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Abstract

The relativistic multi-photon ionization process is not yet fully understood [1, 2]. As a super-
intense X-ray laser pulse ionizes an atom, the electron may achieve relativistic speeds. Hence,
as the electron absorbs a multiple number of photons in succession, the system is affected by
relativity. This results in the kinetic energy of the electron being increased in comparison to
the non-relativistic equivalent, i.e., a relativistic blue shift. By reducing the system to 1D, we
studied and singled out what is causing this relativistic blue shift. Finally, we have constructed a
model that describes the relativistic mechanisms involved in the multi-photon ionization process
by utilizing time dilation.
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Chapter 1

Introduction

In the early 20th century, there were some huge advancements in the scientific community, which
revolutionized the way we see, study, and understand the world and universe. In the year 1900,
M. Planck solved the problem with the description of black body radiation when he published his
paper on the energy distribution law, now known as the Planck distribution. Here he was the
first to discuss the quantization of energy by introducing Planck’s constant [3, 4]. This became
the foundation for what is now known as quantum mechanics. Through the further works of
Schrödinger [5], Heisenberg [6], Dirac [7], Bohr [8], Einstein [9], and others, quantum mechanics
was developed. Quantum mechanics allows us to study and describe atomic and molecular systems
accurately and lays the foundation for quantum chemistry [4].

The quantization of energy was not the only groundbreaking discovery published in the 20th
century. In the years 1905-1906, Einstein published four pioneering articles; one related to Planck’s
description of the quantization of energy, the photoelectric effect [9], one explaining Brownian
motion [10], and two introducing the theory of special relativity [11, 12]. The theory of special
relativity explains how time, length, and mass are experienced by a moving object and related to
its velocity [12] and that the speed of light is always constant and independent of the movement of
the source [11]. In 1928 Dirac combined quantum mechanics and special relativity and developed
the relativistic Dirac equation [7]. The Dirac equation is central in what’s known as relativistic
quantum mechanics, and predicts the existence of antimatter as well as the spin of particles.

There were also some significant technological advancements in the middle of the 20th century,
opening up new opportunities for studying the dynamics of quantum systems experimentally. One
of them was the invention of the laser in 1960 [13]. The first concepts of the laser were actually
proposed by Einstein in 1916, where he proposed that photons could stimulate the emission of
identical photons from atoms with electrons in an excited state [14]. In 1954 Townes and his
student Gordon first demonstrated stimulated emission at the microwave frequency. This was done
in a resonance cavity, which amplified the output, also known as a maser (Microwave Amplification
by Stimulated Emission of Radiation) [13]. For the next six years, the development of the maser
flourished, and some physicists got the idea of extending the principle of the maser to higher
frequencies. In 1960, Maiman achieved this and developed the very first ruby laser, which emitted
bright red light [13]. Since then, the evolution of the laser-technology has improved immensely,
opening up novel opportunities for studying and manipulating quantum systems at a detailed
level. The principles of the laser have been extended to even higher frequencies and entered the
X-ray range. In later years, after leaps of scientific development, we have achieved incredible laser
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intensities [15].
All these discoveries allow us to study and understand systems and phenomena we could not

before, like the particle-wave duality of light and matter or the resulting light-matter interaction.
The super-intense laser allowed us to study, among other processes, the multi-photon ionization
process. As the super-intense X-ray laser pulse ionizes an atom, the electron may absorb multiple
photons in succession. This could be considered a generalization of the photon-electric effect.
As the electron absorbs photons, we need to consider that the electron may eventually achieve
relativistic speeds. In this thesis, we will study the relativistic light-matter interaction involved in
the multi-photon ionization process. This process is not yet fully understood [1, 2]. The multi-
photon ionization is illustrated in fig. 1.1. The figure depicts the corresponding energy distribution
after the net absorption of one (leftmost peak) to seven (rightmost peak) photons from the field.
The blue line represents the relativistic process, and the black line represents the non-relativistic
one. As seen in the figure, the relativistic result is shifted to higher energies, with respect to the
corresponding non-relativistic result, i.e., a relativistic blue shift. The shift is denoted as d in the
inset. It was recently found that this relativistic blue shift depended on some of the properties of

Figure 1.1: A model of the blue shift observed in the energy spectra under the multi-photon ionization
process that occurs when a super intense X-ray laser pulse interacts with a hydrogen-like atom. The black
line represents energy spectra when solving a non-relativistic equation, and the blue line represents when
the relativistic effects are considered.

the laser pulse, such as radiation pressure and intensity, and was described as a temporal relativistic
mass shift [1, 2].

In an attempt to understand which mechanisms are involved and which relativistic effect causes
the relativistic blue shift, we will study a 1D system. The 1D system can be considered an electron
moving inside an extremely thin nanotube [16] within a narrow potential. By reducing the system
to 1D, we will first be able to identify if the shift exists in 1D. Then, in a simplified system,
we can determine which relativistic effect is causing the relativistic blue shift. By constructing a
1D quantum mechanical model, we can solve the problem in both non-relativistic and relativistic
contexts. We will utilize the time-dependent Schrödinger equation and the time-dependent Dirac
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equation to simulate the multi-photon ionization process. Furthermore, to be able to single out
what’s causing the blue shift, we will also construct a relativistic Schrödinger formulation utilizing
the Foldy-Wouthuysen transformation [17]. The respective time-dependent problems are then
solved numerically by using a particle-in-box basis set expansion. The Crank-Nicholson propagator
method is finally used to model the system’s time evolution.

This thesis aims to identify and understand the relativistic mechanisms involved in causing
this relativistic blue shift in energy. We will then construct a simple model describing the multi-
photon ionization process. As the shift seems to be caused by a temporal relativistic effect, we here
propose that the shift may be time-dependent and caused by the relativistic effect of time dilation.
Utilizing time dilation, we construct a simple model for the multi-photon ionization process and
describe how the relativistic blue shift varies with the laser’s intensity and angular frequency and
how the relativistic blue shift increases for each photon-ionization.
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Useful constants

The atomic unit system is often utilized to execute calculations on an atomic scale. In atomic
units, the electron’s mass, the absolute value of the electron’s charge, the reduced Planck constant,
and the Bohr radius are set to unity. In table 1.1, we find some of the constants in atomic units
and their corresponding value in SI units.

Constant Physical unit Symbol Value (SI) Value [a.u.]

Electron mass Mass me 9.109 384 · 10−31 kg 1

Electron charge Charge −e −1.602 177 · 10−19 C −1

Planck constant Energy · time h 6.626 070 · 10−34 Js 2π

The reduced Planck
constant

Energy · time ~ 1.054 571 · 10−34 Js 1

Bohr radius Length a0 5.291 772 · 10−11 m 1

Fine structure
constant

Unit less α 1
137.036

1
137.036

Speed of light Speed c 2.997 925 · 108 m/s 137.036

Energy unit
Hartree

Energy Eh 4.359 745 · 10−18 J 1

Time unit Time t 2.418 884 · 10−17 s 1

Table 1.1: Table of useful constants utilized in this thesis and their value in SI units and atomic units
(a.u.).
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Chapter 2

Theory

2.1 Quantum Mechanics

Not all systems can be described by classical mechanics. For example, classical mechanics is not
sufficient to describe a molecular system or systems moving at relativistic speeds. To study these
kinds of systems, we must apply quantum mechanics and the theory of relativity, respectively.
Here we will go over the basics of quantum mechanics. We will also discuss the postulates defining
the Schrödinger picture.

2.1.1 Operators

An operator is a symbol for carrying out a specific action, an operation, on a function or vector.
This operation can be almost anything, for example: taking the derivative or multiplying with x
[4]. For many of the operators we use, the system is an eigenfunction of the operator. This means
that the operation does not change the eigenfunction. The eigenvalue equation is given by

Ωf = ωf. (2.1)

Here Ω is an operator, and ω is the corresponding eigenvalue. We can exploit this eigenfunction
relation. If we express g as a linear combination of f functions, g =

∑
n cnfn, we can calculate Ωg,

Ωg = Ω
∑

n cnfn, even though g is not a direct eigenfunction of Ω [4]. Ωg then becomes:

Ωg = Ω
∑
n

cnfn =
∑
n

cnΩfn =
∑
n

cnωnfn (2.2)

This becomes quite useful when solving the eigenvalue problems later on. Often operators are
directly related to an observable. An observable is any measurable dynamic variable in our system.
Examples of this are the momentum operator and the position operator, given by:

x→ x× (2.3)

px → −i~
∂

∂x
(2.4)
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Where ~ is the reduced Planks constant, ~ = h
2π and in atomic units ~ = 1. Applying the px

operator to a system, which is an eigenfunction to px, will produce the system’s momentum in the
x-direction.

An important feature of operators is that they do not necessarily commute. If two operators,
A, and B, do not commute, then AB 6= BA. The commutator for A and B, denoted as [A,B], is
expressed as follows [4],

[A,B] = AB −BA. (2.5)

We also have anti-commutator relations given by,

{A,B} = AB +BA. (2.6)

Anti-commutator relations will prove useful later on, for example, when treating the Dirac equation
in relativistic quantum mechanics.

Bra-ket notation

To evaluate many types of observables in quantum mechanics, we will need to evaluate an integral
over the related operator. These integrals are typical on the form

I =

∫
f∗mΩfndτ, (2.7)

where dτ represents the volume element, so the integral is over all space. For Cartesian coordinates
dτ = dxdydz. The bra-ket notation can represent this integral∫

f∗mΩfndτ = 〈m|Ω|n〉. (2.8)

The |n〉 is called a ket and denotes the state of fn, and the 〈m| is called a bra and denotes the
complex conjugate state of fm. Often these represent the initial and final state of the system.

Another useful integral is the overlap integral represented by S:

S =

∫
f∗mfndτ = 〈m|n〉 (2.9)

We can represent the overlap integral, S, and the integral over the operator, Ω, as matrix elements
of the respective matrices S and Ω,

〈m|Ω|n〉 = Ωmn (2.10)

〈m|n〉 = Smn (2.11)

Since most of the functions we encounter are normalized and orthogonal, they satisfy the
orthogonality condition. The orthogonality condition states that the wave functions of two states
of the system, |m〉 and |n〉, are orthogonal to each other. Therefore we can express the overlap
integral as a delta function,

Smn = 〈m|n〉 = δmn. (2.12)

Hence, where δmn represents the delta function, also known as the Kronecker delta. The Kronecker
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delta is defined as

δmn =

{
1 for m = n

0 for m 6= n
. (2.13)

Another useful feature of the bra-ket notation is, by definition, if |m〉 and |n〉 are orthogonal, the
complex conjugate of the matrix element Smn is S∗

nm [4],

Smn = 〈m|n〉 = 〈n|m〉∗ = S∗
nm, (2.14)

this is known as Hermicity.

Hermicity

An operator is hermitian if the following relation is fulfilled:

Ω∗
mn = 〈m|Ω|n〉∗ = 〈n|Ω|m〉 = Ωnm (2.15)

This is only true if the following condition for a hermitian operator is also true [4]:

1. The eigenvalue for a hermitian operator is real.

2. The eigenfunctions corresponding to different eigenvalues for a hermitian operator are or-
thogonal. To be more concrete, it is always possible to construct an orthogonal set of eigen-
functions for a hermitian operator.

In this project, we will only use hermitian operators.

2.1.2 The postulates of Quantum Mechanics
The postulates of quantum mechanics are statements that are not proven nor provable, but they
are the basis for all quantum physics. In this thesis, we use the Schrödinger picture of quantum
mechanics and present the postulates connected to this picture.

Postulate 1 The system’s state is described by a wave function, Ψ(τ, t), which contains all
the system’s information.

The wave function describes the state of the system by using quantum numbers. For a hydrogen-
like atom, there are five quantum numbers [4].

• The principle quantum number, n: n = 1, 2, . . .

• The angular momentum quantum number, l : l = 0, . . . , n− 1

• The magnetic quantum number, ml: ml = −l, . . . , l

• The electron spin number, s: s = 1
2

• The electron spin quantum number, ms: ms = +s, −s

Each quantum number represents one trait of the system. For an electron in a hydrogen-like atom,
the n quantum number represents the energy of the system, and n2 gives the number of orbitals.
The l quantum number represents the angular momentum of the electron and the orbital of the
electron. The ml quantum number describes the shape of the orbital. In addition, there is the
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electron spin quantum number which either is spin up, + 1
2 , or spin down − 1

2 . In nonrelativistic
quantum mechanics, the spin quantum number was introduced because of Pauli’s exclusion prin-
ciple, which states that the wave function for fermions must be anti-symmetric. In other words,
multiple electrons in a hydrogen atom can not have all identical quantum numbers.

Postulate 2 Observables are represented by Hermitian operators chosen to satisfy the
following commutation relations, where q is either x, y or z and pq is the corresponding
momentum [4]:

(i) [q, pq′ ] = i~δqq′

(ii) [q, q′] = 0

(iii) [pq, pq′ ] = 0

(2.16)

The operators have to be hermitian so that the observables become real.

Postulate 3 When a system is described by Ψ, the mean value of the observable to the
operator Ω is known as the expectation value [4].

The expectation value is given by
〈Ω〉 = 〈Ψ|Ω|Ψ〉

〈Ψ|Ψ〉
(2.17)

where 〈Ψ|Ψ〉 is the overlap integral and is used to normalize the wave function. If Ψ is normalized,
〈Ψ|Ψ〉 = 1, we get

〈Ω〉 = 〈Ψ|Ω|Ψ〉. (2.18)

If |Ψ〉 is an eigenfunction of Ω, then Ω|Ψ〉 = ω|Ψ〉, and the expectation value becomes

〈Ω〉 = ω. (2.19)

Now let Ψ be a linear combination of eigenfunctions of Ω

Ψ =
∑
n

cnψn where Ω|ψn〉 = ωn|ψn〉, (2.20)

then
〈Ω〉 =

∑
n,m

cnc
∗
m〈ψm|Ω|ψn〉 =

∑
n,m

cnc
∗
mωn〈ψm|ψn〉. (2.21)

Since Ω is hermitian, the eigenfunctions are orthogonal, as stated in postulate 2, which means that
the sum can be written as

〈Ω〉 =
∑
n

cnc
∗
nωn〈ψn|ψn〉 =

∑
n

|cn|2ωn. (2.22)

Here |cn|2 is the probability of finding the system in the corresponding eigenstate ψn [4].

Postulate 4 The probability to find a particle in the volume element dτ at point r is
proportional to |Ψ(r)|2dτ [4].
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In other words, |Ψ|2 is a probability density. This is often called the Born interpretation, and
it implies ∫

|Ψ|2dτ <∞. (2.23)

For eq.(2.23) to be true, we put a restriction on Ψ [4].

lim
x→±∞

Ψ = 0 (2.24)

Postulate 5 The wavefunction Ψ(τ, t) evolves in time according to the equation:

i~
∂Ψ

∂t
= HΨ. (2.25)

This is known as the time-dependent Schrödinger equation and is used to evaluate how the system’s
states changes with time [4].

2.1.3 The Schrödinger equation
The time-dependent Schrödinger equation (TDSE) eq.(2.25) is one of the most essential and fun-
damental equations in quantum mechanics. Here the H is known as the Hamiltonian operator and
consists of two parts, the kinetic energy operator, T , and the potential energy operator, V ,

H = T + V. (2.26)

When H acts on a state, Ψ, it gives the total energy of the system [4]. Here

T =
p̂2

2m
and V = V (r). (2.27)

HSE =
p2

2m
+ V (r) (2.28)

The Schrödinger equation is a second-order partial differential equation and can only be solved
analytically for the most straightforward systems. We usually must apply numerical methods to
approximate a solution to more complex systems.

The time-independent Schrödinger equation

The Schrödinger equation can be separated into a time-dependent and time-independent part as
long as the potential only depends on space (no time dependency). If we start with the time-
dependent Schrödinger equation in 1D, we get

HSEΨ = − 1

2m

∂2Ψ

∂x2
+ V (x)Ψ = i~

∂Ψ

∂t
. (2.29)

Using the separation of variables method, we define

Ψ(x, t) = ψ(x)θ(t), (2.30)
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and obtain
− 1

2m
θ
∂2ψ

∂x2
+ V (x)ψθ = i~ψ

∂θ

∂t
.

Dividing both sides with Ψ and we get

− 1

2m

1

ψ

∂2ψ

∂x2
+ V (x) = i~

1

θ

∂θ

∂t
.

Now we see that the right-hand and left-hand sides are independent of each other. Therefore
each side must be equal to the same constant. Let us call it E. With this, we get two differential
equations,

− 1

2m

1

ψ

∂2ψ

∂x2
+ V (x) = E, (2.31)

and
i~

1

θ

∂θ

∂t
= E. (2.32)

Eq.(2.32) can be rewritten as
i~
∂θ

∂t
= Eθ. (2.33)

The general solution for θ then becomes

θ(t) = e−iEt/~, (2.34)

and eq.(2.31) can take the form
Hψ = Eψ. (2.35)

This equation is known as the time-independent Schrödinger equation (TISE).
The time part of the wavefunction, θ(t), can be expressed as a function of sinus and cosines

functions through Euler’s relation, eix = cosx+ i sinx,

e−iEt/~ = cosEt/~− i sinEt/~. (2.36)

This means that Ψ oscillates between real and imaginary values with time. Even though Ψ oscillates
with time for a given energy E, if Ψ is an eigenfunction of H, the probability density of Ψ∗Ψ remains
real and constant,

Ψ∗Ψ = (ψ∗eiEt/~)(ψe−iEt/~) = ψ∗ψ. (2.37)

Therefore, as long as Ψ is an eigenfunction of H, we have a stationary system [4].
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2.2 Relativistic Quantum Mechanics

As stated earlier, classical mechanics cannot describe systems moving at relativistic speeds, and
we need to apply the theory of relativity. Therefore, to be able to study molecular systems moving
with relativistic speeds, we are required to apply relativistic quantum mechanics. Henceforth, we
will discuss special relativity, the Dirac equation (the relativistic quantum mechanics equivalent of
the Schrödinger equation), and its nonrelativistic limit.

2.2.1 Special relativity
At the beginning of the 20th century, Albert Einstein developed the theory of special relativity,
where he described how speed affects time, mass, and space experienced by an observer moving
at relativistic speeds [18]. As for quantum mechanics, the theory of special relativity is based on
postulates. The two postulates given by Einstein are:

Postulate 1. The laws of physics is the same in all inertial reference frame [18].

Postulate 2. The speed of light, c, in a vacuum is the same in all inertial reference frames
and is independent of the motion of the source [18].

Using this, Einstein formulated the relations for time, mass, and space in a system moving at
relativistic speeds (accelerated reference frame) compared to a system in an inertial rest frame.
The two reference frames are related through the Lorentz factor,

γ =
1√

1− v2

c2

. (2.38)

The three relativistic effects are known as:

1. Relativistic mass increase
m = γm0, (2.39)

where m0 is the rest mass, i.e., the mass for the particle at rest [18].

2. Length contraction
l =

l0
γ
, (2.40)

where l0 is the proper length, i.e., the length measured in the accelerated reference system
[18].

3. Time dilation
∆t = γ∆t0, (2.41)

where t0 is the proper time, i.e., the time measured in the accelerated reference system [18].

Using the relativistic mass correction and the relativistic momentum, we can rewrite the Lorentz
factor as a function of momentum, and we get

p2 = (γm0v)
2 ⇒ γ =

√
1 +

(
p

m0c

)2

. (2.42)
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Relativistic Energy

In special relativity, we introduce a concept called the rest energy for a particle. It is the energy
the particle will give if it is to be annihilated at rest. The rest energy is given by

E = m0c
2. (2.43)

If the particle is accelerated to relativistic speeds, the relativistic mass increase will take effect,
and we get

E = γm0c
2. (2.44)

Manipulating this, we can get an expression for the total energy of the free-moving particle,

E2 = (γm0c
2)2

=

√
1 +

(
p

m0c

)2

m0c
2

2

= m2
0c

4 + p2c2.

(2.45)

The total energy of a free particle then becomes

E =
√
m2

0c
4 + p2c2. (2.46)

2.2.2 Dirac equation
The Dirac equation is the relativistic equivalent to the nonrelativistic Schrödinger equation. As
the TDSE the time-dependent Dirac equation (TDDE) is given by

i
∂ψ

∂t
= HDEψ, (2.47)

but the Dirac Hamiltonian, HDE , is significantly different from the Schrödinger Hamiltonian, HSE .
First, the Hamiltonian is supposed to give out the system’s energy state. The nonrelativistic energy
of a free particle is given by

Ek =
p2

2m
(2.48)

which is of O
(
p2
)
, and therefore corresponds to a second-ordered partial differential equation, while

the relativistic energy is given by
E =

√
m2c4 + p2c2, (2.49)

which is of O(p), and therefore corresponds to an first ordered differential equation. Note that in
eq.(2.49) and eq.(2.48), and henceforth, m0 → m.

Another important aspect of the Dirac equation is that we have to consider both the particle
and antiparticle. This is represented in the wave function, which for the Dirac equation is a
four-component spinor,

Ψ(τ, t) =


ψ1(τ, t)

ψ2(τ, t)

ψ3(τ, t)

ψ4(τ, t)

 (2.50)
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The four components in the Dirac wavefunction can be divided into two two-component spinors,

Ψ(τ, t) =

[
g(τ, t)

if(τ, t)

]
, (2.51)

where

g(τ, t) =

[
ψ1(τ, t)

ψ2(τ, t)

]
and if(τ, t) =

[
ψ3(τ, t)

ψ4(τ, t)

]
. (2.52)

Here the g(τ, t) component represents the particle and the if(τ, t) represents the antiparticle, and
each component in g(τ, t) and if(τ, t) represents the two spin states. For a particle, the g(τ, t)
component will dominate and be the more significant component, and for an antiparticle, the
if(τ, t) component will dominate. Since we have to consider both particles and antiparticles, we
also must consider the negative energy spectrum corresponding to the antiparticle when solving
the Dirac equation.

The HDE is given by
HDE = cα · p+ βmc2 − 1eφ. (2.53)

Through minimal coupling, we let
p→ p+ eA, (2.54)

where A is the vector potential that represents the electromagnetic field. HDE then becomes

HDE = cα · (p+ eA) + βmc2 − 1eφ. (2.55)

Here α and β are 4×4 matrices. The α and β matrices can be chosen at will, provided they satisfy
the Clifford algebra:

(i) β2 = α2
i = 1

(ii) tr(αi) = tr(β) = 0

(iii) {αi, β} = 0.

(2.56)

A common choice for the matrices is

β =

[
1 0

0 −1

]
and αi =

[
0 σi

σi 0

]
, (2.57)

where σi matrices are the Pauli matrices, given by

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
and σ3 =

[
1 0

0 −1

]
. (2.58)

Note that this is not the only representation that can be used, but it is one of the more commonly
used.
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2.2.3 The non-relativistic limit of the Dirac equation

To construct the relativistic Schrödinger Hamiltonian, we need to explore the non-relativistic limit
of the Dirac equation. Due to the structure of the αi matrices in HDE , there is a coupling between
the g and f components. This causes problems when we try to construct the relativistic Schrödinger
equation. To study the non-relativistic limit, we need to decouple the HDE . This can be done
with the Foldy-Wouthuysen (FW) transformation [17].

We define the terms containing the αi matrices as odd since they couple the g and f components,
and the terms containing the matrices that do not couple the g and f , such as the β and unitary
matrix, as even. By defining

o = cα · (p+ eA) and ε = −1eφ, (2.59)

where o is categorised as odd and ε is categorised as even, we can express the HDE in eq.(2.55) as

HDE = o+ ε+ βmc2. (2.60)

The FW transformation decouples the g and f components by transforming away all the terms
containing odd matrices. We do this with a unitary transformation. The unitary transformation
is defined by,

Ψ′ = e+iSΨ, (2.61)

where S is a hermitian operator [17]. Putting this into eq.(2.47) and we get,

i
∂Ψ′

∂t
=

[
e+iS

(
H − i ∂

∂t

)
e−iS

]
Ψ′ = H ′Ψ′. (2.62)

Thus the H ′ becomes
H ′ = e+iSHe−iS − e+iSṠe−iS . (2.63)

We can evaluate this with the Baker-Campbell Hausdorff formula [2]:

eiabe−ia = b+
i

1!
[a, b] +

i2

2!
[a, [a, b]]

+
i3

3!
[a, [a, [a, b]]] + . . . .

(2.64)

With this, we can express H ′ as

H ′ = H + i[S,H]− 1

2
[S, [S,H]]− i

6
[S, [S, [S,H]]]

+
1

24
[S, [S, [S, [S,H]]]] + · · ·+−Ṡ − i

2
[S, Ṡ] +

1

6
[S, [S, Ṡ]] + . . . .

(2.65)

To do the FW transformation, we need to know how each of the terms in HDE interacts with the
β matrix. This is why the ε and o terms are so convenient since they commute and anti-commute
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with the beta, respectively, i.e.,

[β, ε]=0

{β, o} = 0.
(2.66)

We want to eliminate the o term, so we need to construct an S which causes

i[S, βmc2] = −o, (2.67)

therefore [17]
S = − βo

2mc2
. (2.68)

After transforming away all the odd terms, we can express H ′
DE as

H ′
DE = β

(
mc2 +

o2

2mc2
− o4

8m3c6

)
+ ε− 1

8m2c4
[o, [o, ε]]− i

8m2c4
[o, ȯ]. (2.69)

H ′
DE then becomes

H ′
DE = β

(
mc2 +

(p+ eA)2

2m
− (p+ eA)4

8m3c2

)
− 1φ+

e

2m
σ4×4 ·B

+
e

4m2c2
σ4×4 ·E × p+

ie

8m2c2
σ4×4 · ∇ ×E + 1

e

8m2c2
∇ ·E +O

(
1

c3

)
.

(2.70)

Here
E = −Ȧ−∇φ and B = ∇×A, (2.71)

and

σ4×4i =

[
σi 0

0 σi

]
, (2.72)

where σi is the Pauli matrices and i = 1, 2, 3. The detailed calculation is found in the appendix
A.1.

There are only even matrices in eq.(2.70), and the equation is uncoupled to the order of O
(

1
c2

)
.

Therefore, it is now possible to split the Hamiltonian into a relativistic Hamiltonian for a particle,

HFWP
= mc2 +

(p+ eA)2

2m
− (p+ eA)4

8m3c2
− eφ+

e

2m
σ ·B

+
e

4m2c2
σ ·E × p+

ie

8m2c2
σ · ∇ ×E,+

e

8m2c2
∇ ·E +O

(
1

c3

)
,

(2.73)

and a relativistic Hamiltonian for an antiparticle,

HFWAP
= −mc2 − (p+ eA)2

2m
+

(p+ eA)4

8m3c2
− eφ+

e

2m
σ ·B

+
e

4m2c2
σ ·E × p+

ie

8m2c2
σ · ∇ ×E +

e

8m2c2
∇ ·E +O

(
1

c3

)
.

(2.74)

For a non-relativistic system, we do not consider the antimatter. Therefore, we only need to
consider the particle part of the Hamiltonian, HFWP

, and subtract the particle’s rest energy. The
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relativistic Schrödinger Hamiltonian, HRSE , then takes the final form of,

HRSE =
(p+ eA)2

2m
+ V − (p+ eA)4

8m3c2
+

e

2m
σ ·B

+
e

4m2c2
σ ·E × p+

ie

8m2c2
σ · ∇ ×E,+

e

8m2c2
∇ ·E

(2.75)

where we have utilized the V = −eφ.
We recognize that this can be expressed as the non-relativistic Schrödinger Hamiltonian with

a few correction terms. The first correction term in eq.(2.75),

Hmv = − (p+ eA)4

8m3c2
, (2.76)

is caused by the relativistic mass increase. Hence it is known as the mass-velocity term [19]. By
Taylor expanding the relativistic energy, given in eq.(2.49), and include the A through minimal
coupling,

E =
√
m2c4 + c2(p+ eA)2, (2.77)

the energy becomes

E = mc2 +
1

2m
(p+ eA)2 − 1

8m3c2
(p+ eA)4 +O

(
1

c3

)
. (2.78)

Here we recognize the third term in the Taylor expansion as the first correction term in the HRSE

[17].
The second correction term corresponds to the magnetic dipole interaction and couples the spin

to the B field. The spin operator can be expressed in terms of the Pauli matrices [4],

si =
1

2
~σi, (2.79)

where i = 1, 2, 3.
The two next terms are the spin-orbit correction, Hsp,

Hsp = +
e

4m2c2
σ ·E × p+

ie

8m2c2
σ · ∇ ×E, (2.80)

and couples spin to orbit [17]. In non-relativistic quantum mechanics, states with the same angular
momentum quantum number, l, but with a different spin quantum number, ms, are degenerate,
and the energy states are identical. This is not the case in relativistic quantum mechanics, and
the corresponding splitting of the energy levels is caused by spin-orbit coupling [20].

The last correction term is known as the Darwin term, HD, and it is caused by the zitterbe-
wegung effect, the rapid oscillation of the electron. For a point-like nuclear charge, we can express
the Darwin term as [20]

HD =
e

8m2c2
∇ ·E = − e

8m2c2
∇2φ = − 4πe2

8m2c2
δ(r). (2.81)

Here the δ(r) is the Dirac delta function which is given by

δ(r) =

{
∞ for r = 0

0 for r 6= 0
, (2.82)
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where ∫ ∞

−∞
δ(r)dτ = 1. (2.83)

Since only the s have a non-zero wave function at the origin, only these states are affected by the
Darwin term [20].
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2.3 The Electromagnetic field

To get a better understanding of how light interacts with matter, we need to know how light
behaves. Starting from Maxwell’s equations, and by discussing the related gauge transformation,
we can describe the behavior of the electromagnetic field. Under a gauge transformation, Maxwell’s
equations remain the same, i.e., the electromagnetic field is gauge invariant. We will also discuss
the semi-classical approximation often used in quantum mechanics. Within the aspect of the semi-
classical approximation, it is often sufficient to keep the electromagnetic fields classical even though
the momentum and energy of the system are quantized.

2.3.1 Maxwell’s equations

Maxwell’s equations dictate how the electromagnetic field behaves. Within the context of this
thesis, we will focus on the equations in vacuum, which are presented accordingly [21]:

(i) ∇ ·E = 0

(ii) ∇ ·B = 0

(iii) ∇×E = −∂B
∂t

(iv) ∇×B = 1
c2

∂E
∂t .

(2.84)

Here, E is the electric field, and B is the magnetic field. When the electromagnetic field propagates
in space, both the E(r, t) and B(r, t) fields are orthogonal to the propagating direction and each
other, i.e., the electromagnetic field in a vacuum is a transverse field.

The electromagnetic field can be described by a vector potential, A(r, t), and a scalar potential,
φ(r, t), where E(r, t) and B(r, t) are given by [21],

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
and B(r, t) = ∇×A(r, t). (2.85)

From Maxwell’s equations, we obtain the wave equation, to which both the electric and magnetic
fields and the vector potential must adhere. The wave equation for a vector potential is presented
as follows

∇2A(r, t) =
1

c2
∂2A(r, t)

∂t2
. (2.86)
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2.3.2 Gauge transformation

The advantages of expressing the electromagnetic fields in terms of A(r, t) and φ(r, t) is that we
can do gauge transformation. Under gauge transformation, [22]

A→ A′ = A+∇χ

φ→ φ′ = φ− ∂χ
∂t

ψ → ψ′ = e−
i
~ qχψ,

(2.87)

where q is the particle’s charge, χ(r, t) is any continuous function in which the first and second
derivative is also continuous. The E and B fields remain the same under a gauge transformation.
Therefore, we say they are gauge invariant.

2.3.3 Semi-classical approximation

As previously introduced, the electron interacts with an electromagnetic field through minimal
coupling. In minimal coupling, we let

p→ p+ eA. (2.88)

Putting this into the HSE , we get

HSE =
1

2m
(p+ eA)2 + V. (2.89)

Here p is quantized, while A and V remains classical. This is known as the semi-classical approxi-
mation. It is possible to use a fully quantized picture with a quantized scalar and vector potential,
but this is usually unnecessary. Using a fully quantized picture will only be an advantage if we
want to study how each photon interacts with the electron [23].

Using Lagrangian mechanics, we can obtain the HSE in eq.(2.89). Starting with the Lorentz
force

F = q(E + v ×B), (2.90)

where q is the particle’s charge. From Lagrangian mechanics, the force can be expressed in terms
of the potential of the system U , so this force can be expressed as

F =
∑

i=x,y,z

−∂U
∂i

+
d

dt

(
∂U

∂vi

)
. (2.91)

Writing each component of F out and using the relations in eq. (2.85) we get this expression of U ,

U = qφ− qv ·A. (2.92)

The Lagrangian, L, is given by
L = T − U, (2.93)
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where T is the kinetic energy. L then becomes

L =
1

2
mv2 − qφ+ qv ·A. (2.94)

We obtain the classical Hamiltonian from the Lagrangian through the relation

H = p · v − L

= p · v − 1

2
mv2 − qv ·A+ qφ.

(2.95)

Through Lagrangian mechanics, we express

p =
∂L

∂v
= mv + qA. (2.96)

Rewriting this expression in terms of v and obtain

v =
1

m
(p− qA). (2.97)

Putting this expression for v into eq.(2.95), H becomes

H =
1

2m
(p− qA)2 + qφ, (2.98)

which we recognise as the HSE .

2.3.4 Constructing a quantized photon field

To evaluate how individual photons interact with the electron, we need to utilize a quantized
photon field, Aq(r, t). As for the classical field potential, the quantized field potential has to
satisfy the wave equation,

∇2Aq(r, t) =
1

c2
∂2Aq(r, t)

∂t2
. (2.99)

A generalized Aq field potential that satisfies the wave equation can be expressed as

Aq(r, t) = −i
∑√

~
2ωε0

[uk(r)ak(t) + u∗k(r)a
∗
k(t)], (2.100)

where the Aq is not quantized yet. Putting eq.(2.100) into the wave equation we obtain the
solutions,

ak(t) = ake
−iωkt, (2.101)

a∗k(t) = a∗ke
iωkt, (2.102)

and
uk(r) = ε̂k

1√
V
eikn·r, (2.103)

where ε̂k is the polarization vector. To quantize the Aq, we introduce the creation and annihilation
operators for a photon and let

ak → âk and a∗k → â+k , (2.104)
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where â is the annihilation operator and â+ is the creation operator and satisfies the following
commutation relation [24]:

(i) [âk, â
+
j ] = δkj

(ii) [â+k , â
+
j ] = 0

(iii) [âk, âj ] = 0.

(2.105)

Representing the photon state of the system as a number state, |nk〉, where nk is the number of
quantized photons, we can express how the â and â+ acts on a |nk〉,

(i) âk |nk〉 =
√
nk |nk − 1〉

(ii) â+k |nk〉 =
√
nk + 1 |nk + 1〉,

(2.106)

where nk = 0, 1, . . . ,∞ It is also useful to know that the annihilation operator, âk, acting on the
ground state, is always 0,

âk |0〉 = 0 |0〉 . (2.107)

The quantized vector potential then becomes

Aq(r, t) = −i
∑
k

√
~

2ωkε0V
ε̂k[âke

−iωkt+ik·r + â+k e
iωkt−ik·r]. (2.108)

The Electric field, corresponding to the Aq field, can be expressed as,

Eq(r, t) =
∑
k

√
~ωk

2ε0V
ε̂k[âke

−iωkt+ik·r − â+k e
iωkt−ik·r], (2.109)

through eq.(2.85). Defining

E0 =

√
~ωk

2ε0V
, (2.110)

the Aq turn into
Aq(r, t) = −i

∑
k

E0

ωk
ε̂k[âke

−iωkt+ik·r + â+k e
iωkt−ik·r]. (2.111)
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Chapter 3

Methods

3.1 Modeling the 1D system

As stated in the introduction, we will study a one-dimensional system, as if the electron is moving
in an extremely thin nanotube [16], within a narrow potential. The thin shape of the corresponding
potential suggests that the electron’s motion is restricted to 1D. This enables us to utilize the dipole
approximation and simplifies the Schrödinger, Dirac, and relativistic Schrödinger equations.

3.1.1 The Electromagnetic field in 1D

When an electron interacts with an electromagnetic field, it will be accelerated by the field. Since
the electron’s movement is restricted to 1D, it cannot move in the propagation direction, only
in the oscillation direction, i.e., parallel with the electric field. Studying the force caused on the
electron by the E and B fields, respectively, we get,

FE = −eE and FB = −e(v ×B). (3.1)

Whereas the FE acts in the polarisation direction of the E field, i.e., the oscillation direction, the
FB acts perpendicularly to both the oscillation and polarisation directions of the B field, i.e., the
propagation direction. The electron is not allowed to move in the direction of propagation, so the
electron’s interaction with the B field can therefore be neglected. Due to this, we can remove the
space dependency from the vector potential entirely and let

A(r, t)→ A(t), (3.2)

also known as the dipole approximation. When the A only depends on time the B field becomes

B(t) = ∇×A(t) = 0, (3.3)

hence the effects caused by the interaction with the B field is neglected, and we are left with the
E field solely.
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3.1.2 The 1D Schrödinger equation

The electron’s interaction with the electromagnetic field is dictated by the time-dependent Schrödinger
equation,

i~
∂ψ

∂t
= HSEψ, (3.4)

with the minimal-coupling Schrödinger Hamiltonian, HSE , given by eq.(2.89)

HSE =
1

2m
(p+ eA)2 + V (r).

Reducing the system to 1D,

r → x

p→ px ≡ p
A→ Ax ≡ A,

(3.5)

and we are left with
HSE =

1

2m
(p+ eA)2 + V (x). (3.6)

We can separate the Hamiltonian, HSE , into a time-independent Hamiltonian, H0, and a time-
dependent interaction Hamiltonian, HI ,

HSE(x, t) = H0(x) +HI(x, t), (3.7)

where
H0 =

p2

2m
+ V (x) and HI =

e

m
Ap+

e2

2m
A2. (3.8)

Here the last term in HI is only dependent on time due to the dipole approximation and can,
therefore, be transformed away utilizing the gauge transformation [25],

A→ A′ = A+∇χ

φ→ φ′ = φ− ∂χ
∂t

ψ → ψ′ = e−
i
~ qχψ

with
χ = − e

2m

∫ t

0

A2(t′)dt′. (3.9)

The new Schrödinger Hamiltonian can then be expressed as

HSE =
p2

2m
+
eAp

m
+ V, (3.10)

where
H0 =

p2

2m
+ V and HI =

eAp

m
. (3.11)
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3.1.3 The 1D Dirac equation

At relativistic speeds, the electron’s interaction with the laser pulse is dictated by the time-
dependent Dirac equation,

i~
∂ψ

∂t
= HDEψ, (3.12)

with the minimal-coupling Dirac Hamiltonian, HDE , given by eq.(2.55)

HDE = cα · (p+ eA) + βmc2 − 1eφ.

By reducing the system to 1D, we can perform a simplification on the wavefunction spinor.
Since there is no angular momentum in 1D, we may also argue that there is no spin [26]. Some
articles treat a relativistic 1D problem as if spin exists [27], and others assume that it does not
[26]. Either way, it does not affect the results since the spin couples to the orbit and the B field,
as discussed in section 2.2.3, which both require a minimum of 2D. Hence we will approach the
problem as if spin can be neglected in 1D.

Since the spin can be neglected, the four-component spinor wavefunction can be reduced to a
two-component spinor, and we are left with

ψ =

[
g(x, t)

if(x, t)

]
, (3.13)

where g(x, t) corresponds to the wavefunction of a particle, and if(x, t) corresponds to the wave-
function of an antiparticle. Because the spinor wavefunction is reduced to two components, we
also need to reduce the dimensions on the α and β matrices so they become 2 × 2 matrices. As
we mentioned in section 2.2, the α and β matrices can be chosen at will, provided they satisfy the
Clifford algebra, expressed in eq.(2.56),

(i) β2 = α2 = 1

(ii) tr(α) = tr(β) = 0

(iii) {α, β} = 0

We already know a set of 2 × 2 matrices that satisfy this relation, namely the Pauli matrices
expressed in eq.(2.58),

σ1 =

[
0 1

1 0

]
and σ2 =

[
0 −i
i 0

]
and σ3 =

[
1 0

0 −1

]
.

Here we choose
α = σ2 and β = σ3. (3.14)

The Dirac Hamiltonian can now be expressed as

HDE = cα(p+ eA) + βmc2 − 1eφ. (3.15)
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As for the Schrödinger Hamiltonian, HSE , we can separate the Dirac Hamiltonian, HDE , into a
time-independent Hamiltonian, H0, and a time-dependent interaction Hamiltonian, HI ,

HDE(x, t) = H0(x) +HI(x, t), (3.16)

where
H0 = cαp+ βmc2 − 1eφ and HI = ceαA. (3.17)

3.1.4 The 1D relativistic Schrödinger equation

The relativistic electron’s interaction with the laser pulse can also approximately be described by
the time-dependent relativistic Schrödinger equation, given by,

i~
∂ψ

∂t
= HRSEψ, (3.18)

where HRSE was constructed in section 2.2, and is expressed in eq.(2.75),

HRSE =
(p+ eA)2

2m
− (p+ eA)4

8m3c2
+ V +

e

2m
σ ·B

+
e

4m2c2
σ ·E × p+

ie

8m2c2
σ · ∇ ×E +

e

8m2c2
∇ ·E.

(3.19)

The HRSE was constructed utilizing the FW transformation on the 3D Dirac equation. To con-
struct the 1D HRSE , we do the same for the 1D Dirac equation. The 1D Dirac Hamiltonian is
given in eq.(3.15), and by defining

o = cα(p+ eA) and ε = −1eφ, (3.20)

where o is the odd terms and ε is the even terms, we can rewrite HDE as

HDE = o+ ε+ βmc2. (3.21)

Doing the same procedure as in section 2.2.3 the FW transformation produces a H ′
DE as given in

eq.(2.69),

H ′
DE = β

(
mc2 +

o2

2mc2
− o4

8m3c6

)
+ ε− 1

8m2c4
[o, [o, ε]]− i

8m2c4
[o, ȯ]. (3.22)

The H ′
DE then becomes

H ′
DE = β

(
mc2 +

(p+ eA)2

2m
− (p+ eA)4

8m3c2

)
+ 1V + 1

1

8m2c2
∂2V

∂x2
. (3.23)

The derivation is found in appendix A.2. The H ′
DE only contains even matrices and can be

separated into a Hamiltonian for the particle,

HFWP
= mc2 +

(p+ eA)2

2m
− (p+ eA)4

8m3c2
+ V +

1

8m2c2
∂2V

∂x2
(3.24)



3.1 Modeling the 1D system 29

and a Hamiltonian for the antiparticle,

HFWAP
= −mc2 − (p+ eA)2

2m
+

(p+ eA)4

8m3c2
+ V +

1

8m2c2
∂2V

∂x2
. (3.25)

As previously stated, the Schrödinger equation does not consider anti-matter. Therefore we can
construct the 1D relativistic Schrödinger Hamiltonian, HRSE , by subtracting the rest energy, mc2,
from the HFWP

. The HRSE then becomes

HRSE =
(p+ eA)2

2m
− (p+ eA)4

8m3c2
+ V +

1

8m2c2
∂2V

∂x2
. (3.26)

Comparing eq.(3.19) and eq.(3.26) we see that in 1D, the spin-orbit terms and the magnetic dipole
term are eliminated. As stated in section 2.2.3, the spin-orbit terms are what is causing the split in
the energy levels in terms of spin. The absence of these terms in the 1D HRSE further strengthens
the assumption that we do not need to consider the spin when solving the 1D Dirac equation. We
are left with the mass-velocity term

Hmv = − (p+ eA)4

8m3c2
, (3.27)

and we have expressed the Darwin term in terms of the Coulomb potential,

HD =
1

8m2c2
∂2V

∂x2
. (3.28)

As for the HSE and HDE , the HRSE can be separated into a time-independent Hamiltonian, H0,
and a time-dependent interaction Hamiltonian, HI ,

HRSE(x, t) = H0(x) +HI(x, t). (3.29)

Here
H0 =

p2

2m
− p4

8m3c2
+ V +

1

8m2c2
∂2V

∂x2
(3.30)

and

HI =
e

m
Ap+

e2

2m
A2 − e

2m3c2
Ap3 − 3e2

4m3c2
A2p2 − e3

2m3c2
A3p− e4

8m3c2
A4, (3.31)

where again the terms e2

2mA
2 and − e4

8m3c2A
4 are only dependent on time. This enables us to utilize

a gauge transformation to eliminate these terms, as we did for the Schrödinger equation [25]. The
relativistic Schrödinger Hamiltonian, HRSE , then becomes

HRSE =
p2

2m
− p4

8m3c2
+V +

1

8m2c2
∂2V

∂x2
+
e

m
Ap− e

2m3c2
Ap3 − 3e2

4m3c2
A2p2 − e3

2m3c2
A3p︸ ︷︷ ︸

Term I

, (3.32)

where the term I is the transient relativistic effect.
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3.2 The time-independent system

Related back to, the above-stated; the 1D system can be thought of as if the electron is moving
inside a nanotube within a narrow potential. This can be modeled as a 1D particle-in-box prob-
lem with a soft-coulomb potential. The advantage of basing the model on a 1D particle-in-box
problem is that we can utilize their analytical solution as a basis for solving the time-independent
Schrödinger equation (TISE), the time-independent relativistic Schrödinger equation (TIRSE),
and the time-independent Dirac equation (TIDE). The particle-in-box basis for a box defined from
x ∈ [0, L] is given by

ϕn =

√
2

L
sin

(πn
L
x
)
, (3.33)

where n = 1, 2, 3, . . . . We can express the wavefunction of the system as a linear combination of
the particle-in-box basis functions,

|ψ〉 =
∑
n

cn|ϕn〉. (3.34)

By solving the time-independent system as the eigenvalue problem,

H|ψ〉 = E|ψ〉, (3.35)

we can construct the eigenstates and the corresponding eigenvalues of the potential.

3.2.1 Solving the TISE and TIRSE

Starting with eq.(3.35), and by expressing the wavefunction as in eq.(3.34), we acquire the equation

H

N∑
n=1

cn|ϕn〉 = E

N∑
n=1

cn|ϕn〉, (3.36)

where n = 1, 2, 3, . . . , N and N is the number of basis functions. By multiplying eq.(3.36) with
〈ϕm| from the left this becomes

N∑
n=1

cn〈ϕm|H|ϕn〉 = E

N∑
n=1

cn〈ϕm|ϕn〉, (3.37)

where m = 1, 2, 3, . . . , N . As discussed in section 2.1 the 〈ϕm|H|ϕn〉 and 〈ϕm|ϕn〉 can be considered
a matrix element in the H and S matrices. Therefore, we can express

〈ϕm|H|ϕn〉 = Hmn and 〈ϕm|ϕn〉 = Smn. (3.38)

Another advantage of the particle-in-box basis is that it is orthogonal, which causes the overlap
matrix, S, to become the identity matrix, 1, expressed mathematically as

Smn = 〈ϕm|ϕn〉 = δmn ⇒ S = 1. (3.39)
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Eq.(3.37) can then be expressed as

N∑
n=1

cnHmn = E

N∑
n=1

cnδmn. (3.40)

This can also be expressed as a matrix equation,
H11 H12 · · · H1N

H21 H22 · · · H2N

...
... . . . ...

HN1 HN2 · · · HNN



c1

c2
...
cN

 = E


1 0 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1



c1

c2
...
cN

 , (3.41)

or
Hc = 1Ec, (3.42)

where c is a vector with N components and H is a N×N matrix. We solve this matrix equation as
an eigenvalue problem. This is done by diagonalizing the H matrix. Through the diagonalization
procedure, we construct two matrices, P and D, which relates to the H matrix as

H = P−1DP . (3.43)

The D matrix is a diagonal matrix where each matrix element, Dmm, corresponds to an eigenvalue,
λm, or energy state, of the system. The P matrix consist of the corresponding eigenvectors, cm,
where each coulomb represents one eigenvector,

P = [c1, c2, · · · , cN ], (3.44)

and the eigenvector cm corresponds to the eigenvalue λm. Each vector element in cm represents
one coefficient, cn, in eq.(3.34) and we can then express the eigenstates as

|ψm〉 =
N∑

n=1

cmn |ϕn〉, (3.45)

where m = 1, 2, . . . , N .

3.2.2 Solving the TIDE
Solving the TIDE is very similar to solving the TISE and TIRSE. Still, due to the Dirac wavefunc-
tion being a two-component spinor, we need to modify the particle-in-box basis. We do this by
utilizing dual kinetic balance (DKB), which also eliminates ghost states [28]. Ghost states are, in
this case, unreal energy states with a negative norm (negative probability) and often occur when
solving the Dirac eigenvalue problem and when we use quantum field theory [28, 29, 30].

Dual kinetic balance

When solving the TIDE eigenvalue problem, we must consider both the positive energy states cor-
responding to a particle and the negative energy states corresponding to an antiparticle. Therefore
the basis for the TIDE must be twice as large as for the TISE and TIRSE. Hence, the Dirac
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Hamiltonian matrix becomes a 2N × 2N matrix. Expressing the Dirac Hamiltonian, eq.(3.17), as
a matrix,

HDE =

[
mc2 + V −c ∂

∂x

c ∂
∂x −mc2 + V

]
, (3.46)

allows us to utilize DKB to construct a 1D two-component spinor basis for the TIDE [28]. By
defining the spinor basis as

ϕn(x) =

[
gn(x)

fn(x)

]
, (3.47)

we can express the wavefunction, |ψ〉, as a liner combination of |ϕn〉, and obtain

|ψ〉 =
2N∑
n=1

cn|ϕn〉, (3.48)

where

ϕn =

[
gn(x)

fn(x)

]
(3.49)

and n = 1, 2, 3, . . . , 2N .

Through DKB, we define the relationship between the particle and antiparticle components as
follows [28],

ϕn(x) =

[
gn(x)

fn(x)

]
=

[
un(x)
1

2mcun(x)

]
n ∈ [1, N ], (3.50)

and

ϕn(x) =

[
gn(x)

fn(x)

]
=

[
1

2mcu(n−N)(x)

u(n−N)(x)

]
n ∈ [1 +N, 2N ]. (3.51)

Again, we choose to use the 1D particle-in-box basis as un(x), and is given by

un(x) =

√
2

L
sin

(πn
L
x
)
, (3.52)

where n = 1, 2, 3, . . . , N . Henceforth, this will be used as the basis for the TIDE and will be known
as the DKB basis.

The TIDE eigenvalue problem

We solve the TIDE eigenvalue problem similar to the TISE and TIRSE eigenvalue problems.
However, the DKB basis is not orthogonal,

Smn = 〈ϕm|ϕn〉 6= δmn, (3.53)

so the matrix equation becomes
H11 H12 · · · H1 2N

H21 H22 · · · H2 2N

...
... . . . ...

H2N 1 H2N 2 · · · H2N 2N



c1

c2
...

c2N

 = E


S11 S12 · · · S1 2N

S21 S22 · · · S2 2N

...
... . . . ...

S2N 1 S2N 2 · · · S2N 2N



c1

c2
...

c2N

 , (3.54)
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or in its compact form
Hc = ESc. (3.55)

H and S are both of dimensions 2N × 2N and can be divided into four sub-matrices, α, β, γ and
δ,

H =

[
H [α] H [β]

H [γ] H [δ]

]
and S =

[
S[α] S[β]

S[γ] S[δ]

]
. (3.56)

Each sub-matrix has the dimension N × N . The α sub-matrices are defined for j ∈ [1, N ] and
i ∈ [1, N ], where i is the initial state and j is the final state. The β sub-matrices are defined for
j ∈ [1, N ] and i ∈ [1 + N, 2N ], the γ sub-matrices are defined for j ∈ [1 + N, 2N ] and i ∈ [1, N ],
and the δ sub-matrices are defined for j ∈ [1 + N, 2N ] and i ∈ [1 + N, 2N ]. The DKB basis for
each of the sub-matrices is given in the tab. 3.1.

α β

gj/i fj/i gj/i fj/i

j ∈ [1, N ]
√

2
L sin πj

L x
1

2mc
dgj
dx j ∈ [1, N ]

√
2
L sin πj

L x
1

2mc
dgj
dx

i ∈ [1, N ]
√

2
L sin πi

L x
1

2mc
dgi
dx i ∈ [1 +N, 2N ] 1

2mc
dfi
dx

√
2
L sin π(i−N)

L x

γ δ

gj/i fj/i gj/i fj/i

j ∈ [1 +N, 2N ] 1
2mc

dfj
dx

√
2
L sin π(j−N)

L x j ∈ [1 +N, 2N ] 1
2mc

dfj
dx

√
2
L sin π(j−N)

L x

i ∈ [1, N ]
√

2
L sin πi

L x
1

2mc
dgi
dx i ∈ [1 +N, 2N ] 1

2mc
dfi
dx

√
2
L sin π(i−N)

L x

Table 3.1: The DKB basis for each of the sub-matrices

When the H and S matrices are constructed, we solve the eigenvalue problem similarly as we
did for the TISE and the TIRSE. The only difference is that since the DKB basis is not orthogonal
and the S 6= 1. Hence we need to multiply eq.(3.55) with S−1 form the left,

S−1Hc = E1c, (3.57)

and diagonalize the S−1H. As for the TISE and TIRSE, the diagonalization process produces two
matrices, P and D, and are related to S−1H though

S−1H = P−1DP . (3.58)

The P matrix is utilized, as for the TISE and the TIRSE, to construct the TIDE eigenvalue basis.
The P matrix is defined in eq.(3.44),

P = [c1, c2, · · · , cN ],

where each cm represent one eigenvector. We can, therefore, express the wavefunction as,

|ψm〉 =
2N∑
n=1

cmn
|ϕn〉, (3.59)

where m = 1, 2, 3, . . . , 2N . We define this as the eigenvalue basis for the Dirac equation.
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3.2.3 Gauss-Lagrange quadrature
To calculate the Hmn and Smn matrix elements we need to evaluate an the integrals

Hmn = 〈ϕm|H |ϕn〉 =
∫
ϕ∗
mHϕndτ (3.60)

and
Smn = 〈ϕm|ϕn〉 =

∫
ϕ∗
mϕndτ. (3.61)

The soft coulomb potential in H makes it difficult to calculate these integrals analytically, so
applying a numerical method is beneficial.

The numerical method in question is known as the Gauss-Lagrange quadrature (GL). The GL
theorem states that an integral of a polynomial of order 2n− 1 can be solved exactly with a sum
over n points, xi, and the n corresponding weight, wi [31]. The GL theorem in mathematical form
writes as follows, ∫ 1

−1

f(x) dx =
n∑

i=1

wif(xi). (3.62)

Here the integral is defined for x ∈ [−1, 1]. Our model is based on a particle-in-box, where x ∈ [0, L].
Hence we need to change the integration limits. This is possible by doing a translation. Starting
with ∫ b

a

f(x) dx =

∫ 1

−1

f(u) du (3.63)

By doing a translation, we define
x = mu+ c. (3.64)

Which allows us to express the interaction limits a and b in terms of u,

a = m(−1) + c and b = m(+1) + c. (3.65)

Now, manipulating this set of equations, we can express m and c in terms of a and b,

m =
b− a
2

and c =
b+ a

2
. (3.66)

x can then be expressed as
x =

b− a
2

u+
b+ a

2
, (3.67)

and dx becomes
dx =

b− a
2

du. (3.68)

In our model, both the particle-in-box and DKB basis are based on sinus functions, a polynomial
of infinite order. Hence the GL is quite a good approximation. The integral, with a = 0 and b = L,
then becomes∫ b

a

f(x) dx =

∫ 1

−1

f

(
L

2
u+

L

2

)(
L

2

)
du ≈

(
L

2

) n∑
i=1

wif

(
L

2
ui +

L

2

)
. (3.69)

We compute the nodes and weights using the Matlab script lglnodes.m [32].



3.2 The time-independent system 35

3.2.4 Energy state correction for the time-independent sys-
tem

The time-independent problem is modeled by the 1D particle-in-box problem with a soft-Coulomb
potential, shown in fig. 3.1. We choose to use a 1D soft-coulomb potential in contrast to a

Figure 3.1: Particle-in-box with a soft Coulomb potential.

proper-coulomb potential to get the correct ground state energy for the 1D hydrogen-like atom,

V (x) = − Z√
(x− L

2 )
2 + 2

Z2

. (3.70)

We solve this 1D time-independent problem, by solving the TISE, TIDE, and TIRSE utilizing
MatLab. Choosing to study a hydrogen-like Boron atom, i.e., we set Z = 5 in eq.(3.70), we
investigate the relativistic corrections to the Boron atom’s energy states.

Energy [a.u] Relativistic correction [10−5a.u]
State (n) TISE TIRSE TIDE TIRSE TIDE

1 −12.5000000 −12.4999409 −12.4999408 5.91 5.92

2 −5.8225834 −5.8232056 −5.8232054 −62.22 −62.22
3 −3.3457215 −3.3461079 −3.3461078 −38.64 −38.63

Table 3.2: Energy levels for n = 1 to n = 3 for TISE, TIRSE, and TIDE, and their respective relativistic
corrections.

The relativistic energy corrections for the 1D system are quite small, in contrast to what would
be expected from a 3D system. The relativistic corrections for n = 1, 2, 3 are given in the tab. 3.2.
By comparing the correction of the ground state energy in 1D to the 3D correction, as shown in
tab. 3.3, we observe that the 1D correction is also in the opposite direction than we expected.

To help better understand why this is the case, we would like to study the effect of each
individual correction term in the time-independent HRSE eq.(3.30) when solving the TIRSE. In



36 Methods

Energy [a.u] Relativistic correction [10−5a.u]
State (n) TISE TIDE (3D) TIDE (1D) TIDE (3D) TIDE (1D)

1 −12.5000000 −12.52086 −12.4999408 −2086 5.92

Table 3.3: Ground state energy for the TISE, the 3D TIDE and the the 1D TIDE. The 3D data is from
[33].

the time-independent HRSE , eq.(3.30), there are only two correction terms, the mass-velocity term,

Hmv = − p4

8m3c2
, (3.71)

and the Darwin term,

HD =
1

8m2c2
∂2V

∂x2
. (3.72)

The relativistic correction for each term is given in the tab. 3.4, for n = 1, 2, 3. Here it becomes

Energy [a.u] Relativistic correction [10−5a.u]
State (n) TISE TIRSEMV TIRSED TIRSEMV TIRSED TIRSE

1 −12.5000000 −12.5003446 −12.4995964 −34.46 40.36 5.91

2 −5.8225834 −5.8230666 −5.8227225 −48.31 −13.91 −62.22
3 −3.3457215 −3.3460987 −3.3457307 −37.72 −0.93 −38.64

Table 3.4: Energy levels for n = 1 to n = 3 for TISE, TIRSEMV , TIRSED and TIRSE and each contri-
bution to the relativistic correction.

apparent that for the ground state, the Darwin correction and the mass-velocity correction are
of the same magnitude, but in opposite directions, with the Darwin correction being slightly
larger. We observe that the mass-velocity therm produces the most important correction for
higher energies. In section 2.2.3 and eq.(2.81) we mentioned how we could express the 3D Darwin
term for a point charge as

HD =
e

8m2c2
∇ ·E = − 4πe2

8m2c2
δ(r).

For higher energies, the electron is farther away from the nucleus. Hence the Darwin therm becomes
less contributing.

In 3D, the relatively large correction is caused by the p4 in the 3D Hmv, eq.(2.76) [34]. The
difference in the relativistic correction for a system in 1D compared to a 3D system can, therefore,
be explained by the difference in the momentum. In a 3D system, we utilize a proper-coulomb
potential

V3D = −Z
r
, (3.73)

where r is the radial coordinate in spherical coordinates. While in the 1D system, we utilize a
soft-coulomb potential, expressed in eq.(3.70). The virtual theorem states that for a potential that
can be expressed as

V = axs, (3.74)

the kinetic energy and potential energy are related through [4],

2〈Ek〉 = s〈Ep〉. (3.75)
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For the proper-coulomb potential s = −1, and utilizing the virtual theorem, we can express the
electron’s momentum in the ground state as a function of the ground state energy, Eg. The ground
state energy can be expressed as

Eg = 〈Ek〉+ 〈Ep〉 =
(
1 +

2

−1

)
〈Ek〉 = −〈Ek〉, (3.76)

then the momentum becomes
p =

√
−2mEg. (3.77)

For Z = 5 this yields
p3D = 5 a.u. (3.78)

The corresponding momentum in 1D, for Z = 5, with a soft coulomb potential, was calculated to
be

p1D ≈ 1.916 a.u. (3.79)

The difference in momentum in a soft-coulomb potential compared to a proper-coulomb potential
can explain the deviation in the ground state energy in 1D concerning what we would expect in
3D. However, none of these energy corrections affect the blue shift in energy we observe when we
solve the time-dependent equations.
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3.3 The time-dependent system

To evaluate how the system changes with time, we need to solve the time-dependent Schrödinger
equation,

i~
∂ |Ψ〉
∂t

= H |Ψ〉 . (3.80)

We can express the wavefunction, Ψ(x, t), as

|Ψ〉 =
∑
n

cn(t)|ψn〉, (3.81)

where ψn(x) is the eigenvalue basis constructed in the previous section,

i~
∑
n

ċn |ψn〉 =
∑
n

Hcn |ψn〉 , (3.82)

where ċn = ∂cn
∂t . Multiplying with 〈ψm| from the left, we obtain the time-dependent matrix

equation,
i~Sċ(t) = Hc(t). (3.83)

3.3.1 The Crank-Nicholson method

The electron initially starts in the ground state. To evaluate how the system changes with time,
we need to construct a time propagator. This can be done by utilizing the Crank-Nicholson
method[35]. The Crank-Nicholson method is a combination of the forward and backward Euler
propagators [36]. The time propagator evaluates how the system changes with time step by step,
where each step is expressed as ∆t. The system’s state is given by the vector elements in c(t),
hence, we need to study how c(t) changes for each time step. By Taylor expanding c(t+∆t),

c(t+∆t) ≈ c(t) + ċ(t)∆t, (3.84)

we obtain an expression for ċ(t),

ċ(t) ≈ c(t+∆t)− c(t)

∆t
. (3.85)

This is known as the forward Euler propagator, and by inserting this into eq.(3.83), it yields

i~S
c(t+∆t)− c(t)

∆t
≈Hc(t). (3.86)

Reorganizing this, eq.(3.86) becomes

c(t+∆t) ≈
(
1− i∆t

~
S−1H

)
c(t), (3.87)

and, by letting ∆t→ ∆t
2 , we obtain

c

(
t+

∆t

2

)
≈

(
1− i∆t

2~
S−1H

)
c(t). (3.88)
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As previously stated, the Crank-Nicholson method combines the forward and the backward
Euler propagators. We obtain the backward Euler propagator by considering a backward time
step in c(t). By Taylor expanding c(t−∆t),

c(t−∆t) ≈ c(t)− ċ(t)∆t, (3.89)

and reorganizing this equation, we obtain the backward Euler propagator,

ċ(t) ≈ c(t)− c(t−∆t)

∆t
. (3.90)

As the forward Euler propagator, we insert this into eq.(3.83), and it yields

i~S
c(t)− c(t−∆t)

∆t
≈Hc(t). (3.91)

By reorganizing this, eq.(3.91) becomes

c(t−∆t) ≈
(
1+

i∆t

~
S−1H

)
c(t). (3.92)

Now, by first letting ∆t→ ∆t
2 , and then t→ t+∆t, we obtain the expression

c

(
t+

∆t

2

)
≈

(
1+

i∆t

2~
S−1H

)
c(t+∆t), (3.93)

which describes how the c changes for a time step ∆t
2 , as in eq.(3.88). By combining eq.(3.88) and

eq.(3.93) we obtain the expression(
S +

i∆t

2~
H

)
c(t+∆t) =

(
S − i∆t

2~
H

)
c(t), (3.94)

where we define
M = S +

i∆t

2~
H. (3.95)

By multiplying eq.(3.94) with M−1 from the left we obtain the Crank-Nicholson propagator

c(t+∆t) = M−1

(
S − i∆t

2~
H

)
c(t). (3.96)

Due to the inversion of the M matrix, this propagator becomes very slow for larger matrices and
requires a lot of computing power. However, it can be optimized using an algorithm based on the
generalized minimal residual (GMRES) method as first proposed by Y. Saad and M. H. Schultz
[37].

3.3.2 The GMRES method

The GMRES method is based on the Krylov subspace method and can solve linear systems, such
as

Ax = b. (3.97)
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The Krylov subspace, denoted Kl, is defined accordingly:

Kl = span{b,Ab, . . . ,Al−1x}. (3.98)

Here the dimension of the A matrix is significantly greater than l. By using the Matlab script
lanczosprop.m, which utilizes the Lanczos algorithm, we construct an orthogonal representation
of the Krylov subspace [38],

A = QlTlQl
T (3.99)

where the columns in Ql form the orthogonal basis of the Krylov subspace [39],

Ql = [q1, q2, · · · , ql], (3.100)

and the Tl is a l × l tridiagonal matrix.

An alternate is the Arnoldi algorithm to construct the orthogonal Kl basis,

AQl = Ql+1Hl, (3.101)

where Hl is an (l+1)× l upper Hessenberg matrix. The Arnoldi algorithm and Lanczos algorithm
both construct orthogonal bases. The Arnoldi algorithm is applied when A is a non-hermitian
matrix, and the Lanczos algorithm applies when the A matrix is hermitian [40]. By solving the
small least square problem [39]

xl = Qlyl

yl ← min ||Tlyl − βe1||

β = ||b−Ax0||

(3.102)

where [40]
e1 = Ql

b−Ax0

||b−Ax0||
(3.103)

and x0 is an initial guess, we can approximate a solution for xl. Here || . . . || signifies the Euclidean
norm. The Euclidean norm is defined as [40]

||x|| =
√
x · x. (3.104)

We introduce a restart parameter by choosing lmax as an upper dimensional limit on the
Krylov space, considering the GMRES being an iterative method. For ||b − Axlmax || greater
than the accepted tolerance, the algorithm is restarted with x0 = xlmax . This restart mechanism
causes the GMRES method to be quite precise since the GMRES always minimizes the residual for
each iteration step. However, for certain problems, the GMRES method has a particularly poor
convergence rate. Hence, we modify the problem and apply the GMRES in the following system
[39]:

M−1Ax = M−1b. (3.105)
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Applying this to the Crank-Nicholson propagator, we define

A = S + i∆t
2~ H

b =
(
S − i∆t

2~ H
)
c(t)

x = c(t+∆t)

(3.106)

Ideally, we want to choose M = A as in eq.(3.95) and eq.(3.96). However, this is not computation-
ally feasible due to the inversion of the matrix, as previously discussed. Although it is sufficient to
choose M matrix so that

M−1A ≈ 1. (3.107)

Applying the M−1 matrix on the system substantially accelerates the convergence rate even though
M ≈ A. Thus we choose to express the M as [39]

M = S +
i∆t

2~
H0, (3.108)

where H0 is the time-independent Hamiltonian matrix constructed by the time-independent Hamil-
tonian. In eigenvalue basis, S = 1 and H0 = D, which causes

A = 1+ i∆t
2~ D +HI

b =
(
1− i∆t

2~ (D +HI)
)
c(t)

x = c(t+∆t)

M = 1+ i∆t
2~ D,

(3.109)

where D is the diagonal matrix containing the energy states of the system. This is due to the
hermicity of the Hamiltonian operator. The eigenfunctions to different eigenvalues for a hermitian
operator are orthogonal, as stated in section 2.1.1. This expression for M is a sparse matrix and
saves a considerable amount of computing power. To save additional computing power, we utilize
the incomplete lower-upper factorization on the M matrix for easier inversion [39].
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Chapter 4

Results

As stated in the introduction, this thesis aims to study the shift in the energy spectra that occurs in
the relativistic multi-photon ionization process. A super-intense X-ray laser pulse interacts with an
electron in a hydrogen-like atom, and the resulting spectrum is compared with the non-relativistic
equivalent. As seen in fig. 4.1 when the relativistic effects are considered, we observe a shift in the
spectrum into higher energies, i.e., a relativistic blue shift, denoted as d in the inset in the figure.
Each subsequent top in the figure represents one additional photon being absorbed by the electron
[1]. It was recently found that the blue shift depended on the properties of the laser pulse, such as

Figure 4.1: A model of the blue shift observed in the energy spectra under the multi-photon ionization
process that occurs when a super intense X-ray laser pulse interacts with a hydrogen-like atom.

the radiation pressure and the laser’s intensity, and it could be explained in terms of a temporal
relativistic mass increase [2, 1]. Therefore, here, we propose that the blue shift may be caused
by time dilation. To study this, we reduce the problem to a 1D system. We can think of this as
if the electron is moving inside an extremely thin nanotube [16], within a narrow potential. The
thin shape of the corresponding potential suggests that the electron’s motion is restricted to 1D.
This enables us to utilize the dipole approximation, which simplifies the problem significantly and
allows us to study how the blue shift varies with the intensity of the laser.



44 Results

4.1 The blue shift

To be able to study the blue shift, we need to simulate the multi-photon ionization process,
as a super-intense X-ray laser pulse ionizes a hydrogen-like atom. This is done by solving for
the time-dependent evolution of the system numerically, eq.(3.80), both within and beyond the
nonrelativistic approximation.

The laser pulse is defined by the A potential and is given by

A(t) =

{
E0

ω sin2
(

πt
Tpulse

)
sin (ωt)x̂ t ∈ [0, Tpulse]

0 t /∈ [0, Tpulse]
(4.1)

where E0 is the intensity, ω is the angular frequency, Tpulse is the duration of the laser pulse, and
the unit vector x̂ defines the polarization direction. Here Tpulse can be expressed as Tpulse = n 2π

ω ,
where n is the number of periods of the laser pulse. The sin2

(
πt

Tpulse

)
factor represent the pulse

shape of the laser. Since we work in 1D, we can express the A(t) field potential as a scalar, i.e.,

Figure 4.2: The laser pulse, with Tpulse = 10 π
ω

.

A(t)→ Ax(t) ≡ A(t), (4.2)

A(t) =
E0

ω
sin2

(
πt

Tpulse

)
sin (ωt). (4.3)

The pulse is shown in fig. 4.2.

We have simulated the multi-photon ionization process for ω = 50 and ω = 80 with varying
intensities. To achieve a converged simulation for the highest intensity, we choose the following
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parameters:

Z = 5

E0 = 1000 a.u.
ω = 50 a.u.
N = 5000

Ndt = 20 000

L = 85

Tpulse = 10 2π
ω a.u.

(4.4)

Here Tpulse is the pulse duration, Z is the nuclear charge, N is the number of states, Ndt is the
number of time steps, and L is the box size.

Following the multi-photon ionization process that has been simulated, both in non-relativistic
and relativistic contexts, we then need to evaluate the probabilities of finding the electron in a
specific energy state. This can be done by studying the energy spectra for the non-relativistic and
relativistic processes. In the energy spectra, we evaluate the differential probability as a function
of the electron’s kinetic energy.

After the simulation, we are left with a vector c(Tpulse), where the probability of finding the
electron in each energy state n is given by

Pn(En) = |cn(Tpulse)|2. (4.5)

For energy levels En ≤ 0, the electron is bound. Hence, by summing over the |cn(Tpulse)|2 with
the condition En > 0 we find the ionisation probability,

Pion =

j∑
n=i

|cn(Tpulse)|2, (4.6)

where i and j is the first and last ionization state, respectively. Utilizing eq.(4.5) we can express
the differential probability as

dP

dE
= Pn(En)ρ(En), (4.7)

where ρ(En) is the density of states,

ρ(En) =
2

En+1 − En−1
. (4.8)

In fig. 4.3, we have plotted the energy spectra for the multi-photon ionization process. We have
plotted the differential probability as a function of kinetic energy. In fig. 4.3a, we have plotted
energy spectra for both the non-relativistic and relativistic systems with E0 = 1000 a.u. and ω = 50

a.u. For the non-relativistic system, we solved the TDSE, the black line, utilizing the Schrödinger
Hamiltonian given in eq.(3.10). For the relativistic systems, we solved both the TDRSE, the
blue line in the spectra, and the TDDE, the orange line, utilizing the relativistic Schrödinger
Hamiltonian given in eq.(3.32) and the Dirac Hamiltonian given in eq.(3.15), respectively. Here
each top, or group of tops, represents a photon-ionization or a photon being absorbed by the
electron, also known as a photon resonance. As the electron absorbs photons, the order of the
photon resonance increases, i.e., the first top in the energy spectra represents the probability of
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(a) ω = 50 and E0 = 1000 (b) ω = 80 and E0 = 1000

(c) ω = 50 and E0 = 800

Figure 4.3: The energy spectra for TDSE, TDRSE, and TDDE, with N = 5000, Ndt = 20000, L = 85, and
Tpulse = 10 2π

ω
. The black line represents the non-relativistic TDSE, the blue line represents the TDRSE,

and the orange line represents the TDDE. Here the zoomed-in section focuses on the photon resonance at
approximately Ek ≈ 400 a.u. For (a) and (c), this corresponds to photon resonance no. 8, and for (b),
this corresponds to photon resonance no. 5.

the electron having absorbed one photon, the second, two photons, and so on. In this figure, we
see in total 13 photon resonances. For the lower-ordered photon resonances, there are a lot of
oscillations, and instead of seeing a single well-defined photon resonance top, we have a group
of tops. We also observe the relativistic blue shift in the kinetic energy as we compare the non-
relativistic TDSE energy spectra to the relativistic TDRSE and TDDE. In the figure, we have
zoomed in on photon resonance no. 8, which is the top near Ek ≈ 400 a.u. Zooming in on this top,
we observe that the TDRSE and TDDE energy spectra are virtually identical on the axis scale of
the figure. In fig. 4.3b, we have plotted the same energy spectra as in fig. 4.3a, but with ω = 80

a.u. Here we have zoomed in on photon resonance no. 5 as it is the closest top to Ek ≈ 400 a.u.
As in fig. 4.3a we observe the relativistic blue shift, however significantly smaller. In fig. 4.3c, we
have plotted the same energy spectra, but with E0 = 800 a.u. and ω = 50 a.u. The zoomed-in
section in this figure is at photon resonance top no. 5, as in fig. 4.3a. Here we observe a smaller
shift than in fig. 4.3a but larger than in fig. 4.3b.

Comparing the relativistic blue shift for the photon resonance at about Ek ≈ 400 a.u. we see
that the blue shift both diminishes with decreasing intensity and with increasing angular frequency.
This is consistent with the amplitude of the A(t) field, given by E0

ω , which simply represents the
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maximum velocity of a corresponding free electron moving in the laser field.

4.1.1 Dependency on the pulse duration
It is also interesting to study how the pulse duration affects the energy spectra. We do not expect
that a prolonged pulse duration will have a significant effect on the relativistic blue shift. However,
we expect it to affect the ionization probability.

(a) Tpulse = 10 2π
ω

(b) Tpulse = 15 2π
ω

Figure 4.4: The energy spectra for TDSE, TDRSE, and TDDE, with E0 = 1000, ω = 50, N = 5000,
L = 85, Ndt = 20000. Here the black line represents the non-relativistic TDSE, the blue line represents the
TDRSE, and the orange line represents the TDDE.

In fig. 4.4, we have plotted the energy spectra for the multi-photon ionization process for the
non-relativistic TDSE, the relativistic TDRSE, and the TDDE, and for a 10-cycle (left figure) and
15-cycle (right figure) laser pulse, respectively. In total, 13 photon resonances are depicted in the
figures, and the relativistic blue shift is present in both cases. Comparing the energy spectra for
the two pulses, we observe that the longer laser pulse causes more oscillations. The higher peaks
in fig. 4.4b suggest a higher ionization probability, as shown in tab. 4.1, and is as expected.

Pion

Tpulse = 10 2π
ω Tpulse = 15 2π

ω

TDSE 1.19 · 10−2 1.74 · 10−2

TDRSE 1.17 · 10−2 1.71 · 10−2

TDDE 1.17 · 10−2 1.71 · 10−2

Table 4.1: The ionization probability, Pion, of the multi-photon ionization process for a laser pulse with 10
and 15 periods.

Evaluating how the pulse duration affects the blue shift, we measure the shift for the first four
resonance tops in fig. 4.4a and fig. 4.4b, as shown in tab. 4.2. Due to the fast oscillations, the
shift is calculated by choosing the middle of the resonance tops. The blue shift is calculated by
measuring the separation of the non-relativistic and relativistic peak positions, respectively, for
a given resonance. Considering some numerical uncertainties in the calculations of the shifts, we
may conclude that the duration of the laser pulse does not affect the blue shift in a significant
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way. Furthermore, the table shows that the shifts calculated with the TDRSE and TDDE are in
agreement with each other.

Tpulse = 10 2π
ω Tpulse = 15 2π

ω

no. Phot dRSE dDE dRSE dDE

1 0.37 0.37 0.37 0.37
2 0.93 0.92 0.92 0.91
3 1.53 1.49 1.54 1.51
4 2.20 2.12 2.22 2.16

Table 4.2: The blue shift observed in the energy spectra in fig. 4.4, for Tpulse = 10 2π
ω

and Tpulse = 15 2π
ω

,
with E0 = 1000, ω = 50, N = 5000, L = 85, Ndt = 20000. The blue shift observed for the TDDE is
denoted dDE, and for the TDRSE, it is denoted dRSE.

4.1.2 Contribution of each correction term in the TDRSE
To get a better understanding of the relativistic blue shift, we now study how the role of each
relativistic correction term in the TDRSE. In fig. 4.5, we have plotted the energy spectra for

(a) TDRSE − II (b) TDRSE − III

(c) TDRSE − IV

Figure 4.5: The energy spectra for the TDSE and TDRSE for each interaction term with E0 = 1000,
ω = 50, N = 2000, L = 65, Ndt = 5000 and TPulse = 10 2π

ω
. Here the black line represents the non-

relativistic TDSE, and the blue line represents the TDRSE with the relevant interaction term. For fig. (a),
we have plotted the energy spectra with interaction term II, in fig. (b), we have the interaction term III,
and in (c), the interaction is term IV. The orange line represents the full TDRSE.
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the multi-photon ionization process for the TDSE, TDRSE, and a modified TDRSE, which only
contains one of the relativistic correction terms. The relativistic Schrödinger Hamiltonian is given
by eq.(3.32),

HRSE =
p2

2m
+ V − p4

8m3c2
+

1

8m2c2
∂2V

∂x2︸ ︷︷ ︸
I

+
e

m
Ap− e

2m3c2
A3p︸ ︷︷ ︸

II

− 3e2

4m3c2
A2p2︸ ︷︷ ︸

III

− e3

2m3c2
Ap3︸ ︷︷ ︸

IV

, (4.9)

where I is the relativistic structure correction term and II, III, and IV are the three transient
relativistic correction terms. The figures 4.5 (a-c) show the energy spectra for the modified TDRSE
with the correction terms II, III, and IV , denoted TDRSE-II, TDRSE-III, and TDRSE-IV,
respectively. In the figures, we observe that the energy spectra for the TDRSE-II and TDRSE-
IV are essentially on top of the energy spectra for the non-relativistic TDSE. Therefore we can
conclude that the terms II and IV do not contribute significantly to the relativistic blue shift.
However, the energy spectrum for the TDRSE-III is on top of the energy spectra for the TDRSE.
Hence, we can conclude that term III contributes to the blue shift and is the most prominent of
the transient interaction terms in eq.(4.9).

Figure 4.6: The energy spectra for the TDRSE, TDDE, and the semi-TDRSE, where we omit the term I
form the relativistic Schrödinger Hamiltonian, with E0 = 1000, ω = 50, N = 1500, L = 65, Ndt = 10 000
and TPulse = 10 2π

ω
.

In fig. 4.6, we have plotted the energy spectra for the multi-photon ionization process for the
TDRSE, TDDE, and a modified TDRSE, denoted semi-TDRSE, where we omit the relativistic
structure effects in term I. We observe that all the energy spectra in the figure are essentially
identical. The only divergence is that the peaks of the energy spectrum for the semi-TDRSE
are slightly higher for the higher-order photon resonances. However, the peak position does not
seem to be affected. We may therefore conclude that the relativistic structure effects are of minor
importance in the multi-photon ionization process.
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4.2 Multi photon ionization described by time dilation

The blue shift appears to vary with the intensity, E0, and angular frequency, ω, of the laser pulse.
By studying the energy spectra in fig. 4.3, we observe that for each photon-ionization, the shift
in energy increases. The electron apparently absorbs a more energetic photon for each photon
resonance top, with respect to the non-relativistic results. As just stated, the term causing the
relativistic blue shift is derived from the relativistic mass correction. However, here we propose
that the behavior of the blue shift can be described and modeled by the relativistic effect of time
dilation.

4.2.1 Time dilation
According to special relativity, time is relative, and the faster we move through space, the slower
we move through time. This is what’s known as time dilation and was introduced in section 2.2.1.
As previously stated, the theory of special relativity describes how time, length, and mass behave
in an accelerated reference frame compared to an internal one. The time dilation, as given in
eq.(2.41),

∆t = γ∆t′, (4.10)

where ∆t′ is the proper time, i.e., the time measured in the accelerated frame. This equation
describes how the time in an accelerated reference frame relates to the time measured by an
observer in an inertial rest frame [18]. Here the primed system is the accelerated frame, and the
unprimed system is the rest frame. One of the postulates of special relativity states that the speed
of light in a vacuum is the same for all inertial reference frames and is not affected by the movement
of the source, denoted as c. Utilizing this, we manipulate eq.(4.10), and acquire a relation for the
angular frequency experienced in the rest frame, ω, and the angular frequency experienced in the
accelerated frame, ω′:

∆t = γ∆t′ ∆t > ∆t′

1
∆t =

1
γ∆t′

1
∆t <

1
∆t′

γf = f ′ ⇒ f < f ′

γ2πω = 2πω′ 2πω < 2πω′

γω = ω′ ω < ω′

(4.11)

The last line in this derivation yields the relation γω = ω′, which causes ω < ω′. Utilizing the
angular frequency’s relation to energy,

E = ~ω, (4.12)

we expect the energy of the photons on the accelerated frame to be more energetic than in a
rest frame. This is what we observe in the energy spectra. By considering the non-relativistic
Schrödinger equation as the unprimed system and the relativistic equations as the primed system,
we can evaluate the time dilation experienced by the electron at each photo-ionization. Utilizing
this, we can construct a model that predicts and describes how the blue shift behaves.
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4.2.2 Lorentz factor in the velocity gauge

When we solved the time-dependent equations, we solved them in the velocity gauge. In the velocity
gauge, and considering a super intense laser field, the majority of the momentum is carried by the
vector potential A, and the proper momentum, p, can be considered constant throughout the
interaction. Utilizing minimal coupling, we can therefore express the Lorentz factor as

γ =

√
1 +

( p

mc

)2

⇒ γ =

√
1 +

(
p+ eA

mc

)2

(4.13)

in the velocity gauge. As discussed in section 3.2.4, the momentum in the ground state in a
soft-Coulomb potential is significantly smaller than for a proper-Coulomb potential. The initial
momentum in the non-relativistic system was calculated to be p ≈ 1.916 a.u.

4.2.3 The semi-quantized field

For each photo-ionization, a photon is annihilated and absorbed by the electron. A classical A
field is not sufficient to describe this annihilation process because it cannot describe the behavior
of the individual photons. Hence, we need to introduce a quantized photon field Aq. However,
utilizing a purely quantized photon field is also unsuitable due to the intensity of the laser pulse.
Therefore we propose a semi-quantized approach.

By choosing to keep the classical photon field as in eq.(4.3),

Acl(t) =
E0

ω
sin2

(
πt

Tpulse

)
sin (ωt), (4.14)

we construct the semi-quantized photon field, henceforth denoted A, as

A(t) = Acl(t)−Aq(t), (4.15)

where Aq is the quantized photon field. The number state of the Aq field only contains the
necessary number of photons to be annihilated for the relevant photon resonance top. We subtract
Aq from Acl to mimic the absorption process of the photon, effectively causing the modified field
becomming weaker. The quantized photon field, Aq, is constructed as in section 2.3.4. By making
some assumptions, i.e., that we have monochromatic light, horizontal polarization, ε̂ = 1, that
there is no emission/creation of photons and reducing the system to 1D (utilizing the dipole
approximation), the quantized photon field becomes

Aq(t) = −i
E0

ω
âe−iωt. (4.16)

The semi-quantized photon field then takes the form

A =
E0

ω
sin2

(
πt

Tpuls

)
sin(ωt) + i

E0

ω
âe−iωt. (4.17)
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4.2.4 Modeling multiphoton ionization
Utilizing the Lorentz factor expressed with p→ p+ eA, eq.(4.13), the semi-quantized A field that
describes the annihilation process, eq.(4.17), and the relation for the angular frequency experi-
enced in an accelerated frame compared to in an inertial rest frame, eq.(4.11), we can construct
a simple model that describes the multi-photon ionization process. We need to evaluate the time
dilation experienced by the electron after each photon-ionization and update the A field with the
experienced angular frequency, ω. For n’th photon resonance, the Aq acts on a photon number
state |n〉, and we can express the model as

A0 = Acl(ω0) + iE0

ω0
e−iω0t

√
n γ0 =

√
1 +

(
p+eA0

mc

)2

ω1 = |γ0ω0|

A1 = Acl(ω1) + iE0

ω1
e−iω1t

√
n− 1 γ1 =

√
1 +

(
p+eA1

mc

)2

ω2 = |γ1ω1|

...
...

...

An−1 = Acl(ωn−1) + i E0

ωn−1
e−iωn−1t

√
1 γn−1 =

√
1 +

(
p+eAn−1

mc

)2

ωn = |γn−1ωn−1|

(4.18)
We take the absolute value of the ω because the ωn has an imaginary part. The imaginary part
is relatively small and does not significantly impact the results. It is also worth noting that since
the number state of the Aq field exactly contains the necessary number of photons for each photon
resonance, the ω4 in the 4th step in the sixth order photon resonance is NOT the same ω4 as in
the fourth order photon resonance.

4.2.5 Results of modeling the blue shift in 1D

As previously stated, the relativistic blue shift is dependent on the amplitude, E0

ω , of the vector
potential. Utilizing the model described in eq.(4.18) we can predict how the blue shifts evolve with
intensity. To evaluate if our model can accurately describe the relativistic blue shift, we study the
shift in the multi-photon ionization process with different angular frequencies and intensities.

In fig. 4.7 (a-f), we have plotted the energy spectra for the non-relativistic TDSE, the relativistic
TDRSE, and the TDDE, for intensities, E0 = 1000 (left panels), E0 = 800 (middle panels) and
E0 = 600 a.u. (right panels). The upper and lower panels show the results for ω = 50 and ω = 80

a.u., respectively. We observe that the shift diminishes with decreasing laser intensities for both
frequencies. Moreover, again there is good agreement between the TDRSE and TDDE results.

As before, in order to calculate the relativistic blue shift, we measure the shift between the
peaks of the non-relativistic and relativistic in the energy spectra for the given photon resonance.
In tab. 4.3 and tab. 4.4, we have studied the blue shift for ω = 50 and ω = 80 a.u., respectively.
In both cases we have chosen the intensities E0 = 1000 and E0 = 600 a.u. The tables gives the
predicted angular frequency of the photon, ω, at each photon resonance and the expected blue
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(a) E0 = 1000 and ω = 50 (b) E0 = 800 and ω = 50 (c) E0 = 600 and ω = 50

(d) E0 = 1000 and ω = 80 (e) E0 = 800 and ω = 80 (f) E0 = 600 and ω = 80

Figure 4.7: The energy spectra for TDSE, TDRSE, and TDDE, with N = 5000, Ndt = 20000, Tpulse =
10 2π

ω
, L = 85. With varying intensity and angular frequency. The black line represents the TDSE, the blue

line is the TDRSE, and the orange line is the TDDE.

shift d. The observed relativistic blue shift in the results for the TDDE and TDRSE is denoted
dDE and dRSE , respectively.

E0 = 1000 and ω = 50 E0 = 600 and ω = 50

Predicted Observed Predicted Observed
no. Phot ω d dRSE dDE no. Phot ω d dRSE dDE

1 50.37 0.37 0.37 0.37 1 50.14 0.14 0.14 0.14
2 50.84 0.84 0.93 0.92 2 50.31 0.31 0.36 0.36
3 51.38 1.38 1.53 1.49 3 50.51 0.51 0.61 0.60
4 52.00 2.00 2.20 2.12 4 50.74 0.74 0.87 0.85
5 52.67 2.67 2.89 2.78 5 50.96 0.96 1.13 1.10
6 53.39 3.39 3.61 3.46 6 51.25 1.25 1.41 1.37
7 54.13 4.13 4.40 4.20 7 51.54 1.54 1.69 1.63
8 54.92 4.92 5.19 4.92 8 51.84 1.84 1.98 1.90
9 55.73 5.73 6.01 5.70 9 52.16 2.16 2.25 2.16
10 56.57 6.57 6.84 6.44 10 52.50 2.50 2.54 2.44

Table 4.3: The blue shift for ω = 50 with E0 = 1000 a.u. and E0 = 600 a.u. as predicted by our model,
eq.(4.18), and observed in 4.7. The predicted angular frequency experienced by the relativistic electron is
denoted ω, and the predicted blue shift is denoted d. The observed shift for the TDRSE is denoted dRSe

and dDE for the TDDE.

Comparing the blue shift for the TDRSE to the TDDE, we observe that the shifts are quite
similar for lower-ordered photon resonances. However, for the results with higher intensities, the
blue shift for the TDRSE and TDDE tends to diverge for the higher-ordered photon resonances,
merely reflecting the fact in the limit of very high energies, the semi-relativistic approximation
ultimately breaks down. This is due to the approximation we do when constructing the relativistic
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Schrödinger Hamiltonian, where we omit the correction terms of order O
(

1
c3

)
and higher, especially

the p6 correction term, which will produce more temporal interaction terms.

E0 = 1000 and ω = 80 E0 = 600 and ω = 80

Predicted Observed Predicted Observed
no. Phot ω d dRSE dDE no. Phot ω d dRSE dDE

1 80.24 0.24 0.28 0.27 1 80.09 0.09 0.10 0.10
2 80.54 0.54 0.67 0.67 2 80.21 0.21 0.23 0.23
3 80.90 0.90 1.10 1.07 3 80.34 0.34 0.39 0.39
4 81.28 1.28 1.55 1.51 4 80.49 0.49 0.54 0.54
5 81.71 1.71 2.02 1.94 5 80.65 0.65 0.70 0.70
6 82.17 2.17 2.51 2.40 6 80.82 0.82 0.86 0.86
7 82.66 2.66 2.98 2.83 7 81.00 1.00 1.02 0.95
8 83.19 3.19 3.47 3.30 8 81.19 1.19 1.18 1.26

Table 4.4: The blue shift for ω = 80 with E0 = 1000 a.u. and E0 = 600 a.u. as predicted by our model,
eq.(4.18), and observed in 4.7. The predicted angular frequency experienced by the relativistic electron is
denoted ω, and the predicted blue shift is denoted d. The observed shift for the TDRSE is denoted dRSe

and dDE for the TDDE.

Comparing the blue shift for the TDDE to the shift predicted by eq.(4.18), we observe that
there is a good agreement between our predictions and what is observed in the TDDE. However,
for the lower-ordered photo resonances, the predicted shift generally seems to be a bit too low,
and for the higher-ordered photon resonances, it appears to be a bit too high. The deviations
between the modeled d and the dDE the lower-ordered photo resonances are at a maximum of
20% of the dDE . The general trend is that the error decreases with increasing order of the photon
resonances. The deviations between our model and the result in the TDDE may be caused by the
approximations and assumptions we made when constructing our model.

(a) ω = 50 Phot. no. 6 (b) ω = 80 Phot. no. 3

Figure 4.8: Blue shift as a function of E0 for photon ionization resonance no. 6 for ω = 50 and photon
ionization resonance no. 3 for ω = 80. The blue linen is predicted by eq.(4.18), and the red dots are the
blue shift observed in the results of the TDDE.

Finally, we would like to evaluate how the intensity of the laser pulse affects the blue shift for a
specific photon resonance. In fig. 4.8 (a-b), we have potted the blue shift predicted from eq.(4.18),
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in blue as a function of the intensity for the given photon resonance. In fig. 4.8a (left), we have
chosen ω = 50 and photon resonance no. 6, and in fig. 4.8b (right), we have chosen ω = 80 a.u.,
and photon resonance no. 3. The red dots in both figures are the blue shift observed for the
TDDE. Here we observe a good agreement between our prediction and the blue shift in the results
for the TDDE. The relative error in fig. 4.8b is somewhat larger, but this is merely due to the
shift for lower-ordered photon resonances being quite small and, therefore, the error for our model
becomes high in comparison.
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Chapter 5

Conclusion and outlook

In summary, this thesis has studied the relativistic multi-photon ionization process as a super-
intense X-ray laser pulse ionizes a hydrogen-like atom. By restricting the movement of the ionized
electron to 1D, we have studied this multi-photon ionization process in both relativistic and non-
relativistic contexts. It was found that the kinetic energy of the emitted photo-electron is higher in
the relativistic limit, i.e., a relativistic blue shift is observed in the corresponding energy spectra.
By utilizing time dilation, we were able to model and describe the underlying processes involved
in the relativistic light-matter interaction.

We studied the multi-photon ionization process by utilizing Matlab to solve the time-dependent
Dirac and Schrödinger equations. We also constructed a relativistic Schrödinger equation by uti-
lizing the Foldy-Wouthuysen transformation on the Dirac Hamiltonian [17], to be able to single
out the type of interaction that is causing the relativistic blue shift. As it turns out, the results of
the numerical calculation with the time-dependent Dirac (TDDE) and the relativistic Schrödinger
(TDRSE) equations are in good agreement. Nonetheless, they tend to diverge for very laser inten-
sities and at higher-ordered photon resonances. This merely demonstrates that the semi-relativistic
approach ultimately breaks down when approaching the ultra-relativistic limit. By inspecting the
role of the different terms in the relativistic Schrödinger Hamiltonian on ionization dynamics, we
were able to identify which relativistic corrections contribute the most to the relativistic blue shift.
We found that the blue shift was caused by a temporal relativistic effect, which can be attributed to
a transient relativistic mass increase. As such, we found that the relativistic structure corrections
had no significant effect on the blue shift.

As the relativistic electron is oscillating in the intense laser field, it undergoes time dilation
due to its relativistic speeds. Which then causes the corresponding increases in the experienced
laser frequency, i.e., a blue shift. By varying the laser’s intensity, E0, and angular frequency,
ω, we concluded that the relativistic blue shift increases with increasing intensity and decreasing
angular frequency. This is consistent with the amplitude of the vector potential, given by E0

ω ,
which represents the maximum velocity of a corresponding free electron moving in the laser field.
We also found that the laser pulse duration does not affect the blue shift.

Even though the relativistic correction term causing the blue shift is derived from the relativistic
mass increase, it is easier to explain the relativistic multi-photon ionization process utilizing time
dilation. As the super-intense laser pulse ionizes the electron, it may absorb multiple photons
in succession. For each subsequent photon-ionization, it appears as the electron absorbs a more
energetic photon compared to the non-relativistic equivalent. Utilizing a semi-quantized field
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approach, we constructed the laser field experienced by the relativistic electron at each photon
resonance in comparison to the field experienced by its corresponding non-relativistic counterpart.
The difference in the frequency of the photons experienced by the relativistic electron, with respect
to the corresponding non-relativistic one, determines the blue shift.

In this work, we have studied the blue shift in 1D. However, to be able to conclude that the
relativistic blue shift really exists, we need to study a 3D system. Reducing the system to 1D
simplified the problem significantly and allowed us to identify some of the mechanisms involved in
the relativistic multi-photon ionization process. In 3D, on the other hand, we also need to consider
the beyond dipole effects that occur when we keep the space dependency in the vector potential.
It has recently been shown that the non-dipole effects may lead to a corresponding red-shifting of
energy spectra [1, 2]. Implementing the beyond dipole effects can be challenging in terms of the
Dirac equation, and it is, therefore, advantageous to make some approximations, like utilizing a
Taylor expansion of the vector potential. To be able to utilize the Taylor expansion successfully,
the Dirac Hamiltonian needs to be modified [41]. A modified Dirac Hamiltonian, which allows for
Taylor expansion of the vector potential, is derived in appendix B and will be tested and utilized by
the research group to study the multi-photon ionization process in 3D, and it has already produced
promising results (not shown here) [34].



Appendix A

Foldy-Wouthuysen transformation

When utilizing the FW transformation [17] on the Dirac Hamiltonian, using the Baker-Campbell
Hausdorff formula, eq.(2.64), we need to calculate each correction term arising from the commuta-
tion relations. The calculation of these correction terms for this transformation differs in 3D and
1D. The details of these calculations are outlined in this appendix.

A.1 3D FW transformation

Dirac Hamiltonian is defined by

HDE = cα · (p+ eA) + 1V + βmc2. (A.1)

Defining the operators as
o = cα · (p+ eA) and ε = 1V, (A.2)

where o and ε are odd and even operators, respectively. The transformation is given by

S = − iβo

2mc2
. (A.3)

The transformed Hamiltonian is given by [17]

H ′
DE = β

(
mc2 +

o2

2mc2
− o4

8m3c6

)
− 1

8m2c4
[o, [o, ε] + iȯ]. (A.4)

Calculating each of the terms, we begin with

o2 = c2(p+ eA)2 + c2eσ4×4 ·B. (A.5)

Here we used the fact the α is constructed using Pauli matrices that follow this relation [17]:

σ · aσ · b = a · b+ iσ · a× b (A.6)

Next

o4 = c4(p+ eA)4, (A.7)
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Here the terms containing B have been omitted. This is due to B being of order O
(
1
c

)
, which

causes these terms to be of O
(

1
c3

)
. Now by expressing

E = −∇φ− ∂A

∂t
, (A.8)

we obtain
[o, ε] + iȯ = −ceiα ·E, (A.9)

and

[o, [o, ε] + iȯ] = −c2e(∇ ·E + 2σ4×4 ·E × (p+ eA) + iσ4×4 · ∇ ×E). (A.10)

The H ′
DE then becomes

H ′
DE = β

(
mc2 +

(p+ eA)2

2m
− (p+ eA)4

8m3c2

)
+ 1V +

e

2m
σ4×4 ·B

+ 1
e

8m2c2
∇ ·E + 1

e

4m2c2
σ4×4 ·E × p+ 1

ie

8m2c2
σ4×4 · ∇ ×E

(A.11)

A.2 1D FW transformation

Starting with the 1D Dirac Hamiltonian,

HDE = cα(p+ eA) + 1V + βmc2. (A.12)

Defining the operators as
o = cα(p+ eA) and ε = 1V, (A.13)

where o and are odd and even operators, respectively. The transformation is given by

S = − iβo

2mc2
. (A.14)

The transformed Hamiltonian is given by [17]

H ′
DE = β

(
mc2 +

o2

2mc2
− o4

8m3c6

)
− 1

8m2c4
[o, [o, ε] + iȯ]. (A.15)

The terms are given by:
o2 = c2(p+ eA)2, (A.16)

o4 = c4(p+ eA)4. (A.17)

By utilizing
E = −∂φ

∂x
− ∂A

∂t
, (A.18)

we obtain
[o, ε] + iȯ = −ceiαE, (A.19)

[o, [o, ε] + iȯ] = −c2e∂E
∂x

= −c2 ∂
2V

∂x2
. (A.20)
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The H ′
DE then becomes

H ′
DE = β

(
mc2 +

(p+ eA)2

2m
− (p+ eA)4

8m3c2

)
+ 1V

+ 1
1

8m2c2
∂2V

∂x2

(A.21)
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Appendix B

3D beyond dipole Dirac Hamilto-
nian

As stated in the conclusion, it can be challenging to implement the beyond-dipole effects when
studying a relativistic system. It may therefore be advantageous to utilize a Taylor expansion for
the vector potential. However, it has proven challenging to implement a Taylor expanded A(x, t)

in the Dirac equation [41]. The problem arises due to the A2(x, t) implicitly being present in
the Dirac Hamiltonian. This becomes evident when we do the FW transformation on the Dirac
Hamiltonian. The Taylor expanded vector potential is given by

A(x, t) = A0(t) +
x

c
E0(t)−

x2

2c2
Ė0 + . . . (B.1)

and the vector potential squared is given by

A2(x, t) = A0
2(t) + 2

x

c
A0E0(t) +

x2

c2
E0

2 − x2

c2
A0Ė0 + . . . (B.2)

If we truncate eq.(B.1) to only contain terms of O
(
1
c

)
and lower, the A2(x, t) becomes

A2(x, t) ≈ A0
2(t) + 2

x

c
A0E0(t) +

x2

c2
E0

2. (B.3)

Here we see that even if we truncate the A(x, t) potential the A2(x, t) still contains a term of order
O
(

1
c2

)
. Furthermore, it only contains half of the O

(
1
c2

)
contribution in eq.(B.2). As it turns out,

the effect of the two terms are of similar magnitude but of opposite signs [41, 25]. When only one
of them is included, as is effectively the case of the Dirac Hamiltonian with a Taylor expanded
vector potential, it causes a significant error in the time-dependent evolution of the simulation,
producing poor results. Since A2(x, t) is only implicitly present in the Dirac Hamiltonian, we can
not easily exclude the higher-ordered terms from the A2(x, t) potential. Hence, it is advantageous
to modify the Dirac Hamiltonian so that we have an expression where the A2(x, t) is explicitly
present.



64 3D beyond dipole Dirac Hamiltonian

B.1 Dipole approximation w/ beyond dipole correction terms

The Dirac equation is given by,
i~
∂ψ

∂t
= Hψ, (B.4)

where
H = cα · (p+ eA) + βmc2 + 1V, (B.5)

and

αi =

[
0 σi

σi 0

]
and β =

[
1 0

0 −1

]
(B.6)

where σi are the Pauli matrices

σ1 =

[
0 1

1 0

]
and σ2 =

[
0 −i
i 0

]
and σ3 =

[
1 0

0 −1

]
. (B.7)

It is possible to decouple the Dirac Hamiltonian through the FW transformation and obtain the
non-relativistic limit. We want to semi-decouple the equation. Modifying the H we obtain

H = cα · (p+ eA0) + ceα · (A−A0) + βmc2 + 1V, (B.8)

where A0 is the dipole approximated A field. We want to eliminate the second term in eq. (B.8),
ceα · (A−A0), and decouple the terms that contains A. Utilize the same method as the FW
transformation in [17] we define

o = cα · (p+ eA0) and a = ceα · (A−A0) and ε = 1V, (B.9)

and the H then take the form
H = o+ a+ βmc2 + ε. (B.10)

Utilizing the unitary transformation
ψ′ = e+iSψ (B.11)

the Dirac equation becomes

i
∂ψ′

∂t
=

[
e+iS

(
H − i ∂

∂t

)
e−iS

]
ψ′ = H ′ψ′ (B.12)

and the transformed Hamiltonian can be expressed as

H ′ = UHU† − iUU̇† = UHU† − UṠU† (B.13)

Utilizing the Baker-Campbell Hausdorff formula [2]:

eiabe−ia = b+
i

1!
[a, b] +

i2

2!
[a, [a, b]] . . . , (B.14)
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the H ′ becomes

H ′ = H + i[S,H]− 1

2
[S, [S,H]]− i

6
[S, [S, [S,H]]] + · · ·+−Ṡ − i

2
[S, Ṡ] + . . . . (B.15)

Constructing S by just considering the terms through the order of unity [17],

H ′ = o+ a+ ε+ βmc2 + i[S, β]mc2. (B.16)

Wanting to eliminate the a term , we need to construct S such that i[S, β]mc2 = −a, hence,

S = − iβa

2mc2
. (B.17)

The commutations relation in eq.(B.15) then becomes:

i[S,H] = i

[
− iβa

2mc2
, o+ a+ ε+ βmc2

]
=

1

2mc2
[βao− oβa

+ βaa− aβa

+ βaε− εβa

+ βaβmc2 − βmc2βa]

=
β{a, o}
2mc2

+
βa2

mc2
− a+ β

2mc2
[a, ε],

(B.18)

−1

2
[S, [S,H]] =

1

4mc2

[
βa,

β{a, o}
2mc2

+
βa2

mc2
− a+ β

2mc2
[a, ε]

]
= −{a, {a, o}}

8m2c4
− a3

2m2c4
− βa2

2mc2
− 1

8m2c4
[a, [a, ε]],

(B.19)

i3

3!
[S, [S, [S,H]]] =

1

6mc2

[
βa,−{a, {a, o}}

8m2c4
− a3

2m2c4
− βa2

2mc2
− 1

8m2c4
[a, [a, ε]]

]
= −{a, {a, {a, o}}}

6 · 8m3c6
− βa4

6m3c6
+

a3

6m2c4
,

(B.20)

i4

4!
[S, [S, [S, [S,H]]]] =

1

8mc2

[
βa,−{a, {a, {a, o}}}

6 · 8m3c6
− βa4

6m3c6
+

a3

6m2c4

]
=

βa4

24m3c6
,

(B.21)

Ṡ = − iβȧ

2mc2
(B.22)

and

− i
2
[S, Ṡ] =

i

8m2c4
[βa, βȧ]

= − i

8m2c4
[a, ȧ].

(B.23)
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The H ′ then takes the form,

H ′ = o+ ε+ βmc2

+ β
{a, o}
2mc2

+ β
a2

2mc2

− 1

8m2c4
[a, [a, ε]]− β {a, {a, {a, o}}}

48m3c6
− β a4

8m2c4
− i

8m2c4
[a, ȧ]

+ β
1

2mc2
[a, ε]− {a, {a, o}}

8m2c4
− a3

3m2c4
+ β

i

2mc2
ȧ.

(B.24)

Separating the even and odd terms and sorting them by order, we define

ε′1 = +β
{a, o}
2mc2

+ β
a2

2mc2
+ ε, (B.25)

ε′2 = − 1

8m2c4
[a, [a, ε]]− β {a, {a, {a, o}}}

48m3c6
− β a4

8m3c6
− i

8m2c4
[a, ȧ], (B.26)

and
a′ = β

1

2mc2
[a, ε]− {a, {a, o}}

8m2c4
− a3

3m2c4
+ β

i

2mc2
ȧ, (B.27)

where ε′1 is of O(1) and is considered even, ε′2 is of O
(

1
c2

)
and is considered even, and a′ is of O

(
1
c

)
and are considered odd. Eliminating the a′ term, we choose a new transformation with S = −iβa′

2mc2 .
The only computation relation for this transformation of order O

(
1
c2

)
or lower is

i[S′,H ′] =
1

2mc2
[βa′, o+ ε′1 + ε′2 + a′ + βmc2]

=
β

2mc2
{a′, o} − a′,

(B.28)

and H ′′ becomes,
H ′′ = o+ ε′1 + ε′2 + βmc2 +

β

2mc2
{a′, o}. (B.29)

Calculation each of the commutation and anti-commutation relation:

{a, o} = c2e{α · (A−A0),α · (p+ eA0)}

= c2e(α · (A−A0)α · (p+ eA0) +α · (p+ eA0)α · (A−A0))

= c2e(2α2(A−A0)(p+ eA0)− iα · ∇(α · (A−A0))

= c2e(2(A−A0) · (p+ eA0) + σ4×4 · ∇ × (A−A0))

= c2e(2(A−A0) · (p+ eA0) + σ4×4 ·B),

(B.30)

where the matrix σ4×4 is defined as,

σ4×4 =

[
σ 0

0 σ

]
. (B.31)

The σ4×4 is even and therefore does not couple the large and small components. Here we used the
fact the α is constructed utilizing Pauli matrices and they follow this relation [17],

σ · aσ · b = a · b+ iσ · a× b. (B.32)
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{a, {a, o}} =c3e2{α · (A−A0), 2(A−A0) · (p+ eA0) + σ4×4 ·B}

=c3e2(4α · (A−A0)(A−A0) · (p+ eA0) + 2σ4×4 ·Bα · (A−A0))
(B.33)

{a, {a, {a, o}}} = 4c4e3
(
2(A−A0)

3 · (p+ eA0) + (A−A0)
2σ4×4 ·B

)
(B.34)

The more trivial terms:
a2 = c2e2(A−A0)

2 (B.35)

a3 = c3e3α · (A−A0)
3 (B.36)

a4 = c4e4(A−A0)
4 (B.37)

ȧ = ceα · (Ȧ− Ȧ0) (B.38)

[a, ε] = 0⇒ [a, [a, ε]] = 0 (B.39)

[a, ȧ] = 0 (B.40)

Next, we can construct the correction terms, ε′1 and ε′2,

ε′1 = V + β

(
e2A2

2m
− e2A0

2

2m
+
e(A−A0) · p

m
+
eσ4×4 ·B

2m

)
, (B.41)

and

ε′2 =− β e3

6m3c2
(A−A0)

3 · (p+ eA0)− β
e4

8m3c2
(A−A0)

4

− β e3

12m3c2
(A−A0)

2σ4×4 ·B.
(B.42)

Now the {a′, o} anti commutation,

{a′, o} = −{{a, {a, o}}, o}
8m2c4

− {a
3, o}

3m2c4
+
{iβȧ, o}
2mc2

(B.43)

and the corresponding correction terms become

β

2mc2
{a′, o} = − β

2mc2
{{a, {a, o}}, o}

8m2c4
− β

2mc2
{a3, o}
3m2c4

+
β

2mc2
{iβȧ, o}
2mc2

. (B.44)

Starting with {iβȧ, o} term,

β

2mc2
{iβȧ, o}
2mc2

=
eσ4×4 · ((E −E0)× (p+ eA0)

2m2c2
+
e∇ · (E −E0)

4m2c2
+
ieσ4×4 · ∇ × (E −E0)

4m2c2
,

(B.45)

where
Ȧ− Ȧ0 = −(E −E0). (B.46)

The {a3, o} term becomes

− β

2mc2
{a3, o}
3m2c4

= β

(
− e3

3m3c2
(A−A0)

3(p+ eA0)−
e3

6m3c2
(A−A0)

2σ4×4 ·B
)
, (B.47)
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and the {{a, {a, o}}, o} term can be expressed as

− β

2mc2
{{a, {a, o}}, o}

8m2c4
=− β

2m3c2
(A−A0) · (p+ eA0)(A−A0) · (p+ eA0)

− β e2

2m3c2
σ4×4 ·B(A−A0) · (p+ eA0)− β

e2

8m3c2
B2.

(B.48)

Combining these, the {a′, o} correction term becomes

β

2mc2
{a′, o} =− β e2

2m3c2
(A−A0) · (p+ eA0)(A−A0) · (p+ eA0)

− β e2

2m3c2
σ4×4 ·B(A−A0) · (p+ eA0)−

βe2

8m3c2
B2

− β e3

3m3c2
(A−A0)

3(p+ eA0)− β
e3

6m3c2
(A−A0)

2σ4×4 ·B

+
eσ4×4 · (E × (p+ eA0)

2m2c2
+
e∇ ·E
4m2c2

+
ieσ4×4 · ∇ ×E

4m2c2

(B.49)

The compressed new Hamiltonian is expressed as

H ′′ =cα · (p+ eA0) + βmc2 + 1V

+ β

(
e2A2

2m
− e2A0

2

2m
+
e(A−A0) · p

m
+
eσ4×4 ·B

2m

)
− β e4

8m3c2
(A2 −A0

2)2 − β e3

2m3c2
(A2 −A0

2)(A−A0) · p

− β e2

2m3c2
(A−A0) · p(A−A0) · p− β

e2

8m3c2
B2

− β e3

4m3c2
(A−A0)

2σ4×4 ·B − β
e2

2m3c2
σ4×4 ·B(A−A0) · (p+ eA0)

+
eσ4×4 · ((E −E0)× (p+ eA0)

2m2c2
+
e∇ · (E −E0)

4m2c2
− ieσ4×4 · Ḃ

4m2c2
.

(B.50)

This Hamiltonian consists of the dipole approximated Dirac Hamiltonian, with beyond dipole
correction terms. The Hamiltonian conserves many of the relativistic structural effects in dipole
terms, and we have the A2(x, t) explicitly in the Hamiltonian. Another advantage is that by Taylor
expanding the vector potential, the order of many of the correction terms becomes greater than
O
(

1
c2

)
and we are left with,

H ′′ =cα · (p+ eA0) + βmc2 + 1V

+β

(
e2A2

2m
− e2A0

2

2m
+
e(A−A0) · p

m
+
eσ4×4 ·B

2m

)
+O

(
1

c3

)
.

(B.51)

This Hamiltonian is being implemented and tested by the research group and is giving promising
results [34].
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