as ‘undefined’ by I". (Occurring
elsewhere, they are as defined as others, but this figure of speech will find some justification.)

Given any formula ¢ in prenex normal form (PNF), its GNF(¢) is obtained by constructing first a
restricted form of Morleyization, GNF ™~ (¢), introducing fresh predicates by a series of definitional
extensions. In the resulting formulas, we write the universal quantifier Vx as A ..
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102  Extensions in graph normal form

EXAMPLE 1.2
In a PNF formula, say ¢ = Vx3yPxy,' we first replace 3 by =V—, obtaining Yx—Vy—Pxy, and then
introduce fresh variable z and fresh predicates 4, S with equivalences:
Az <\, —Sx,
Sx < N\, =Pxy.
For 3yVxPxy, we first obtain —Vy—VxPxy, introduce a fresh variable z and then
Nz <>—Rz
Rz < A\ p gy
Oy o\ —Pxy
Pxy <>—Pxy.
Substituting back the introduced predicates shows the equivalence to the original formula:
Az & N\ =Sy o A= A\, —Pxy,
Nz o =Rz o = N0y © = A= APy & = A= APy o = A= APy

The remaining propositional matrix, if nonatomic, is rewritten using only — and A and processed
in an analogous manner, introducing new predicates. The following two definitions give the general
construction of GNF~ (¢) for an arbitrary formula ¢. The reader satisfied with the example can skip
them on the first reading and continue now after Definition 1.4.

Function (_) in Definition 1.3 transforms quantifier prefix of a PNF formula into GNF, sending
the quantifier-free matrix for further processing by function pGNF~ from Definition 1.4. The
numerical argument i in {_);, counting the number of generated symbols, ensures that all introduced
predicate symbols are distinct. All 3x in the initial formula are assumed replaced by —=Vx—. A block
of quantifiers Vxi...Vx, not separated by — is abbreviated below as a single quantifier Vx, with x
abbreviating the sequence x...x,. In the generated formulas, A, | A x, teplace then A

The two main cases in Definition 1.3 correspond to ¢ starting with =V (1 and 3) or V (2 and 4),
each having two subcases, when ¢ is open (0) or closed (c). Cases (0) show also how GNF ™~ (¢)
can be constructed for open ¢. (Alternatively, one could construct it for ¢’s universal closure.) One
starts typically with case 1 or 2, then performs step 20 until reaching the last quantifier, to which
equation 20, 30 or 4o is applied. Point 5 sends the remaining quantifier-free matrix p to pGNF ™ (p);
given in Definition 1.4. In case of only one quantifier, there is only one step, which may be any of 1
through 4.

DEFINITION 1.3
For a formula ¢ (X) in PNF, with X = V(¢), we define GNF~ (¢) = (¢ (X))1, with the recursive
function (_) given by (z is a fresh free variable):

lo. (=Vx=¢/(X,x)); = {Bi(X) < —Bi11(X)} U (Yx=¢ (X, %) it
le. (=Yx=y ()i = {Bi(z) & —Bi11(2)} U (V=Y @))iv
20. (MY X,x0)i = {BiX) & A\, =B (X, 0} U (Y X, x)i

2c. (x=y ()i = {Bi(2) & A\ —Bit1(0)} U ()it

IWe write Bx for B(x), with x denoting a list of variables matching the arity of B, i.e. x € X" (B) . Brx denotes an
application of the predicate B to term(s) ¢, possibly with some variables x, where x may also comprise other arguments of B.
ar(Bt) denotes then the arity of the derived predicate resulting from such a substitution. Abbreviation Bx <> /\,, Cxy assumes
xNy = ¢ but admits all cases of V(Cxy) \ y C x, with V(¢) denoting free variables of ¢. Substitution of ¢ for x yields then Bt
and Cty, where V(Cty) = (V(Cxy) \ x) U V(¢). Such syntactic details would only clutter the main ideas, distinguishing cases
which appear uniform from the level relevant to our considerations.
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Extensions in graph normal form 103

when quantifier-free p does not start with — :

30. ("Yxp(X,x))i = {Bi(X) < —Bip1(X)} U (VxpX,x))it1
e (Vxp) = (Bi) < ~Bin (@) U (o)
do.  (xp(X,x)); = (Bi(X) < A\, —Bit1(X,x),
Bip1(X,x) © =Bipa(X,x)} U (pX,x))it2
4c. (Wxp@)i = {(Bi@) © A\, —Bir1(x),
Bit1(x) < —Bit2(0)} U (p(x))it2
when p is quantifier-free, continue with Definition].4:
5. (0); = pPGNF~{(p);.
For instance:
i) (~¥x—p)i = {B1(2) < —Ba(2)) U (Yx=p())2
Vxmp(0)2 ZE {B2@) o N\, B3} U (p()s..
i) (aVymp E {BI@) < A,—B®) U (ymp(6))2
Vy=p(6 )2 2 {Ba(x) A, —Bs(x,»)} U (px,)))3...
i) (~Yx=¥yp(uy)i = {Bi(2) < —B(2)) U (Yx=Vyp(x, )2
Va=¥yp ()2 = {B2@) < A, —Bs@) U (Wp(n)s
@)y 2 (Bi) < A, —Ba(x.y),

Bi(x,y) < —Bs5(x,»)} U {(p(x,)s5...

DEFINITION 1.4
Given a quantifier-free p (x) and index j, to form pGNF’, {p);:

1. write p(x) inCNF as: (L1, V... VL) A . ALy, V...V L, ) —each L; is a literal;

2. using DeMorgan, transform it to: —-(L’ll A /\L’lzl YA A=(Ly A ALy ), where L' removes
— from negative literals L and adds — to the positive ones;

3. add the formula B;(x) <> =Bjy1(x1) A ... A =Bj1,(x,), where x = x; U ... Ux, and each B;, for
1 <i < n, has the arity x; of the i-th conjunct L; Vv ... vV L;;

4. foreach 1 <i < n,add Bj4;(x;) <> Li; A...AL;,, where for 1 < < zi and the predicate symbol
Rin L;.j , ifL;.j = —R(x;) then L;; = L;j = —R(x;), while ifL;j = R(x;), then L;; = —R(x;)
for a fresh symbol R with ar(R) = ar(R), and additional R(x;) < —R(x;); free variables
Xi = Xij U... le‘zi.

PpGNF™ (p); contains formulas from points 3 and 4 and pGNF ™~ {p); = p(x) <> Bjx. For instance:

PGNF~ ((Cxy — Dx) A Ey)p: PGNF™ (—=Px)o:

1. CNF = (=Cxy Vv Dx) A (Ey) 1. CNF = —Px

2. =(Cxy A =Dx) A —(—=Ey) 2. =(Px), with L'x = Px
3. Boxy <> =Bixy A =By 3. Box <> —Bix_

4. Bixy <> =Cxy A —=Dx, 4. Bijx < —=Px Px <& —Px

Cxy <> —=Cxy and Byy <> —E).

For an L-formula ¢, GNF~ (¢) denotes a GNF theory in an extended language £, resulting from
the procedure defined and exemplified above. The choice of the predicate symbols is inessential as
long as they are all different, so we speak also about the GNF~(¢). The predicate By in GNF~ (¢)
(4z in Example 1.2), not occurring in any RS and satisfying GNF~(¢) = Biz <> ¢, is called the
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104  Extensions in graph normal form

top predicate of GNF~ (¢). For a theory I, its GNF~ (I") is obtained as the union of GNF~ (¢), for
each ¢ € I', where distinct GNF~ (¢) introduce distinct predicate symbols.

GNF~(I') is a definitional extension of I", in the following sense. An explicit definition, in an
FOL language L, is Bx <> ¢, where predicate B ¢ L and ¢ is an £-formula with free variables
V(¢) C x. A definitional extension of (the language of) I' is a sequence (D;);<;, for an ordinal A,
where (i) Dy is an explicit definition in the language of I', (ii) for j = i + 1 < A, D; is an explicit
definition in the language of all Dy, k < j and (iii) D; = |J;_; D; for limits / < A. A set of formulas
is a definitional extension of I" if it can be well-ordered into one, and is a definitional extension
simpliciter, if it is a definitional extension of some language.

FACT 1.5
For every FOL theory I, GNF~(I") is a definitional extension of .

PROOF. We view the process from Definitions 1.3 and 1.4 bottom-up, so that for j > i, B; is
introduced before B;. Step i adds the explicit definition A, Bi(x) < /\y =Bit1(x,y) of fresh
predicate B; in the language of the previous stage i + 1 (containing, in addition to the original
symbols, the predicate symbols B; for j > i). Thus, GNF~(4) is a definitional extension of 4, for
every A € I'. This yields the claim for finite I". If I" is infinite, then we well-order I" using axiom
of choice. Since distinct GNF~ (4;) introduce distinct predicates, the resulting well-founded chain
of explicit definitions is a definitional extension of I". U

Now, theory GNF~ (¢) is satisfiable even if ¢ is not. To obtain equisatisfiability of ¢ and its GNF,
we add one more formula.

DEFINITION 1.6
GNF (¢) is GNF~(¢) with a fresh predicate symbol 4’, where ar(A4”) = ar(4) for the top predicate
A of GNF~ (¢), and the GNF formula

A'x < (—mAx A —=A'x). (1.7)
For a theory I, GNF(I") = | per GNF(9), where distinct GNF (¢) introduce distinct symbols.

EXAMPLE 1.8
For ¢ = Vx3yPxy from Example 1.2, its GNF~ (¢)
Az < A\, —Sx
S o A\, ~Pxy
becomes GNF (¢) when extended with: A’z < (—Az A —A'z).

Although GNF(I') is no longer a definitional extension of I", due to formula (1.7), it shares its
essential feature: every model of I" has a unique expansion to a model of GNF(I"), because for any
structure M : M |= A’z < (—Az A —=A’z) if and only if M = Az. On the other hand, reduct of
every model of GNF(I"), forgetting A’, is a model of I'. This gives the following fact, where X = Y
denotes a bijection. (We show existence of injections X — Y and ¥ — X, also when X, Y are
classes, assuming their theory with Schroder—Bernstein theorem, e.g. NGB.)

FACT 1.9
Mod(I") = Mod(GNF (I')), for each FOL theory I.

PROOF. If M |= I then, as a consequence of Fact 1.5, M has a unique expansion M~ to the language
L7,sothat M~ &= I' UGNF~—(I"). Since M = Ax for each Ax € I", also M~ |= Ax. Interpreting
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Extensions in graph normal form 105

A" = ¥ in M~ , yields an expansion M’ satisfying (1.7), i.e. M’ = GNF(I"). No other interpretation
of A" over M~ satisfies (1.7), so the expansion of M to M' € Mod(GNF(I")) is unique.

Conversely, if M’ = GNF(I") then, in particular, M’ = Ax, for each Ax € I', since M’ satisfies
each equivalence (1.7). Hence M’|z € Mod(I"), where M'| denotes the L-reduct of M’. O

GNF is thus a normal form for FOL, and we study only theories in GNF. Theory GNF(I"), given
by Definitions 1.3—1.6, is only one possible GNF for I" respecting the equivalence from the fact
above, and we will occasionally use other, simpler forms.

2 Graphs as syntax

The syntax of a GNF theory can be represented by a graph, while the semantics amounts to specific
properties of this syntax graph. By a ‘graph’ we mean directed graph, namely, a pair G = (V;, E¢)
with vertices, V; and edges, E; € V; x V;. For x € Vg, by E;(x) we denote the set of vertices with
an edge from x, that is Eqc(x) = {y € V5 | (x,») € E¢} and, dually, E;(y) = {x € V5 | (x,)) €
Eq}). EL, E% denote the reflexive transitive closure of Eg, E; . This notation is extended to sets, e.g.
E;(X) = U,ex Ec(v), etc.

One proviso is needed. Definition 1.1 admits in a GNF theory several equivalences with the same
predicate in LSs, say, Pa <> ... and Pb < ..., with a, b being constants or even unifiable terms. Such
general cases are treated in Section 2.2. Until then, definitions, results and examples are formulated
for FOL without equality or function symbols, FOL™, to convey the main ideas undisturbed by more
detailed technicalities. Thus, Ty = X and the only terms in LS of each GNF formula are variables,
LS € Ax. We assume also that each predicate symbol P occurs at most once in LS of some formula
of a theory, to which we refer as P’s equivalence.

We let B; range over predicate symbols from the language £ of a GNF theory I". Any formula
from I" (with the restrictions just mentioned) is represented schematically by the following pattern
(where B may occur in RS as one of By, ..., By):

Bx < /\ (=Bixy A ... A =Byxy). (2.1)
y

DEFINITION 2.2
For a GNF theory I" in FOL™ and set D, the graph G = Gp(I") is given by:
1. Vo = Ap UAp, with Ap given in point 3.
2. For each axiom (2.1) of I', each vertex Bd € Ap, instantiating x by d € DV B in its LS, has
the outgoing edges to Eg(Bd) = {Bidc | 1 <i < n,c € D" Bid)},
3. For each undefined predicate symbol P, we add a fresh symbol P and the 2-cycle Pd < Pd for
each d € D”® Vertices Pd form Ap.

A nonempty D is a domain of an FOL-structure interpreting the language £ of the theory. We
exclude the empty graph, Gy (I") = (4, ), from considerations, and denote by Gr(I") the class of
graphs Gp(I"), for all nonempty sets D.

For each instance Bd, d € D*®, of an atomic axiom Bx (with no RS), point 2 gives the empty
set of neighbours, including Bd in sinks(G) = {v € V; | Eq(v) = #}. As will be seen in Section 2.1,
sinks are included in every kernel of a graph, which represents their valuation as true. The copies
Pd, added along with the 2-cycles for each undefined Pd in point 3, ensure that such atoms are not
sinks and can obtain arbitrary values, restricted only by the rest of the theory.
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106  Extensions in graph normal form

EXAMPLE 2.3
For ¢ = Vx3yPxy with I' = GNF(¢) from Example 1.8, repeated to the left, and for the set D =
{c, d}, Definition 2.2 yields the graph Gp(I") to the right:

Az < —dzn—dz (e e Ad —— ad)
Az < N\,Sx //\
c d
Sx < /\y—-ny Sc . Sd
C
c \L \ / J/ d
Pcc Pcd Pdc Pdd
N N N N
Pcc Ped Pdc Pdd

The subgraph induced” by {dc,Ad, Sc,Sd} and all Pxy vertices corresponds to GNF ™~ (¢), with
vertices Pxy and their 2-cycles to Pxy added according to Definition 2.2.3. The top vertices 4'c, A'd
with their edges arise from formula (1.7) in Definition 1.6.

Generally, in Gp(I"), each vertex Ad, for d € D, has edges to |D| copies of a subgraph with a
source Sx and edges to Pxy, for all x,y € D. Each pair Pxy, Pxy forms a 2-cycle.

2.1 Kernels as models

Given a GNF theory I", we denote its usual models by Mod (1), while its models over a given set D
by Modp(I"). Graphs from Definition 2.2 provide an equivalent representation of these models.

Graph Gp(I") mixes syntax, using the predicate symbols from the language of I", with semantics,
applying these symbols to the elements of the interpretation domain D. Typically, by ‘atoms’ we refer
to such mixed expressions. One uses such a notational abbreviation when, for a formula ¢ (x), one
writes ¢ (d) for some d € D. It may denote (i) the formula ¢ (x) with a new constant—naming the
object d—substituted for x, or else, (ii) the interpretation of the formula ¢ (x) under a valuation of
variables assigning the object d to x. Vertices of our graphs come closest to (i)—formulas with names
of the objects from D substituted for variables. They obtain truth values, becoming (ii), relatively to
the solutions of the graph, which we now define.

A kernel (or a solution [4]) of a graph G is a subset K C V; which

(a) is independent, i.e. E; (K) C V; \ K, and

(b) absorbs its complement, i.e. E; (K) 2 V5 \ K,
in short, such that E; (K) = Vg \ K. Equivalently, a kernel is an assignment « € 26 such that
VxeVs:akx)=1< (VyeEq(x) :a@y) =0).

A graph G is solvable when Ker(G) # ), where Ker(G) denotes the set of all kernels of G.

Vertices of Gp(I") contain all D instances of all atomic formulas. An assignment v € DY@ to free
variables V(¢) of a formula ¢, along with a kernel K, determine a valuation of all atoms over V(¢),
with atoms in K assigned 1, as given in line 1 below. Satisfaction of arbitrary formulas is defined
from this basis in the usual way, with the needed adjustments in the last two lines. (For a structure
M (or kernel of a graph) over a set D, a formula ¢x and d € D, we write M = ¢d if M satisfies ¢x

2Given X C Vg, the subgraph of G induced by X is (X,Eg N (X x X)).
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Extensions in graph normal form 107

with x assigned d.)

1. (G,K) =, Px & P(v(x)) € K, for atomic Px
2. (G,K) =y ¢ < (GK)E O
3. GKYE 1A & (GK)Ey ¢ and K =, ¢
4. (G,K) =y VYxpx & VYdeD:(GK) k=, ¢d 2.4)
and (G,K) = ¢ & YveDV® (GK) E, ¢
G E¢ & VK € Ker(G) : (G.K) = ¢
r=¢ & VGeGrN):GE¢

Repeating the standard definition of satisfaction, this gives I |= ¢ coinciding with the standard
notion Mod(I") = ¢, provided that kernels of graphs in Gr(I") correspond to Mod(I"). We establish
this now, showing first that kernels of Gp(I") correspond to Modp(I"). (Given a graph G, K = ¢
abbreviates (G,K) = ¢.)

FACT 2.5
For a GNF theory I" in FOL™ and any nonempty set D, there are injections
kr - Modp(I") — Ker(Gp(I')) and md : Ker(Gp(I")) — Modp(I'),
suchthat M = ¢ < kr(M) E ¢ and K = ¢ & md(K) = ¢ for M € Modp(I"),K € Ker(Gp(I"))
and formula ¢ of the language of I".

PROOF. An injection kr : Modp(I") — Ker(Gp(I")) is obtained as follows. Let D™ be a model of I"
over a set D, G = Gp(I") be as in Definition 2.2, and

kr(DY) =K = {Bd € Ap | D" |=Bd} U {Pd € Ap | D" |~ Pd},
where Ap is as in Definition 2.2.3. If Bd ¢ K, for Bd instantiating LS Bx of some axiom (2.1), say F,
then Dt [£ Bd and Dt |= —Bd. Since D' satisfies F, for some B;xy in its RS and some ¢ € D Bid)
also D1 = Bidc, i.e. Bidc € K. Since B;dc € Eg(Bd) by Definition 2.2, so Bd € E (K). For any
instance Pd of an undefined Px, if Pd ¢ K, i.e. DT = Pd, then Pd € K so Pd € E; (K). If Pd ¢ K,
then D' |= Pd, so Pd € K and Pd € E_ (K). Hence, V; \ K € E_ (K).

If Bd € E; (K), with Bd instantiating LS Bx of some axiom F, then B;dc € K for some B;dc €
E(Bd), i.e. DT |= B;dc and D |= —Bd, since D™ |= F. Hence Bd ¢ K. For Pd instantiating
undefined Px, if Pd € E_ (K), then Pd € K,i.e. DY | Pd,so Pd ¢ K.1f Pd € E_ (K), then Pd € K,
ie. DY |= Pd so Pd ¢ K. Hence, E; (K) € V; \ K. The two inclusions give E; (K) = V5 \ K, so
K € Ker(G).

Since for each atom Bd, D" |= Bd < K |= Bd, this equivalence extends to arbitrary formula ¢.
Obviously, if DT # ET for two models of I, then kr(D") # kr(E™).

An injection md : Ker(G) — Modp(I') is obtained as follows. Given a K € Ker(G), we define
md(K) = M over Dby M |= Bd iff Bd € K, for each Bd € Ap. We verify that M satisfies each
F e I', having the form (2.1). If M = Bd then Bd € K so that B;dc ¢ K for all B; in the RS of B’s
equivalence (2.1), and all ¢ € DB Hence, M (- Bjdc, i.e. M = —Bjdc for all such B; and c.
Thus, M satisfies the implication from left to right of B’s equivalence (2.1). If M (= Bd then Bd ¢ K
and Bd € E (K), since K is a kernel of G. This means that Eq(Bd) N K # @, i.e. Bidc € K for some
Bixy in the RS of B’ equivalence (2.1) and some ¢ € D¥®i¥)_ Thus, M satisfies also the right to left
implication of B’s (2.1), and we conclude that M = I.

Since for each atom Bd (also undefined by I'), md(K) = Bd < K |= Bd, this equivalence
extends to all formulas. Obviously, if two kernels K1, K> of G are different, then so are md (K1) and
md(K3), giving different values to at least one atom Bd. Thus, md is injective. O

One sees easily that kr and md are inverses of each other.
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108  Extensions in graph normal form

As sinks belong to graph’s every kernel, Definition 2.2.3 adds 2-cycle Pd < Pd at all instances

of undefined Px, to admit both boolean valuations of such Pd. The subgraph CA/Z — Az..., for
each axiom’s top predicate Az, forces kernels to include all instances of 4z.

EXAMPLE 2.6

A model over {c,d} of the formula Vx3yPxy from Example 2.3 must satisfy either Pcc or Pcd,
and either Pdd or Pdc. These determine exactly the kernels of G, 4 (") given in Example 2.2. For
every kernel K N {4'c, A'd} = @, hence {Ac,Ad} C K, forcing {Sc,Sd} N K = @. Sc ¢ K requires
{Pcc, Pcd} N K # @, while Sd ¢ K requires {Pdc, Pdd} N K # (.

Fact 2.5, augmented by the extension from GNF~(I") to GNF(I') in Definition 1.6 and by
Fact 1.9, yield the following correspondence between models of any FOL™ theory I" and kernels
of graphs from Gr(I"). More precisely, a graph model consists of a pair (G, K) with G € Gr(I") and
K € Ker(G), and the class Mod(I") corresponds to GMod(I") = | J{{G} x Ker(G) | G € Gr(I")}.

FAcT 2.7
In FOL™:

1. For an arbitrary GNF theory I" : Mod(I") = GMod(I).
2. For an arbitrary theory T : Mod(T) = GMod(GNF (T)).
3. For an arbitrary GNF theory I" : Mod(I") # 0 < Ker(G,(I")) # 0.

PROOF.

1. By Fact 2.5, we have injections Modp(I") = Ker(Gp(I")) for each set D. This gives the
obvious injections Mod(I') = Jpeges Modp(I') S Upeser ({1Gp (N} x Ker(Gp(IN))) =
GMod(TI').

2. By Fact 1.9, Mod(T) < Mod(GNF (T)), so the claim follows by point 1.

3. A I' with an uncountable model has a countable one, by Skolem-Lowenheim, so
Ker(G,(I')) # @ by Fact2.5. If I' has a finite model, it also has an infinite one by a
standard argument for FOL ™. Conversely, if Ker(G,, (")) # @, then Fact 2.5 gives a countable
model of I".

O

2.2 FOL with function symbols and equality

This section shows that graph representation from Definition 2.2 can be generalized from FOL™ to
full FOL, with function symbols and equality, retaining Fact 2.7.1-2. Following sections, 2.3 and 3,
can be read without absorbing the details of this section.

Definitions and facts from Section 1 remain unchanged for FOL™ with equality. The construction
of GNF~(I") follows Definitions 1.3 and 1.4, with equality treated as a binary predicate.

However, introduction of terms complicates the straightforward Definition 2.2 of a theory’s graph.
For the first, axioms may now have a more specific form than schema (2.1), with terms instead of
variables. This general form is abbreviated as

Btx <> /\ (ﬁley A A ﬁany), (2.8)
y
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where x in Btx may stand for variables occurring within the term ¢ or as other arguments of B, while
each B;xy can be a predicate symbol B; applied to some terms with variables among x, y. A special
case has Ba, with a constant a, in LS.

Consequently, the same predicate applied to different terms can now be defined by different
formulas, while the interpretations of these terms may then coincide. For instance, given constants
a, b, a unary predicate can be (partially) defined by

(1) Pa < —Qab
Pb < A\, —Rbyz.

As long as a and b are interpreted as different elements of the domain, the graph may have different
edges going out of vertices Pa and Pb. But if a = b, the mere identification of Pa with Pb in the
graph will not reflect the logic, according to which —=Qab <« /\y’z —Rbyz. Note the difference from
the single axiom

2) Px<>(x=aAn—Qab)V (x=>bA /\va —Rbyz).

Its graph is constructed as in Definition 2.2, except that also equality is needed. Unlike the two
formulas in (1), it forces Px = 0 for all x distinct from a and b. To handle situations like (1) we
introduce, along with terms, Ty # X, also the equality predicate eq(s,t), often abbreviated by
eqs, with the standard axioms. Vertices of graph Gp(I”) contain all atoms Btd € Ary,, which are
partitioned into two sets. Ins contains all atoms Btd that result from substituting some d € D59
for all variables x in the LS B#x of some axiom (2.8). For the remaining atoms, we include dual
vertices A1, = |Jpcr ATy.5, Where Axy, g = {Bs | s € Tp, Bs & Ins}.
A brief explanation of the definition follows underneath.

DEFINITION 2.9
For I" in FOL language £ and a set D, the graph G = Gp(I") is given by:
I. Vo =Ar, UKTD Ulegs | s,t € Tpy U {eq,, | s,t € Tp} U {e; | t € Tp \ D} U Aux, where Aux
are auxiliary vertices used below.
2. For each pair of distinct terms, s, f € Tp, we form 2-cycle eqs; = eq,,; for each pair of distinct
a,b € D, we add a vertex with a loop and the edge: o — eq(a,b) S eq(a,b).
3. For each term ¢t € Tp \ D (including constants), we form first the complete digraph C(¥)
over vertices Vo, = {eq(¢,d) | d € D} to which we add vertex e; with a loop and an edge

o, — eq(t,d), for each eq(t,d) € V¢, schematically: C'f S C(@).

4. We add the standard equality axioms for eq(_, ), i.e. for all distinct p, q,r € Tp:
(r) vertex eq,, is a sink — for reflexivity,
€qpq <Z e —— ¢q a

(s) the subgraph N L N — for symmetry,

G,y < o eqqp
s €q,q = €edpq
[

(t) the subgraph J/ — for transitivity.

aqr S eqql” eQ[JV S apr
(c) for each function f/predicate P with arity » and pairs of terms #;,s; € Tp, 1 < i < n, with
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6.

7.

Extensions in graph normal form

(t1..ty) =t # s = (s1...5,), we add the congruence subgraph with the sources o/e:

eCItlsl = eqtlsl < —_— —_— Pt
s eq(t,s) C e —
€qtys, — €1,s, ~— — — P
—~ 1!

S o —— eq(ft, fs) S eq(ft, fs).

If ¢, s are single terms, edges going out of eq(%, s) can be replaced by the 2-cycle to eg(?, s).
For atomic axioms s = for s # ¢ in I, with s, ¢ € Ty, we augment each instance sd, td € Tp
of the 2-cycle from point 2 with a new vertex e with the loop and the edge:

(a) foreachs =t € I',d € D7®D; C. — eq(sd, td) S eq(sd, td);
(b) foreach s # t € I',d € D"D: eq(sd, td) S eq(sd, td) < o 3 .

For each axiom (2.8) with Btx in LS and for each d € D89 vertex Btd obtains the outgoing
edges to EG(Bt@ ={Bidc |1 <i<n,ceDVEBDY _
For each Bs € Ary,, vertex Bs obtains the 2-cycle Bs = Bs.

Auxiliary vertices Aux are all e and anonymous vertices in the indicated subgraphs. For each
kernel K € Ker(G), the subgraphs in respective points above ensure the following properties:

2.
3.

S

Saying below that something follows ‘by subgraphs...

For distinct a, b € D, eq(a,b) € K, representing inequality.

Unique interpretation in D of every function application. With eq representing equality, these
subgraphs ensure that each application of a function to arguments from D returns a unique
element of D, in particular, that each constant is interpreted as some unique d € D. This
follows because, in a complete graph, the kernels are exactly individual vertices, so that each
kernel of C() is exactly one eq(t, d).

Satisfaction of the standard equality axioms by eq(_, ). Equivalence is ensured by (r), (s) and
(t), while in the subgraphs (c), vertex o captures the congruence axiom t = s — ft = f5,
and vertex e its predicate version f = s — (Pt <> Ps). Vertices Pt, Ps initiate the subgraphs
according to point 6.

Satisfaction of the atomic nonlogical (in)equality axioms.

Satisfaction of other nonlogical axioms (2.8).

If a predicate B is only partially defined (like in (1)), then each Bd ¢ Ins can be interpreted
arbitrarily, provided eq(d, tc) ¢ K for each Btc € Ins (and the chosen interpretation does not
collide with other restrictions).

E}

refers to the points above, applied to any

kernel restricted to these subgraphs. For instance, if K € Ker(Gp(I')) and s = ¢t € I then, by
subgraphs 5.(a), eq(sd, td) € K for each d € D) because kernel requires exclusion of vertex o
with the loop, which forces eq(sd, td) € K.

EXAMPLE 2.10
For a predicate P, if there is no equivalence with Px in LS, then 7.(b) yields the 2-cycle Pd < Pd,
for each d € D®). For example (1) from the beginning of this subsection, point 6 yields the
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edges

— Pa— Qab...
— Pb — Rbdyds... forall dy,d, € D

By subgraphs 2.9.4.(c) with Pa, Pb and Ps, s € DY) if K € Ker(G) and eq(a,s) € K then K |=
Pa < Ps,whileifeq(a,b) € K thenalso K &= —Qaa < /\y’z —Rayz. Butif {eq(d,a),eq(d,b)} C K,

then by subgraphs 7.(b), either Pd € K or Pd € K.

EXAMPLE 2.11

For the axiom (P) Px <> —Psx, and the set with one element 0, terms Tjo; are (isomorphic to) natural
numbers and the graph becomes a ray PO — PsO — PssO — ..., with subgraphs 2.9.4.(c) for
each pair 5”0, 5™0, n # m. Since all these terms are interpreted identically over {0}, for any kernel
K € Ker(Gio,(P)), the subgraph 2.9.4.(c) with the source e for P0, Ps0 is such that eq(0,50) € X,
while the edge PO — Ps0 yields PO € K < Ps0O € K:

/ 0 a PO
)
eq(O,SO) =1 X\J e — (C
\i
\ 0 5 PO o > Pss0...

Consequently, this subgraph, and hence the whole graph, has no kernel, reflecting the nonexistence
of models of (P) over one element domain.

Taking as the underlying set the natural numbers N, with the standard interpretation of s as +1,
the graph again becomes the ray PO — P1 — P2 — .... But now no equality eg(p, ¢) holds except
for eq(p, p). The instance of the subgraph above swaps 0 and 1, obtaining two kernels, with Ps"0 for
all even n > 0, or for all odd n > 0.

The following extends Fact 2.5 to FOL, showing that Gp(I") captures all models of I" over
asetD.

FACT 2.12 (2.5)
For a GNF theory I" in FOL and any nonempty set D, there are injections
kr : Modp(I") — Ker(Gp(I')) and md : Ker(Gp(I")) — Modp(I"),
suchthat M = ¢ & kr(M) = ¢ and K = ¢ & md(K) E ¢, for each M € Modp(I"),K €
Ker(Gp(I')) and formula ¢ of the language of I".

PROOF. The proof has the structure of the proof of Fact 2.5, with the additional treatment of
equality, and the more general form (2.8) of axioms. (kr) Letting G = Gp(I'), an injection
kr : Modp(I') — Ker(G) is obtained by mapping a model DT = I', over a set D, on
kr(DT) € Ker(G) given by all values induced from:

K ={Bd € Ay, | DY |=Bd} U {Bd € A, | D" |~ Bd}
Uleq(s,0) | D" s =t, 5,6 € Tp} Uleq(s,0) | DT = s =1, 5,1 € Tp}.

The second summand is empty in case Ap = @ and each Bd obtains a value relatively to its
outneighbours E;(Bd) determined by the axioms.
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112 Extensions in graph normal form

Vertices included into k#(D™) by inducing from K, but not mentioned in the definition of K above,
are among the auxiliary vertices in graphs 2.9.4.(c). They do not affect the argument below, so we
identify kr(DT) = K.

i. Equality in DT is reflected by eq in G. Since each term applied to elements of D yields a
unique element of D, K determines a unique solution to each subgraph from point 3 of Definition
2.9 with eq(t,d) = 1 for d € D interpreting the term ¢t € Tp, i.e. DT |= t = d, which induces 0 to
;. The last two summands of K determine unique solutions to all subgraphs from Definition 2.9.4:

(1), since eq(p, p) is a sink,

(s), since eq(p, q) < eq(q,p) both e vertices in subgraph (s) obtain induced value 0 and

(t), since eq(p, g) and eq(q, r) imply eq(p, r), so e in subgraph (t) obtains induced value 0.

For (c), if eq(t,s) € K, i.e. DT |=t = s, then DV |= ft = fs for each function f, and D =
Bte <> Bse for each predicate B and e € D¥B) = par(Bs) Thus, if eq(t,s) € K then eq(ft,f5) € K,
while Bte € K < Bse € K, and the subgraph from 4.(c) obtains a solution since inducing from these
values ensures E; (o) N K # Jand Eg(e) N K # (.

The last two summands of K give also unique solutions to the subgraphs from 2.9.5.

ii. Instances Bd € Ins defined by (2.8) are treated as in the proof of Fact 2.5, with a small
proviso. It may happen that Bd ¢ Ins, while for some axiom with Btx in LS, D = d = fc,
so DY = Bd & D' = Btc. Then eq(d,tc) € K and Bd € K & Btc € K, so K solves the
subgraph 2.9.4.(c) with Bd, Btc in place of Ps, Pt.

We show first Vi \ K € E (K). This inclusion follows for vertices eq(_, ) and eg(_, ) by i (and
for Aux by inducing from K), so we consider atoms 4 € Ay, with4 ¢ K, i.e. DT [~ A.

Let A = Btc € Ins, i.e. Btc is an instance of LS Btx of some axiom (2.8) F. Since D" [~ Btc, so
DT |= —=Btc and D |= B;ce for some instance of some conjunct B;xy in RS of F. Hence B;ce € K,
and Btc € E (K) since Bice € E;(Btc) by 2.9.6.

If A = Bd ¢ Ins, then Eq(Bd) = {Bd} by 2.9.7. Since DT |~ Bd, so Bd € K and Bd € E (K).
These two cases, with point i, establish V; \ K € E_ (K).

iii. For the opposite inclusion, assuming 4 € E; (K), there are two cases.

If A = Btc € Ins then Btc € E (K) means that B;ce € K for some instance B;ce of some B;xy in
the RS of the axiom Btx <> ...Bixy. Then DV = B;ce, so DT |~ Btc and Btc ¢ K.

If 4 = Bd ¢ Ins then Eq(Bd) = {Bd} by 2.9.7 and since Bd € E; (K), so Bd € K, which means
that DT [~ Bd, so that Bd ¢ K.

These two cases give A1, N E; (K) € Vo \ K. If v € E; (K) is eq(_,_) or eq(_,_), then partial
solutions to the subgraphs in point i give v € V; \ K, so that E; (K) C V; \ K. With ii, this gives
E; (K) = Vs \ K, i.e. K € Ker(G).

iv. Since D |= Bd < K = Bd for each atom Bd € Ay, and Dt =5 =1 & K = eq(s, t) for
s,t € Tp, the equivalence DV = ¢ < K = ¢ holds for arbitrary formula ¢ of the language of I".

v. The so defined kr is injective, because two different models Dl+ # D;, over any
given set D, obviously give two different kr(DT) #* kr(D;L), since by definition K1 # K.
(md) An injection md : Ker(G) — Modp(I") is obtained as follows.

i. GivenaK € Ker(G), we note first that points 2 and 3 of Definition 2.9 ensure well-definedness
of the function i : Tp — D, given by i(#) = d, for d € D such that eq(t,d) € K. By 2.9.3 such ad is
unique for each ¢ € Tp, while by 2.9.2, the restriction i|p is the identity on D.

Subgraphs (1), (s) and (t) from 2.9.4 ensure that eq(_,_) is an equivalence on D, while (c) that
eq(s, t) entails eq(fs, ft) for each function symbol /. Hence, i is a well-defined quotient mapping.
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ii. We define the structure M = md(K) on D by interpreting all function symbols using i. For
each function / and @ € D), define its interpretation in M by fMa = i(fu) = d € D, where
{eq(fa,d)} = Vcq N K, for the subgraph C(fa) from 2.9.3.

For each atom Bd € Ar,, we define M |= Bd iff Bd € K. This is well-defined, since
subgraphs 2.9.4.(c) ensure that for all ¢,s € Tp, if eq(¢,s) € K then Bt € K < Bs € K. Suppose
that I" contains two distinct axioms (2.8), Btx <> ... and Bsy <> ..., while eq(ta,d) € K and
eq(sb,d) € K for some a € Tgr(t), b e Tgr(s). Then eq(ta,sb) € K by the subgraphs (s), ()
from Definition 2.9.3, and Bfa € K < Bsb € K by (c). Hence, Bta € K < Bsb € K <& Bd € K, so
M = Bta & M |= Bsh <& M = Bd.

iii. For any atomic equality axiom s = ¢ € I, subgraph C o — eq(sd, td) from 2.9.5 forces

eq(sd,td) € K for every instance sd, td € Tp of s,¢. By i, for each such instance i(sd) = i(¢d), so
that M = s = t. Similarly, for the axiom s # ¢ € I', the subgraph eq(sd, td) = eq(sd, td) < e D,
for each instance sd, td € Tp, forces eq(sd, td) & K, so i(sd) # i(td), giving M = s # ¢.

iv. Consider now any axiom (2.8) F' € I', with Btx in LS, and any d € DB 1f M = Bid, i.e.
Btd € K, then E¢(Btd) N K = ¥ since K € Ker(G), so that Bidc ¢ K for all B;xy in the RS of " and
¢ € DYBid) Thus M |~ Bide, i.e. M |= —Bdc for all Bidc in the RS, so M satisfies the implication
from left to right of F.

If M |~ Btd then Btd ¢ K and Btd € E, (K), since K € Ker(G). This means that for some B;xy in
the right side of ' and ¢ € D" Bid) Bidc € K, since such B;dc form E;(Btd) by point 6 of Definition
2.9. Thus, M satisfies also the right to left implication of (2.8), so M = F.

v. Since M = Bd < K = Bd for each atom Bd and, by ii, M = s =t & K | eq(s, t) for each
s,t € Tp, the equivalence M = ¢ < K = ¢ holds for arbitrary formula ¢ of the language of I".

vi. Two different kernels K7 # K, of G differ for at least one atom Bd. This follows because
membership of atoms in a kernel K determines uniquely this kernel, as can be seen inspecting
the subgraphs in Definition 2.9. For instance, restriction of any kernel K to the atoms in any
subgraph 2.9.4.(¢c), i.e. to Pt, Ps and all eq(¢;, s;), induces unique values to all remaining (auxiliary)
vertices of this subgraph, which therefore must coincide with their (non)membership in K. By
Definition 2.9.7, each K € Ker(G) determines Bd € K or Bd € K also for Bd & Ins.

Thus, K1 # K> implies for some atom Bd € (K7 \ K») U (K> \ K1). The respective models differ
then on Bd by ii, md(K1) # md(K3), so md is injective. O

Consequently, kernels represent exactly models of a theory: Fact2.13 below follows from
Fact 2.12 in the same way Fact 2.7.1-2 follows from Fact 2.5.

FAacCT 2.13 (2.7)
In FOL:

1. For an arbitrary GNF theory I" : Mod(I") = GMod(TI™).
2. For an arbitrary theory T : Mod(T) = GMod(GNF(T)).

2.3 Some facts about kernels

We gather some relevant facts about kernels. Since existence of a kernel for some graph in Gr(I”) is
equivalent to consistency of I, we start by quoting a couple of results on kernel existence. A graph
is kernel perfect if each induced subgraph has a kernel. Often, establishing solvability, one shows
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actually kernel perfectness and we, too, will use this stronger notion. The central result in kernel
theory is the following theorem of Richardson.

THEOREM 2.14 ([3]).
A graph G without odd cycles is kernel perfect if (a) for each x € V;; : Eg(x) is finite or (b) there are
no rays (infinite, simple, outgoing paths).

In particular, a finite graph without odd cycles is kernel perfect. We will also encounter the
following notion and fact. A digraph G is bipartite if so is its underlying undirected graph (forgetting
directions of edges), that is, if V; can be partitioned into two independent subsets, so that each
E;-edge connects a vertex in one subset to a vertex in the other.

FACT 2.15 ([6]).
A bipartite graph is kernel perfect.

Kernels can be transferred from homomorphic images to preimages. A graph homomorphism from
G to H is a function % : V; — Vg such that

Vx € Vg : h(E(x)) = Ey (h(x)), (2.16)

where 4 is extended pointwise to subsets, i.e. for X € V; : A(X) = {h(x) | x € X}.

FAcCT 2.17
For a homomorphism /# : G — H, if K € Ker(H) then K~ € Ker(G), where K~ = h~(K) = {y €
Vs | h(y) € K}.

PROOF. When K is independent then so is K, because 2(Eg(x)) € Ey (h(x)) by (2.16).

Forany y € Vs \ K7, i.e. h(y) ¢ K, thereisan h € Ey(h(y)) N K, since V; \ K € E, (K). By
(2.16) h(Ez(»)) 2 Ey(h(y)), so h € h(Ez(y)) N K, hence for some g € Eg(y) : h(g) = h. Since
heK,soge K andy € E;(K™). Thus, Vs \ K~ C E;(K7) and K~ € Ker(G). O

An isomorphism of graphs G and H, denoted by G =~ H, is a bijective homomorphism either way.

FACT 2.18
For every GNF theory I" in FOL™ and two sets D, E, if there is a surjection (bijection) D — E, then
there is a surjective (bijective) homomorphism Gp(I") — Gg(I').

PROOF. A surjection (bijection) 8’ : D — E gives a surjection (bijection) on atoms 3 : Ap — Ag by
B(B(d)) = B(B'(d)). We verify that it is a homomorphism. For X € {D, E}, replace indices Gy (I")
by X, e.g. Vx = Vg,.), etc. For each B(d) € V,,

E;(B(B(d))) = Ex(B(B'(d)) = (Bi(B'(d),e) | | < i < ne € EN}, for ki = ar(B;('(d))).
On the other hand, E,,(B(d)) = {Bi(d,c) | 1 <i < n,c € DX}, so that

BEL(B()) = {B(Bi(d,c)) | 1 <i < n,ce D} ={Bi(Bd),p)|1=<i=<nce D}
Since B’ : D — E is surjective (bijective), it gives a surjection (bijection) D% — E%i for every
ki € w, so that B(DF) = E¥ and B(Ep(B(d))) = Ex(8(B(d))). O

Hence, a bijection D = E gives an isomorphism Gp(I") ~ Gg(I"), also for I" in FOL. We can
therefore identify graphs in Gr(I") by their domain’s cardinality and set Gr(I") = {G,(I") | k > 0},
excluding the empty graph Go(I"). The graph in Example 2.3 is thus G>(A). By Fact 2.14, G, (I")
captures up to isomorphism all models of I" in FOL over domains with cardinality «. Incidentally,
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a simple version of upward Skolem-Ldwenheim theorem follows for FOL™: if I" in FOL™ has a

model of cardinality «, then for any A > «, surjection A — « gives by Fact 2.18 a homomorphism

G,.(I') = G, (I"), reflecting latter’s kernels by Fact 2.17 and yielding a model over A by Fact 2.5.
Homomorphisms reflect also bipartitions, according to the (proof of the) following fact.

FACT 2.19
If h : G — H is a homomorphism and H is bipartite, then so is G.

PROOF. We show that if (41, 47) is a bipartition of H, then (4], 4;) is a bipartition of G, where
A7 ={x € Vg | h(x) € 4;}. Let {i,j} = {1,2}. If h(x) = y € A4; then E;4(y) N A; = ¥, so there is
no z € Eg(x) N 4;, since otherwise h(z) € h(Eq(x) NA4;) C h(Eg(x)) Nh(4;) = E4() NA4;. So
Eq(4;) € 47, and dually, EG(AJ._) C4;,ie. (Ai_,Aj_) is a bipartition of G. O

Finally, we sometimes start with a partial assignment of boolean values (select a part of a kernel)
and propagate its consequences, that is, induce values to some other vertices. Briefly, a vertex must
be assigned 0 if it has an edge to a vertex assigned 1, while if all outneighbours are assigned 0, the
vertex itself must be 1. More formally, given a partial assignment ¢ with domain X C V;, we start
with Vy = Vg, set

ol ={xeX | o) =1} U (sinks(G) \ X) and 5y = {x € X | 0(x) = 0} U (E; (o)) \ X), and
iterate the following:

Vier = Vi \ (crl»1 Uol-o), and in limits A : V), = ﬂ Vi,
i<A

G; is the subgraph of G induced by V; (2.20)

1 . -1
0,y = sinks(Giy1) and Ulg_l =E; (0, ) NVig1.

We stop when V1 = V, obtaining the induced (|, -, oio x {0H) U (U< ail x {1}). Depending
on o, this may not be a function, but we induce only when it is. More details can be found in [6].

3 Extensions

Transforming manually a given theory into GNF may be a cumbersome task worthwhile only in
special cases. However, GNF is often encountered directly, as in definitional extensions or fixed
point definitions, where a new predicate B is introduced by a form Bx <> RS, from which GNF
can easily be obtained, transforming RS. Often, extension should be conservative or allow a (unique)
expansion of every model of the theory under extension, and various syntactic restrictions are utilized
to ensure this. Graph representation gives a new perspective on such situations, in particular, when
circularity is involved.

We therefore view now extensions as the primary objects. An extension is simply a GNF theory A,
with undefined predicates (if any) marking connections to any theory I" which it may extend. This
is how extensions are often used: as a generic possibility of augmenting a wide range of theories.
Just like transitive closure can be applied to any binary relation, we can think of an extension as
potentially applicable to any theory possessing predicates with the arities of the undefined predicates
of the extension.

Given A as an independent object, its undefined predicates may need renaming to match the
appropriate predicates of I", avoiding such an identification of predicates defined in A. Ensuring
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this, when applying A to I, is straightforward, so we assume the naming details are always resolved
and write the result of such an extension as A(I").> For every (set of) cardinality «, the graph
equality G, (A(I")) = G, (A) UG, (I") holds because of this assumption, so that each sink of G, (A),
representing an undefined predicate application Pd, is identified with vertex Pd of G, (I") (or, if no
Pd occurs in G, (I"), acquires 2-cycle in G, (A(I"))). Whenever the choice of « is inessential, we
speak about the graph G(A) of the extension and the graph G(I") of the extended theory.

Consequently, while sinks for undefined atoms of G(A) end up among vertices of G(I"), there are
no edges from G(I") to G(A)—the theory being extended does not use any predicates defined by the
extension.

Sinks of G(A) obtain thus a dual status. Some may represent LSs of axioms with empty RSs,
which are simply true. Belonging to every kernel, they affect the graph in a unique way, inducing
some consequences (following (2.3), with crol = sinks). Such sinks must be distinguished from those
which represent undefined atoms, to be identified with identical atoms of the extended theory. We
call the latter u-sinks. Kernels of G(A) are to be investigated under arbitrary valuations of u-sinks,
as their values are (to be) determined by the theory which is being extended. Formally, this comes
closer to equipping them with 2-cycles, but name ‘u-sinks’ marks that the question concerns now
existence of a kernel under arbitrary—and not only some appropriate—valuation of these atoms.
Extension A in most examples below contains no atomic axioms (sinks) and only undefined atoms
(u-sinks) matched by atoms of I".

Definitional extension implies conservativity, but we distinguish also two other intermediary
notions. Given languages £ € LT, an LT structure M is an expansion of L-structure M, if the
L-reduct of M equals M, i.e. M*|, = M. Recall also that an explicit definition, of a predicate
B ¢ L in a language L, is Bx <> ¢, where ¢ is an L-formula with free variables V(¢) C x.

DEFINITION 3.1
Let I € I't be theories over languages L C LY. A=Tt\Tisa

definitional extension of I", according to definition before Fact 1.5,

model unique extension of I if each model of I" has a unique expansion to a model of I" T,
model extension of I if each model of I" has an expansion to a model of I" T,

conservative extension of I' if for every L-sentence ¢ : I' - ¢ < I'" - ¢.

The notions are listed with decreasing strength: every definitional extension is a model unique
extension, which is a model extension, and every model extension is conservative. In general, none
of these inclusions can be reversed.

We begin with a few simple examples. An extension with a predicate B, even if not in GNF, has
typically the form Bx <> RS. An equivalent extension in GNF can be then obtained more easily,
than by following Definitions 1.3 and 1.4, by reformulating appropriately RS. This is typically done
below.

EXAMPLE 3.2
Definitional extension A given by Dx <> Fx v —Hx, as written in GNF to the left, has graph G(A)
to the right:

3 Strictly speaking, application A(I”) is relative to a renaming t of A’s undefined predicate symbols to predicate symbols
(of the same arities) of I", and of A’s defined symbols to symbols not occurring in I". The result is A(I",7) = t(A) U T,
but we drop t which is identity in the examples. Every theory, written in GNF, is thus an extension. If it has no undefined
predicates matching (under 7) predicates of the actual argument theory I", the application yields disjoint union of the two.
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A: Dx < —Bx Dx Bx Fx
Bx <> —Hx A —=FXx J/
Hx < —Hx

Hx —— Hx

An application of A to any actual theory I" amounts to matching ' and H to some unary predicates
of I'. For any «, the graph G, (A) has a copy of the above G(A) for each x € «. The u-sinks Fx and
Hx of G, (A) obtain in G, (A(I")) the edges which Fx, Hx have in G, (I").

EXAMPLE 3.3
The extension Nx <> Fx V (Hx A =Nx), i.e. Nx < —(—=Fx A —(Hx A —Nx)), given in GNF to the
left, has graph G(V) to the right:

(N) Nx < —Bx Nx Bx Fx
Bx <> =Fx A =Cx T /
Cx <> —Hx A =Nx
ﬁx <« —Hx Cx HX Hx

The graph has no solution for Fx = 0, Hx = 1, so (N) does not model extend any I" consistent with
Ix(—Fx A Hx). From (N), we can actually prove Fx vV —Hx, so this extension is not even conservative
for any such I".4

EXAMPLE 3.4
Let (N”) be as (N) in Example 3.3, but with Bx replaced by the following B'x:

(N') B'x <> —=Fx A —=Cx A —=Nx Nx = B'x Fx
Hx

The new edge B'x — Nx makes the induced subgraph {B’x, Cx, Nx} kernel perfect. Consequently, it
is solvable for every valuation of its u-sinks, so (N”) is a model extension of every theory.

!
Cx Hx

The following more complex example illustrates also the effects of quantifiers.

3.1 Transitive closure
Given a binary relation E, a natural attempt to define its transitive closure is by adding the axiom
(TC) TCxy <> Exy v 3z: Exz A TCzy.

We ask first about the general relation between possible models of £ and models of E extended with
(TC). In GNF, the definition of 7C becomes the four equivalences in (3.5). The dotted edges, marked

4In chapter 4.1 of [2], viewing (N) as a ‘definition’, the authors remark that it ‘allows us to prove a priori that all H’s are
F’s.’. Well, all H’s are F’s assuming (N), but while a definition may seem a priori, there is nothing a priori about an extension
with nonlogical axioms. Since every theory can be written in the GNF format, typical if not required for definitions, there
seems little reason to distinguish here between definitions and axioms.
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with Vz on the sketch of G(7C) below, signal branching to all instances of the target formula, with
some marked explicitly on the dotted edges leading to them. The edges Exy — Exy to the u-sinks
Exy of G(TC) are left implicit.

TCxy <« —Bxy Cxzy < —ExzA—TCzy (35)
Bxy < —Exyn \,—Cxzy Exy < —Exy and TCzy <> —TCzy '
TCab < Caab — Eaa Eaz TCzb < Czzb —= Ezz Ezzy

R T e

TCab —= Bab > Cazb —> TCzh — TCzb —> Bzb > Czzib — TCz1b — TCz1b — ..

N |
Eab Cazib — Eaz; Ezh -~

AN
Czab — Eza

i. First, if Eaa = 1, i.e. Eaa = 0, then we can obtain a model with TCab = 1 by simply
choosing TCab = 0, which yields Caab = 1 and hence Bab = 0, independently of the choice of
assignments further down the graph. This corresponds to the fact that, when Eaa = 1, the instance
TCab < Eab v (Eaa N TCab) of (TC) with z = a, becomes trivially satisfiable by merely choosing
TCab = 1.

ii. Considering irreflexive £, (TC) still does not capture transitive closure, though this is less
obvious. The case G, (TC) of G(TC) has namely a kernel including 7Cab when there is an infinite
chain R = {zg,z1,22,...} withzg = a, and Ez;b = 0 = Ezizi_H for each z; € R. The last condition
means Ez;z;y1 = 1, i.e. R is a ray (or enters a cycle), which gives a very specific and unintended
meaning to any b being E-reachable from a, as if an infinite walk reached every vertex (then 7Cz;b
for each z; € R). Still, in this situation there is also another model in which 7Cab = 0.

The aim of this example is not to reexamine undefinability of transitive closure in FOL but to note
that the graph above has a kernel for every valuation of E-vertices: (TC) is a model extension of an
arbitrary theory of E. This follows from the observation that G(7C) is bipartite. We justify it by the
following general argument.

For a GNF theory I', a simpler schematic graph S(I") conveys often much information. Its
vertices are (labeled by) the predicate symbols alone, ignoring the arguments. Each equivalence
gives thus edges from the predicate in its LS, to each predicate occurring in its RS. Each of the
graphs in Examples 3.2, 3.3 and 3.4 is isomorphic to such a schematic graph of its theory. For the
extension (TC) from (3.5), the schematic graph S(7C) is

E<~—FE (3.6)

Every path in the graph G, (I"), for any «, results from unfolding some path in such a schematic graph
S(IM). The latter is also the homomorphic image of the former under the canonical homomorphism,
identifying all vertices with the same predicate symbol.

The graph S(TC) is trivially bipartite (since so is its underlying undirected graph, having no
odd undirected cycles). Using the just described canonical homomorphism and Fact 2.19, we
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conclude that G(7C) is bipartite and, by Fact 2.15, kernel perfect. This holds generally. Whenever
the schematic graph S(I7) is bipartite, then each graph G, (I") is kernel perfect.

The simplified graph S(7C) allows thus to conclude that every G(7C) is solvable for every
assignment to its u-sinks Exy. Consequently, (TC) is a model extension of any theory of E. This
triviality about (TC) becomes a useful fact, when formulated generally.

FACT 3.7
An extension A, of any theory I', is a model (unique) extension of I" if for every cardinality «, the
graph G, (A) is (uniquely) solvable for every assignment to its u-sinks.

This follows because, given a theory I', each kernel M of G, (I") determines values of (some)
u-sinks(G, (A)). Since no edges go from G, (") to G, (A), while the latter is solvable for every
valuation of its u-sinks, kernel M of G, (I") can be extended to a kernel of G, (A(I")). Section 3.3
addresses the fact that the condition, requiring solvability of G(A), is independent of I".

In Example 3.4, (N’) is a model extension. As observed there, this follows because its graph is
kernel perfect so, in particular, has a solution for every valuation of its u-sinks.

In Example 3.2, (D) is a definitional extension, while its graph G(D) is a dag without any rays.
By the first result in kernel theory from [4], such a graph has a unique kernel and is actually kernel
perfect. The effect of the syntactic restrictions on a definitional extension is, in graph terms, that
its graph becomes a rayless dag—uniqueness of its kernel yields model uniqueness. It is a special
case of Fact 3.7 which implies, more generally, that A is a model extension whenever G(A) is kernel
perfect. This general statement will be used below.

Before that, it may be useful to point out some limitations of using schematic graph S(A) instead
of G(A), which is attractive whenever applicable. One such limitation is that even though bipartition,
and solvability in general, are reflected by homomorphisms, solvability for all valuations of sinks

is not. For instance, graph C a = = s; = s, is unsolvable if s; = 1 and s; = 0, but its

homomorphic image ( , == 3 ¢ has a solution for each valuation of s. When S(A) is solvable

for all valuations of its u-sinks, solvability of G(A) for all valuations of its u-sinks may fail and
requires additional argument, as illustrated also in Example 3.13 further ahead.

A dual problem is exemplified in the language with constants a, b and predicate Q. Its extension
with predicate P and axioms Pa <> —Qa and Pb <> —Pa is now model unique for every valuation of

0, but the schematic graph CP — Q, is solvable only when Q = 1.

In the examples above, schematic graphs of consistent extensions are still solvable, but they need
not be. Let A be the following extension of a theory having a binary predicate symbol E:

A: Bix < —BixA—-Bx Box < —Byux
Bix <> —Byx A —B)x Byux < /\y—-Exy
Blxyz <> —B3xyz A —Bjxyz Bixyz < —Biaxyz
Bix < —Exx B3uxyz <> —Exy A =Eyz A —Exz.

More comprehensibly: A < GNF({VYx—Exx, Vx3yExy, Vxyz(Exy A Eyz — Exz)}), which forces
domain to be infinite. Although A is consistent, its schematic graph S(A) is unsolvable:

B/1—>Bl—>E-&E

N

( By — B —> By By~ B~ B )

€20z fieniga4 90 uo Jasn Aselqi] usbiag Jo AlsiaAun Aq 91.2¥S6S/1L01/1/0S/e1onde/jedBil/woo dno olwspese)/:sdyy Wwolj papeojumoq



120  Extensions in graph normal form

When the only terms are variables, S(A) is isomorphic to the graph G (A) over domain with one
element. As A forces here domain to be infinite, it does not appear possible to represent it by such
a graph. It does not even seem possible to represent it by retaining an infinite number of u-sinks
Exy, while collapsing distinct instances of internal vertices, e.g. identifying B,d for all d in actual
domain, etc. For each d, Bod = 1 must hold; then also By,d = 0, requiring some e, distinct from d,
with Ede = 1. Multiplicity of distinct vertices Ede may require multiplicity of distinct vertices Byd.

In short, simplification offered by the schematic graph is far from universal. It seems highly
improbable that any single schema could replace the whole class Gr(A), for arbitrary A, but the
range of As for which schema S(A) is applicable, or its generalizations, might deserve clarification.

3.2 Fixed points and positive occurrences

Restrictions on fixed point definitions provide another example, besides definitional extension, of
syntactic means ensuring condition of Fact 3.7. One defines a predicate by (*) Bx < ¢x, with B
occurring in ¢ (and V(Bx) = x = V(¢)). If M is a structure interpreting the symbols from ¢, let
(M, X) denote its expansion with the interpretation of B as X € M. A model of (*) over a given M is
then a fixed point of the operator BY (X) = {m € M | (M, X) |= ¢m}. Often, one chooses only least
or greatest fixed points, but we address only the consistency conditions, that is, the mere existence
of fixed points.

A simple restriction, ensuring monotonicity of B and existence of fixed points, forbids negative
occurrences of B in ¢. In terms of GNEF, this amounts to forbidding any occurrence of B under an
odd number of negations, when replacing predicates in the RS of B’s equivalence, by the RSs of their
equivalences. Such a substitution, performed in Example 1.2 and below, provides a procedure for
identifying negative occurrences in GNF.

EXAMPLE 3.8
We repeat definitions from Example 3.3:

(N) Nx <> —Bx Nx Bx Fx
Bx <> —=Fx A —=Cx T /
Cx <> —=Hx A =Nx
ﬁx <« —Hx Cx HX Hx

Each equivalence below marks one step of the successive substitution:
Nx < —Bx < = (=Fx A =Cx) < =(—=Fx A =(—=Hx A —=Nx)).

In the last formula, N occurs under three negations, displaying thus its negative occurrence.

Each — in GNF amounts to an edge in the corresponding graph, so a negative occurrence of Nx,
in the RS of (some such substitution instance of) the equivalence for Nx, amounts to an odd cycle in
the corresponding graph. Each odd cycle signals negative occurrence of all predicates in its vertices.
In (N) above, N, B and C all have such occurrences. Forbidding negative occurrences amounts to
excluding odd cycles.

Strictly speaking, what must not occur negatively is the same atom, say 7d, for some d in the
domain, and not merely the predicate symbol 7. Negative occurrences of 7 in 71 <> =72 or Tx <
—Tsx may appear circular, but they do not create any cycles in the graph, as long as 1 # 2 and
x # sx. An (odd) cycle emerges only from a (negative) occurrence in RS of an atom, like 7d, which
is an instance of 7x in LS, from which 74d is reached in the substitution process.
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The traditional restriction, forbidding negative occurrences of the mere predicate symbol, ensures
economy of applications. This excludes odd cycles from the theory’s simplified graph S(I7),
enabling an argument similar to that lifting bipartition of S(7C) in (2.17) to any graph G(TC).
Having no odd cycles, the graph S(I") is kernel perfect if it is finite, by Theorem 2.14. Since it
is a homomorphic image of each G(I"), every such graph is solvable by Fact 2.17. Consequently,
a definition without negative occurrences of the defined predicate, and with a finite simplified
graph, has fixed points over interpretation domain of each cardinality. Usefulness of such syntactic
criteria is easily associated with their limitations. Kernel perfectness or, more generally, the condition
of Fact 3.7, provides means for establishing existence of fixed points also in cases with negative
occurrences, as illustrated by the following example.

EXAMPLE 3.9
The extension (A) to the left has the simplified graph S(4) to the right

(A) Ax < —Bx
T T

Bx < =Cx N —Hx A~—C=B —— H
Cx < —Ax A —Bx

Substituting, as described above, yields Ax <> —(—(—4xA—Bx) A—Hx), so the predicate 4, and even
the same atom Ax, occurs negatively, which is reflected by the odd cycle in the graph. All predicates
from the odd cycle have negative occurrences but notwithstanding this, the graph is kernel perfect.
Thus, fixed points of (A) exist and, moreover, (A) is a model unique extension: Hx = 1 forces
Bx =0 = Cx and Ax = 1, while Hx = 0 forces Bx =1 and Ax = 0 = Cx.

3.3 Universal extensions

The examples, and the remark after Fact 3.7, suggest a generalization of Definition 3.1.

DEFINITION 3.10
An extension A is universal model unique/model/conservative if it is such for every theory I".

This presupposes an appropriate renaming of predicate symbols of A, when applying it to any
actual theory I". Fact 3.7, although formulated relatively to an arbitrary theory I', requires only
some property of graphs G(A). It states actually that A is a universal model (unique) extension and
can be strengthened to the present, more general context.

FacT 3.11
An extension A is a universal model (unique) extension iff, for every cardinality «, the graph G, (A)
is (uniquely) solvable for every assignment to its u-sinks.

The if direction follows as in Fact 3.7, while for the opposite, any assignment to the u-sinks I" of
Gy (A), taken as the extended theory, which makes G, (A) unsolvable, provides also a model of the
theory I” having no expansion to a model of A(I”). Also, any assignment to the u-sinks I” for which
G (A) has two kernels, provides a model for I" with two different expansions.

The extension (TC) is a universal model extension, because its graph G, (TC) is kernel perfect for
every i, having a homomorphisms onto the bipartite S(7C) in (3.7). Hence, every model of E can be
extended to a model of £ U (TC). It is not, however, a universal model unique extension, as observed
in point i under (3.5).
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A universal model unique extension occurs, for instance, when its graph is a rayless dags, as with
definitional extensions. Every assignment to u-sinks induces then a unique valuation of all vertices.
But model unique extensions occur also in many other situations, as illustrated by the concluding
examples.

EXAMPLE 3.12
The extension @ to the left has the simplified graph S(@) to the right (for every «, the graph G, (®)
consists of x copies of this graph):

®: Ax < —Bx
Bx < —Cx NN

Cx <> —Ax A —=Dx A —Hx
Dx < —Hx

The graph is not kernel perfect, as witnessed by the odd cycle {4, B, C}, showing also negative
occurrences of its atoms. Still, S(®) is uniquely solvable for every assignment to its u-sink H:
H=1givesC=D=A4=0and B=1,while H =0yields D =1= Band C = 4 = 0. In spite
of the negative occurrences, ® is a universal model unique extension.

EXAMPLE 3.13
Below, in a more complicated version A of ® from Example 3.12, some predicates have different
arities:

— T e
A Ax < N\, —Bxy Ax Bxyg Cxyg — Dx —— Hxyp
Bxy < —=Cxy <\\ / \
C)Cy < —A4Ax A —=Dx A _‘ny Bxyl _ nyl nyl
Dx < A\, —Hxy
Bxy; ——— Hxy,

The graph G, (A) has « copies of the above graph, one for each x € «, and in each such copy, Ax (Dx)
has edges to « vertices Bxy; (Hxy;), for each y; € «. Each vertex Bxy; starts a copy of the subgraph
following Bxyq (and Bxy1), with an edge from each Cxy; to the same Ax and Dx.

Now, §(A) = S(O®). The canonical homomorphism from any G, (A) onto S(A) reflects kernels
of S(A) by Fact 2.17. So G, (A) is solvable whenever, for each x € «, all Hxy; = 0 or all Hxy; = 1.
To conclude that A is a universal model extension, we have to consider also the case of Hxy; = 1
only for some y;. Then Dx = Cxy; = 0, making Bxy; = 1 and Ax = 0. All other Cxy;, Bxy; are
then determined by the respective Hxy;. Thus, A is a universal model extension (in fact, unique), all
negative occurrences and odd cycles notwithstanding.
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