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Abstract We propose a system of evolution equations that
describe in-medium time-evolution of transverse-momentum-
dependent quark and gluon fragmentation functions. Further-
more, we solve this system of equations using Monte Carlo
methods. We then quantify the obtained solutions in terms
of a few characteristic features, namely the average trans-
verse momentum (|k|) and energy contained in a cone, which
allow us to see different behaviour of quark and gluon ini-
tiated final-state radiation. In particular, the later allows us
to conclude that in the gluon-initiated processes there is less
energy in a cone, so that the quark jet is more collimated.

1 Introduction

Quantum Chromodynamics (QCD) is the well established
theory of strong interactions [1]. In heavy-ion collisions,
nuclear matter becomes subject to extreme conditions which
leads to the appearance of a quark—gluon plasma [2]. This
new state of matter leads to profound experimental implica-
tions, in particular for hard, or high- p7, observables such as
jets [3-5], a phenomenon referred to as “jet quenching.”

In this study we plan to focus on certain aspects of
jet quenching predicted in [6,7], and observed experimen-
tally at the hadron colliders RHIC [8] and LHC [9]. Jet
quenching refers generally to the suppression of jets and
high-pr hadrons in heavy-ion collisions due to interactions
between hard partons and the quark—gluon plasma (QGP).
This phenomenon is studied using various frameworks: semi-
analytical [10-17], see also [18-21], and numerical methods
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[22-24] to approach parton splitting in the medium, kinetic
theory [25-29], the AdS/CFT based approaches [30,31] and,
finally, Monte Carlo methods [32-39]. In terms of observ-
ables, jet quenching induces a broad range of effects that
modify the internal jet substructure, contribute to out-of-cone
energy loss, the decorrelation of back-to-back jets, and jet
thermalization. In the recent years the particular interest was
focused on the turbulent process of transferring energy from
highly energetic gluon jet to soft gluons [40]. This process
happens without accumulation of energy by the gluons with
moderate values of longitudinal momentum fraction. One of
the recently actively investigated problems is the simultane-
ous evolution of quarks and gluons in the QGP studied in
connection to turbulent behaviour introduced above. In [41]
it has been demonstrated that the quark to gluon ratio of
the soft fragments tends to a universal constant value that is
independent of the initial conditions.

In this paper we would like generalise this discussion intro-
ducing transverse momentum dependence of quarks and glu-
ons. Besides confirming the findings of [41] our analysis will
allow to have more detail information about structure of jets
as well as to understand better the broadening phenomenon
which is directly linked to transverse momentum dependence
of fragmentation functions. In particular, in the recent study
by some of us, we solved [39] the equation that takes into
account momentum broadening both during branching and
via elastic scattering. The resulting distribution is consider-
ably different then the one which accounts only for broaden-
ing during elastic scattering. Furthermore, the distributions
have harder spectrum than the usually used Gaussian distri-
butions which are used to generate transverse momentum dis-
tribution factorised from distribution in longitudinal momen-
tum. To address this problem also in the quark case, we gener-
alise the discussion in [42,43] and obtain a system of equa-
tions linking quarks and gluons. In this approach, QGP is
modelled by static centres and a jet interacts with it weakly.
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Fig. 1 Illustration of the splitting function X;;(@Q, z, t) for the ¢ —
g + g splitting, where Q =k — zp

The jet propagating through plasma branches according to
BDMPS-Z mechanism [10-15,25-28] and gets broader due
to elastic scattering with plasma. Furthermore, we solve the
equations in full generality, i.e. accounting for broadening
during branching and due to elastic collisions.

The paper is organised as follows. In the Sect. 2, we derive
branching kernels for quarks and gluons. The kernels allow
for splitting of quarks and gluons and also account for trans-
verse momentum dependence. In Sect. 3, we write a system
of evolution equations for quarks and gluons and present its
formal solution. In Sect. 4, we present distributions resulting
from numerical solutions of the equations as well as results
for an average transverse momentum and jet energy in a
cone as a function of the cone opening angle. Then, Sect. 5
concludes the paper. Some further details on the evolution
equations and their solutions are collected in three appen-
dices. In Appendix A, we give explicit formulae for the split-
ting functions we use in our equations. In Appendix B, we
provide evolution equations derived from the general ones
after partial integration over some variables.For reference, in
Appendix C we provide the first-order perturbative estimate
of the full distributions. Finally, Appendix D contains brief
descriptions of numerical methods used to solve the above
equations, i.e. two Monte Carlo algorithms and a method
based on the Chebyshev polynomials, as well as results of
their numerical cross-checks (Fig. 1).

2 Transverse-momentum-dependent splitting kernels

We shall be interested in computing the 1 — 2 in-medium
splitting kernel, given by [42]

,5’”( ) a2
Re dAt
/ / ()% (27)?

><(P~ QS) (P, Q. 1z, AL, (1)

Kij(Q.z, pg) =

where wg = z(1 — z)po ,and P( )(z) are the (unregularised)
Altarelli—Parisi splitting functlons for different QCD split-
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ting processes.! The three-point correlator Si(;) in momentum
space, reads

S(P, Q.12 AL 1) = / d*u d*uyd?y e Prina @mivd

X Lij(up, At +t;uyp, 1), ()

where Z;; refers to the path integral,

u(t2)=uy

Lij(uz, tr;uy, ty) 2/

u(t))=u;

D el B iE ds i ()= [ ds n(s)oer (u(s).0)
3)

Here, n(s) is the density of scattering centres in the medium,
and

Ci+Cy—C;
Oefr (1, v) = %o(u)
Ci+C;—C
+%k o+ (1 —2)u)
Ci+C; —C;
+% o(v—zu). 4)

This path integral describes the relative motion of the three
internal lines of the three-point correlator during the time
interval , — 1. This can be made clear if we introduce the
variablesu = r; —ryand v = zr; + (1 — 2)ry — r;. In this
case, the effective potential takes the form

Ci+C—Cj _
Oeit (ro, ri, r2) = %U("k —r;)
Ci+Cj—Cy _
+lf o(ri—rj)
Cr+C Ci _
AT -1y, Q)
2
where
i} d*q iar\ -
_ | %9 (i _ igr
5 = [ s (1=¢7) @), ©

and w(q) = d%6/d%q is the elastic scattering potential
of the medium stripped of the relevant colour factor (e.g.
we(q) = Ncw(g) and wy(g) = Crw(q)). In this work,
we work with the thermal HTL potential, see (22) below. In
Egs. (5) and (6), the C;’s are the squared Casimir operators
of the colour representation of the three correlated particles.
Equation (6) can be proven directly by writing down the rel-
evant 3-point functions for each individual splitting in Fig. 2.
However, a more general argument relies on the properties
of colour conservation [13], and can be extended to higher-
order correlators as well [44]. Basically, the subtraction terms

' As usual, the index “;” refers to the parton that is splitting, and “i”
refers to the parton that takes the momentum fraction z. The parton with
an index “k” takes the momentum fraction 1 — z.
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in (5) correspond to the combined colour representations of
the two interacting particles. For a 3-body problem, and due
to colour conservation in the medium, the subtraction terms,
e.g. ~ —Coo (r; — ry), necessarily have to be related to the
Casimir of the particle not involved in the scattering.

For a medium with constant density, i.e. n(t) = ng for
0 < t < L, and in the harmonic oscillator approximation,
noo (r) ~ c?r2 /4, we getan effective jet quenching parameter

Gij(2) = fij(q 7
where
Ci+Ci—C; Ci+C;j—C
fi) =TT T TR g2
2 2
Ce+Cj—C;
+%z2. (8)

Explicitly, we have

feg(2) = (1 = 2)Ca +2°Ca,
fae(2) =Cr —z(1 =2)Cy,

feq(@ = (1 —2)Ca +2*CF ,
faq(2) = 2Ca + (1 — 2)*Cp .

It is worth keeping in mind that, in the jet quenching liter-
ature, the jet transport parameter ¢ often refers to the gluon
contribution, i.e. § = g4 = Ncé. To summarise the results,
for processes involving a gluon emission, i.e. R — g + R,
where the gluon takes away the momentum fraction z, we
get

©))

N, 2C .
Gor(2) = > [1+< NCR - 1) 2+3 —z)2:|q, (10)

and in the special case of g — g + g, we get

20 .
Ggq(2) = > [( Nf —1>+z2+(1—z)2}q. (11)

With these approximations, the solution to the path integral
TZ;j(u2; uy) can be written as

Zij(uz; uy) = __oothy
A B = i sinh Q,-/At

wo 207 [(uz ul)zcoth +(u2+u1)2tanh

xe' ] 12)

where Q;; = lzi,/ fij (z)cA} /wo. After performing the Fourier

transforms in Eq. (2), we finally obtain
2mi
a)()Q,'/' sinh Q,‘j At

i 2 z/ 2 l/
o T [(P+0)? tanh 5= 4 (P— 0)? coth ] 13)

SP, Q.2 At 1) =

which, within these approximations, is time-independent.
Finally, we integrate out P and At to obtain the splitting
function

2P . [ 0 0’
Kii(Q,z, p) = —L_ sin[ = |exp | — ;
N 07T 0 —2pg T A TS
(14)
2 _ + - 2. .
where k. = \/ z(1 = z) py fij(2)q is the typical transverse

momentum accumulated during the time it takes to split, also
called the formation time. This agrees with the expression
derived in [45].

To make contact with previous works, that did not include
the transverse-momentum dependence in the splitting func-
tion, we can also rewrite Eq. (14) as

Jij(2)
o Kij(Q.2. py) = 5= Py (@) 7= Rir( Q- ki)
(15)
where
A7 Q2 QZ
Rij(Q, kbr) = kbr —- sin (I&) exp < iﬁr) . (16)

The factor R;;(Q, k%r) represents the broadening that takes
place during the formation time of the splitting which is char-
acterised by (ki) ~ kgr, and is normalised

d>Q

2 )2731](Q ko) = 1. 7)

Note also that this distribution reduces to a Dirac §-function
when the transverse momentum accumulated during the
formation time kgr tends to zero, hmkgr»o Rij(Q, k%r) =
(27)%5(Q).

Finally, in Eq. (15), we have also defined the analog of the
stopping time for a jet with p(‘)" , namely

+
=2 [P (18)
Uy q_

When dealing with both quark and gluon contributions to
the splitting processes, this expression is stripped of the rel-
evant colour factors. For purely gluon cascades, the correct
stopping time is rather #, = N, / Iy

3 Evolution equations and their formal Monte Carlo
solutions

Using the branching kernels of the previous sections together
with scattering kernels it is possible to obtain a system of
equations for the evolution with time ¢ of fragmentation func-
tions D, for particles of type a (a = g for gluons or a = g;
for quarks and antiquarks of the flavour i) or equivalently of
multiplicity distributions F,, which are defined as

@ Springer
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to h to

Fig. 2 Three of the considered colour-singlet medium correlators con-
tributing to splitting processes in the medium. All lines represent dressed
propagators resumming multiple scattering with the medium between
time 7, corresponding to the time of splitting in the amplitude, and 71,

Dy(x,k,t) :==xF,(x,k,1), with

>N,
F,(x,k,t) := . 19
ae k) = (19)

In this section we formulate the evolution equations for
the fragmentation functions and describe their Monte Carlo
solutions (implemented in the MINCAS program), while the
equivalent equations for multiplicity distributions have anal-
ogous Monte Carlo solutions (implemented in the TMDICE
program). The evolution equations for the fragmentation
functions can be written as

ad ! d%q
—Do(x,k, 1) = d —
ek = [ 4z [ e
X X
X {Z:Kgg (Q, Z, —P(-)’_> Dg <_v q9t>
Z Z
X X
+g<gq <Qa 2, ;pa_) ZD%’ <Za qat)
i
- I::Kgg(qv 2, XP(T)

+ Kye(q. z, xpg)] Dg(x, k, t)}
d?l
+ ch(l) Dg(x,k—1,1), (20)
9 1 d2q
—D, (x,k, 1) = d —
8t qi (x ) /(; < / (27_[)2“5
X X
X {quq (Q,z, —pa“) Dy, (—,q,t)
z z
1 X X
+ N—Fqug (Q,Z, zp;) Dg <E,q, l‘)
— Kyq(q, 2, xpy) Dq,.(x,k,t)}

d?l
+/ch(1) in(x,k—l,t),

where Q = k—zq, and the index i runs over all active quarks
and antiquarks (i = 1, ..., 2NF where N is the number of
active quark flavours in the cascade). The strong coupling
constant «; in Eq. (20) is a function of the relative transverse

@ Springer

t lo 3]

Y

corresponding to the splitting time in the complex conjugate ampli-
tude. The two upper lines live in the amplitude, and have “mass”
wy = (1 — z2)wp and w| = zwy, respectively from the top, while the
lower line lives in the c.c. amplitude, and carries wq

momentum Q2 ~ kgr. However, we treat it here as constant:
oy ~ 0.3 (for the concrete parameter choices, see below).
The elastic collision kernel Cy,)(!) is given by

Cuto = i) = 5(0) [ @1 w0 1), e
where

Nc 4” C 4}1
we(l) = % wgl) = 528 (22)

(1% +m%)’ A% +m?)’
is the HTL in-medium potential, where m p is the Debye mass
and n the density of scattering centres in a thermal medium.
At leading-order, they are given by m%) ={+ny /6)g>T?
andn = sz T/g?, where n 7 is the number of active flavours
in the medium. The coupling to the medium g should be
evaluated at the scale of the temperature ~ 27 T'. In this work,
we however keep it fixed at the same value as the coupling
in the medium-cascade, namely g = (Amag)t/? ~ 2, see the
concrete parameter choices below. For the HTL potential,
the bare jet transport coefficient is then q: = 4not3n, see e.g.
[19].

In the limit of the gluon-dominated cascade, where the
quark contributions can be neglected, one obtains the fol-
lowing evolution equation:

9 ! d%q
—D k,t) = d —
8t g(-xa I ) v/(\) Z / (27_[)2“‘3‘

X X
x [29<gg <Q, z, ZpJ) Dy <Z’ q, t>

—Kg(q, 2, xpg) Dg(x, k., 1)]
d?l
+/ch(1) De(x,k—1,1), (23)

which agrees with previous results [42]. In this work, we
study the interplay between quark and gluon degrees of free-
dom in the cascade.

In order to solve the evolution equations (20) with Markov
Chain Monte Carlo (MCMC) methods, first we need to trans-
form them into the form of integral equations of the Volterra
type, similarly as in Ref. [38] for the pure gluon case. We
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start from introducing some useful notation that will facil-
itate expressing the corresponding equations in a compact
and transparent form.

For transparency in the set of coupled evolution equations,
let us now redefine the indices /, J to run over all parton
flavours, i.e. quarks, antiquarks and gluons, so that

LJel{q,....qN Q15 - qNp> 8) 24

and new @-dependent evolution kernels C;;(z,y, Q),
defined as

K@y @ =5 ﬂuww@&@uzxuuzzym>
25)
= %(1 +81485¢) Prs (D) Ris(Q. 2. ypd)
(26)

where Prj(z) are the z-dependent in-medium splitting
functions,>? R;;(Q, z, pg') = Ryj(0,z, par)/(27r)2 and
Kegi = Kggq, Kgig = Kgg/Nr, and Ky, = 8ijKqq. The
factor (1 + §76876) accounts for the symmetry factor that
appears in the gluon—gluon splitting. The expressions for the
full set of the splitting functions are given in Appendix A.

Then, let us introduce the Sudakov form-factor W (x) that
resums all unresolved branchings and scatterings:

Wy (x) =®;(x) + Wy, (27)
where

D) =Y Dy(x),

J
1—e

By1(x) = /0 dz / P 0K G x, 0) (28)
and
W; =t / Al wr(). (29)

P st @2

The full branching—scattering kernel can be expressed as
S1s(z,y, 0, ) =Kz, y, Q)01 —e —2)8()

- wr(l)
+t *(2 )2 9(|l| - lmin)5(1 - Z)S(Q)(S]J .
(30)

The analogous branching—scattering kernel G,y of the evo-
lution equations of the multiplicity distributions F; can be
obtained with the sole replacement of K;;(z,y, Q) +—

Kz, y, Q) =Kz, y, Q)/z

2 In earlier works, the z-dependent splitting functions were denoted by
K17 (z). Here, we have changed the notation in order to avoid confusion
with the z and Q dependent splitting functions Ky (z, y, Q).

With the above notation and after introducing a dimen-
sionless evolution time T = ¢/, Eq. (20) can be cast in a
simple form, namely

iD[()C k 'L') + \IJI(X)DI()C k ‘L')
/dyf dz/dzk’/dZQ/d2
x8(x —zy) 8k —1 — Q — zk)
XZSIJ(ZJ” Q’I)Dl(yﬂkvt)-

J

€1y

Their formal solution in terms of the Volterra-type integral
equations reads

Dy (x, k, ‘L’()) e_‘ljl(x)(‘f—ro)

T 1 1
+ / dr// dy/dz/dzk’
; 70 0 0

x /sz/dzl G171y, Q.1 Dy(y. K, 7')

x e—\IJ,(x)(r—r/) S(x

DI()C, k, T) =
(32)

-8tk —1—Q—zk'),

where 1) = fo/1; is the initial time for the evolution. The
above integral equations can be solved numerically by itera-
tion,

1
D;(x, k, 1) =§ f dxofdzko
0
Jo

x {e—‘”fo @) T=70) 5, §(x — x0) 8(k — ko)
o0 n

+> 2 11
n=1Jy,J2,....Jpi=1

T 1
x[/ dr,«/ dz; deQi /d%
Ti—] 0

% Gy @iy xiot, Qi,li)€7W’f*‘('xi")(r’7fi")}

(33)

x e YT ) s (x — x) 8(k — kn>}
x Dy, (x0, ko, T0) ,
where

xi=zixi—1, ki=Q;+I1li+zki. (34)

Similar solutions can be obtained for the evolution equations
(59) and (60) given in Appendix B. In the case of Eq. (59)
one only needs to replace in Eq. (30): K;;(z,y, Q) —
(1//¥)zK (), while for Eq. (60) in addition set w; (1) = 0.
The most efficient way of numerical evaluations of the above
iterative solutions is by employing the Markov Chain Monte
Carlo (MCMC) methods, similar as in Ref. [38]. These meth-
ods as well as the appropriate algorithms are described in
Appendix D.

@ Springer
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4 Numerical results

In this section we present results that we obtained as solu-
tions of equations (20). We plot transverse 2D distributions as
well as their projections. Furthermore, we use the solutions to
construct characteristic features that allow us to understand
better the physical effects of transverse momentum broad-
ening and differences between quark and gluon jets. Further
numerical results concerning cross-checks of different meth-
ods and programs used for solving of the above equations are
presented in Appendix D.

Our numerical results have been obtained for the following
values of the input parameters:

Xmin = 1074, € =10"%  Ipnin = 0.1GeV, (35)
N, =3, Np=3, ay=mr/10, (36)

E =100GeV, n =0.243GeV>,

g =1GeV?*/fm, mp = 0.993GeV. (37)
In the case of the initial gluon the starting distributions are:
Dy(x. k.t =19) = DY (x, k) = x8(1 — x)8(k) ,

Ds(x, k.t =19) = DY (x, k) =0, (38)
while the case of the initial quark:

DO k) =0, DY (. k)=x58(1-xsk). (39

where the index g denotes gluons while S — the quark-singlet,
i.e. the sum of active quarks and antiquarks.

4.1 Results for fragmentation functions

As a first result, we present solutions of system of equations
that follows from our equations after one performs the inte-
gral over transverse momentum. The goal of this calculation
is to obtain by independent calculations results presented in
[41]. The integrated fragmentation functions reads

Di(x,1) =/d2kD1(x,k, 7). (40)

Since we present the results in terms of k7 = |k| dependence,
we introduce the distribution

2
Dy(x,kr,1) :/ d¢ kr Dy(x, k, t), such that
0

Dy(x,t) = /dkT Dy (x, kr,1). (41)

To solve the system of the evolution equations we have used
two Monte Carlo programs, MINCAS and TMDICE, as well
as the numerical method based on the Chebyshev polynomi-
als. The corresponding algorithms are explicitly presented
in Appendix D. The results of Monte Carlo programs agree
very well, therefore here we present the results obtained only

@ Springer

by MINCAS. The plots comparing the Monte Carlo solu-
tions obtained by MINCAS and TMDICE are shown in the
Appendix D. Furthermore, we compare the distributions to a
perturbative estimate in Appendix C.

Furthermore, by visually comparing our results in Fig. 3
to the ones presented in [41], we see that we get the same
features of the distributions, i.e. energy is not accumulated
at the moderate values of x. Simultaneously, the distribu-
tions increase at small x values, following roughly the 1//x
behaviour for the gluons and the quark-singlet for the case
of the initial gluon and a similar behaviour for the case of
the initial quark. In the case of the initial gluon at late times
there is a region, at high x, where quarks dominate. In the
case of the initial quark, gluons tend to dominate if x is low
for all time scales, while quarks dominate at x > 0.5.

In Fig. 4, we show the kr-dependent distributions inte-
grated over the longitudinal momenta, given in Eq. (40). One
can clearly see that as the time progresses the distribution
for both quarks and gluons become wider. Furthermore, the
distributions of gluons are higher than that of quarks if glu-
ons are in the initial state, and similarly, the distributions of
quarks are higher than that of gluons if quarks are in the initial
state.

The complete 2D distributions, visualising both the x and
kr-dependence, are presented in Figs. 5 and 6 for the initial
gluon and quark, respectively. One can can see that the late
time behaviour is very similar in processes initiated by quarks
or gluons. This behaviour can be linked to diffusive properties
of the jet-medium interactions. Furthermore, while there are
some differences in large x part of the spectra, the shape at
low x is rather universal.

4.2 Multiplicity distributions

We have also obtained the results for specific times ¢ in
terms of the multiplicity distributions

dN [e'e) 2w
el A krdkT/O de Fg(x,k,z>+lZFqi(x,k,z) :

(42)

dN 1 2
Tt :/0 dex/O dqb{Eg(x,k,t)-l—lZFqi(x,k,t)} :
(43)

for jets in the medium with the TMDICE algorithm. For
the numerical calculations, the same constraints as given in
Egs. (35), (36), and (37) were used, with the exception of
Xmin, Where xmin = 10~2 was chosen. The multiplicity dis-
tributions are not infrared and collinearly safe observables,
and they considerably depend on the cut-off scale xp;,. In the
solution to the evolution equations (20), xmin corresponds
to an energy scale at which the assumption that coherent
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Fig. 3 The /xD(x, t) distributions at the time-scales t = 0.1, 1,4 fm: cascades initiated by gluon (left) and quark (right). The dashed lines
correspond to the quark distributions while the solid lines to the gluon distributions
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Fig. 4 The D(kr, t) distributions for w(l) o 1 / (2 (m2D +1 2)] at the time-scales + = 0.1, 1, 4 fm: cascades initiated by gluon (left) and quark
(right). The dashed lines correspond to the quark distributions while the solid lines to the gluon distributions

medium-induced radiation and scatterings occur and domi-
nate breaks down. Thus, we assume for this energy scale an
estimate x E = 1 GeV which is still larger than the medium
temperature (where we assume that jet-particles thermalize),
but of the same order. The numerical results are shown in
Fig. 7 for the time scales of + = 2fm and 4 fm, for jets
initiated by either a quark or a gluon. As can be seen for
the distribution in x, the peak in the infrared region that
is suppressed by a factor x in the fragmentation functions
D(x) in Fig. 14 is much more pronounced in Fig. 7, showing
that the infrared contributions to the jet-multiplicity domi-
nate at large time scales. The distributions in k7 exhibit an
increasing broadening with large time scales that is more pro-
nounced for the jets initiated by gluons than those initiated by
quarks.

4.3 Characteristic features of cascades

In this section, we present our results for some useful charac-
teristic features of the cascades. These should not be confused
with observables that can be measured directly in experiment,
but rather as projections or “summary statistics” containing
the most important information of the cascades described in
the previous section.

The first feature we discuss, is the average transverse
momentum. It is defined as

" >_fd2k|k|D(x,k, 0 Jo dkr kzD(x, kr, 1)
T T @k Dk ) [ dky kr DCx k1)

(44)

where k7 = |k|, as a function of x evaluated for different evo-
lution time values. Overall, we see in Fig. 8 that the distribu-
tions both for the initial-state gluons and initial-state quarks
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Initial gluon: Bg(x,kT,t = 0.1 fm) [GeV| Initial gluon: ISS(x,kT,t = 0.1 fm) [GeV ]

Fig. 5 The gluon (left) and quark (right) k7 vs. x distributions for cascades initiated by gluons with w(l) o< 1/[1 2(m%) + I%)] at the time-scales
t=0.1,1,4fm
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Initial quark: ISg(x,kT,t = 0.1 fm) [GeV]

Initial quark: ISS(x,kT,t = 0.1 fm) [GeV]

Initial quark: ISS(x,kT,t =4 fm) [GeV'1]

Fig. 6 The gluon (left) and quark (right) k7 vs. x distributions for cascades initiated by quarks with w(l) oc 1/[1 Z(m%) + lz)] at the time-scales

t =0.1,1,4fm

are rather similar, i.e. as x gets smaller and smaller the aver-
age kr gets smaller, meaning that soft mini-jets become delo-
calised. The distributions for different times tend to merge
as x gets small enough. One can see certain differences if
one compares the distributions for the final quark vs. the
final gluon as time progresses. The slopes of the distribu-
tions become different. This is consistent with the obtained
earlier results for the fragmentation functions and suggests
that gluons have harder momenta than quarks and dominate
at larger values of x.

In order to draw further attention to small angles, close to
the direction of the parent parton, we plot the average angle
(@) as a function of the momentum fraction x in Fig. 9, where
6 (following the light-cone kinematics) is defined as

l2
6 = arccos Pz , p;=xE——,
E, 4dx E
12

E,=xE+ ——. 45
px+4xE 45)
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Fig. 7 Multiplicity

distributions generated by 102
TMDICE in x (left) and k7 dN F
(right) for cascades initiated by dx. 10 R

quarks and gluons as indicated
for the evolution equations (20)
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Fig. 8 The average transverse momentum (kr) versus log;, x for the evolution equations (20) with w(l) o 1/ [l2 (sz +1 2)] for the time-scales

t=0.1,1,2,4fm
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Eq. (50) (dotted lines) and analytical ansatz in Eq. (47)(green dashed
line). The curves for the analytical Ansatz are plotted only in the case

of pure gluon jets
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Fig. 11 Time evolution of the jet energy in a fixed cone with 6 = 0.1
(upper panels) and & = 1 (lower panels) for the initial gluon jet (left
panels) and the initial quark jet (right panels) in the case of the kr-
dependent branching and w(l) o« 1/ [lz(m%) + lz)] (solid lines), the

This sheds light on the internal structure of jets. We observe
that gluons in the cascade typically occupy larger angles than
the quarks. The average angle for gluons also grows as we
go to smaller x, which is caused by broadening. This is in
line with earlier observations. We also note that the average
angles are very similar for gluon-initiated and quark-initiated
cascades from early times.

The next characteristic feature that we study is the energy

contained inside a cone-angle ® around an initial parton
defined as

1 xE sin ® 5
Eincone(©) = f d / dkr D, kr, 1) (46)
0 0

The observable measures the amount of energy that is con-
tained in a cone. Clearly, we see in Fig. 10 that the config-
uration that maximises this observable is the one where the
type of the parton does not change. Furthermore, since the
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Initial quark, ® = 0.1
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Gaussian approximation in Eq. (50) (dotted lines) and the analytical
Ansatz in Eq. (47) (green dashed line); the red lines correspond to the
final gluon jets and the blue lines to the final quark jets. The curves for
the analytical Ansatz are plotted only in the case of pure gluon jets

quark contains more in-cone energy, we conclude that it is
more collimated.

We can compare this to an analytical Ansatz of how the
distribution should look like:
Da(x,k,t) = Do(x, 1) P(k, 1), (47)

where we approximate the x distribution with the analytical
solution for a purely gluonic cascade [40],
t/ts

2
s (_ﬂ (1/15) ) ,
Vx(l —x)3 l—x

where now f,, = N, 3/2 t., and the broadening distribution is

Do(x,1) =

(48)

47 K’
Pk,t)=—exp|—5) . (49)
qt qt
This Ansatz should, in principle, only be compared to the
gluon distribution resulting from a fragmenting gluon.
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Besides this, we compare the results to
Dg(x,k,t) = D(x,t) P(k, 1), (50)

where P (k, t) is given by Eq. (49), while the x distribution is
given by a numerical solution of Eq. (60), i.e. the evolution
equations for the energy distribution. All of the results for
the initial gluon feature universal slow growth if the angle is
large enough, while for the processes initiated by the quark
we see that the energy saturates.

Furthermore, by comparing the fully analytical Ansatz
Da (x, k, t) with other results, we see that both agree at large
angles, while at small angles, the analytical results overesti-
mate the amount of energy in the cone. The fully analytical
Ansatz Da(x, k, t) predicts more collimated jets than the
other distributions. This is because, as realised in [38], the
analytical distribution given by the Gaussian function P (k, t)
is narrower than the one obtained from the exact numerical
solution which can be viewed as superposition of many Gaus-
sians with different widths. The above plots allow us also to
conclude that the k7 dependence controls the angle at which
the distribution starts to saturate.

The final feature that we discuss is the normalised amount
of energy in a cone as a function of time. The results are
presented in Fig. 11. One can clearly see that for processes
with quarks in the initial state, quarks dominate at any time-
scales in both scenarios for the angles that we consider. But
what is more striking is that even when gluons are in the
initial state, quarks start to dominate at late times. One can
also see that the analytical solution Eq. (47) overshoots the
Monte Carlo solution of Eq. (23) for the short time-scales
while underestimates it for the long time-scales.

5 Conclusions

Our goal in this work was to study simultaneous evolution
of quarks and gluons with transverse and longitudinal frag-
mentation functions in medium. In order to achieve that, first
of all, we have introduced transverse-momentum-dependent
splitting kernels that take into account broadening during
branching. The derivation assumes that there is a local in time
factorisation between longitudinal and transverse momen-
tum dependence, valid when the transverse momentum is
much smaller than the total energy of the collision. The
obtained system of equations has been solved in full general-
ity using Monte Carlo methods as well as by the Chebyshev-
polynomial method applied to the equations for the energy
distribution.

Using the obtained solutions we have defined some char-
acteristic features that allow us to demonstrate that

e asevolution in time progresses gluons broaden more than
quarks, see Fig. 4;

e atlate times, for both quarks and gluons, there is universal
distribution in (k7) at low x;

e quarks are more collimated than gluons — this we con-
clude from the calculation of energy contained in a cone
(in the case of quarks more energy is contained in a cone);

e quarks dominate at late times, see Fig. 11.

We should add here that our study breaks down at x ~
10~ where one should account for thermalisation and pos-
sible recombination of gluons, solving an appropriate Boltz-
mann equation that also accounts for elastic rescattering.

As an outlook, we mention here several improvements
that are natural to consider for future work. A natural step is
to account for medium expansion. This was already imple-
mented for a purely radiative cascade in [46,47], which made
use of appropriate splitting kernels in an expanding back-
ground. Furthermore, it would be interesting to extend the
formalism presented in this paper to include hard emissions,
generated by rare, hard scatterings, as developed in [18-
21,48] which also is well suited for expanding media, see
also [23,24,49,50] for numerical approaches to evaluating
the splitting kernel. Finally, we also notice that coherence
effects are important to account for finite-size medium cor-
rections [51]. These extensions are, however, beyond the
scope of the current paper.
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Appendix A: Splitting functions

Here we provide exact equations for the splitting functions
we are using. The main object is the splitting function
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Z
Kri(z,y, Q) = — (1 +814874)
ﬁ 8¥J g
xPr1(@)Ri7(Q, 2, ypd) (51)
where
_ 1
R(Q,z.pf) = ———
(Q.z Po) ﬂktz,r(z,pa’)
. 0? 0?
X Sin |:2k§r(z,par)j| exp [W} ) (52)
and
Kz ) =20 = D¢ 1104 (53)

where the functions f7;(z) can be read off from Eq. (9).
Finally, the z-dependent in-medium splitting functions are
defined as

1 4
Pri(z) = EP[J(Z)‘/ zj(cij—(zz)) , (54)

where we use the following expressions for the unregularised

Altarelli-Parisi splitting functions:

P, (z) =C M (55)

WA -y
1 2 2
Pue@ =~ Pu@=To[+1-2],  (6)
NF
L+(1-27°
qul- (z) = 8q (z) =Cr f s (57
1+ 22

Pyg; (@) = 8ijPyg ), Pyg(@ =Cr 4. (58)

Appendix B: Other forms of evolution equations

For completeness, we present here also the equations
obtained from Eq. (20) by neglecting the transverse momen-
tum accumulated during branching, kgr ~ 0, and integrating
over the momentum transfer Q, we get

9 i 1 5 1 /z x k
EDg(X, ,T): b dz ng(z) 27 ;Dg ;s ;:T

Z
_ﬁDg(X,k, f)}
Z

1
— dz2P,0(2) Dg(x,k, 1)
/(.) q8 ﬁ 8
1 1 /z x k
+/(.) CIZ,]ng(Z)Z*2 ;Xi:Dq’- (E,g,l’>
+f/ L Co()D(x,k—1,71)
) X, K — 1, s
*)oen?E

3 In the expression for Py, we omit a factor of 2, as used e.g. in Ref.
[52], since it is accounted for as a multiplicative factor of the kernel
Kge in Eq. (20).
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ad 1 1 [z x k
EDql (.x,k, T) = A dZqu(Z) [;J;Dq, (;a gs T)

1
_ﬁin (x, k, r)]

1 1 1 /z x k
+N7F./() dzlpqg(Z)Zfz ;Dg (E,EHE)
i} d2
+e [ 53 G DGk =L). (59)

where T = 1/t, and the sum over i runs over both quarks
and antiquarks. By integrating out completely the transverse
momentum, we obtain

d 1 z X
ng(x, T) = /(; dz 2P (2) [\/;Dg (; ‘[)

1
—%Dg(x,r)] —/0 dzZ’qu(z)%

+/1d Peg(,/ =Y D (f r)
b 2 gq\Z x & %\ ,
d 1 [z X
EDLII-(X,T):‘/O\ dz'qu(Z)[ ;in (;,T)

1
——= Dy x, r)]

=
1 1
+N—F/O dz qu(z)\/gpg (E r) . (60)

We can also rewrite the latter equations in the gluon/
singlet/non-singlet basis [41], where we find

il ! z X Z
EDg(x, T) = /0 dz2Pge(2) [\/;Dg <; r) — ﬁDg(x, r)]

1
b4
— /0 dz 2qu(z)ﬁ

! Z P
+/O dZqu(Z),/;DS (;,T> ,
9 pyen) = /ld Pag@ ||/ <Ds (=
5 Dstx.T) = A 2 Pyq(z P\ 70T
1 ! ,
_WDS(X’”]+/O 42 2Py (), < D (§r> :
0 i 1 Z i X
ED](V)S(x,r) :/0 dz Pyq(2) |:w/;D§v>s <;,r>

1 .
_ﬁuggu,ﬂ] , (61)

Dg(x,7)

Dyg(x, )

Dys = Dy, — D; (62)

i

At this level, we see that it is quite natural to absorb an extra
factor 2 into the gluon—gluon and gluon—quark splitting func-
tions, respectively. Compared to the notation in [41], we iden-
tify their splitting functions with ours as: Kgg(2) = 2Pge(2),
Kqg(z) = 2Pye(2), Kgq(2) = Pgq(z) and Kyq (2) = Pyq(2).



Eur. Phys. J. C (2022) 82:355

Page 15 of 21 355

Appendix C: First-order perturbative estimate of the dis-
tribution functions

Itis very instructive to compare the result of the full medium
evolution with a perturbative estimate which only accounts
for one single emission or elastic scattering with the medium.
In this Appendix, we summarise the results for such a first-
order perturbative estimate based on formulas .

For the partonic gluon initiator,

DY (x.k)=x8(1—x)8P(k), and D (x.k) =0,

(63)

we find the first-order perturbative estimate to be,
1
DV (x, k. 8t) = DO (x. k) {1 — ot |:as /0 dz (Kgg(z, pg)

+ d’q
+Kge(z, Py)) +/ )2 wg(q)“

St
+ — ) [2% xXKgq(k, x, po)
+x8(1 — x)wg(k)] (64)
1)
D (x, k, 81) = 5 t)z N Kagg e p). 65)

where K;; (x, py) f (277)2 Kij(k, x, pg). The term in

curly brackets next to the initial condition DIE,O) (x, k) is
responsible for probability conservation. Now, integrating
out the transverse momentum k or the momentum fraction
x, respectively, we get the following distributions:

D(x, 1) E/dsz(x,k,t),
1

D(k,t):/ dx D(x, k, 1), (66)
0

which respects fol dx D(x,t) = 1 and [d*k D(k,1) = 1.
The expressions for these take the form,

DV (x, 51) :8t2asx3<gg(x,p3_), (67)
DV (x, 51) = 51 — Ny —xKge(x, pg) s (68)
and, finally,
) 1
DV (k, 81) = (2n)2/() dx 205 xKgg (k, x, pg)
8t
k), 69
+ (Zn)zwg( ) (69)
DDk, 1) = 2 &/ldx XKy (k, x, pg) (70)
g WO = Gy Wy Jo Tt R0

For readability, we have dropped terms that are proportional
to the initial condition. They are however crucial in order to
restore the normalisation of the distributions (Figs. 12, 13).
Finally, in order to make contact with Eq. (41), we note that
D(k, §t) = D(k>, 81), so that

D (kr, 8t) = 27 ky Dk, 81) (71)
where k7 = |k]|.
For the quark initiator,
DY (x.k)=0, and
D;O) (x,k) = x8(1 —x) 8P (k), (72)
we obtain,
(1) St
D, (x,k,é8t) = o )2 as Np xXKgqy(k, x, pg T, (73)
1
DV (x, k. 81) = D (x. k) {1 — 8t |:a/0 dz Kyq(z, pg)
d2q
+/ (1) wq(")“
St
(2 )2x8(1 X)wy (k) . (74)

The integrated distributions now read, omitting the terms pro-
portional to the initial condition,

DV (x, 81) = 8t ot N xKgq (x, pi) . (75)

DV (x, 81) = 8t oty xKgq (x, pg) . (76)

and, finally,

DM (k, 8t) = e /01 dx oty Np xKgq(k, x, pg) . (77)
St !

DV (k, 81) = el fo dx xXKgq (k. x, pg) . (78)

Appendix D: Numerical-solution methods
D.1 Monte Carlo algorithms

Below we briefly sketch appropriate algorithms imple-
mented in two independent Monte Carlo programs, MIN-
CAS and TMDICE. One essential difference between these
approaches is that MINCAS provides Monte Carlo solutions
for the fragmentation functions that follow Eqgs. (20), while
TMDICE solves the equivalent equations for the multiplic-
ity distributions, i.e. with the replacement: D;(x, k,t) —
Fr(x,k,t) = Dj(x,k,t)/x.

First, let us rewrite Eq. (33) in a probabilistic form which
is suited for the MCMC algorithm. To this end we define two
probability distribution functions(p.d.f.s):
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Q1 (1) = Wy, (xiy) e im0 TR (g — )

(79)
for generation of the random variable t;, and
S5 @isxic1, Q1)
EJ,‘J,’_ (Z'v Q,I)Z = s
e e lp]j]i,1 (xifl)
Wy (xic1) = @y (i) + Wy, (80)

for generation of the random variables (z;, Q;,;), and the
conditional probability for generating a new parton flavour
Ji, given the flavour J;_1:

Jo o (x l)e*‘yji_l(xi—l)(fiffi—l)
i Jio1 Ki—

)\
ps; =pUilJdi-1) =
QJ,'_l(fi)

81)
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One may easily check that they are properly normalised to 1.
Then, Eq. (33) can be written as

1
Dy(x,7) = d() f dxo / d*ko x (x0, k0) Y pso
0

Jo

+o00
x {/ dry 01y (71) 851 85 — x0) 8k — ko)
T

+Z Z n[/OTdeQJifl(Ti)PJ,»

n=1 Ji,..J, i=1

|
X/ dZi/dZQi/dzli &y, @i Q;,li)]
0
+00

X / dr,41 0y, (Tn+1)81n1 8(x —x,) 0(k — kn)} s
T

(82)
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where the initial functions are

1
a) = [ dxo [ €03 Dso. ko).
J

G0, k) = 2= D200 K0T )
d(to)
Dy (x0, ko, 70)
PJy =

Y, Dy(xo0, ko, T0)

The formula of Eq. (82) is a basis of the following MCMC
algorithm:

1. Set the initial values of (xg, ko) and Jy or generate them
according to the probabilities x (xo, ko) and p ,, respec-
tively.

2. Having generated the random-walk leap i — 1 (i =
1,2,...), generate 7; according to the p.d.f. g,,_, (7;): if
T >T1setx =x;_1, k =k;_1, I = J;_ and stop.

3. Otherwise, ie. 7; < T:

(a) generate the parton flavour J; according the probabil-
ity P>

(b) generate the variables (z;, Q;,1;) according to the
pdf EJ,'J,‘,1 (Zi? Qi’ li)»

(c) setx; =z;xj—jand k; = z;k; 1 + Q; +1;,

(d) incrementi — i + 1 and go to step 2.

For the Monte Carlo solution of the evolution equations for
the multiplicity distributions, as implemented in TMDICE,
the algorithm is analogous, while the probability distributions
change: instead from 2,5, , (z;, Q;,l;), the variables in step
3(b) of the algorithm are generated from the distribution

Gy @ivxict, Qi)
\IJJ,* Ji—1 (xi—l)

B,y Qi 1) = : (84)

where

S17(z,y, @, 1) =K1z, y, @O(1 — € — 2)8(1)

~wr) )
—H‘*W O — lmin) 6(1 — 2)8(0),
(85)

where K17(z, y, @) = X;15(z, y, @)/z. Please note that the
functions ® 5, ,, ¥.;._,, and W, are the same in both the
Monte Carlo solution methods, TMDICE and MINCAS.

The Monte Carlo weight corresponding to the n-leap tra-
jectory y;, is

w);"(x,k, 7) =d(19) 64,1 6(x —x,) 6k — k). (86)

One can prove that the expectation value of such a weight
corresponds to the distribution function D;(x, k, 7):

E[w)(x,k,7)] =D;(x. k. 7). (87)

In Monte Carlo computations, based on the law of large num-
bers (LLN), the above expectation value is approximated by
the arithmetic mean of the Monte Carlo weights for the given
(x, k, 7). In practice, one makes histograms of desired vari-
ables with the event weight given by Eq. (86). In the above
MCMC algorithm, it is assumed that all the necessary ran-
dom variable can be sampled from the respective probabil-
ity distribution functions. In practice, however, this is not
straightforward, as the corresponding evolution kernels used
to construct these p.d.f.s are complicated functions, in par-
ticular they cannot be integrated analytically. Therefore, one
cannot apply basic Monte Carlo techniques, such as ana-
lytical inverse transform method, to generate the respective
random variables.

One possible solution is to perform numerical integra-
tion and use numerical inverse transform method for random
variables generation. This, however, can be slow in terms of
CPU and prone to numerical instabilities, therefore it has to
be done with great care. These methods have been imple-
mented in the Monte Carlo program TMDICE for the case
of the the evolution of the multiplicity distributions.

The other way to deal with this problem is to replace the
exact p.d.f.s in Eq. (82) with their approximations, i.e. some
simpler functions that on the one hand are as close as pos-
sible to the original functions, but on the other hand can
be integrated analytically and used in the analytical inverse
transform method for the random variables generation. In
such a case, these approximate p.d.f.s are used to generate
all the necessary random variables, and all the simplifica-
tions are compensated by appropriate Monte Carlo weights
being the ratios of the exact to approximate p.d.f.s. Here, two
Monte Carlo algorithms are possible: (1) the weighted-event
(or variable-weight) algorithm in which each generated event
is associated with the corresponding (variable) Monte Carlo
weight and (2) the veto algorithm [53] which uses a dedicated
acceptance-complement method to generate unweighted (i.e.
weight = 1) events. These two algorithms have been imple-
mented in the Monte Carlo event generator MINCAS. They
have comparable efficiency in generation of (x, k) distribu-
tions in terms of the CPU time. It has been checked that both
these algorithms give the same numerical results, which con-
stitutes an important internal test of their implementation in
MINCAS.

More details on the above Monte Carlo algorithms as well
as the programs MINCAS and TMDICE will be given in
separate publications.

D.2 Chebyshev method
As a test of the obtained Monte Carlo solutions, we have used

semi-analytical method based on the Chebyshev polynomials
to solve Egs. (61). The idea is to expand the solution with the
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Initial gluon, t=0.1 fm

—— MINCAS, gluons
...... TMDICE, gluons
= Chebyshev method, gluons
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------ TMDICE, quarks
v Chebyshev method, quarks
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Initial gluon, t=4 fm
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102

10
1

107"
1072

1073
1.8
1

Ratio

0250102 03 04 05 06 07 0.8 09
X

Fig. 14 Comparisons of the x distributions from the Monte Carlo pro-
grams MINCAS and TMDICE for the evolution equations (20) with the
results from the Chebyshev method for the evolution equations (61) at

Chebyshev polynomials:

N—1 N-1
2
Dp(x,7) = = Z ' Z Dy(xj, DT (y)Ti (y(x)),
i=0 j=0
p=g,NS,S, (88)

where

T; are the Chebyshev polynomials of the first kind,

>/ means that the first term in the sum is divided by 2,
{yi}ie[[l;N]] are the nodes (or zeros) of Ty: y; =
cos %(i + %), i €[1; NJ,

in the following, we use the notation: 7;; = T;(y;),
Vi, j€[l; N],

vy : [0, 1] — [—1, 1] is an arbitrary bijection,
{xi}ic[i;n) are the arguments of {y;} by y: Vi €
[ N], xi =y~ L)

@ Springer

Initial quark, t=0.1 fm

Initial quark, t=4 fm

D(x)

the time-scales ¢ = 0.1 and 4 fm: cascades initiated by gluons (left) and
quarks (right). The bottom panels show the ratios to the corresponding
results from MINCAS

The idea is then to solve the equations in the nodes of the
Chebyshev polynomials in T = ¢ /1,

N—-1 N-1
aD s 2
y =YY Dty 0Ty
T i=0 j=0

1

z
x| — dz 83 kChe (2) ——
|: ](; jkqg o

X z
- dz 8 Kgg(2) —=
fO J 88 /*xk

s (o (- (2) - 75

N—1 N-1

2 ’
N Y'Y Dsxj, T
i=0  j=0
I
z Xk
L)
X Xk 4
N—1 N-1
0Ds(x, T) 2 Z,
— = Ds(xj, 1)Tij
ot LA it
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Initial gluon, t=0.1 fm
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Fig. 15 Comparisons of the k7 distributions from MINCAS and TMDICE for the evolution equations (20) with w(l) l/[lz(m%) +1%)] at the
time-scales r = 0.1 and 4 fm: cascades initiated by gluons (left) and quarks (right). The bottom panels show the ratios to the corresponding results

from MINCAS

Xk z
x| — dz 8k Kyg(z) —=
|: fo jk™aqq N

o oo (5 (0 (2)) -2 )

2 N—-1 N-1
+N ! Dg(x‘,-, ‘L’)T,'j
i=0 j=0
1
Z Xk
X/ dz ]ng(z),/ —T; <y <7>> s
Xk Xk Z
0] N—-1 N-1
8DNS(xk, 7) 2 0
ONELD L 2NN Dl 0Ty
i=0 j=0

Xk z
x| — dz 8k Kyq(2) —=
|: /0 JkMqq r

e (i (- (2) - 75) ]

(89)

The integrals from 0 to 1 in (61) are split in integral from 0
to xj and from xj to 1 and evaluated with another Chebyshev
decomposition (with adequate bijections). Actually, we use
the logarithmic bijections (implying a low-x cut-off) which
are more suitable here. Finally, a simple Euler method is
used to solve the equation in time, with a narrow Gaussian
function as a starting distribution:

21 (x —1)?
D()(.X,S)— ;gexp —T s (90)

where ¢ = 1072, as the Chebyshev polynomials are unable
to reproduce the Dirac §-function. The inability to approach
peaked functions translates into oscillations of the solution
in the low evolution times (particularly visible on the quark
distributions for the quark-initiated cascade).
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Unfortunately, this method has not shown suitable for the
kr-dependent evolution equations (20).

D.3 Numerical cross-checks

Here, we present some results of numerical cross-check of
the presented above methods for solving of the evolution
equations (20) and (61). They have been obtained for the
input parameters given in Sect. 4.

We start from the D(x, t) distributions for which we can
compare all three numerical-solution methods. In Fig. 14 we
present comparisons for the results from the Monte Carlo
programs MINCAS and TMDICE for the evolution equa-
tions (20) with the results from the Chebyshev method for
the evolution equations (61) at the time-scales ¢+ = 0.1 and
4 fm. The results from MINCAS and TMDICE are obtained
for the full (x, k) evolution but they are integrated by Monte
Carlo method over k. One can see a very good agreement of
the three methods for both the final gluon and quark dis-
tributions in both the gluon and quark initiated cascades.
In the case of the Monte Carlo programs, this also shows
that they reproduce correctly the D(x, t) distribution from
the full evolution for the D(x, k, t) distribution given by
Eq. (20). A similar agreement has been found for other val-
ues of the evolution time values. The Chebyshev method
reveals some oscillatory behaviour for + = 0.1 fm, i.e. for
short evolution time, but works well for higher time-scales,
t > 1fm.

In Fig. 15, we present comparisons of the D(kr, 1) dis-
tributions for the evolution equations (20) obtained from
two Monte Carlo programs: MINCAS and TMDICE, for
the cascades initiated by gluons (left) and quarks (right) at
evolution time-scales + = 0.1 and 4fm. As one can see,
a perfect agreement between the two independent Monte
Carlo algorithms and programs is found. We have checked
that such an agreement holds also for other evolution time-
scales, other splitting kernels and other medium-scattering
functions. Unfortunately, for the equations including the k7 -
dependence, the Chebyshev method has turned out to be
unfeasible.
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