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stochastic nature of collisions leaves a theoretical probability that an electron elude inelastic collisions
thereby accumulating an atypically high energy. Such an electron, under specific criteria, could be called a
“thermal” or “cold runaway”. Depending on the electric field, the runaway probability might be too low to
be computationally observed without resorting to Monte Carlo importance sampling. This article provides
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results in a poor estimation of the thermal runaway rates at electric fields below the critical runaway
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weight threshold relative to the physical number of particles in the simulation.
Additional comments including restrictions and unusual features: A good knowledge of the problem is
required in order to design the target spectrum function. An inappropriate selection of the target
spectrum can result in a decrease of spectral resolution or also a severe deterioration of the swarm
properties due to large stochastic fluctuations. It is recommended that the users first devise the target
spectrum based on the physical spectrum obtained from their simulations, and start designing from
there.
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countless other domains [7]. The relevance and efficiency of those
simulations greatly depends on the underlying particle manage-
ment algorithm. During the simulation, some particles might con-
tribute little useful information while others enter into regions
or regimes where the resolution (as a function of the number of
particles) needs to be raised to a certain desired level of preci-
sion. To maintain physical coherency while reaching the specific
objectives of the simulation, statistical weights [8, p. 141] are as-
signed to particles. Regions with high(low) resolution will typically
contain many(few) particles of lower(higher) weights. Particles are
curtailed by probabilistic disposal (known as “Russian roulette”),
and are multiplied by splitting each into several copies of lower
weights. A particle is determined to be split, curtailed or preserved
through a so-called importance function (cf. [9] and Appendix A)
that translates how relevant the particle is to the outcome of the
simulation.

The scope of this paper is to study the proportion and dis-
tribution of higher-energy electrons in simulations of electron
swarms in an electrified gas. The underlying motivation is to un-
derstand better the occurrence probability of cold-runaway elec-
trons [10-14] in electric discharges. The energy state accessible to
an electron can be intuitively apprehended with the dynamic fric-
tion curve [15] that represents its average energy or momentum
loss through collisions. While at low (thermal) energies, this fric-
tion increases with energy, it peaks around 100 eV in air before
decreasing again [16]. As a result, for a sufficiently high electric
field, there exists an energy range where electrons are more likely
to be driven into higher energies. This range along with its elec-
trons are subsequently described as ‘runaway’. Cold, or thermal,
runaway represents the transition from thermal energies up to the
runaway regime favoured by intense electric fields. Such a tran-
sition is conditioned by the probability that an electron endures
less energy loss in random collisions than it gains by accelera-
tion in the field between collisions. Thermal runaway plays an
important role in discharge physics; it is thought to occur around
leader or streamer tips of lightning discharges in thunderclouds
with high activity and is likely related to the occurrence of Terres-
trial Gamma-Ray Flashes [17], mostly observed from space [18];
and to X-ray bursts [19], experimentally observed in laboratory
sparks [20,21].

The challenge behind simulating the region fostering thermal
runaway is the high number of electrons involved in a discharge,
growing exponentially in high-field regions. Active (free) electrons
in the downstream region of a discharge can at times peak around
10'> over a region of 1 cm? [22]. The proportion of higher-energy
electrons above the friction curve peak at about 100 eV over ther-
mal ones can be extremely low: 1 in a billion or less. This does not,
however, exclude the possibility of one electron out of 10! reach-
ing an exceptionally high energy [14]. In order to reduce noise
in electron energy distributions to an arbitrarily determined res-
olution, we implemented an equivalent method to the importance
sampling [23], used in Monte-Carlo particle transport codes. This is
done through the use of a so-called “contrived spectrum” provided
by the user that sets the desired relative abundance of particles in
the simulation (denoted as super-particles) according to their en-
ergy. In this article, the suffix “super-" will be used for quantities
that ignore the stochastic weight w of simulation particles when
being calculated.

To our knowledge, although several codes implemented various
approaches for preferential particle sampling, their methodology
systematically relies upon a simulation-domain partition into two
[11], three [24], M [13], etc. respectively and is in some cases
limited to particle pair-coalescence [25,26] which either imposes
a restriction upon the particle resolution or relaxes the control
over the number of simulation particles. Our methodology takes a
different approach which preserves flexibility on resolution while
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maintaining control over the super-particle number. This enhance-
ment is due to: first, a shift from a discrete to a continuous parti-
tion of our simulation domain (contrived spectrum) and second, a
replacement of particle coalescence by curtailment. A continuous
partition allows for an explicit analytical formula for the target
super-particle distribution, whereas discrete partitions always re-
lied upon relative resolution levels of neighbouring cells.

We first present the fundamental methodology behind the par-
ticle weight adaptation. Then, we address the computational dif-
ficulty of the physical exponential growth of electrons in an in-
tense electric field with a particle-number-limiting (curtailment)
algorithm. We analyse and compare the performance of 5 imple-
mentations in which we let the super-particle number grow to a
different factor of the target particle number in order to grasp the
conditions yielding optimal usage of the algorithm. The compar-
ison is done through a figure of merit (FOM) accounting for the
time consumed and the variance reduction in the higher-energy
electron statistics.

The algorithm we discuss below is implemented in the code
provided together with this article. Further details are given in the
README . txt file.

2. Particle energy contrived spectrum
In the following text, we will distinguish:

Ns : number of (simulated or super-) particles comprised in the
numerical simulation: those are the particles effectively stored
in an array and tracked individually, each of them bearing a
certain statistical weight w.

N} : predetermined value that fixes the desired number of super-
particles to be held in the code. Sometimes, some leeway can
be provided so that N can vary within a range [N;; N{ 1.

N : number of (real or physical) particles represented by the sim-
ulation: this number is yielded by the sum of all statistical
weights of the simulated particles.

Thus in practice we have:

Ns
NEZW;’. (1)
i=1

The operation of reallocating N particles to match their goal
number N} was previously implemented into various techniques
including: adaptive particle management [27,13,25,26], resampling
[28] or rezoning [29]. In general, how many particles ought to be
discarded or added in the simulation will depend on the particle
number deviation expressed as ANs; = N5 — N; whereas the crite-
ria for determining which ones, can be multiple: position, velocity
(direction and/or energy). Those can be defined through collective
quantities, such as: density, flux, temperature, etc. The processes
of adding and discarding can eventually be combined into particle
coalescence [30], where the properties of discarded particles are
used to generate those to be added.

Our study focuses on electron swarms in electric fields above
the conventional breakdown, implying a continual exponential
growth of electrons. In this specific context, we will choose
to speak of (electron) compaction; comparing the many super-
electrons that will have to be discarded against the relatively few
to be kept or added. The information of the original swarm is
thus to be compacted. Moreover, whenever the topic should stress
the super-particle number reduction (irrespectively of their indi-
vidual importance), we will speak of curtailment; referring then,
more specifically, to the procedure of discarding super-particles.
This terminology is later illustrated in Fig. 6.
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When compacting electrons, we restrict our considerations to
their kinetic energy ¢ only, through the one-dimensional criterion
of the electron density in energy space: ng(¢). This is an ideal
quantity representing the number of particles per energy segment
under the assumption that there are enough particles to be tallied
in that segment. We obtain N by integration:

/ ns(e, t)de . (2)

e=0

Ns(t) =

Of course, in practice, this integration will be bounded by
the maximum observed kinetic energy of an electron among the
swarm: &7 = maxa(”; i € {1..Ng}. As the simulation progresses,

1

all the quantities defined above are subjected to evolve with time
t, which when not written specifically will be considered implicit
throughout the article.

While N} sets how many super-particles are to be held, to be
able to determine which ones are worth simulating, we appeal to
the concept of a contrived (or target) super-spectrum nj(¢). It can
be interpreted as an abstract measure that sets the desired number
of super-particles per energy segment: it is a target super-electron
density in energy. Thus when n}(g) < ns(e, t) (or .. > ..), all super-
electrons whose energy lies “close to” &, will have to be removed
(or cloned) with an according probability p(e,t). As opposed to
ns, the contrived spectrum is the same throughout the whole sim-
ulation, and thus independent of time t. Along with n} comes a
contrived set of particle target weights w* whose value can be de-
duced by the correspondence relationship between simulated and
real particle distributions:

n(e, t) =ns(e, t) - w(e, t) =ng(e) - w(e, t) (3)

Although n} is temporally and spatially identical throughout the
whole simulation, the target weights w* will have to adapt accord-
ing to the evolution of the physical number of particles N(t). We
also observe that a real particle can be interpreted as a simulated
particle of unitary statistical weight. Our notation is summarised
below:

Definition: Electron ...  Total Number  Density in energy  Statistical weight

real (physical) N n 1
super (simulated) N ns w
target (contrived) N ny w*

The distributions here are not normalised and their integrals
yield respectively the real, the simulated and the target number of
particles:

et

/n(e,t)de:N(t):real, (4)
0

8+

/ns(s, t)de = Ng(t) : super, (5)
0

8+

/n?(s)ds = Ny : target. (6)
0

As explained above, the conversion of the actual distribution ng
toward the contrived one n} uses probabilistic discarding (ns > nj:
particles in excess) and cloning (ns; < n}: particles in dearth). This
is known in Monte-Carlo techniques as Russian roulette (for dis-
carding) and splitting (for cloning). To conserve on average the
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physical number of particles and their distribution in phase-space,
the weights of the super-particles will have to be adapted accord-
ing to the probability test that they will undergo [9]. The corre-
spondence between densities and weights is expressed through (3)
as:

ng(e)  wr(e)
nie)  w(e)

(7)

Graphically, left and right terms in (7) are seen on bottom and
top graphs in Fig. 1, where the differences between n (solid), ng,
ny (bins) and w vs. w* (dots) can all be observed before and after
the compaction of an overpopulated swarm. The distributions and
weights obtained afterwards are expected to be as close as possible
to their target (ideal) values: n} and w*.

2.1. Russian roulette

When ng(¢) > nf(g), some particles of energy close to & must
be discarded (curtailed) with a probability p such that (1 —
p(e))ns =nf. This relation [31, p. 128] can also be expressed with
particle weights through (7):

w* w
(1—p)— =1 and therefore: p=1— —. (8)
w w*
The surviving particles are attributed the target weights w* to
bear the same statistical influence as the original particles with
weights w (cf. Fig. 1-top under “Excess” mound).

2.2. Splitting

Conversely, ns(¢) < ni(¢) (equivalently w > w*) means that
some super-particles around &€ must be added to the simulation.
Their number is determined by separating the density ratio into its
integer k and fractional d components as follows [9]:

*
) _ W jid keN.deo:1[ 9)
ns(e) wk

p(K=k)y=1-d ;

p(K=k+1)=d (10)

The random variable K of splitting a particle of energy around
¢ into k or k + 1 sub-particles (of weights w/k or w/(k + 1)),
has associated probabilities 1 —d and d respectively. This process
is known as “sampled-splitting” [32]; the split and intact super-
particles are seen on Fig. 1-top above the “Dearth” region, as a
series of overlapping streaks taking different weights at a given
energy. The streaks are individually associated to the progression
of the integer k from 1 to its maximal value.

There exists an alternative splitting that is called “expected-
value” splitting [32] that uses a single value weight outcome
w/(k + d) but conserves the total weight only on average. Al-
though it was argued [33] to be preferable to the sampled-splitting
presented in eq. (10), the comparison was conducted on the ba-
sis of the restrictions imposed by the importance function (cf.
Appendix A). In our case, we opted for the sampled-splitting
for not introducing fluctuations in the total weight after split-
ting.

2.3. Compaction as the combination of splitting and curtailing

Together, the operations of splitting and curtailing are comple-
mentary to each other:

e curtailing: all super-particles reach their targeted weights (or
are discarded), but the total weight is not necessarily con-
served (only on average);
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Fig. 1. Illustration of the compaction procedure applied on a swarm. (Top): weight ratios w(e)*/w(e) before and after compaction. All curtailed super-particles (in excess)
have a weight raised to the target value. Only those super-particles that are split (in dearth) have their weights divided according to their offspring. The average value of
split and intact super-particles weights is their target weight. (Bottom): Real distributions and simulated particle tallies before and after a compaction step. While the real
density is fairly unchanged, the super-particles are reallocated so that all bins contain an equal amount of super-particles on average. The bins are determined according to
Fig. 4. The fact that top and bottom graphs have the same shape is a direct implication of eq. (7).

e splitting: the total weight is exactly conserved but the super-
particles do not necessarily attain their respective target
weights (only on average).

To avoid having to reiterate accidentally (aka “thrashing” [34])
on particles that were already split once but whose new weights
are under the target weight, some leeway is often provided around
w*: in literature this is known as the weight-window technique
[35-37]. Particles whose weights lie within a window around w*
are exempted from the probability tests. A typical window has
ws = 2w* as the upper boundary and naturally wg = 2/3w* as
the lower boundary for particles who incidentally happened to
be split into three. In our case however, we did not impose any
weight-window, we used a minimal allowed weight ratio instead
(see sec. 2.5 below).

2.4. Density estimation

Both relationships (4) and (7) rely on a continuous description
of the quantities n, n; and nj. In practice however, the density esti-
mation is subjected to the imperfect sampling of the energy space
through ng(e;)w(e;), i € {1..Ns} for each super-particle.

Density estimators can roughly be categorised into histogram
binning [38] and kernel methods [39]. The first category uses a
partition of the energy space into M intervals to tally the number
of particles present in each energy segment by(Aegy), k € {1..M};
also called a bin. This partition can be regular (bins of equal width
Ag = const) or irregular. The second method uses a function
called a kernel K(&, Ae) whose replica are centred on all data-
points and summed at the points of interest to compute a density
estimate. The kernel’s integral is normalised to unity and its band-
width Aeg serves to construct an estimation of the particle density
locally around e.

Computing histograms is faster than recurring to kernel meth-
ods due to simplicity. However, the bins present a jagged (dis-
continuous) density profile that can require a smoothing proce-
dure. Kernel density estimators are much less sensitive to small
data variations and yield a smooth profile, depending on the ker-
nel/bandwidth chosen. Unfortunately, their computational com-
plexity is higher and so their use for a high number of particles
Ns might be impractical.

In general, the formal expression (7) is replaced by its numeri-
cal approximation with the actual i € {1..Ns} super-particles:

n(by)
Z w;/Aégg, £j € by < histogram (a)

j=1
N

Z mK(si — ¢, Ag) <« Kkernel (b)
— Ag

n(e) =ni(e)w*(e) ~

(11)

In the binned case, the sum is restricted only to those n(by)
particles in the k™ bin that contains &; whereas in the kernel case,
all particles are involved: their contribution being gauged by the
kernel shape and bandwidth Ae.

For each super-particle, the ratio w/w* corresponds to the ex-
pected number of simulation particles on average after roulette or
splitting has been applied. Since all tests are performed indepen-
dently, this means that the sum of those ratios for all particles
will give the average expected value for the total number of sim-
ulated particles remaining after compaction. Ideally, this number
should converge towards N} as the number of simulated particles
increases. Nevertheless, there will always be a difference:

Ny ‘Tl;k(Sj)ASk
Ns wj Zi=1 Wi T W 2
— i=1 i N¥ (12
Zw*(sj) TN W ng(ej)Ae 7Ny (12)

=1 )
! EUS N Wik (e — 5, M)

In the limit Ny — oo and [M — oo or Ae — 0], both the bin-
ning and the kernel approach the Dirac peak distribution and the
above expression reduces correctly to the integral of n}(e) which,
if normalised according to (6), will yield the correct value of N}.

In the meantime, if the bins or K(g, Ag) are chosen such that
there are no overlaps of particles when computing the density (as
it is the case with Voronoi cells [40,41]), then the middle term
in (12) reduces to a Riemann sum of n} at bin centroids about
the bin width; or at &; points about Ae. When the bins centred
on a particle (or the kernels) are not contiguous, the sampling
of n} presents holes, or in more formal words the support of
n(e) : supp(n) = {¢ : n(e) # 0} is not contiguous which entails an
inevitable overall under-estimation of the n} integral:
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Fig. 2. Illustration of all types of electron spectra (real/super) and how they are cal-
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spectra are calculated both with a kernel density estimator (kde-solid) and a his-
togram (bins-columns), the latter is used for the simulated electron spectrum.

/ ni(e)de <N (13)
gesupp(n)

Therefore, the most straightforward way to ensure that the
resulting number of particles after compaction equals the target

value on average, is to perform a normalising operation on the en-
semble of w;/w*(¢g;j) values:

. . Wi N*
Corrected weight ratios = X S| (14)
w(en) oy Wi
T W*(&p)

Those latter corrected ratios are the ones to be used in the dis-
carding/splitting tests in (8) and (10).

An overview of histogram and kernel density estimators is pre-
sented in Fig. 2. Since the energy range can span over several
orders of magnitude, a linear distribution of bins would present
a maladapted precision at lower and higher energies (respectively
too coarse and too fine). Instead, it seems adequate to adapt bins
in function of the expected spectrum. Bins (by(&x)) can be obtained
from a uniform distribution of the target super-spectrum cumula-
tive integral, then reversed back into the energy space:

% = / ny(e)de ; Vby(gx), k € {1..M}, (15)

bk(sk)
like it is depicted in Fig. 4 for an illustrative case with four bins
(M = 4). This bin configuration is the one used in our simulations,
with M determined by the Freedman-Diaconis rule [42] and n} as
defined in (18) of the next section.

2.5. Contrived spectrum shape

Since the function nj(e) fixes how many particles should be
allocated in each energy region, it thereby has a crucial impact
on swarm fluctuations in the energy spectrum. As the simulation
progresses, the maximal energy e attained by an electron either
converges to a higher value or increases indefinitely in case of run-
away. This is because our simulation does not include radiation
braking and the electric field is spatially unbounded. For a fixed
target number of electrons N, a minor ratio of thermal electrons
over higher-energy ones may lead to large fluctuations (cf. Fig. 3).
Consider a constant uniform contrived spectrum:

ny(e) = l (16)
&+
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Fig. 3. Mean kinetic energy fluctuations depending on the contrived spectrum
shape (displayed in consecutive time intervals for clarity). Shapes further differ-
ent from the specific physical spectrum yield higher fluctuations of the mean
value. Simulation parameters: 8000 simulated electrons at 7 MV/m. Spectrum
shapes (eq.?) associated with each label in the figure and their fluctuations (~?)
in eV : Reference(~ 0.02)=uniform-probability Russian roulette (no shape im-
posed), Constant(~ 0.91)=eq. (16), Cusp(~ 0.33)=eq. (17), Cutoff(~ 0.14)=eq. (18),
Cutoff(wy;- J(~ 0.09)=eq. (18) and w}, = N/10°. (For interpretation of the colours
in the figure(s), the reader is referred to the web version of this article.)

For this distribution with a given energy threshold value &,
the fraction of super-electrons below &, is simply &, /€. The risk
of unphysical fluctuations comes from two sources. For N fixed,
if €4 is not bounded, this ratio does not have a lower bound. If
however ¢ has an upper bound, the number of thermal electrons
is nonetheless conditioned by N;; which can be considerably low
if the energy range is broad.

In order to avoid this, several precautions can be made. First
and simplest, n} can be chosen such that its integral (6) for
lime; — oo stays finite. The user can then check the lowest
theoretical number of simulated electrons in the thermal range:
Nj(¢ < &m), where &, is taken as the thermal boundary. How-
ever, if this bounded constraint over the shape of n} is not sat-
isfactory, the code must itself set a limit to the maximal electron
energy allowed in the simulation, to which the value e is lesser
or equal. Setting such a limit can either be explicit (in which case
all electrons exceeding this limit are simply non-probabilistically
eliminated) or implicit (based on restricting the minimum particle
weight wy . ). In the latter case, wy,, is set as a small fraction of
the physical number of particles N. Physically, this corresponds to
choosing the lowest particle resolution in the simulation. For ex-
ample, fixing wy, =N/ 10° means that the minimally provisioned
weight for a super-electron shall account for at least one-billionth
of the whole swarm; the simulation will not be able to resolve
particles with a lower scarcity. Although not absolute, such a rel-
ative weight boundary brings a probabilistic limit to the maximal
energy observed through the combination of n and nj as can be
seen in eq. (A.2). Once these combinations of choices are made,
N can be set accordingly. A few iterations of this process can be
repeated if the N; entailed is deemed too high.

To illustrate the implications of the contrived spectrum’s shape
and its boundedness, we provide a simulation with N} = 8000 and
show the difference in fluctuations of the electron swarm’s mean
kinetic energy in Fig. 3. The selected contrived spectra presented
hereafter are compared to a simple uniformly random elimination
of particles (labelled ‘Reference’ see also in sec. 3).

Besides the uniform spectrum in eq. (16), we included a cusp-
shaped spectrum with an amplitude o of 1/2 defined as:

*

ny(e) = SN—S(l +acos2re/ey)), a =0.5. 17)
+
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Assuming that the natural spectrum shape beyond thermal en-
ergies of an electron swarm is exponential due to the impact ioni-
sation cascade, we additionally devised an inverse power-law nj (¢)
with a cutoff gg at 15 eV, taken to represent the boundary for ther-
mal energies (see results section):

N 1

S
coln(1464/80) 1+¢/gg

For all spectra, ¢+ =500 eV, and an additional implementation
of the cutoff spectrum featured w} ., =N/ 10° alone.

The robustness of our algorithm is underlined by the average
physical statistics; identical and independent from the particular
ni shape chosen. The fluctuations of variable amplitudes demon-
strate an inappropriate combination choice of the spectrum shape
ni, along with the allowed number of particles N, the warranted
maximal energy ¢4 and the individual particle resolution wy, .
Moreover, although we can observe that ¢, and w}, play a
milder role next to the n} shape, the minimal weight introduces
a better quenching of the simulated spectrum with superior con-
trol over fluctuations. An examination of the average energy for
higher-energy electrons (above 15 eV or even 60 eV) reveals that
fluctuations are roughly the same for both weight-limited and un-
limited configurations.

ni(e) = (18)

2.6. Constraining the number of super-particles

In the previous sections, we developed a procedure to curtail
a number N; to N} particles on average, while matching a given
n¥(e) as closely as possible. This operation is however discrete and
aside from it, the electron swarm will keep growing at its own ex-
ponential rate which depends on the applied electric field (higher
than the conventional breakdown around 3 MV/m in standard air
[43]). The curtailment must thus be operated on a regular basis. A
simple procedure consists in setting a super-particle threshold N{
or a timer of period t. The operation triggers respectively every
once Ng > Nj; or when the simulated time interval since the last
operation At exceeds 7. If a steady and reliable measurement of
the growth rate vs is available, then one can set:

In(N}/N?)

Nf=Nlexp(vs1) & 7 = -
S

(19)
and the two procedures are equivalent on a large number of tri-
als, provided vs is an unbiased estimator of the actual growth rate.
Here, N? is the number of particles present when the time accu-
mulator At is reinitialised. It can be thought at first that Ng = N7},
but in practice, N could also be a lower threshold Ny < Ni.
Indeed, if N} represents the average number of super-particles
present in the simulation during a period At, then by definition:

At
1 NO
N =— | Nexp(vst)dt = ——(exp(vsAt) —1). (20)
At Vs At
0

If we set the multiplication factor exp(vsAt) =m > 1, then:
In(m)
m-—1

NY=N; =N} <N}, (21)
As At — 0:m— 1 so Ny — N7 and we maintain a tight con-
trol over the super-particles allowed in the code. On the other
hand, this means that the compaction step will have to be per-
formed more frequently. There should be some compromise linked
to the simulation outcome between how drastically and frequently
should the particle number be curtailed. In the next section, we
discuss this issue, present assessment tools and illustrate the per-
formance of different compaction configurations seen in table 1.
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Table 1

Lower and upper super-particle number limits for five different
compaction schemes. The limits are not applicable to the Ref-
erence simulation which simply uses uniformly random elimi-
nation of particles.

Label : Ny . N

A “Fixed” : N§ . Ng

B “Plus Quarter” : Ny ,  1.25Nf

C “Doubled” : Nf ,  2N¥

D “Halved” : Ni/2 . Ni

E “Averaged” : Nifln2 , 2N} ;o om=2

R “Reference”

3. Assessing variance reduction schemes

To test the algorithm, we apply it to simulations of electrons
swarms in homogeneous electric field in air. The ultimate goal be-
hind limiting the number of super-particles is dual:

1. Reduce the variance o2 of the quantities computed in energy
ranges of interest.

2. Reduce the computational demands expressed through the to-
tal simulation time Tgjpy,.

These two objectives can be incorporated into a figure of merit
(FoM) [44] and computed as:

FoM = o . (22)
Tsimu0 2

This figure will enable us to make an assessment over the var-
ious possibilities in compacting N super-particles in the range
defined by N; < N} <N{.

In the following we will present five configurations all using
the aforementioned “cutoff’ super-spectrum (18) as their target,
contrasted against a reference simulation (cf. Table 1)

The first “fixed” (A) scheme curtails whenever N5 # N, with
the minimum temporal resolution permitted by the simulation
time-step which is defined as the inverse of the maximal collision
rate according to the null-collision [45] methodology.

With the growth rate depending on the electric field, there
might be a large lapse of time between two curtailments for a
value of electric field not much above the conventional breakdown.
We explore this issue by repeating all 5 configurations at 5 MV/m
and 10 MV/m with N} = 50000 electrons in homogeneous air at
atmospheric pressure. Additionally, since we are interested in the
phenomenon of thermal runaway [12,13,16,14], we set a minimum
relative weight of w . = N/10" to reflect the order of magnitude
of free electrons present in a typical streamer corona as already
mentioned in the introduction. As a precaution, we also set ¢4 =1
keV: a traditional limit [22,14] taken in studies about thermal run-
away. The initial conditions of the swarm are already in thermal
equilibrium. The cross-sections used for processing collisions were
taken from Biagi's database [46]. The particle code used is de-
scribed in more detail in a previous article [47].

Finding a sampling strategy that would best exploit each
scheme’s advantages turned out a unrealisable task. Ideally, one
would need to track the time step corresponding to the high-
est resolution in the energy range of interest. Since this moment
depends on the swarm’s growth rate conditioned in turn by the
electric field, the sampling rate for each scheme would then have
to be different, leading to an unequal number of samples for a
fixed period of simulation Tjp,. To preserve fairness, one would
need to fill-in the missing samples with ones taken at other times.
Otherwise, longer simulation times for schemes with a higher
compaction ratio would be needed. Despite various trials, the con-
clusions about each scheme’s performance remained unchanged
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Fig. 4. Schematic view of all five compaction configurations. (Top): Evolution of sim-
ulated particles along simulation time sampled at a regular rate irrespective of their
number N;. Vertical dashed cuts represent compaction operations when Ng > N;".
(Bottom): Construction of an average histogram of all collected samples with bins
uniformly delimited in the cumulative integral of the target super-spectrum (cf.
eq. (15)); i.e. such that their expected number is equally distributed. The letters
A-E represent the five compaction configuration.

due to a compensation of resolution gains by losses either in:
longer simulation times, less samples or samples of lesser resolu-
tion. In the end for a fair comparison, all simulations were sampled
at regular intervals of 10 ps during 1 ns, thus cumulating a total of
100 samples per run from which statistical analysis are conducted.

The FoM as defined above (22), applies to a macroscopic quan-
tity whose variance is to be computed. Unfortunately, neither
the notions of “higher-energy” nor even “runaway” electrons lend
themselves to a very precise and universal mathematical defini-
tion. Although the runaway threshold has a theoretical value based
upon the averaged electron friction (collisional) force equated by
the electric driving force [10]; for the electric fields considered,
this value exceeds the keV boundary [15] and thus, we are con-
fronted to the risk of not having any runaways to tally at all (if
the schemes proved themselves to be too weak). Instead, we de-
cided to compare our simulations on the ground of three simple
definitions of average energy: one is without restriction, the others
only involve electrons above 15 eV and 60 eV respectively. The first
boundary was chosen as a limit of the thermal neighbourhood, the
other was chosen as a consequence that the maximal energy ob-
served in the Reference simulations was around 60 eV.

A more qualitative comparison will be based on the expected
variance reduction in the targeted energy ranges. Since the regions
of interest are quantitatively incorporated in the contrived spec-
trum’s shape, we also provide energy-density histograms averaged
over those 100 samples, whose binning decomposition is based
upon a uniform partition in the cumulative integral space of the
contrived spectrum: y = f(f ni(x)/Nidx. In the ideal case of elec-
trons distributed throughout the range according to nj, each bin
should contain an equal number of particles, a configuration that
minimises the variance of the average particle number in each bin.
The whole procedure is illustrated in Fig. 4.

3.1. Results

Table 2 summarises different macroscopic averages and their
fluctuations (standard deviations) for each compaction scheme (A
to E against the Reference) in the case of 10 MV/m applied elec-
tric field. As a prerequisite for assessing the effectiveness, we took
the characteristic energy level &;; = 15 eV, to delimit the thermal-
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energy neighbourhood. This choice was based upon the fact that
the electron friction curve rises steeply from 15 eV in air owing
to the onset of impact ionisation collisions. We surmise therefore
that cutting off the contrived spectrum at 15 eV is a reasonable
choice, if we are to assume that the electron distribution function
drops beyond this neighbourhood.

Looking at the three first rows of “milestone” averages, we can
observe how the resolution in energy degrades as the threshold of
thermal electrons is passed when no splitting is applied. A second
glance reveals however that the variance reduction at higher en-
ergies is not necessarily attained for every scheme. All C, D and E
perform poorly in resolving the spectrum beyond thermal energies.
It seems therefore that a certain compaction frequency is required
to maintain a sample of electrons in higher-energy regions, lest
the simulation resources be mostly spent on the thermal electrons.
The percentage of super-electrons above 60 eV is also very low, at
most 0.01% as opposed to approximately a quarter in the A and
B schemes. As a result, the only reliable estimation of the physi-
cal proportion of electrons swarming above 60 eV under 10 MV/m
is between 2 to 3 in one million. It must be noted that a physi-
cal resolution of 1/10% above 60 eV implies that a super-electron
at that energy should have a 10° times lesser weight than a ther-
mal electron in order to provide a comparable signal-to-noise ratio
in the spectrum. Such resolution is impractical to reach if one re-
sorts to a discrete partitioning with relative weight ratios between
neighbouring regions. For instance with a partition of 6, the min-
imal jump from one to the next region would be of a factor 10.
On the other hand, increasing the number of bins leads naturally
to our continuous description. This is why we did not include
comparisons with discrete partitions (because they cannot attain
comparable levels of resolution under practical considerations) nor
pair-wise coalescing schemes (because they require an additional
closest neighbour search).

The increased resolution in higher energies can be better
grasped by looking at a comparison of average electron density
(top) and super-electron tally histograms (bottom) in Fig. 5 con-
structed as explained in the previous section (cf. Fig. 4-bottom:
M = 100). The bins are chosen such that the target super-
spectrum would appear as a horizontal line (equipartition of
super-electrons). From A to E, there is a clear ranking of closest
to farthest from the target distribution. Additionally, one can ob-
serve the difference between the spectral sampling fluctuations.
The difference between A and B is minute and implies that there
could be an optimal compaction frequency. The smoothed distri-
butions of A and B all along the spectrum contrast with the noise
of the remaining schemes above 40 eV. Both A and B spectra ex-
tend beyond two hundred eV but only the portion up to 100 eV
was presented for better clarity. Although it is true that C,D,E make
a step towards broadening the energy-spectrum sampling bound-
ary, the resolution obtained is not sufficient to make any physical
induction about runaway or spectrum shape.

The two middle rows in Table 2 report a measure of duration
in computer time and average number of particle collisions per
unit of simulated time. Although we could argue that the first
is machine dependant whereas collisions should be independent,
it is also unjust to interpret less collisions as a good compu-
tational time-saving indicator. Indeed, the increased presence of
high-energy electrons naturally entails a higher rate of collisions
since the (inelastic) collision rate has a maximum around 100 eV
in air [16]. Thus, the time spent in more collisions is not a defect
in the application of the algorithm but rather an unavoidable ef-
fect coming along with the user’s constraints. Timing performances
were run separately on the same machine under identical condi-
tions, to ensure the least possible influence on the timing scores.

Subsequently, the figures of merit for all three thresholds of
average kinetic energy were reported below in Table 3 for both
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Table 2
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Comparison of 6 simulation setups all under a homogeneous electric field of 10 MV/m. Numbers presented are 100-sample
averages (and their standard deviations: o). The first column “R” (=Reference) does not use spectrum-based compaction;
* therefore N o Ng. The other schemes’ nomenclature refers to the swarm’s simulated particle growth allowance prior to

curtailment (see section 3).

Scheme R (A) (B) (@) (D) (E)
Mean (eV) 8.03(0.027)  8.03(0.045) 8.03(0.043)  8.03(0.034)  8.03(0.05) 8.03(0.037)
Mean > 15 eV (eV) 19.4(0.12) 19.4(0.057) 19.4(0.056)  19.4(0.071)  19.4(0.094)  19.4(0.077)
Mean > 60 eV (eV) 64.3(4.5) 64.6(0.21) 64.6(0.26) 64.4(4.1) 64.8(4.2) 64.7(4.1)
Ns > 60 eV/N; 0.27(0.0027)  0.24(0.034) 107%(1073) <107 <1074
(N> 60 eVIN) (x1076)  2.4(7.4)* 2.5(0.21) 2.5(0.26) 1.6(6.4) 2.6(10) 4(10)
Tsimu (S/PS) 0.78(0.11) 1.3(0.2) 1.1(0.27) 1.1(0.22) 0.5(0.1) 1(0.27)
Tsimu (#coll/fs) 115(8.7) 330(11) 320(58) 180(32) 90(13) 160(37)
NZel/Ns (%) 0.14(0.017) 33(1.4) 41(2.4) 77(5) 74(6.2) 80(1.6)
ND®W/N¥ (%) 0 23(2.3) 29(3.1) 53(9.3) 48(12) 40(4.6)
>
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Fig. 5. Energy spectrum comparison of all five configurations and the Reference simulations defined in section 3. Top: (Physical) electron energy density. Bottom: Super-
electron tally in 100 bins defined uniformly from the cumulatively integrated target super-spectrum (as in Fig. 4 and eq. (15) with M = 100). Shaded areas represent the
errors calculated as the standard deviations of the 100 bin-tallies. An ideally resolved spectrum would tally equally in each bin and thus present a horizontal line. The x-axis

is shared for both figures.

fields: 10 MV/m and 5 MV/m (rows shaded in grey). Inevitably,
the fluctuations about the average kinetic energy are, on the long
run, higher when compaction is applied more frequently. Nonethe-
less, the aim of increasing resolution of electron energy density
at higher energies (above 15 or 60 eV) is only obtained with the
schemes A and B. Furthermore, the parting of A and B scores at 5
MV/m indicates that the lower the electric field, the more demand-
ing will be the goal of resolving higher-energy regions: compaction
should be applied more often. There quickly arises a compromise
among the resolutions desired above various energy thresholds.
While compacting every time-step amounts to an unnecessarily
frequent manipulation of the electron swarm, waiting a certain fac-
tor growth is not universally effective and is much affected by the
actual electric field applied.

This loss of efficiency can be seen on the cyclical “strain” ap-
plied on the simulated swarm after every compaction step. If the
interval is too long, the departure of ns ~ n} will require a higher
rearrangement to be made among the swarm. This can be mea-
sured by looking at the last two rows of Table 2 featuring the
proportion of super-electrons to be eliminated NEeI/NS and those
to be added N;‘dd prior to (Ns) and posterior to (Nj) compaction.
Those proportions are laid out graphically in Fig. 6. Evidently, the
higher N /N, the greater the information loss from the original
swarm per curtailment operation; an information that can be com-
pacted into a fraction as little as 20% of its original population in

the case of the “averaged” (E) scheme. The colour coding in Fig. 6
could help clarifying the terminology used; arguably one could dis-
tinguish the action of “curtailing” N; down to N super-particles
(height difference between red and blue column tops); and the ac-
tion of “compacting” the information of Ns into Ny (red column
top over green). Here, the “Reference” scheme is purely curtailing,
whereas A to E are also adding some particles split from previ-
ously existing ones. Thus, compaction is the combined action of
curtailing and splitting (as we had proposed in sec. 2.3).

An immediate consequence of this higher-energy resolution
boost is a surge in super-particle secondary ionisation right after
the compaction seen on Fig. 7. Without an uninterrupted supply
of higher-energy super-particles, the swarm will gradually evolve
back to a “super-less” distribution (each super-particle weight con-
verging back to a uniform value: the physical limit). Both figures (6
and 7) indicate that there is an increasing risk of introducing am-
plified sporadic stochastic fluctuations as more growth is allowed
to the swarm between two compaction operations. Several sam-
ples taken from D and E right after compaction presented a severe
deviation (accounting for the irregularity observed in Fig. 5-bottom
around 50 eV), albeit non-biased on average, from the actual mean
kinetic energy. This deviation is gradually damped as the swarm
grows without curtailment. The low absolute value of N in D and
the higher ratio of NJ-/N; for E are favouring factors for this de-
viation.
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Figures of merit for both 5 MV/m (rows shaded in gray) and 10 MV/m (non-shaded rows)
simulations for energy averages of selected electron populations. They are obtained from the
fluctuations (o) on the first three rows in Table 2 and the machine time (first row with Tgimy)
according to equation (22). At 5 MV/m there were no electrons observed above 60 eV except
for the first scheme A, which makes it the only successful case in estimating the swarm spec-

trum at higher energies.

Focus population  Reference  Fixed Plus quarter  Doubled Halved  Averaged
All 1734 369 473 776 753 723
3361 641 2411 2110 2076 2442
Any > 15 eV 90 237 279 178 210 169
103 750 145 145 122 135
Any > 60 eV 0.06 18 13 0.05 0.11 0.06
- 49 - - - -
6
1000001 /M-l Intact w0 Ref Plus Quart Halved
—— Reference —— Plus Quarter —— Halve
mm Removed .
Fixed —— Doubled —— Averaged

80000| W Added

60000| Before
40000

20000

Number of Simulated Particles

B D

C
Compaction Scheme

Fig. 6. Comparison of super-electron balances performed during a compaction oper-
ation. The original swarm begins at the top of the columns in red and is rearranged
into a resolution-boosted swarm at the top of the columns in green. Particles cur-
tailed (sec. 2.1) are represented in red; those that were left intact, in blue; and
those that are mere copied splinters (sec. 2.2) of intact particles, in green. The
height of blue columns should be taken thus as containing all the residual informa-
tion from the original swarm. Graphically, “curtailment” corresponds to removing
the red columns and leaving out the blue; to be contrasted with “compaction” that
rearranges the number of electrons in a swarm seen as column heights from left
(before) to right (after).

While Fig. 7 demarcates a clear dividing line between success-
ful and unsuccessful schemes for enhancing higher-energy regions,
the observation on Fig. 5-bottom seems to imply a gradual im-
provement from E to A, with C scoring somewhere in between.
The transition in success is probabilistic; after 1.3 ns of simulation,
the C scheme featured an electron whose maximal energy (100 eV)
was such that after compaction, the secondary production rate was
significantly boosted to shorten the pseudo-periodical compaction
time-lapse (construed as the peaks in Fig. 7). Once triggered, this
mechanism reinforces itself; since higher-energy electrons promote
a faster super-electron growth, this growth, in turn, increases the
compaction frequency and thus stabilises the supply in higher-
energy super-electrons. From 1.5 ns, the C scheme was able to
resolve energies up to several hundreds of eV at 10 MV/m as A
and B alike. The density plot in Fig. 5 shows that higher-energy
electrons could be ultimately resolved. Nevertheless, the FoM only
takes the fluctuations into account, which remain high for C since
more than half of the simulation time was spent without enhanced
spectral resolution. This implies that the maintenance of higher-
energy electrons in swarm simulations is a state and not a property
of the scheme chosen. The difference lies in the probability (almost
certain for A and B, low for C and even lower for D and E) with
which the scheme can foster higher-energy electrons.

Overall, the efficiency of a correct implementation of contrived
spectral compaction is demonstrated by considering how little FoM
(less than one order of magnitude) is lost on the total energy
average compared to how much is preserved at higher energies
(increase of 4 orders of magnitude above 60 eV or simply by hav-
ing any data at all for low electric fields).

10°

104

Super-Electron Production Rate (/ps)

Fig. 7. Super-Electron production rate for all five schemes. The discontinuous peaks
all correspond to the curtailment steps which means there is an immediate sec-
ondary super-electron production surge after compaction. This surge reduces in
amplitude as the curtailment frequency increases, due to an overall background rise
in secondary super-ionisation.

4. Discussion and conclusion

The use of super-particles in simulations translates as a re-
allocation of resolution in certain regions of space, energy, mo-
mentum, time or any other desired property. This reallocation
can be implemented by several means, including particle coales-
cence, resampling or probabilistic discarding/splitting. Using the
latter method, we presented here a specific application to elec-
tron swarms in standard air under high electric fields above the
conventional breakdown (~3 MV/m). The motivation was to in-
vestigate the small probability of occurrence of thermal runaway,
where amongst a very large swarm of electrons > 10'°, a few are
probabilistically able to accelerate up to higher kinetic energies of
several hundred eV or more. Runaway precursors (=60 eV) were
differentiated by thermal electrons (<15 eV) solely based on their
energy. The double-sided goal of both hosting such a large swarm
and favouring the conditions for observing thermal runaway, was
embodied by a so-called contrived target super-spectrum for the
energy distribution of super-particles. Its norm ensured a limit on
the number of super-particles, while its shape arranged their allo-
cation in energy-space.

When compacting a swarm, the loss in thermal-energy resolu-
tion in steady state is observed as an increase in the fluctuations
about the mean energy. The two causal factors were identified
as the particular shape chosen for the target super-spectrum ny(g)
with its norm Nj, maximal boundary &4 and possibly a minimal
allowed weight wy . ; and the frequency with which the com-
paction of a non-optimal to an optimally resolved spectrum is ap-
plied. The study about the influence of frequency was divided into
5 different implementations labelled from A to E. While n} lim-
its the expected number of super-particles in the thermal domain,
tuning the curtailment frequency amounts to choosing between a



A. Schmalzried, A. Luque and N. Lehtinen

repeated series of continual albeit small perturbations (A and B
schemes) as opposed to a sporadic occurrence of considerable per-
turbations to the swarm (C, D and especially E).

Depending on the electric field, the compaction frequency
might be ineffective, for a lower electric field will be less able
to sustain high-energy electrons and thus will require a more
frequent resupply of those. Although B performed best at 10
MV/m, its effectiveness (FoM) was greatly reduced under 5 MV/m
and overrun by scheme A. By imposing a minimal target weight
wi /N relative to the physical number of particles (N), the suc-
cess of observing an electron above a certain energy threshold can
be directly attributed to the physical probability occurrence in a
heavily populated swarm. This minimal weight thus acts as a tun-
able resolution parameter (lower value leads to higher resolution).

Overall, in order to fulfil the goal for resolving an electron
swarm at higher energies, it is best to carefully choose a target
super-spectrum shape that closely matches its physically expected
form and at the same time raises the occurrence probability of
rare super-electrons according to the total number of simulation
particles allowed in the code and the target energy domain to
be reached. Additionally, the compaction algorithm should ide-
ally be applied according to a periodicity based on the relaxation
time of the swarm for the given electric field. Without a reliable
model, this time can be estimated as the inverse of the swarm
mean kinetic energy growth rate (onset of “Reference” curve on
Fig. 3) starting from room-temperature initial conditions (i.e. vir-
tually equal to 0 eV). While a discrete partition of the spectrum
requires to define many bins to be able to reach adequate reso-
lution levels with restricted flexibility, the present continuous de-
scription of the target super-spectrum provides a systematic way
for applying preferential sampling.

The present algorithm could be extended to the application of
Relativistic Runaway Electron Avalanches that perhaps requires an-
other suitable contrived spectrum shape that would reach up to
few hundreds of MeV. Moreover, future improvements could also
seek to incorporate spatial dependence when the electric field is
highly inhomogeneous as at the tip of a streamer, and smooth the
compaction procedure into a continuous process rather than an
abrupt and discrete rectification. With those improvements, the al-
gorithm could be used to better characterise electron surfing on
negative streamer fronts and subsequent thermal runaway rates
depending on the applied external electric field.
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Appendix A. Relation to the importance function

Our method using the contrived spectrum as a way to dis-
criminate particles according to their energy can be equivalently
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described through the so-called importance function I(r) widely
used in Monte-Carlo particle literature [49,50, s. 7.5.1]. This func-
tion maps points 7 € R? in the particle phase-space into a real
positive value that appraises how contributive a particle of prop-
erties 7 is to the simulation output. Thus, when a particle moves
from a position ; to 7; with a substantial difference in importance,
the test proceeds as follows:

NG
= 1)

We can see here that there is a clear correspondence between
the importance function and the particle target weight. If we as-
sumed that all weights match exactly the target weights assigned,
then I(r) o« 1/w™*(r). Evidently, this is not always the case which is
why the weight-window extension is added to the particle man-
agement algorithm to offer a better control over the absolute
weight of a particle and its fluctuations. In terms of importance
function, we replace the target weight by isolating it in (3):

q <1:pr=1—q roulette test
q>1:ps([q])=1—(q— lq]) split test

w¥(e) = n(e) (A.2)
ng(e)
Iy o =) (A3)
n(e)

This is a well-known relation between the importance function
and the contrived distribution n} with a certain coefficient of pro-
portionality [9]. Thus, imposing either a target distribution or an
importance function leads to an equivalent setting for the simu-
lation, provided a reliable estimate of the real distribution n(e) is
available for any given energy & region. However, the importance
function methodology has several limitations making it inappropri-
ate for simulations of electric discharges:

1. Population control: the electron proliferation through impact
ionisation in intense electric fields (above conventional break-
down) is exponential. While the importance function enables
only a relative control on the particle weights, combined with
the weight-window, this control can become absolute. How-
ever, the total number of super-particles allowed in the sim-
ulation is not formally controlled. We thus sought a method
that maintains this number bounded.

2. Homogeneous domain: as opposed to calculations in nuclear
engineering where the position-energy space is discretised ac-
cording to the geometry of the problem [3], we simulate a
uniform gap filled with air. Therefore, there was no need for
using a fixed grid-partition of the phase-space and computing
importance jumps from region to region as through equation
(A.1). Spatial homogeneity justifies also why we focused only
on electron energy.

3. Unspecific optimisation: unlike when trying to maximise the re-
sponse to a detector [51], our approach seeks to highlight and
study the general characteristics of thermal runaway for which
there is no specific energy range whose sampling needed to
be levelled; we took instead a holistic approach to resolving
all higher-energy regions above the thermal domain.

4. Adjustable Spectral Resolution: as a transient phenomenon, ther-
mal runaway does not present a steady-state that can be pre-
calculated and used as an input into (A.3) to help determine
what importance function ought to be used. There is no a pri-
ori knowledge of the physical spectrum n(g,t), and thus we
found it more physically intuitive to think in terms of parti-
cle allocation per energy bin (=contrived spectrum) instead of
the more abstract relative particle importance according to its
energy (=importance function).
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For these four reasons - one to avoid computational overload and
three demanding flexibility - we took the path of setting the dis-
carding/splitting probabilities with the help of the contrived spec-
trum method. With a proper normalisation relationship (6), the
average number of particles allowed in the simulation after com-
paction should match N.
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